
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2023) 14:2981–2992
https://doi.org/10.1007/s12652-023-04544-6

ORIGINAL RESEARCH

An efficient meta‑heuristic resource allocation with load balancing
in IoT‑Fog‑cloud computing environment

Ismail Zahraddeen Yakubu1 · M. Murali1

Received: 28 May 2022 / Accepted: 19 January 2023 / Published online: 2 February 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Fog computing is considered a derivative of cloud computing that aims to reduce the huge transmission latency and CPU
time, as well as the overall cost of resource usage in the cloud. The deployment of Internet-of-Things (IoT) enabled smart
systems, which frequently demand real-time processing, is rapidly expanding. Following that, the volume of generated data
and computation workload dramatically increased. Fog resources are limited and typically resource constrained. Therefore,
it is impossible to execute all tasks at the edge network. To support the increasing amounts of data and computation, cloud
computing, associated with significant delays in transmission and processing of workload, is used. The distribution of
tasks between the cloud and fog layer and the allocation of layer resources to satisfy the users' demands prevents layer
oversaturation, service degradation, and resource failure due to excessive workload is challenging. This paper proposes a
layer fit algorithm that evenly distributes tasks between the fog and cloud, based on priority levels. Also, a Modified Harris-
Hawks Optimization (MHHO) based meta-heuristic approach is proposed to assign the best available resource to a task
within a layer. The key intention of this paper is to reduce the makespan time, task execution cost, and power consumption
and enhance resource usage in both the fog and cloud layer. The simulations are performed using the iFogSim simulation
toolkit. The proposed layer fit algorithm and the Modified Harris-Hawks Optimization (MHHO) are compared with the
traditional Harris-Hawks Optimization (HHO), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), and
the Firefly Algorithm (FA). Based on the experimental results, the MHHO has improved the performance of the system
in terms of makespan time, execution cost, and energy consumption. The ability of the MHHO to balance the load across
resources yields a significant improvement when the number of tasks increases as compared to the traditional HHO and
other optimization algorithms.

Keywords Fog computing · Cloud computing · Layer fit algorithm · Task allocation · Execution time · Harris-Hawks
Optimization (HHO) · Internet-of-Things (IoT) · Resource utilization

1 Introduction

Fog computing is a distributed computing paradigm that
utilises the components between cloud datacenters and IoT
gadgets, providing storage and processing services proxi-
mate to the edge devices (Mahmud et al. 2017). In fog com-
puting, devices with processing and storage capabilities, like
smartphones, base stations, switches, and routers, perform
similar tasks as the cloud resources (Abbasi et al. 2020).
Fog computing was first introduced by Cisco (Sarkar and

Misra 2016), as an additional virtualized layer between the
cloud and IoT devices, to address the limitations of the cloud
(Agarwal et al. 2016; Verma et al. 2016; Xu et al. 2017).
However, fog computing doesn’t replace the cloud; rather,
it provides real-time services with mobility support and low
latency that are not available in the cloud.

The Internet-of-Things (IoT) technology integrates physi-
cal objects with sensing abilities, mobile objects, electronic
devices, and home appliances with the internet (Ngu et al.
2016). These devices generate an enormous volume of data
and work load that needs to be processed in real-time. To
satisfy the QoS requirements of these time-sensitive applica-
tions, fog computing must come to play.

In spite of the benefits of fog over cloud, there are
some flaws in fog computing that can’t be overlooked. For

 * Ismail Zahraddeen Yakubu
 iy1242@srmist.edu.in

1 Department of Computing Technologies, SRM Institute
of Science and Technology, Kattankulathur, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-023-04544-6&domain=pdf
http://orcid.org/0000-0003-4790-4317

2982 I. Z. Yakubu, M. Murali

1 3

instance, fog resources are limited and resource constrained.
Therefore, it is impossible to execute the enormous volume
of data and workload at the fog layer without engaging the
cloud. The combination of fog and cloud computing mod-
els enables the harnessing of both fog resources and cloud
datacenter resources to meet the QoS requirements of these
time-sensitive applications (Mahmud et al. 2020).

In fog computing, resource scheduling and assignment
is the logical method to map available resources to users
over the internet (Choudhari et al. 2018). Allocation of
resources over a time period in some logical order is
extremely important due to its stringent delay demand. To
get the most out of fog computing, it is very important to
allocate resources well (Rafique et al. 2019).Otherwise,
ineffective resource allotment could lead to higher delays
and suboptimal use of resources.

With the limited number of resources in fog computing
and the increasing number of requests, it is desirable to
process user tasks based on their respective priority levels
(Dakshayini and Guruprasad 2011; Pawar and Wagh 2012).
Given the importance of response time, makespan, and
latency, the workload must be distributed between the
fog and the cloud layer so that the optimum value can be
achieved.

According to the literature, a number of resource
allocation techniques have been proposed to exploit
the real benefits of both fog and cloud computing. Naha
et al. (2020) consider response time, processing capacity,
and bandwidth of a resource when allocating a task for
processing. If there are no available resources in the fog,
then fog servers or cloud resources will be used to complete
the task. The method allocates fog resources to a task based
on performance and availability. However, time-sensitive
applications like health care applications, augmented reality,
gaming e.t.c. (Dastjerdi and Buyya 2016; Puliafito et al.
2019; Khattak et al. 2019) can propagate to the cloud due to
a lack of resources in the fog that may be occupied by delay-
tolerant tasks. In this case, the aim of the fog is defeated.

In Mani and Meenakshisundaram (2020), tasks are
processed by a proximate fog device server, with complete
or part of the processing needed by a task. In the absence
of resources in the fog, tasks are forwarded to the cloud
for processing. However, this method may not satisfy the
QoS demands of time-sensitive applications. The paper by
Rafique et al. (2019) try to minimise average response time
and optimise resource usage but fail to address the issue of
priority on usage of fog layer resources.

This paper proposes a priority-based workload allocation
in IoT-Fog-Cloud computing. The model is suited for time-
sensitive applications. A layer fit algorithm is proposed
to distribute tasks between fog and cloud based on their
priority levels. The priority level of an incoming task is
determined by the base station nearest to the user, and then

it forwards a task to the fog layer if it’s a priority task and to
the cloud layer if it’s a non-priority task. Also, a modified
Harris-Hawk algorithm based meta-heuristic approach is
proposed to map the best available resource to a task within
a layer. The MHHO employs an exponential energy update
strategy to prevent the population from falling into local
optima. To ensure load balance, the MHHO employs a local
search strategy to avoid resource overload.

The key contributions of this paper are as follows:

• To develop a layer-fit algorithm that distributes tasks
between fog and cloud based on their priority levels.

• Propose a Modified Harris-Hawk Optimization based
meta-heuristic approach that selects the best available
resource within a layer to meet the QoS demands of
users' tasks.

• To reduce the oversaturation in the fog layer due to
increasing demand for resources in the fog layer.

The proposed resource allocation approach is
implemented using the iFogSim toolkit and is bench marked
with the traditional HHO, Ant Colony Optimization (ACO),
Particle Swarm Optimization (PSO), and Firefly Algorithm
(FA) in the iFogSim environment. The results illuminate
the efficacy of the allocation technique, in terms of task
execution cost, completion (makespan) time, and overall
power consumption of the system.

The rest of this paper is structured as follows: Section
II presents work related to resource allocation. Section
III presents the working principle of the standard meta-
heuristic HHO optimization algorithm. Section IV explains
the proposed system architecture and resource allocation
approach. Section V illustrates the simulation steps, presents
the details of the experiment, and discusses the results
obtained. Lastly, section VI concludes the work and presents
the future research directions.

2 Related work

This section presents the various methods proposed in
literature to address the task scheduling problems in a fog-
cloud environment.

In Bitam et al. (2017), a bio-inspired optimization
approach entitled "Bees Life Algorithm" was proposed to
address the task allocation problem in a fog computing
environment. The main objective of this work is to
determine the optimum tradeoff between task completion
time and storage needs for fog services generated by mobile
users. However, this work focuses on the fog layer without
considering the cloud layer.

In Potu et al. (2021), an extended Particle Swarm
Optimization with additional gradient methods was

2983An efficient meta‑heuristic resource allocation with load balancing in IoT‑Fog‑cloud computing…

1 3

proposed to address the task scheduling problem in fog
computing. The main objective of this work is to enhance
the performance of fog resources and reduce task execution
time. Considering the drawbacks of fog computing as
mentioned in Sect. 1, using the fog layer alone to execute all
IoT applications is impossible without involving the cloud.

In Akintoye and Bagula (2019), the authors formulate
tasks and resource allocation problems in a single fog-cloud
environment. A Hungarian Algorithm Based Binding Policy
(HABBP) was used to execute a new allocation policy in
the widely used CloudSim simulator. Also, a Genetic
Algorithm Based Virtual Machine Placement (GABVMP)
was proposed to address and optimise the virtual machine
placement problem in a cloud environment.

In Iyapparaja et al. (2019), authors proposed a model
to improve quality of service through efficient resource
allocation using Queuing Theory based Cuckoo Search
(QTCS) model. The tasks received from users are graded
and allotted resources based on their relative weights.
Authors used the queuing theory to prioritize the tasks and
the cuckoo search to optimize resource allocation. Despite
the priority given to tasks, the model only considers the fog
layer, which requires the cloud layer to satisfy the clients'
QoS demands.

In Abouaomar et al. (2019), Lyapunov optimization
is used to formulate a resource allocation problem in fog
computing. Authors optimise resource allocation through
entity supervision by using a resource representation
scheme that exposes the resources of individual devices in
the fog through the Mobile Edge Computing Application
Programming Interface. This work also focuses on resource
allocation and optimization in fog computing, leaving out
the cloud.

In Naha and Garg (2021), the dynamic changes in
the behaviour of fog users are addressed using a multi-
criteria-based resource allocation. The approach takes
into consideration both fog computing characteristics like
heterogeneity, mobility, resource constraints and dynamic
variation in user requirements to make resource reservations.
Allocation of resources to a task is done through a multi-
objective function. The results of this work prove promising
in terms of low response time and minimal SLA violations.
However, authors focus on resource allocation from fog
perspectives leaving out the cloud.

In Mohammady Talvar (2021), the authors improve
resource allocation in fog computing through the Nash
equilibrium and auction algorithm. In this approach, each
player is assigned a matrix that represents fog nodes, data
service subscribers, and data service operators. Individual
players generate the optimal strategy based on other players'
strategies. This work also focuses on the fog layer, leaving
out the cloud layer.

In Sarma et al. (2021), an optimised fuzzy clustering-
based resource scheduling and dynamic load balancing
algorithm is proposed to address fog computing resource
scheduling and load balancing problems. An enhanced
fast fuzzy c-mean with crow search optimization is used
to allocate resources to tasks, and finally, load balancing
is performed using a scalability decision technique. In
this work, both resource optimization and load balanc-
ing among resources are performed, but only focused on
allocating resources to tasks at the fog layer without using
the cloud layer.

In Abedi et al. (2022), authors proposed an enhanced
firefly algorithm based on load balancing to address the
Dynamic Resource Allocation (DSA) problem in a cloud
environment. The method ensures load balance between
available resources and minimises completion time by
choosing appropriate objectives in the fitness function.
The authors employ a heuristic approach, rather than
the conventional random approach, to create the initial
population of the firefly algorithm, which is based on the
tasks' priority.

In Salem et al. (2022), the authors review the various
meta-heuristic algorithms used to address resource
allocation problems in a fog environment. Based on the
findings by the authors, it was observed that meta-heuristic
algorithms achieve better performance in terms of cost,
time, energy usage, and resource utilization.

In Shakarami et al. (2021), the authors proposed
an autonomous offloading framework to address the
issues faced by time-intensive and resource-intensive
applications. In this work, numerous simulations,
including Deep Neural Networks, multiple linear
regression, hybrid models, and Hidden Markov Models
as the planning module of the aforementioned autonomous
technique, were carried out to deal with the size of the
offloading decision-making problem.

In Guerrero et al. (2022), authors examine and analyse
various resource optimization approaches in fog computing
with a focus on genetic-based solutions, their characteristics,
and their respective design options. In this article, the
authors presented a comprehensive, exhaustive, and
systematic review of the state-of-the-art techniques.

In Abohamama et al. (2022), the authors proposed a semi-
dynamic real-time scheduling approach for task applications
in a hybrid cloud-fog computing environment. A modified
Genetic Algorithm (GA) is used to generate schedules of
permuted tasks and assign tasks to the virtual resources
based on the order of the best permutation.

In Singh et al. (2022), authors proposed a cluster-based
load balancing approach that ensures load balance among
fog-cloud environment resources. The approach considers
three different resource cluster states: busy, working, and
free. Tasks are allocated to resource clusters based on their

2984 I. Z. Yakubu, M. Murali

1 3

state. The proposed algorithm keeps track of the number
of clusters and resources in each cluster to ensure efficient
allocation.

3 Harris Hawk Optimization (HHO)
algorithm

The HHO is a cutting-edge meta-heuristic algorithm that
imitates hawks' hunting and prey-capture behaviours. Hei-
dari et al. (2019) proposed the HHO approach to tackle prob-
lems with global optimization. As shown in Fig. 1 below,
HHO conducts the seeking process in two steps (exploration
and exploitation) using a variety of tactics.

Figure 1 shows the exploration and exploitation phase of
the Harris Hawks based on various strategies used. The blue
border shows the exploitation phase with the energy and
strategies used by the hawks. The orange border indicates
the exploration phase with the various patching strategies
based on the random locations and relative positions of other
hawks.

a. Exploration phase

In this phase, the hawks initiate the prey search process
by perching on various locations in the hunting territory.
In an attempt to spot the potential prey item, the hawks
perch based on the relative positions of their neighbors. In
some cases, the hawks perch based on random locations
within their home range. When no prey item is spotted,

the hawks advance the hunting area and the prey search
process continues until a potential prey item is spotted. The
relative position and random position perching have an equal
probability of success, which is modelled in Eq. 1 below.

where P(t + 1) represents the position vector of hawks in the
subsequent iteration t. P(t) represents the current position
vector of hawks, Prabbit(t) represent the position of the prey
(rabbit), r1 through r4 and q are random value inside (0, 1),
� = r3(LB + r4(UB − LB)) and Pavg is the average position of
the current population and is formulated as:

where Pi(t) represents the location of individual hawk in
iteration t and N is the population size.

b. Transition phase

In this phase, the hawks transfer from exploration to
exploitation. The transition takes place immediately after
a prey item is spotted by the perched hawks. The hawks
exploit the prey, and the prey applies different escape
behaviours, which considerably decreases its energy. The
exploitation strategy used by the hawks to intercept the
prey varies with the variation in the energy of the prey.
Equation 3 below denotes the energy model of the prey.

where Ep represents the escaping energy of the prey, E0
represents the initial energy of the prey, Tm represents
the total number of iterations and t represents the current
iteration. E0 varies between -1 and 1. E0 decreases from 0 to
-1, if the prey is weak and increases from 0 to 1 if the prey
strengthen.

c. Exploitation Phase

In this phase, the spotted prey is attacked by the perched
hawks using various attacking strategies. On the other
hand, the prey attempts to escape the attack using various
escape strategies. Based on the escaping and attacking
behaviour exhibited by both the prey and the hawks, four
(4) attacking strategies of HHO are modelled as follows:

I. Soft Besiege

In this attack strategy, the prey is encircled softly by
the hawks to exhaust the energy of the prey and finally

(1)P(t + 1) =

{
Pr(t) − r1

||Pr(t) − 2r2P(t)
||, q ≥ 0.5

(Prabbit(t) − Pavg(t)) − 𝜃, q < 0.5

(2)Pavg(t) =
1

N

N∑
i=1

Pi(t)

(3)Ep = 2E0

(
1 −

t

Tm

)

Fig. 1 Phases of the HHO (Heidari et al. 2019)

2985An efficient meta‑heuristic resource allocation with load balancing in IoT‑Fog‑cloud computing…

1 3

perform a surprise pounce to intercept the prey. This
attacking strategy is employed when the prey has enough
energy to escape the attack. The soft besiege attacking
behaviour of the hawks is modelled in Eq. 4.

J represents the random pounce and is given as:

where ΔP(t) represents the difference between the position
vector and current position of the prey in iteration t, r5 is a
random value inside (0, 1).

This behavior is applied when the chances of escaping the
attack is greater than 0.5 (i.e. r ≥ 0.5) and the energy of the
prey is greater than 0.5 (i.e. |||Ep

||| ≥ 0.5).

 II. Hard Besiege

In this strategy, the prey is weak and has low escaping
energy (r ≥ 0.5&

|||Ep
||| ≥ 0.5). The hawks hardly encircle the

prey and finally perform a surprise pounce to intercept the
prey. This behaviour is formulated as:

 III. Soft Besiege with Progressive Rapid Dive

In this strategy, the prey has enough energy to escape (r
< 0.5&

|||Ep
||| ≥ 0.5). Hence, the prey performs a zigzag

deceptive motion to escape the attack. The hawks construct
a soft besiege before pounce and competitively dive towards
the prey. The hawks base their next move on the following
rule in Eq. 8

The result of the movement is compared to the previous
dive to detect whether it will be efficient or not. If not
efficient, then an irregular, abrupt, and rapid dive towards
the prey is performed based on the following rule in Eq. 9

where D represent the dimensionality of the problem, S
represent a random vector of size 1 × D, LF represent a levy
flight function, which is calculated as follows:

(4)P(t + 1) = ΔP(t) − Ep
||JPrabbit(t) − P(t)||

(5)ΔP(t) = Prabbit(t) − P(t)

(6)J = 2
(
1 − r5

)

(7)P(t + 1) = Prabbit(t) − Ep|ΔP(t)|

(8)Y = Prabbit(t) − Ep
||JPrabbit(t) − P(t)||

(9)Z = Y + S × LF(D)

LF(x) = 0.01 ×
u + �

|v| 1

�

,

where u, v are random parameters of LF inside (0, 1) and �
is a constant with value of 1.5

The HHO algorithm selects the best strategy for
updating the position of hawks based on Y and Z as
follows:

 IV. Hard Besiege with Rapid Dive

In this strategy, the prey does not have enough energy
to escape (r < 0.5&

|||Ep
||| < 0.5). The hawks construct a hard

besiege before pounce and reduce the distance of their
average location towards the prey. The following rule in
Eq. 12 is performed in a hard besiege condition.

where Y and Z are obtained using the rule in Eqs. 13 and
14 below:

Pavg(t) is obtained using Eq. 2

(10)� =

⎛
⎜⎜⎜⎝

T(1 + �) × sin

�
��

2

�

T
�

1+�

2

�
× � × 2

�
�−1

2

�

⎞
⎟⎟⎟⎠

1

�

(11)P(t + 1) = f (p) =

{
Y , ifF(Z) < F(P(t)),

Z, ifF(Z) < F(P(t)).

(12)P(t + 1) = f (p) =

{
Y , ifF(Z) < F(P(t)),

Z, ifF(Z) < F(P(t)).

(13)P(t + 1) = Prabbit(t) − Ep
|||JPrabbit(t) − Pavg(t)

|||

(14)Z = Y + S × LF(D)

2986 I. Z. Yakubu, M. Murali

1 3

Algorithm 1: Harris Hawk Optimization (HHO)

Input: Population size N & total no of iterations

Output: the various locations of the prey and its fitness

value

Randomly generate initial population Pi,

While (not termination condition) do
 Compute the fitness values of Harris-hawks

 Set to best location

 for (each Harris-hawk (Pi)) do

 Update & J using eqn. 3 & 6

 if (| | ≥ 1) then

 Compute the new position of hawks using eqn. 1

 if (| | < 1) then

 if (| | ≥ 0.5) then

 Determine the new value using eqn. 4

 else if (| | < 0.5) then

 Determine the new value using eqn. 7

 else if (| | ≥ 0.5) then

 Determine the new value using eqn. 11

 else if (| | < 0.5) then

 Determine the new value using eqn. 12

Return

4 Proposed method

To curtail the drawbacks of the techniques presented in
Sect. 1, a layer fit algorithm has been developed to improve
the allocation of workloads between fog and cloud. Also, a
Modified Harris-Hawk Optimization (MHHO) based meta-
heuristic approach is proposed to assign the best available
resource to a task within a layer. The modification of the
HHO is done in two ways. First, we modify the energy
update equation of the HHO to avoid the population falling
into local optima. Secondly, we employ load balancing
strategy to avoid over-loading of resources, which can lead
to resource failure or performance degradation.

A. System Architecture

The model in this work consists of an edge layer, a base
station, a fog layer, and a cloud layer. Devices in the edge
layer generate tasks to be processed by either the fog or
cloud. The tasks from edge devices are first received by the
base station. The base station decides on the number of tasks
to be assigned to the fog and the amount that should be
assigned to the cloud. The fog layer consists of fog devices
that are relatively close to the base station. Devices in the
fog layer are limited and resource constrained. Therefore,
the base station allocates resources from the fog layer based
on priority. The cloud layer consists of resources with high
processing and storage capacity but far away from the base
station and edge devices. Both fog and cloud layers maintain
a resource manager that monitors resources in the layer. The
base station asks the layer resource manager for the number
and average capacity of the active resources.

Figure 2 shows the architecture used in this paper. The
edge devices generate the tasks to be processed and forward
these tasks to the fog layer through the base station available
in the fog layer. Tasks eligible for processing by the fog layer
are allocated resources, and non-eligible tasks are forwarded
to the cloud layer for processing.

B. Layer Selection and Allocation

The selection and allocation of layers to an incoming task
is based on priority. For each incoming task, the base station
computes the task priority as follows:

where DelT
max

 = maximum tolerable time of task Ti, DT
l
 =

deadline of task ti and tT
i
 is the current time.

where DelT
trans

 = delay in transmitting task on the network,
ht = intensity of the congestion and m is the number of task
to be transmitted.

where DelT
proc

 = processing delay, n(t) represent number of
active fog resources, k represent the processing capacity of
each resource, UT

c
 represent the current workload in the fog

layer. In this case, M/G/1 queuing model is considered.

(15)DelT
max

= DT
l
− tT

i

(16)DelT
trans

= ht ∗ m

(17)DelT
proc

=
UT

c

n(t).k − UT
c

(18)Ttotal = DelT
trans

+ DelT
proc

(19)Priority =

{
Priority, ifDelT

max
≤ Ttotal

Non − Priority,Otherwise

2987An efficient meta‑heuristic resource allocation with load balancing in IoT‑Fog‑cloud computing…

1 3

If a task is a priority task, then a resource in the fog
layer is used to process the task. Otherwise, a resource in
the cloud layer is used to process the task.

Algorithm 2: Layer Fit Algorithm

Input: Tasks, Number of active servers in fog.

Output: Task to Layer Mapping

For each task ti do
 Compute task maximum delay using eqn. 15

 Compute task transmission delay using eqn. 16

 Compute task processing delay using eqn. 17

 Compute total time to be spent in fog using eqn. 18

If ≤ then
Offload task to fog

Else
Offload task to cloud

End if
End for

C. Fog Layer Resource Allocation

In this section, the Modified Harris Hawk optimization
(HHO) algorithm is used to allocate resources to tasks in
the fog layer.

I. Modified Harris Hawks Optimization (MHHO)

The energy update strategy in the standard Harris-Hawk
Optimization (HHO) is accompanied by a major drawback.
The energy can never exceed one (1) when the number of
iterations approaches 50% of the total number of iterations
(H. Jia et al. 2019). For multi-peak and high-dimensional
problems like task scheduling, the population is likely to fall
into local optima. To address the drawback of the standard
HHO, the exponential decreasing strategy (Y. Zhang et al.
2020) is applied. The exponential energy update strategy is
given as:

A local search strategy is used to make sure that resources
are used evenly so that the standard HHO can do a better job
of allocating resources.

The proposed method consists of four stages as given
below:

a. Initial Phase

In this phase, the modified HHO determines the
population size, total number of iterations tm, number of
tasks m submitted to the fog for execution, and a random
number that represents the candidate solution. Where n is
the size of the VM’s to be assigned to tasks.

b. Evaluation Phase

In this phase, the solution in the initial population is
evaluated using three performance measures: makespan,
cost, and energy consumption. The solution is accessed
using a fitness function derived from the three performance
measures as explained below.

a) Completion (Makespan) Time

The makespan time is the total time elapsed while
executing the entire task using the available resources.
When user tasks are submitted to the fog layer, the tasks
are transferred to the fog broker, who maintains the tasks'
properties and processing demands. The fog broker requests
from the fog resource manager the services required to
process the tasks from users. The tasks are then mapped to
the detected services.

Given the set of m independent tasks T = {t1, t2,… , tm}
received from users, the characteristics of the tasks are task
length measured in millions of instructions (MI), task dead-
line, and task arrival time. The fog broker is responsible for
allocating those tasks to available resources (VM’s) to meet
the user’s demands. Given the set of n heterogeneous virtual

(20)E = e
−

tm

T

Fig. 2 The proposed Model for Workload Allocation

2988 I. Z. Yakubu, M. Murali

1 3

machines VM =
{
VM1,VM2,… ,VMn

}
 , the time taken to

execute task ti on VMj can be obtained by Eq. 21 below:

where Et
i,j

 , is the time to execute task ti on VMj. tli is the
length of task ti and VMp

j
 is the computing power of VMj.

Since VM’s are heterogeneous, their CPU capacities
will vary from one VM to another. Hence, tasks executed
on multiple VM’s will encounter multiple costs of
execution. Based on the characteristics of the VM’s and
tasks submitted, the fog broker computes an m by n matrix
that represents the execution time of each task on various
virtual machines.

The makespan of the schedule X is given as follows:

b) Execution Cost

Cost refers to the total amount to be paid by the user to the
service provider for the services rendered. The cost of each
resource (VM) in the fog is dynamically affected by the
capacity of the resource. This means that a more powerful
resource is always more expensive. The cost of resource
usage is charged based on the execution time of a task and
the cost of VM per unit of time. Therefore, the execution
cost EC

i,j
 of task ti on resource VMj can be determined using

Eq. 24.

where Pvm
j

 represents the price of VMj, Et
i,j

 is the execution
time of task ti on VMj.

c) Energy Consumption

The amount of energy consumed by a virtual machine
depends on its state. Virtual machines consume less energy
in their idle state as compared to their busy state. The energy
consumed by a virtual machine is calculated as follows:

where �and� represents the energy consumed in joules
per Millions of Instructions in busy state and the energy

(21)Et
i,j
=

tl
i

VM
p

j

(22)Et
i,j
=

⎡⎢⎢⎣

Et
1,1

Et
1,2

… .. Et
1,n

… .. ……… .. … ..

Et
m,1

Et
m,2

… .. Et
m,n

⎤⎥⎥⎦

(23)Mt(X) = maxj=1,2,…n

n∑
i=1

Et
i,j

(24)EC
i,j
= Pvm

j
∗

Et
i,j

3600

(25)Energyvm
j

=

(
execvm

j
x� + idlevm

j
x�

)
∗ PSj

consumed at idle state. PSj represents the processing speed
of the VM.

d) Fitness Function

The key objective of resource allocation is to determine
an efficient mapping of a user’s tasks to computing
resources that optimises some objectives. The key
objectives of this work are to reduce the makespan time,
cost of execution, and overall energy consumption of the
system. The objective function in this work is given as
follows:

c. Update Phase

In this phase, the initial solution is updated based on the
output of the evaluation phase (fitness value). The process
of updating the solution is repeated until the termination
criteria is reached.

d. Balance Phase

In this phase, a local search is applied to determine the
resources with the highest and least number of allocated
tasks. A random task allocated to the resource with the
highest number of tasks is removed. This task will be
allocated to a resource with the least number of tasks if
it lowers the fitness value. The process is repeated until
optimal load balance is achieved.

(26)

f (x) = min

((
maxj=1,2,…n

n∑
i=1

Et
i,j
∗ 0.5

)
+

n∑
i=1

EC
i
∗ o.5

)

2989An efficient meta‑heuristic resource allocation with load balancing in IoT‑Fog‑cloud computing…

1 3

Algorithm 3: Modified Harris-Hawks Optimization

Input: number of individual hawk N, number of task m,

and number of virtual machines n, total no of iterations .

Generate a random population of hawks.

Compute the fitness values of each hawk using eqn. 26

Set to best value

repeat
 Update & J using eqn. 20 & 6

if (| | ≥ 1) then
Compute the new position of hawks using eqn. 1

end if
if (| | < 1) then

 if (| | ≥ 0.5) then
Determine the new value of using eqn. 4

else if (| | < 0.5) then
Determine the new of using eqn. 7

else if (| | ≥ 0.5) then
 Determine the new of using eqn. 11

else if (| | < 0.5) then
 Determine the new of using eqn. 12

end if
 end if

 Sort in order of allocated task

for i =
2

+ 1 do
randomly remove a task from vmi

 randomly select (1,
2

)
 assign to

if))then

 end if
 end for
t = t + 1

until
Return

5 Experimental results and discussion

In this section, the details of the experiment and the results
obtained are presented.

a. Experimental Setup

Extensive simulations have been carried out using the
iFogSim (H. Gupta et al. 2017) simulator to assess the
efficacy of the proposed approach. The proposed algorithm
is encoded in Java with the Eclipse IDE using iFogSim and
ran on a machine with the specifications in Table 1. The fog
environment consists of 20 heterogeneous virtual machines
with randomly generated processing and memory capacity.
The specifications of the virtual machines are presented in
Table 2. The cost of using the VMs is determined by their
respective computation power. To obtain the utilisation cost
of an individual virtual machine, its capacity is divided
by $10. For example, a VM with a processing speed of
1000 will cost $100 per unit time. The experiment was
conducted using 100 randomly generated tasks with varying
characteristics, as shown in Table 3. The parameter settings
for the proposed method (MHHO) and the benchmarked
techniques (PSO, FA, HHO) are presented in Table 4.

The experiment is conducted in two ways: firstly, by
increasing the number of VM’s and maintaining the number
of tasks. Secondly, by increasing the number of tasks and
maintaining the number of VM's, the performance of the
approach is measured based on completion time (makespan),
cost, and energy consumption (Table 4).

b. Results and Discussion

For performance investigation, the experiments con-
ducted include the proposed Modified Harris-Hawk

Table 1 System Specification

Properties Specification

System Intel (R) Core i5 5th Gen @ 1.7 GHz
RAM 4 GB
OS Windows 10 64-bit Operating System

Table 2 VM specifications Properties Range

No of VM’s 5–20
CPU (MIPS) 1000–3000
RAM (BM) 1000–2000
Cost ($) 100–300

Table 3 Task specifications

Properties Range

No of Instructions (MIPs) 100—500
Memory Required (MB) 100–500
Deadline (ms) 5–50

2990 I. Z. Yakubu, M. Murali

1 3

Optimization (MHHO), the traditional Harris-Hawks Opti-
mization (HHO), Ant Colony Optimization (ACO), Parti-
cle Swarm Optimization (PSO), and Firefly Algorithm in
the iFogSim simulator.

The simulation was run fifty (50) times for each num-
ber of VM's, and the average of the makespan time, cost,
and energy consumed was calculated. Figure 3 shows the
average makespan time of the five algorithms on differ-
ent VM sizes. It was discovered that increasing the num-
ber of VMs reduces the average makespan time for both
algorithms. The proposed Modified Harris-Hawks Opti-
mization (MHHO) algorithm records the least average
makespan time. This proves that the load balancing and the

exponential energy update strategy in the proposed method
have an impact on the completion time of the tasks.

Figure 4 shows the average execution cost of 100 tasks on
different VM sizes for the five algorithms. It was observed
that there were no changes in the execution cost between
the traditional HHO and the MHHO. This shows that the
fitness function is a key part of how both algorithms con-
trol how much it costs to run. Based on the results in the
figure, the MHHO recorded the least execution cost for the
100 tasks. This proves that the load balancing feature in
the proposed method can improve the performance of the
HHO when employed in resource scheduling where there is
limited processing capacity.

Table 4 Parameter settings for PSO, FA, HHO, and MHHO

Algorithm Parameters Values

ACO Population size 50
β 2
ρ 6

PSO Population size 50
C1 1.45
C2 1.45

FA Population size 50
α 0.5
β 0.2
γ 1

HHO Population size 50
Eo [1, 1]

MHHO Population size 50
Eo [1, 1]
β 0.85

0

2

4

6

8

10

12

5 10 15 20

Av
er

ag
e

m
ak

es
pa

n
tim

e

Number of VM's

ACO

PSO

FA

HHO

MHHO

Fig. 3 Average Makespan for 100 task and different VM size

0

5

10

15

20

25

5 10 15 20

Ex
ec

ut
io

n
co

st
 x

 1
00

00
0

Number of VM's

ACO

PSO

FA

HHO

MHHO

Fig. 4 Comparison of Average execution cost for 100 task and differ-
ent VM size

0

10000

20000

30000

40000

50000

60000

70000

80000

5 10 15 20

En
er

gy
 c

on
su

m
pt

io
n

Number of VM's

ACO

PSO

FA

HHO

MHHO

Fig. 5 Comparison of Energy Consumption with different VM size

2991An efficient meta‑heuristic resource allocation with load balancing in IoT‑Fog‑cloud computing…

1 3

Figure 5 shows the average amount of energy consumed
with an increase in the size of resources in the environment.
It can be inferred that the energy consumption increases with
the rise in the size of resources (VM's), thus inflating the
total energy consumption of the system.

Figure 6 shows the comparison of the average makespan
time for 500 tasks with 20 virtual machines. It is observed
that the average makespan time for the five algorithms
increases with an increase in the number of tasks. It was
inferred that the increase was as a result of the increase in
the workload on the existing virtual machines in the environ-
ment. It was also observed that the proposed MHHO records
the least average makespan time from tasks 300 to 500 as
compared to the traditional HHO.

6 Conclusion

Fog computing is a model that aims to overcome the
drawbacks of cloud computing by performing computation
at the edge of the network. Fog resources are limited and
typically resource constrained. To exploit the real benefits
of the fog, there is a need for a robust approach for allocating
resources to tasks, especially time-sensitive ones. To prevent
the fog layer from oversaturation by delay tolerant tasks, the
proposed layer fit algorithm filters the tasks to be executed
in the fog and propagates the remaining tasks to the cloud
layer. The proposed Modified Harris-Hawks Optimization
(MHHO) algorithm allocates resources to the filtered tasks,
taking into accounts the completion time, execution cost,
and energy consumption. To prevent the population of the
HHO from falling into local optima and avoid overloading
of resources in the environment, a new energy update
function and load balance strategy are used in the MHHO.

The simulation results illustrate that our system recorded the
least makespan time, execution cost, and resource energy
consumption when equated to the traditional HHO, ACO,
PSO, and FA. In our subsequent work, a joint task schedule
and application module placement on fog devices will be
considered to further improve the performance of the fog
system.

Data availability The data used to evaluate the performance of
the method in this study is synthetic and are available from the
corresponding author upon request.

References

Abbasi M, Yaghoobikia M, Rafiee M, Jolfaei A, Khosravi MR (2020)
Efficient Resource Management and workload allocation in fog–
cloud computing paradigm in IOT using learning classifier sys-
tems. Comput Commun 153:217–228

Abedi S, Ghobaei-Arani M, Khorami E, Mojarad M (2022) Dynamic
resource allocation using improved firefly optimization algorithm
in cloud environment. Appl Artif Intell 36(1):1–27

Abohamama AS, El-Ghamry A, Hamouda E (2022) Real-time task
scheduling algorithm for IOT-based applications in the cloud–fog
environment. J Netw Syst Manage 30(4):1–35

Abouaomar A, Cherkaoui S, Kobbane A, Dambri OA (2019) A
resources representation for resource allocation in fog computing
networks. IEEE Global Commun Conf (GLOBECOM) 2019:1–6.
https:// doi. org/ 10. 1109/ GLOBE COM38 437. 2019. 90141 46

Agarwal S, Yadav S, Yadav AK (2016) An efficient architecture and
algorithm for resource provisioning in fog computing. Int J Inform
Eng Electron Business 8(1):48–61

Akintoye S, Bagula A (2019) Improving quality-of-service in cloud/
fog computing through Efficient Resource Allocation. Sensors
19(6):1267

Bitam S, Zeadally S, Mellouk A (2017) Fog computing job schedul-
ing optimization based on bees swarm. Enterprise Inform Syst
12(4):373–397

Choudhari T, Moh T, Moh T-S Prioritized task scheduling in fog com-
puting. In: Proceedings of the ACMSE 2018 Conference, 2018.

Dakshayini M, Guruprasad HS (2011) An optimal algorithm for prior-
ity based service scheduling policy for cloud computing environ-
ment. Int J Comput Appl 32:0975–8887

Dastjerdi AV, Buyya R (2016) Fog computing: helping the internet of
things realize its potential. Computer 49(8):112–116

Guerrero C, Lera I, Juiz C (2022) Genetic-based optimization in Fog
computing: Current trends and research opportunities. Swarm
Evol Comput 72:1–22

Gupta H, VahidDastjerdi A, Ghosh SK, Buyya R (2017) IFogSim:
a toolkit for modeling and simulation of resource management
techniques in the internet of things, edge and fog computing envi-
ronments, Software: Practice and Experience, 47(9):1275–1296.

Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019)
Harris Hawks optimization: algorithm and applications. Futur
Gener Comput Syst 97:849–872

Iyapparaja M, Khalaf Alshammari N, Sathish Kumar M, Siva Rama
Krishnan S, Lal Chowdhary C Efficient Resource Allocation in
fog computing using QTCS model, Comput Materials Continua
70(2):2225–2239, 2022.

0

5

10

15

20

25

100 200 300 400 500

Av
er

ag
e

M
ak

es
pa

n

Number of tasks

ACO

PSO

FA

HHO

MHHO

Fig. 6 Average Completion time (Makespan) for different task size
with 20 Virtual Machines

https://doi.org/10.1109/GLOBECOM38437.2019.9014146

2992 I. Z. Yakubu, M. Murali

1 3

Jia H, Lang C, Oliva D, Song W, Peng X (2019) Dynamic harris hawks
optimization with mutation mechanism for satellite image seg-
mentation. Remote Sens 11(12):1421

Khattak HA, Arshad H, ul Islam S, Ahmed G, Jabbar S, Sharif AM,
Khalid S Utilization and load balancing in fog servers for Health
Applications, EURASIP Journal on Wireless Communications
and Networking, vol. 2019, no. 1, 2019.

Mahmud R, Srirama SN, Ramamohanarao K, Buyya R (2020) Profit-
aware application placement for integrated fog–cloud computing
environments. J Parallel Distributed Comput 135:177–190

Mahmud R, Kotagiri R, Buyya R (2017) Fog computing: A taxonomy,
survey and Future Directions, Internet of Things, 103–130.

Mani SK, Meenakshisundaram I (2020) Improving quality-of-service
in fog computing through efficient resource allocation. Comput
Intell 36(4):1527–1547

Mohammady Talvar H, Haj Seyyed Javadi H, Navidi H, Rezakhani
A (2021) A new resource allocation method in fog comput-
ing via non-cooperative game theory, J Intell Fuzzy Syst
41(2):3921–3932.

Naha RK, Garg S (2021) Multi-criteria–based dynamic user behaviour–
aware resource allocation in fog computing. ACM Trans Internet
Things 2(1):1–31

Naha RK, Garg S, Chan A, Battula SK (2020) Deadline-based dynamic
resource allocation and provisioning algorithms in fog-cloud envi-
ronment. Futur Gener Comput Syst 104:131–141

Ngu AH, Gutierrez AH, Metsis V, Nepal S, Sheng MZ IOT middle-
ware: A survey on issues and Enabling Technologies. IEEE Inter-
net Things J 1–1, 2016.

Pawar CS, Wagh RB Priority based dynamic resource allocation in
cloud computing, In: 2012 International Symposium on Cloud
and Services Computing, 2012.

Potu N, Jatoth C, Parvataneni P, Optimizing resource scheduling based
on extended particle swarm optimization in fog computing envi-
ronments, Concurrency Comput 33(23), 2021.

Puliafito C, Mingozzi E, Longo F, Puliafito A, Rana O (2019) Fog
computing for the internet of things. ACM Trans Internet Technol
19(2):1–41

Rafique H, Shah MA, Islam SU, Maqsood T, Khan S, Maple C
(2019) A novel bio-inspired hybrid algorithm (NBIHA) for

efficient resource management in Fog Computing. IEEE Access
7:115760–115773

Salem AH, Ghaleb Al-Gaphari, Meta-heuristic algorithms for resource
allocation in fog computing, Int J Modern Trends SciTechnol
08(02):134–143, February, 2022

Sarkar S, Misra S (2016) Theoretical modelling of Fog computing:
a green computing paradigm to support IOT applications. IET
Networks 5(2):23–29

Sarma B, Kumar R, Tuithung T (2021) Optimised fuzzy clustering-
based resource scheduling and dynamic load balancing algorithm
for Fog computing environment. Int J Comput Sci Eng 24(4):343

Shakarami A, Shahidinejad A, Ghobaei-Arani M (2021) An autono-
mous computation offloading strategy in mobile edge comput-
ing: a deep learning-based hybrid approach. J Netw Comput Appl
178:1–19

Singh P, Kaur R, Rashid J, Juneja S, Dhiman G, Kim J, Ouaissa M
(2022) A fog-cluster based load-balancing technique. Sustain-
ability 14(13):1–14

Verma M, Bhardwaj N, Yadav AK (2016) Real time efficient schedul-
ing algorithm for load balancing in fog computing environment.
Int J Inform Technol Comput Sci 8(4):1–10

Xu J, Palanisamy B, Ludwig B, Wang Q, Zenith: Utility-aware resource
allocation for edge computing. In: 2017 IEEE International Con-
ference on Edge Computing (EDGE), 2017.

Zhang Y, Zhou X, Shih P-C (2020) Modified harris hawks optimiza-
tion algorithm for Global Optimization Problems. Arab J Sci Eng
45(12):10949–10974

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

	An efficient meta-heuristic resource allocation with load balancing in IoT-Fog-cloud computing environment
	Abstract
	1 Introduction
	2 Related work
	3 Harris Hawk Optimization (HHO) algorithm
	4 Proposed method
	5 Experimental results and discussion
	6 Conclusion
	References

