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Abstract
Robot routing is one of the most important topics in mobile robotics. The goal is to find a continuous path from an initial 
position to an end destination that is collision-free and optimal or near-optimal. Due to the growing trend of using automatic 
moving tools in industrial automation, and their application for various purposes such as transportation of goods, and service 
in industrial and hospital environments, many researchers have decided to conduct research in this field and route plan-
ning. The main challenge is to find a short route with a lack of collision with obstacles. This study examines path design for 
mobile robots and proposes a new and efficient idea for routing. Besides the short distance of the route and lack of collision 
with obstacles, the proposed method investigates other factors such as the safe distance from obstacles, path smoothness, 
and multiple robots. The results show the superior precision and speed of the proposed algorithm compared to similar algo-
rithms. The suggested approach finds the shortest path with a safe distance from obstacles, in a minimum time. The major 
contributions of this method are summarized below: (1) a biogeographical algorithm is formulated for robot routing. (2) To 
improve the basic biogeographical algorithm, basic operations of the particle swarm optimization and genetic algorithm are 
integrated with it. (3) In addition to the shortest path problem, other problems such as path smoothness with a new idea and 
the safe distance from obstacles are included. Path smoothing is performed without involving it in the cost function, and 
merely through interpolation of the points found by the algorithm. (4) The proposed algorithm results in a good efficiency 
and finds the appropriate solution in a few iterations.
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Abbreviations
GA	� Genetic algorithm
PSO	� Particle swarm optimization
HHO	� Harris Hawk optimization
BBO	� Biogeography-based optimization
HSI	� Habitat suitability index
SIV	� Ability index variable
Pnew	� New population
Ph	� h-th solution inside the population

�	� Learning rate
�h	� Emigration rate
�h	� Immigration rate
Δ	� Safe distance
robs(k)	� Radios of k-th obstacle
xobs, yobs	� x–y coordinates of obstacles

1  Introduction

1.1 � General overview and objectives

Automation has emerged in different sectors of the indus-
try and production in recent years and is developing every 
day. Only a few decades have passed since the emergence of 
fully mechanized factories in which all processes are auto-
matic and human force has no administrative role. We have 
recently witnessed the establishment of mechanized facto-
ries with amazing design, construction, and operation. The 
concept and knowledge of automatic control and the use of 
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mechanized systems in factories date back to World War 
II, but remarkable evolutions have occurred only recently. 
Robots are the most recent stage of human effort toward 
automatic industries. Robots are human-made machines that 
do not necessarily move like human beings but can make 
decisions and create and control pre-determined tasks (Chen 
and Gao 2020; Gao et al. 2020).

The robot motion planning problem has gained momen-
tum as a major field of robotic science since the late 1970s. 
Today, mobile robots exist in all spheres of modern life. At 
the outset of robot industry design, robots used to be simple 
prototypes comprising several mechanical arms that could 
be controlled by an engine and performed their tasks in a 
static and very simple environment. In such environments, 
it was easy for robots to do their tasks without colliding with 
obstacles. Today, many engineering problems are related to 
robots and their motion planning directly or indirectly (Chen 
2020; Chen et al. 2022). The routing problem necessitates 
robots to consider engineering constraints such as physical 
and transient constraints; therefore, path design methods are 
divided into two categories based on the conditions of the 
environment in which the robot is placed: 

1.	 Static: Fixed conditions for the environment and obsta-
cles.

2.	 Dynamic: Variable number of obstacles and placement.

In terms of available information, these two categories are 
divided into two main classes:

•	 Class 1: The robot has inadequate knowledge of its work 
environment, in which case asynchronous routing is per-
formed.

•	 Class 2: The robot discovers the environment by using 
its sensors during motion, also known as synchronous 
planning.

Robot motion planning involves finding an optimal path 
from the origin towards the destination, without collision 
with the obstacles in the environment, considering some 
restrictions such as safe distance from obstacles, and the 
path smoothness. In designing a mobile robot path, concave 
obstacles are a major challenge due to the proximity of the 
path the robots find in the concave obstacle. This compli-
cates the problem, and the robot may fall into an infinite 
loop inside the concave obstacle. To solve these problems, 
different heuristic methods have been developed. Among 
these, evolutionary algorithms try to overcome the deficits 
of other methods and have been increasingly used for this 
purpose (Petrović et al. 2022).

Robots can be divided into two categories in terms of 
mobility: (1) static-platform robots, (2) dynamic-platform 
robots The former group involves series and parallel robots 

that are used in closed environments due to the limited work-
ing space. Today, however, mobile robots (including flying, 
walking, wheeled, and swimming robots) that are free from 
the mentioned limitations of fixed-platform robots are used in 
different aspects of human society. Thus, these robots colli-
sion-free and safe routing is critical. Different constraints are 
regarded as criteria in the routing problem. These constraints 
can include constraints governing the kinematics or dynam-
ics of the studied robot. Indices such as the shortest path 
traveled, least travel time, and minimum energy consumed 
for travel can also be regarded as the objective functions for 
routing (Yu et al. 2021). The existing methods can be divided 
into two groups of global and local routing problems.

Contrary to global routing, local routing often works 
based on the processing of data dispatched by sensors, which 
is why the second group is mostly used for online routing. 
Several methods have been proposed for static environ-
ments in the literature. A highly challenging topic in this 
classification is the collision-free routing of parallel robots 
in unknown and dynamic environments. During routing in 
dynamic environments, when the robot faces dynamic con-
straints, it will be much more difficult to follow the path 
when avoiding a collision (Gul et al. 2021, 2019).

1.2 � Literature review

Collision-free routing algorithms have always received 
attention from researchers, and different algorithms have 
been proposed for this purpose, each of which has its own 
merits and demerits. Overall, they can be divided into 
offline and online algorithms. In offline approaches, all the 
specifications of the environment, including the placement 
of robots and obstacles, are known from the outset. In this 
approach, the environment is assumed to be constant, or its 
possible changes are neglected. This approach is divided into 
classic and advanced categories. The most important dis-
advantage of classic methods is their risk of entrapment in 
local minima. Numerous approaches based on evolutionary 
algorithms have been proposed to overcome this problem, 
which will be reviewed below (Chen et al. 2021; Mukherjee 
et al. 2021).

In online methods, the specifications of the working 
environment are not necessarily available and can change 
with time. In this method, the specifications of the environ-
ment are identified momentarily by using the information of 
sensors. These approaches are also divided into classic and 
advanced categories. Classic approaches include the poten-
tial field, histogram, and dynamic window approaches. In the 
potential field method, by placing attraction and repulsion 
fields, efforts are made to have the robot reach the destina-
tion without collision. In the histogram method, the robot’s 
path is determined based on the minimum field density 
and proximity to the destination. In the dynamic window 
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method, the linear velocity and practical angles are taken 
into account based on the robot’s acceleration (Sandakalum 
and Ang Jr 2022). In the advanced methods of this group, 
several techniques have been introduced to reduce the risk of 
entrapment in local minima. For instance, some references 
have combined these techniques with evolutionary algo-
rithms including the genetic algorithm (GA). Different meth-
ods of robot routing are reviewed in the rest of this chapter, 
with an emphasis on evolutionary methods, and the results 
are examined (Mukherjee et al. 2020; Bae et al. 2021).

The PointBug algorithm is proposed by Buniyamin et al. 
(2011) for the first time. This algorithm can detect the clos-
est obstacles and uses their margin to reach the destination. 
The important point is the robot’s reaction if the margin and 
edges of objects are not detectable. Thus, its working range 
must follow certain conditions. A novel method is proposed 
by Cherubini and Chaumette to perform robot navigation 
and avoidance of collision simultaneously by using a camera 
and estimating the risk of a collision via a potential vector 
field. This framework may interact with unavoidable obsta-
cles, decelerate and, eventually, stop the robot (Cherubini 
and Chaumette 2011). In this reference, a novel method is 
presented based on machine vision to detect obstacles and 
prevent the mobile robot’s collision with them in unknown 
smooth environments. This reference has designed and con-
structed a mobile robot equipped with a camera.

An algorithm for image processing to detect the obstacles 
in the environment and control the proposed motion path is 
also applied to the robot. Three colored lenses are installed 
on the robot that radiates light of certain angles along the 
robot’s path. The received image of the robot contains the 
points of these colored lights. By processing the images and 
determining their coordinates, the position of the obstacle, if 
any, is detected, and the command for changing the path and 
avoiding the obstacle is issued. These obstacles can be static 
or dynamic. The test results showed that the proposed method 
can detect and prevent collision with obstacles of any shape 
or material with high reliability, while other methods have 
certain limitations in this regard (Liu and Liu 2022).

In Song et al. (2021), a method is implemented on the 
robot that required heavy calculations and processing of 
images. This method divided the image obtained from the 
camera into smaller blocks and, then, compared two con-
secutive images to find the block, in which the motion 
and change took place. If there was a significant motion 
between the blocks, it was assumed that there were mov-
ing objects inside the block, which could slow down the 
robot’s reaction speed. In Yoo and Oh (2021), a mobile 
robot is studied that could move in the home environ-
ment using information extracted from vision. Moreover, 
a vision-based system was designed, which consisted of 
a type of machine that used an omnidirectional camera as 
the only sensor for home navigation and a stereo vision 

system for detecting obstacles. In Lin et  al. (2018), a 
method is proposed, based on which the robot navigated 
the environment by extracting the environment charac-
teristics such as the color and geometry of the obstacles. 
However, since the proposed method was based on prob-
abilities, there was the possibility of errors.

In Zhang et al. (2022), a novel algorithm, which is a 
combination of discrete programming, convex optimization, 
velocity obstacles, and a receding horizon is presented for 
motion planning and control of mobile robots. The envi-
ronment is unknown, and the proposed algorithm is simu-
lated for two separate scenarios, one for a static unknown 
environment and the other for a dynamic unknown environ-
ment, by using the CVX software package in the MATLAB 
simulator. Then, based on requirements for an actual robot, 
the algorithm is executed on an EPUCK robot in ROS. The 
Gurobi solver is used for implementation. To convexify the 
non-convex constraints, a linear mixed-integer programming 
method is used. All the constraints must retain their linearity 
in the next horizons. Thus, to avoid a collision, two types 
of constraints are utilized. In the first horizon, the velocity 
obstacle constraint is used to ensure a lack of collision, and 
in the next horizons, constraints based on the bug method 
concept are employed to ensure a lack of collision and partly 
model the unknowns in measuring positions and velocities. 
Results show the high reliability of this algorithm and its 
adherence to all safety requirements and lack of collision. 
The solution time is more than 0.004 s in each stage, sug-
gesting the immediate nature of this routing method.

A reinforcement learning algorithm is employed by Lee 
and Jeong (2021) for the optimal location of intermediate 
destinations and found paths that lead to more precise maps 
of the environment. The innovation of this reference lies in 
its consideration of the location of intermediate points such 
that, without the expert observer having any information 
about the map, the map of the environment is constructed 
with better precision. By using the reinforcement learning 
algorithm, strategies are designed based on which the robot’s 
motion reduces the a posteriori uncertainty of the robot. As 
noted before, a major method in robot path design is the 
artificial potential field method because it is based on simple 
mathematical calculations. The most important demerit of 
this method is entrapment in local minima. An approach to 
overcome this problem is the use of optimization methods 
for finding approach attraction and repulsion coefficients 
and step size that can pass local minima and consider path 
length in optimization. In Ding et al. (2020), Harris Hawk 
optimization (HHO) algorithm is used in order to enhance 
the patient coverage using mobile wireless sensors. HHO 
is a nature-inspired evolutionary algorithm that has shown 
superiority in a wide range of engineering problems due to 
its ability to maintain a balance between exploitation and 
exploration phases (Abualigah et al. 2022, 2021).
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In Peng and Qiu (2022) and Barma et al. (2021), an 
improved GA is adopted for routing a flying robot. In addi-
tion to the length of the path, other parameters, such as path 
safety ad smoothness, are also included in the design. The 
GA is combined with another algorithm for the routing 
problem, showing improved precision and speed of routing. 
These approaches include the combination of GA with the 
ant colony algorithm, Particle swarm optimization (PSO), 
and similar methods (Che et al. 2020). The other routing 
algorithms include: inference search algorithm (Tamizi and 
Ghaffari 2019), frog leaping (Jazebi and Ghaffari 2020), 
imperialist competitive algorithm (Mohammadnezhad and 
Ghaffari 2019), and fuzzy logic approach (Mottaghinia and 
Ghaffari 2018).

1.3 � Motivations

The literature review shows that (see Table 1): (1) in most 
of the above studies, just the shortness of route, and lack 
of collision with obstacles are taken to account, and the 
restrictions such as safe distance from obstacles and path 
smoothness are neglected. (2) The improved optimization 
techniques have been rarely used for this problem. (3) The 
problem of multiple robots, considering have been rarely 
studied considering various restrictions have been seldom 
studied.

1.4 � Contributions

Regarding the above discussion, in this paper, a new method 
is presented. The main contributions are: (1) a biogeographi-
cal algorithm is formulated for robot routing. (2) To improve 
the basic biogeographical algorithm, part of the Particle 
swarm optimization and genetic algorithm operations are 
integrated with it. (3) In addition to the shortest path prob-
lem, other problems including path smoothness with a new 
idea and the safe distance from obstacles are included. Path 
smoothing is performed without involving it in the cost func-
tion, and merely through interpolation of the points found 
by the algorithm. (4) The proposed algorithm results in a 

good efficiency and finds the appropriate solution in a few 
iterations.

2 � The proposed algorithm

Biogeography-based optimization (BBO) is a relatively 
new algorithm for smart optimization introduced by Dan 
Simon in 2008. This algorithm is inspired by the dissemina-
tion of species in multiple habitats. A mathematical model 
was extracted by proposing a probabilistic model of the 
migration of species in habitats, which led to the creation 
of a novel optimization model used in BBO. This algorithm 
enjoys the specifications of both previous algorithms (Taghi-
zadeh et al. 2021; Mirshojaee et al. 2020).

2.1 � Background of the algorithm

The BBO algorithm is a relatively new algorithm whose 
good performance has been studied in different domains. 
The BBO algorithm is used in Jamuna and Swarup (2011) 
to optimize the design of a power system. In this problem, 
researchers investigated the performance of BBO along 
with several other algorithms, including the deterministic 
tabu search, stochastic tabu search, simulated annealing, 
redefined genetic algorithm, and hybrid genetic stochastic 
methods. The findings demonstrated the proper efficiency 
and performance of the BBO. The performance of BBO and 
GA is compared in Simon et al. (2011) based on 14 criterion 
functions. In this study, 14 criterion functions in five, 10, and 
20 dimensions were regarded as the objective function. The 
results indicated the superior ability of BBO in convergence 
to the absolute optimal solution compared to GA.

By increasing the dimensions of the optimization prob-
lem, the success percentage of BBO in finding the optimal 
solution increased. In solving the five-dimensional problem, 
in 52% of the cases, the BBO had superior performance. 
In solving the 10- and 20-dimensional problems, it outper-
formed the GA in 90 and 92% of the cases, respectively. 
The BBO is used in Hadidi and Nazari (2013) to optimize 
the design of a heat exchanger pipe. The BBO algorithm 

Table 1   General comparison of various methods

References Year No collision Safe distance Path smooth-
ness

Multi robots

Buniyamin et al. (2011), Cherubini and Chaumette (2011) 2011 ✓ × × ×

Che et al. (2020), Chen and Gao (2020) 2020 ✓ ✓ × ×

Gul et al. (2021), Song et al. (2021), Yoo and Oh (2021), Lee 
and Jeong (2021)

2021 ✓ × × ×

Yu et al. (2021) 2021 ✓ × × ✓

Peng and Qiu (2022) 2022 ✓ × × ✓
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was used to minimize the total costs of equipment, includ-
ing investment and total annual costs of energy for the 
heat exchanger pipe, by altering different design variables, 
including pipe length, pipe outer diameter, etc. The compari-
son of the results of BBO with other researchers depicted the 
superiority of BBO in reducing costs in all examples with 
similar operational conditions and a reduced execution time, 
such that the investment cost was reduced by 14% (Goel 
2022; Sarma et al. 2017).

2.2 � Theoretical foundations

Biogeography is the science of studying the geographical 
distribution of creatures. Biogeographical mathematical 
simulations describe the migration of a species from one 
habitat to another, as well as the emergence or extinction of 
a species. Habitats that are more suitable for the residence of 
a species have a higher habitat suitability index (HSI). HSI 
depends on plant coverage, precipitation, area, temperature, 
etc. Criteria that specify the quality of the habitat are known 
as suitability index variable (SIV).

In fact, SIVs are independent variables, and HSI is a vari-
able dependent on SIVs. Habitats with a high HSI accommo-
date more species; on the other hand, habitats with a lower 
HSI contain fewer species. As the HSI of habitat and the 
number of species rise, the tendency to emigration from that 
habitat to search for a habitat with better food sources and 
fewer population increases. On the other hand, habitats with 
less population show a greater tendency for immigration. 
Figure 1 depicts the effects of the number of species on the 
immigration rate � and emigration rate �.

Based on Fig. 1, maximum migration to a habitat occurs 
when there are no species in the habitat. As the number 
of species rises, the habitat becomes more populous, and 
fewer species may migrate there; thus, � declines. The point 
at which the habitat has a maximum number of cases of 
Smax will be a point with immigration of 0. Based on the 

immigration diagram, if there are no species in the habitat, 
� will be 0, and as the number of species rises, this rate will 
increase. The maximum � is E and the maximum � of I; the 
balance in the number of species occurs when � = � . S0 
shows the location of this balance. By considering n = Smax , 
and based on Fig. 1, � and � can be expressed as follows 
when there are k species in the habitat:

where �k and �k are respectively the emigration and immi-
gration rates of a habitat with k species. In certain condi-
tions, �k + �k = E = I can be assumed.

2.3 � Mathematical formulation

Simon proposed biogeography-based optimization (BBO) 
algorithm using biogeography theory in nature. Suppose 
there is a problem and a set of possible solutions. Each solu-
tion can be considered as a habitat, where SIVs represent 
the decision variables. Habitats and SIVs are like chromo-
somes and genes in GA, respectively. SIVs determine HSI of 
a habitat. The higher the HIS, the more suitable the habitat 
will be. HSI is the same as the objective function in other 
similar algorithms. Suppose that there is a specific graph 
with E = I for each solution (habitat) and the number of spe-
cies (S) that are directly associated with HSI is manifested 
by HSI value (Fig. 2)

As shown in Fig. 2, S1 and S2 represent solutions with 
low and high HSIs, respectively. S1 indicates a habitat with 
few species, while S2 includes a larger number of species. �1 
of S1 is greater than that of S2. Moreover,�1 of S1 is smaller 
than �2 of S2.

(1)�
k
= E

k

n

(2)�
k
= I

(

1 −
k

n

)

Fig. 1   Emigration and immigration in a habitat
Fig. 2   Comparison of two possible solutions for one problem; S1 has 
a low HSI, and S2 has a high HSI



4626	 A. Mohammadzadeh, B. Firouzi 

1 3

With a certain probability like Pmod, each solution can 
be improved based on another solution. If solution Si is 
selected for improvement, the migration rate � is used to 
modify SIVs in the possible decision-making process. After 
selecting SIVs for modification, migration rate � of other 
solutions is used to select the improved solution, and SIVs 
of the selected solution are randomly replaced with those of 
solution Si. It should be noted that all the solutions (in case 
of lack of elitism) are modified at each stage; however, the 
degree to which each solution is modified is inversely associ-
ated with the suitability of its HSI. The modifying solution 
is selected based on the probability of migration rate. For 
this purpose, the roulette wheel can be used. Transferring 
SIVs from one solution to another in a quite similar way 
may not be appropriate, as this would make it impossible to 
fully search the decision space. Thus, the following equation 
should be used to replace SIVs:

where SIVnew
i,k

 is the kth modified SIV for the ith solu-
tion,SIV

i,k
 is the kth SIV for the ith solution (modified solu-

tion), SIV
j,k

 is the kth SIV for the jth solution (modifying 
solution) and � is an analogy between 0 and 1 that is speci-
fied by the user. Major hazards such as diseases, natural dis-
asters, etc. can drastically change the HSI of the habitat. 
Therefore, the condition of a habitat may suddenly become 
favorable or unfavorable. This phenomenon is similar to the 
mutation in GA. After migration, this mutation can be ran-
domly applied to solutions (previous step). Mutations can be 
applied to SIVs after migration based on the potential dis-
tribution such as uniform or bell-shaped distribution. Fig-
ure 3 illustrates the flowchart of this algorithm.

3 � Steps of proposed algorithm

In this section, the routing problem by using the proposed 
algorithm will be explained. The proposed algorithm has 
all the specifications of GA, PSO, and BBO algorithms. As 
mentioned earlier, BBO is a population-based evolutionary 
method that is inspired by the phenomenon of the migra-
tion of animals and birds between different places. In fact, 
BBO is the study of the geographical distribution of differ-
ent animal species. In this method, islands that are suitable 
for habitat have high suitability for habitation, which follow 
the characteristics of rainfall, plant diversity, the soil of the 
region, temperature, and so on. To start, a number of ran-
dom paths must be generated, the starting point of which is 
the current location of the robot and the end point of which 
is the final target. These initial solutions are called initial 
population.

(3)SIVnew
i,k

= SIV
i,k
+ �

(

SIV
j,k
− SIV

i,k

)

By applying the rules of the suggested algorithm, the best 
solution is selected as the final optimal path. The optimal 
path is better than others in terms of length, a safe distance 
from obstacles, no collision with other robots and obstacles, 
and smoothness. The details of this method are explained 
below step by step (see the general flowchart in Fig. 4).

1. The first step involved initialization. The population is 
denoted with P. The size of P is shown with N.

2. For each member of the population Ph, h = 1,… ,N , 
the emigration and immigration rates �h and �h are defined 
as:

3. For each member of the population Ph, h = 1,… ,N , the 
cost function is calculated. The basic cost function is the 
length of the path. In multi-objective optimization, other 
criteria can be added to the cost function. Other important 
criteria besides distance are path smoothness and safety. The 
smoothness and safety rates are defined as Mac et al. (2017); 
Ou et al. (2022):

where A
(

li−1, li
)

 denotes a change in the robot’s direction 
from line li−1 to line li . Parameter Di is the distance of the 
ith line segment from the closest obstacle. The overall cost 
function can be assumed as a weighted function of the three 
mentioned factors. In the proposed method, the cost function 
is a combination of lack of collision and distance. Distance 

(4)�h =
h − 1

N
,�h = 1 −

h − 1

N

(5)S
(

P
h

)

=

N−1
∑

i=2

A
(

l
i−1, li

)

(6)R
(

P
h

)

=

N−1
∑

i=1

D
i

Fig. 3   Flowchart of the BBO algorithm
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from the obstacle can also be added to the algorithm. The 
distance of the path from all the obstacles is calculated and 
added to the cost function as a coefficient. To smooth the 
path, the idea of interpolation between specified points has 
been put forward. Particles are given by the algorithm turn 
into a smoother path by using interpolation.

4. Members of the population Ph, h = 1,… ,N are ordered 
from the worst case to the best case.

5. For each member Ph, h = 1,… ,N , a random number 
between 0 and 1 is generated. If the random number is < 𝜆h , 
another member is selected and the migration operation is 
applied as:

where � is a number between 0 and 1. The newly generated 
member is stored as P′

h
 . To select P′

h
 , the proposed method 

is as follows: First, � members are randomly selected and 
among them, the best case with the highest �h is regarded 
as P′

h
.

6. The newly generated member P′
h
 is evaluated.

7. The new population Pnew is generated by adding nnew 
members of the newly generated members P′

h
 . If the new mem-

ber is better than the previous one, it replaces it.
8. All the members move towards the best global and local 

path based on the PSO.
9. For some of the best and worst paths, the cross-over 

genetic operation is applied.
10. m members of the worst solutions are selected and 

replaced with random solutions.
The simple pseudo-code for the suggested algorithm is 

given Algorithm 1. 

(7)P�
h
= Ph + �

(

Ph� − Ph

)

Fig. 4   Flowchart of the sug-
gested algorithm
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4 � Simulation and results

In this section, the proposed method is simulated in MAT-
LAB and the results are examined, see Tables 2–**** 3 for 
simulation environment and conditions. There is no such big 
restriction in experimental configurations. The only point 
that we need to take care of that, is the size of the initial 
population. With the big initial population, the accuracy is 
improved, but the computational cost is increased. So, we 
need to have a trade-off between the accuracy and speed 
of the algorithm. Please note that there is no data on this 
problem. The performance of the suggested method is exam-
ined under various conditions. Various difficult maps, vari-
ous obstacles, and a various number of robots are taken to 
account. First, we deal with the shortest path problem. The 
results are as follows.

4.1 � Finding the shortest path

The performance of the proposed algorithm is assessed on 
different maps with different and rigid obstacles. Here, only 
distance and lack of collision are included in the cost func-
tion. The maps are given in Figs. 5, 6 and  7. Evidently, 
the proposed algorithm has managed to find proper paths 
without collision. The proposed algorithm has a very high 
speed and finds the best path in most maps in less than 10 
iterations.

4.2 � Multi robots

In this section, the problem of multi-robots is investigated. 
The problem is that, in addition to find the shortest path, 
the robots should not collide. The speed of all robots is 
the same. Then the points that the robots may collide, 

are considered obstacles. In this problem, it is assumed 
that the map of robots and obstacles is known, and all the 
robots have the same motion velocity; thus, their paths 
are determined one by one. First, the path is found for 
the first robot without collision with obstacles and other 
robots. Then, the proper path for the second robot is found 
similarly. If these two paths meet, the distance of the point 
of confluence from each robot is determined. Based on the 
robots’ constant velocity, a collision occurs if this distance 
is the same for both robots. If this distance is equal, the 
confluence point is regarded as an obstacle for the second 
robot, and a new routing algorithm and path are found for 
the second robot. This algorithm continues up to a certain 
iteration. The proposed algorithm effectively found the 

Table 2   Simulation environment

Matlab 2018a
Processor Intel(R) Core(TM) i7-4720HQ
CPU 2.6 GH
RAM 8 GB
System type 64-bit operating system

Table 3   Simulation condition
Population size 100
Number of robots 3
Size of room 20 × 20 m
� 0.1
Δ 0.5
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Fig. 5   Map 1: diagram of the path found by the proposed algorithm

-20 -15 -10 -5 0 5 10 15 20
-20

-15

-10

-5

0

5

10

15

20

Fig. 6   Map 2: diagram of the path found by the proposed algorithm
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Fig. 7   Map 3: diagram of the path found by the proposed algorithm



4629A new path following scheme: safe distance from obstacles, smooth path, multi‑robots﻿	

1 3

optimal path without collision, with the path being the 
best.

The results for the path of multi robots are depicted in 
Figs. 8, 9 and 10. It is seen that the robots successfully find 
the best paths with no colliding with obstacles.

4.3 � Safe distance from the obstacles

To add the safe distance from the obstacles the cost func-
tion v is revised as follows:

where,

where Δ represents the safe distance from the obstacle. xobs 
and yobs denote the x-y coordinates of obstacles. robs(k) is the 
radius of the k-th obstacle. The results are given in Figs. 11, 
12 and 13. It is seen that the robot successfully finds a path 
of safe distance from obstacles.

(8)v = max
(

1 − d∕(robs(k) + Δ), 0
)

(9)d =

√

((x − xobs(k))
2 + (y − yobs(k))

2)
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Fig. 8   Map 1: multi robots; The rectangles are robots and the star is 
the target
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Fig. 9   Map 2: multi robots; The rectangles are robots and the star is 
the target
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Fig. 10   Map 3: multi robots; The rectangles are robots and the star is 
the target
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Fig. 11   Map 1: safe distance from the obstacles
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Fig. 12   Map 2: safe distance from the obstacles
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Fig. 13   Map 3: safe distance from the obstacles
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4.4 � Experimental verification

To further verify the feasibility of the suggested approach, an 
experimental setup is designed as shown in Fig. 14. The robot 
is connected to the computer by wireless communication. The 
commands for the robot are sent from Matlab, and the position 
of the robot at each sample time is sent for Matlab for moni-
toring. The speed of the robot is constant. The coordinates of 
the next point are determined by the suggested algorithm. The 
robot is supposed to reach the destination based on the sug-
gested algorithm. The performance is given in Fig. 15. It is 
seen that the robot well reached the destination in the presence 
of obstacles. This examination demonstrates the feasibility of 
the suggested algorithm in practice.

5 � Comparison of results

To better demonstrate the abilities of the proposed algo-
rithm, the value of the cost function for similar algorithms 
after 50 iterations are compared with the proposed algo-
rithm. Several complex maps are used for comparison. 
The simulation condition is assumed to be the same for all 
the algorithms. The initial population is similar for all the 
algorithms and the number of iterations is also the same. 
The results are given in Table 4. All methods are repeated 
10 times, and the mean results are provided. Evidently, the 
proposed algorithm yielded better results.

The reasons for its superiority are summarized below:

•	 The proposed algorithm is optimized based on the BBO 
idea and the features of GA and PSO are added to it.

•	 Besides cross-over and mutation, a percentage of less 
optimal solutions are also moved towards the more 
optimal solution by the PSO algorithm.

•	 A small percentage of less optimal solutions are 
replaced with random solutions.

•	 The cost function is multi-objective, and in addition 
to path shortness, can support a safe distance from the 
obstacles and path smoothness. This ability was dem-
onstrated in the above simulations.

Several diagrams are provided below to graphically depict 
the superiority of the proposed algorithm. To this end, in an 
equal map and the same iteration, the paths found by differ-
ent algorithms are compared. Results of the comparison are 
given in Figs. 16, 17 and 18. At the same iteration, the path 
found by the proposed algorithm is better than the rest of the 
algorithms. Note that this comparison was provided only to 
show the good speed of the proposed algorithm. Naturally, 
if the number of iterations increases, other algorithms will 
also approach the more optimal path.

Fig. 14   Designed setup
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Fig. 15   Experimental results

Table 4   Comparison of cost-
function for different algorithms

Population size Number of 
map

GA PSO BBO Proposed algorithm

100 1 77.3015 75.6478 76.1214 71.0145
2 46.0154 44.5479 43.6217 35.0147
3 56.0140 55.4527 56.0124 53.4572

50 1 85.0147 83.2170 82.5321 75.5470
2 49.3174 53.0214 440.2171 38.757
3 580.6572 59.5487 590.2176 54.0137
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Remark 1  To make the algorithm to be more robust, we pro-
pose to generate a solution with other classical methods and 
put it inside the initial population. This cause the initial solu-
tions to be improved fast. Also, we propose, to keep the best 
solution at each iteration. The operations such as mutation 
should not be applied to the best solution.

Remark 2  The main limitation of the suggested algorithm 
is that the speed of various robots is considered to be the 

same. So, for future studies, the algorithm can be developed 
for multi-robot problems with different speeds. For practical 
applications, a new scheme can be added to the algorithm to 
predict the speed of various robots and obstacles.

Remark 3  The computational cost of the suggested scheme 
is less than PSO and GA. Because the suggested algorithm 
benefits the best features and operations of both PSO and 
GA. So, the convergence speed of the proposed algorithm 
has been improved. To verify this property, in the Table 4, it 
is seen that by decreasing the population size, the suggested 
scheme’s accuracy does not decrease significantly.

Remark 4  Since in the suggested algorithm, the position 
of obstacles is known (measured by the sensors at each 
sample time); So, in a dynamic problem, if the positions 
are changed, it is obvious that the performance will not 
change. To verify this, the suggested algorithm is applied 
to a multi-robot problem. When multi-robots are moved to 
the destination, the position of one robot at each sample 
time is considered an obstacle for other robots. The results 
(Figs. 8, 9, 10) show that the suggested algorithm results in 
desired efficiency and there are no collision between robots 
and obstacles.

Remark 5  The obstacles in maps are determined, randomly. 
We want to show that the suggested algorithm can handle 
various maps with complex obstacles.

6 � Technical aspects

Recently, the remote sensing technologies such as laser 
scanners provide high accuracy and resolution in distance 
measuring. So, it is essential to improve the monitoring 
systems by the use of novel technologies. This suggested 
system reduces the damage caused by collisions, increase 
safety, as well as reduce manpower and operator costs, 
due to obstacle detection and navigation without using the 
operator. The efficiency is also increased due to the online 
detection of obstacles and the continuous operation.

Installation of some sensors, converters, and intelligent 
hardware and data integration by improved algorithms for 
navigation, guidance, and control is one of the princi-
ples of the suggested approach. The installed sensors to 
detect obstacles during navigation operations commonly 
include: radar, laser scanners (such as UXM-30LXH-EWA 
produced by Hokuyo company), binoculars, monoculars, 
infrared cameras, and ultrasonic sensors, or a combination 
of some of these sensors. In this context, the detection 
distance is usually limited to a few hundred meters. Some 
other expensive high accuracy positioning systems such 
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Fig. 16   Map 1: comparison of the path found by the proposed algo-
rithm (black) with GA (blue) and basic PSO (red)
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Fig. 17   Map 2: comparison of the path found by the proposed algo-
rithm (black) with GA (blue) and basic PSO (red)
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Fig. 18   Map 3: comparison of the path found by the proposed algo-
rithm (black) with GA (blue) and basic PSO (red)
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as Real-Time Kinematic and Differential Global Position-
ing Systems (RTK-DGPSs) can also be used. The central 
control system receives all the data and information, and 
after analyzing the data, activates the left and right engines 
in appropriate ways.

7 � Conclusion

The multi-robot routing system in a complex environment is 
the core and key component of the development of intelli-
gent navigation systems. It has many applications. For exam-
ple, it is widely used in civil intelligent ships, unmanned 
ships, and unmanned merchant ships. Its core technology 
involves multiple constraints and complex problems. How-
ever, in most navigation systems, the data acquisition, and 
processing are done manually and are always prone to human 
error. In most conventional methods, only the collision-free 
problem is investigated, and the other key restrictions such 
as multi-robots problem, safe distance, high accuracy, and 
the smoothness of the path, are neglected.

In this paper, a new path-planning scheme was designed. 
By using different maps in the presence of different obsta-
cles, it was shown that the proposed algorithm is highly 
effective and yields very good results. In the proposed algo-
rithm, besides the shortest path, the path smoothness and 
safe distance from the obstacles are also included, demon-
strating the success of the proposed algorithm. Finally, its 
performance was compared with similar algorithms, dem-
onstrating its better precision and speed.

The following directions are suggested for future 
research: 

1.	 Practical implementation of the proposed algorithm.
2.	 Development of this algorithm by considering moving 

obstacles.
3.	 Development of this algorithm by considering robot 

dynamics and technical issues.

Data availibility  This paper report no data.
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