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Abstract
Fog computing is considered a derivative of cloud computing that aims to reduce the huge transmission latency and CPU 
time, as well as the overall cost of resource usage in the cloud. The deployment of Internet-of-Things (IoT) enabled smart 
systems, which frequently demand real-time processing, is rapidly expanding. Following that, the volume of generated data 
and computation workload dramatically increased. Fog resources are limited and typically resource constrained. Therefore, 
it is impossible to execute all tasks at the edge network. To support the increasing amounts of data and computation, cloud 
computing, associated with significant delays in transmission and processing of workload, is used. The distribution of 
tasks between the cloud and fog layer and the allocation of layer resources to satisfy the users' demands prevents layer 
oversaturation, service degradation, and resource failure due to excessive workload is challenging. This paper proposes a 
layer fit algorithm that evenly distributes tasks between the fog and cloud, based on priority levels. Also, a Modified Harris-
Hawks Optimization (MHHO) based meta-heuristic approach is proposed to assign the best available resource to a task 
within a layer. The key intention of this paper is to reduce the makespan time, task execution cost, and power consumption 
and enhance resource usage in both the fog and cloud layer. The simulations are performed using the iFogSim simulation 
toolkit. The proposed layer fit algorithm and the Modified Harris-Hawks Optimization (MHHO) are compared with the 
traditional Harris-Hawks Optimization (HHO), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), and 
the Firefly Algorithm (FA). Based on the experimental results, the MHHO has improved the performance of the system 
in terms of makespan time, execution cost, and energy consumption. The ability of the MHHO to balance the load across 
resources yields a significant improvement when the number of tasks increases as compared to the traditional HHO and 
other optimization algorithms.

Keywords Fog computing · Cloud computing · Layer fit algorithm · Task allocation · Execution time · Harris-Hawks 
Optimization (HHO) · Internet-of-Things (IoT) · Resource utilization

1 Introduction

Fog computing is a distributed computing paradigm that 
utilises the components between cloud datacenters and IoT 
gadgets, providing storage and processing services proxi-
mate to the edge devices (Mahmud et al. 2017). In fog com-
puting, devices with processing and storage capabilities, like 
smartphones, base stations, switches, and routers, perform 
similar tasks as the cloud resources (Abbasi et al. 2020). 
Fog computing was first introduced by Cisco (Sarkar and 

Misra 2016), as an additional virtualized layer between the 
cloud and IoT devices, to address the limitations of the cloud 
(Agarwal et al. 2016; Verma et al. 2016; Xu et al. 2017). 
However, fog computing doesn’t replace the cloud; rather, 
it provides real-time services with mobility support and low 
latency that are not available in the cloud.

The Internet-of-Things (IoT) technology integrates physi-
cal objects with sensing abilities, mobile objects, electronic 
devices, and home appliances with the internet (Ngu et al. 
2016). These devices generate an enormous volume of data 
and work load that needs to be processed in real-time. To 
satisfy the QoS requirements of these time-sensitive applica-
tions, fog computing must come to play.

In spite of the benefits of fog over cloud, there are 
some flaws in fog computing that can’t be overlooked. For 
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instance, fog resources are limited and resource constrained. 
Therefore, it is impossible to execute the enormous volume 
of data and workload at the fog layer without engaging the 
cloud. The combination of fog and cloud computing mod-
els enables the harnessing of both fog resources and cloud 
datacenter resources to meet the QoS requirements of these 
time-sensitive applications (Mahmud et al. 2020).

In fog computing, resource scheduling and assignment 
is the logical method to map available resources to users 
over the internet (Choudhari et al. 2018). Allocation of 
resources over a time period in some logical order is 
extremely important due to its stringent delay demand. To 
get the most out of fog computing, it is very important to 
allocate resources well (Rafique et al. 2019).Otherwise, 
ineffective resource allotment could lead to higher delays 
and suboptimal use of resources.

With the limited number of resources in fog computing 
and the increasing number of requests, it is desirable to 
process user tasks based on their respective priority levels 
(Dakshayini and Guruprasad 2011; Pawar and Wagh 2012). 
Given the importance of response time, makespan, and 
latency, the workload must be distributed between the 
fog and the cloud layer so that the optimum value can be 
achieved.

According to the literature, a number of resource 
allocation techniques have been proposed to exploit 
the real benefits of both fog and cloud computing. Naha 
et al. (2020) consider response time, processing capacity, 
and bandwidth of a resource when allocating a task for 
processing. If there are no available resources in the fog, 
then fog servers or cloud resources will be used to complete 
the task. The method allocates fog resources to a task based 
on performance and availability. However, time-sensitive 
applications like health care applications, augmented reality, 
gaming e.t.c. (Dastjerdi and Buyya 2016; Puliafito et al. 
2019; Khattak et al. 2019) can propagate to the cloud due to 
a lack of resources in the fog that may be occupied by delay-
tolerant tasks. In this case, the aim of the fog is defeated.

In Mani and Meenakshisundaram (2020), tasks are 
processed by a proximate fog device server, with complete 
or part of the processing needed by a task. In the absence 
of resources in the fog, tasks are forwarded to the cloud 
for processing. However, this method may not satisfy the 
QoS demands of time-sensitive applications. The paper by 
Rafique et al. (2019) try to minimise average response time 
and optimise resource usage but fail to address the issue of 
priority on usage of fog layer resources.

This paper proposes a priority-based workload allocation 
in IoT-Fog-Cloud computing. The model is suited for time-
sensitive applications. A layer fit algorithm is proposed 
to distribute tasks between fog and cloud based on their 
priority levels. The priority level of an incoming task is 
determined by the base station nearest to the user, and then 

it forwards a task to the fog layer if it’s a priority task and to 
the cloud layer if it’s a non-priority task. Also, a modified 
Harris-Hawk algorithm based meta-heuristic approach is 
proposed to map the best available resource to a task within 
a layer. The MHHO employs an exponential energy update 
strategy to prevent the population from falling into local 
optima. To ensure load balance, the MHHO employs a local 
search strategy to avoid resource overload.

The key contributions of this paper are as follows:

• To develop a layer-fit algorithm that distributes tasks 
between fog and cloud based on their priority levels.

• Propose a Modified Harris-Hawk Optimization based 
meta-heuristic approach that selects the best available 
resource within a layer to meet the QoS demands of 
users' tasks.

• To reduce the oversaturation in the fog layer due to 
increasing demand for resources in the fog layer.

The proposed resource allocation approach is 
implemented using the iFogSim toolkit and is bench marked 
with the traditional HHO, Ant Colony Optimization (ACO), 
Particle Swarm Optimization (PSO), and Firefly Algorithm 
(FA) in the iFogSim environment. The results illuminate 
the efficacy of the allocation technique, in terms of task 
execution cost, completion (makespan) time, and overall 
power consumption of the system.

The rest of this paper is structured as follows: Section 
II presents work related to resource allocation. Section 
III presents the working principle of the standard meta-
heuristic HHO optimization algorithm. Section IV explains 
the proposed system architecture and resource allocation 
approach. Section V illustrates the simulation steps, presents 
the details of the experiment, and discusses the results 
obtained. Lastly, section VI concludes the work and presents 
the future research directions.

2  Related work

This section presents the various methods proposed in 
literature to address the task scheduling problems in a fog-
cloud environment.

In Bitam et  al. (2017), a bio-inspired optimization 
approach entitled "Bees Life Algorithm" was proposed to 
address the task allocation problem in a fog computing 
environment. The main objective of this work is to 
determine the optimum tradeoff between task completion 
time and storage needs for fog services generated by mobile 
users. However, this work focuses on the fog layer without 
considering the cloud layer.

In Potu et  al. (2021), an extended Particle Swarm 
Optimization with additional gradient methods was 
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proposed to address the task scheduling problem in fog 
computing. The main objective of this work is to enhance 
the performance of fog resources and reduce task execution 
time. Considering the drawbacks of fog computing as 
mentioned in Sect. 1, using the fog layer alone to execute all 
IoT applications is impossible without involving the cloud.

In Akintoye and Bagula (2019), the authors formulate 
tasks and resource allocation problems in a single fog-cloud 
environment. A Hungarian Algorithm Based Binding Policy 
(HABBP) was used to execute a new allocation policy in 
the widely used CloudSim simulator. Also, a Genetic 
Algorithm Based Virtual Machine Placement (GABVMP) 
was proposed to address and optimise the virtual machine 
placement problem in a cloud environment.

In Iyapparaja et al. (2019), authors proposed a model 
to improve quality of service through efficient resource 
allocation using Queuing Theory based Cuckoo Search 
(QTCS) model. The tasks received from users are graded 
and allotted resources based on their relative weights. 
Authors used the queuing theory to prioritize the tasks and 
the cuckoo search to optimize resource allocation. Despite 
the priority given to tasks, the model only considers the fog 
layer, which requires the cloud layer to satisfy the clients' 
QoS demands.

In Abouaomar et  al. (2019), Lyapunov optimization 
is used to formulate a resource allocation problem in fog 
computing. Authors optimise resource allocation through 
entity supervision by using a resource representation 
scheme that exposes the resources of individual devices in 
the fog through the Mobile Edge Computing Application 
Programming Interface. This work also focuses on resource 
allocation and optimization in fog computing, leaving out 
the cloud.

In Naha and Garg (2021), the dynamic changes in 
the behaviour of fog users are addressed using a multi-
criteria-based resource allocation. The approach takes 
into consideration both fog computing characteristics like 
heterogeneity, mobility, resource constraints and dynamic 
variation in user requirements to make resource reservations. 
Allocation of resources to a task is done through a multi-
objective function. The results of this work prove promising 
in terms of low response time and minimal SLA violations. 
However, authors focus on resource allocation from fog 
perspectives leaving out the cloud.

In Mohammady Talvar (2021), the authors improve 
resource allocation in fog computing through the Nash 
equilibrium and auction algorithm. In this approach, each 
player is assigned a matrix that represents fog nodes, data 
service subscribers, and data service operators. Individual 
players generate the optimal strategy based on other players' 
strategies. This work also focuses on the fog layer, leaving 
out the cloud layer.

In Sarma et al. (2021), an optimised fuzzy clustering-
based resource scheduling and dynamic load balancing 
algorithm is proposed to address fog computing resource 
scheduling and load balancing problems. An enhanced 
fast fuzzy c-mean with crow search optimization is used 
to allocate resources to tasks, and finally, load balancing 
is performed using a scalability decision technique. In 
this work, both resource optimization and load balanc-
ing among resources are performed, but only focused on 
allocating resources to tasks at the fog layer without using 
the cloud layer.

In Abedi et al. (2022), authors proposed an enhanced 
firefly algorithm based on load balancing to address the 
Dynamic Resource Allocation (DSA) problem in a cloud 
environment. The method ensures load balance between 
available resources and minimises completion time by 
choosing appropriate objectives in the fitness function. 
The authors employ a heuristic approach, rather than 
the conventional random approach, to create the initial 
population of the firefly algorithm, which is based on the 
tasks' priority.

In Salem et al. (2022), the authors review the various 
meta-heuristic algorithms used to address resource 
allocation problems in a fog environment. Based on the 
findings by the authors, it was observed that meta-heuristic 
algorithms achieve better performance in terms of cost, 
time, energy usage, and resource utilization.

In Shakarami et  al. (2021), the authors proposed 
an autonomous offloading framework to address the 
issues faced by time-intensive and resource-intensive 
applications. In this work, numerous simulations, 
including Deep Neural Networks, multiple linear 
regression, hybrid models, and Hidden Markov Models 
as the planning module of the aforementioned autonomous 
technique, were carried out to deal with the size of the 
offloading decision-making problem.

In Guerrero et al. (2022), authors examine and analyse 
various resource optimization approaches in fog computing 
with a focus on genetic-based solutions, their characteristics, 
and their respective design options. In this article, the 
authors presented a comprehensive, exhaustive, and 
systematic review of the state-of-the-art techniques.

In Abohamama et al. (2022), the authors proposed a semi-
dynamic real-time scheduling approach for task applications 
in a hybrid cloud-fog computing environment. A modified 
Genetic Algorithm (GA) is used to generate schedules of 
permuted tasks and assign tasks to the virtual resources 
based on the order of the best permutation.

In Singh et al. (2022), authors proposed a cluster-based 
load balancing approach that ensures load balance among 
fog-cloud environment resources. The approach considers 
three different resource cluster states: busy, working, and 
free. Tasks are allocated to resource clusters based on their 
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state. The proposed algorithm keeps track of the number 
of clusters and resources in each cluster to ensure efficient 
allocation.

3  Harris Hawk Optimization (HHO) 
algorithm

The HHO is a cutting-edge meta-heuristic algorithm that 
imitates hawks' hunting and prey-capture behaviours. Hei-
dari et al. (2019) proposed the HHO approach to tackle prob-
lems with global optimization. As shown in Fig. 1 below, 
HHO conducts the seeking process in two steps (exploration 
and exploitation) using a variety of tactics.

Figure 1 shows the exploration and exploitation phase of 
the Harris Hawks based on various strategies used. The blue 
border shows the exploitation phase with the energy and 
strategies used by the hawks. The orange border indicates 
the exploration phase with the various patching strategies 
based on the random locations and relative positions of other 
hawks.

a. Exploration phase

In this phase, the hawks initiate the prey search process 
by perching on various locations in the hunting territory. 
In an attempt to spot the potential prey item, the hawks 
perch based on the relative positions of their neighbors. In 
some cases, the hawks perch based on random locations 
within their home range. When no prey item is spotted, 

the hawks advance the hunting area and the prey search 
process continues until a potential prey item is spotted. The 
relative position and random position perching have an equal 
probability of success, which is modelled in Eq. 1 below.

where P(t + 1) represents the position vector of hawks in the 
subsequent iteration t. P(t) represents the current position 
vector of hawks,  Prabbit(t) represent the position of the prey 
(rabbit), r1 through r4 and q are random value inside (0, 1), 
� = r3(LB + r4(UB − LB)) and Pavg is the average position of 
the current population and is formulated as:

where Pi(t) represents the location of individual hawk in 
iteration t and N is the population size.

b. Transition phase

In this phase, the hawks transfer from exploration to 
exploitation. The transition takes place immediately after 
a prey item is spotted by the perched hawks. The hawks 
exploit the prey, and the prey applies different escape 
behaviours, which considerably decreases its energy. The 
exploitation strategy used by the hawks to intercept the 
prey varies with the variation in the energy of the prey. 
Equation 3 below denotes the energy model of the prey.

where Ep represents the escaping energy of the prey, E0 
represents the initial energy of the prey, Tm represents 
the total number of iterations and t represents the current 
iteration. E0 varies between -1 and 1. E0 decreases from 0 to 
-1, if the prey is weak and increases from 0 to 1 if the prey 
strengthen.

c. Exploitation Phase

In this phase, the spotted prey is attacked by the perched 
hawks using various attacking strategies. On the other 
hand, the prey attempts to escape the attack using various 
escape strategies. Based on the escaping and attacking 
behaviour exhibited by both the prey and the hawks, four 
(4) attacking strategies of HHO are modelled as follows:

I. Soft Besiege

In this attack strategy, the prey is encircled softly by 
the hawks to exhaust the energy of the prey and finally 

(1)P(t + 1) =

{
Pr(t) − r1

||Pr(t) − 2r2P(t)
||, q ≥ 0.5

(Prabbit(t) − Pavg(t)) − 𝜃, q < 0.5

(2)Pavg(t) =
1

N

N∑
i=1

Pi(t)

(3)Ep = 2E0

(
1 −

t

Tm

)

Fig. 1  Phases of the HHO (Heidari et al. 2019)
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perform a surprise pounce to intercept the prey. This 
attacking strategy is employed when the prey has enough 
energy to escape the attack. The soft besiege attacking 
behaviour of the hawks is modelled in Eq. 4.

J represents the random pounce and is given as:

where ΔP(t) represents the difference between the position 
vector and current position of the prey in iteration t, r5 is a 
random value inside (0, 1).

This behavior is applied when the chances of escaping the 
attack is greater than 0.5 (i.e. r ≥ 0.5 ) and the energy of the 
prey is greater than 0.5 (i.e. |||Ep

||| ≥ 0.5).

 II. Hard Besiege

In this strategy, the prey is weak and has low escaping 
energy (r ≥ 0.5&

|||Ep
||| ≥ 0.5 ). The hawks hardly encircle the 

prey and finally perform a surprise pounce to intercept the 
prey. This behaviour is formulated as:

 III. Soft Besiege with Progressive Rapid Dive

In this strategy, the prey has enough energy to escape (r 
< 0.5&

|||Ep
||| ≥ 0.5 ). Hence, the prey performs a zigzag 

deceptive motion to escape the attack. The hawks construct 
a soft besiege before pounce and competitively dive towards 
the prey. The hawks base their next move on the following 
rule in Eq. 8

The result of the movement is compared to the previous 
dive to detect whether it will be efficient or not. If not 
efficient, then an irregular, abrupt, and rapid dive towards 
the prey is performed based on the following rule in Eq. 9

where D represent the dimensionality of the problem, S 
represent a random vector of size 1 × D, LF represent a levy 
flight function, which is calculated as follows:

(4)P(t + 1) = ΔP(t) − Ep
||JPrabbit(t) − P(t)||

(5)ΔP(t) = Prabbit(t) − P(t)

(6)J = 2
(
1 − r5

)

(7)P(t + 1) = Prabbit(t) − Ep|ΔP(t)|

(8)Y = Prabbit(t) − Ep
||JPrabbit(t) − P(t)||

(9)Z = Y + S × LF(D)

LF(x) = 0.01 ×
u + �

|v| 1

�

,

where u, v are random parameters of LF inside (0, 1) and � 
is a constant with value of 1.5

The HHO algorithm selects the best strategy for 
updating the position of hawks based on Y and Z as 
follows:

 IV. Hard Besiege with Rapid Dive

In this strategy, the prey does not have enough energy 
to escape (r < 0.5&

|||Ep
||| < 0.5 ). The hawks construct a hard 

besiege before pounce and reduce the distance of their 
average location towards the prey. The following rule in 
Eq. 12 is performed in a hard besiege condition.

where Y and Z are obtained using the rule in Eqs. 13 and 
14 below:

 

Pavg(t) is obtained using Eq. 2

(10)� =

⎛
⎜⎜⎜⎝

T(1 + �) × sin

�
��

2

�

T
�

1+�

2

�
× � × 2

�
�−1

2

�

⎞
⎟⎟⎟⎠

1

�

(11)P(t + 1) = f (p) =

{
Y , ifF(Z) < F(P(t)),

Z, ifF(Z) < F(P(t)).

(12)P(t + 1) = f (p) =

{
Y , ifF(Z) < F(P(t)),

Z, ifF(Z) < F(P(t)).

(13)P(t + 1) = Prabbit(t) − Ep
|||JPrabbit(t) − Pavg(t)

|||

(14)Z = Y + S × LF(D)
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Algorithm 1: Harris Hawk Optimization (HHO)  

Input: Population size N & total no of iterations            

Output: the various locations of the prey and its fitness 

value 

Randomly generate initial population Pi,

While (not termination condition) do
       Compute the fitness values of Harris-hawks 

       Set  to best location  

       for (each Harris-hawk (Pi)) do

             Update & J using eqn. 3 & 6  

             if (| | ≥ 1 ) then 

             Compute the new position of hawks using eqn. 1 

              if (| | < 1 ) then  

     if ( | | ≥ 0.5 ) then 

           Determine the new value  using eqn. 4 

      else if ( | | < 0.5 ) then 

           Determine the new value  using eqn. 7 

       else if ( | | ≥ 0.5 ) then 

           Determine the new value  using eqn. 11 

       else if ( | | < 0.5 ) then 

            Determine the new value  using eqn. 12 

Return 

4  Proposed method

To curtail the drawbacks of the techniques presented in 
Sect. 1, a layer fit algorithm has been developed to improve 
the allocation of workloads between fog and cloud. Also, a 
Modified Harris-Hawk Optimization (MHHO) based meta-
heuristic approach is proposed to assign the best available 
resource to a task within a layer. The modification of the 
HHO is done in two ways. First, we modify the energy 
update equation of the HHO to avoid the population falling 
into local optima. Secondly, we employ load balancing 
strategy to avoid over-loading of resources, which can lead 
to resource failure or performance degradation.

A. System Architecture

The model in this work consists of an edge layer, a base 
station, a fog layer, and a cloud layer. Devices in the edge 
layer generate tasks to be processed by either the fog or 
cloud. The tasks from edge devices are first received by the 
base station. The base station decides on the number of tasks 
to be assigned to the fog and the amount that should be 
assigned to the cloud. The fog layer consists of fog devices 
that are relatively close to the base station. Devices in the 
fog layer are limited and resource constrained. Therefore, 
the base station allocates resources from the fog layer based 
on priority. The cloud layer consists of resources with high 
processing and storage capacity but far away from the base 
station and edge devices. Both fog and cloud layers maintain 
a resource manager that monitors resources in the layer. The 
base station asks the layer resource manager for the number 
and average capacity of the active resources.

Figure 2 shows the architecture used in this paper. The 
edge devices generate the tasks to be processed and forward 
these tasks to the fog layer through the base station available 
in the fog layer. Tasks eligible for processing by the fog layer 
are allocated resources, and non-eligible tasks are forwarded 
to the cloud layer for processing.

B. Layer Selection and Allocation

The selection and allocation of layers to an incoming task 
is based on priority. For each incoming task, the base station 
computes the task priority as follows:

where DelT
max

 = maximum tolerable time of task  Ti, DT
l
 = 

deadline of task  ti and tT
i
 is the current time.

where DelT
trans

 = delay in transmitting task on the network, 
ht = intensity of the congestion and m is the number of task 
to be transmitted.

where DelT
proc

 = processing delay, n(t) represent number of 
active fog resources, k represent the processing capacity of 
each resource, UT

c
 represent the current workload in the fog 

layer. In this case, M/G/1 queuing model is considered.

(15)DelT
max

= DT
l
− tT

i

(16)DelT
trans

= ht ∗ m

(17)DelT
proc

=
UT

c

n(t).k − UT
c

(18)Ttotal = DelT
trans

+ DelT
proc

(19)Priority =

{
Priority, ifDelT

max
≤ Ttotal

Non − Priority,Otherwise
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If a task is a priority task, then a resource in the fog 
layer is used to process the task. Otherwise, a resource in 
the cloud layer is used to process the task.

Algorithm 2: Layer Fit Algorithm 

Input: Tasks, Number of active servers in fog. 

Output: Task to Layer Mapping 

For each task ti do
       Compute task maximum delay using eqn. 15 

       Compute task transmission delay using eqn. 16 

       Compute task processing delay using eqn. 17 

       Compute total time to be spent in fog using eqn. 18 

If ≤ then  
Offload task to fog

Else  
Offload task to cloud 

End if 
End for 

C. Fog Layer Resource Allocation

In this section, the Modified Harris Hawk optimization 
(HHO) algorithm is used to allocate resources to tasks in 
the fog layer.

I. Modified Harris Hawks Optimization (MHHO)

The energy update strategy in the standard Harris-Hawk 
Optimization (HHO) is accompanied by a major drawback. 
The energy can never exceed one (1) when the number of 
iterations approaches 50% of the total number of iterations 
(H. Jia et al. 2019). For multi-peak and high-dimensional 
problems like task scheduling, the population is likely to fall 
into local optima. To address the drawback of the standard 
HHO, the exponential decreasing strategy (Y. Zhang et al. 
2020) is applied. The exponential energy update strategy is 
given as:

A local search strategy is used to make sure that resources 
are used evenly so that the standard HHO can do a better job 
of allocating resources.

The proposed method consists of four stages as given 
below:

a. Initial Phase

In this phase, the modified HHO determines the 
population size, total number of iterations tm, number of 
tasks m submitted to the fog for execution, and a random 
number that represents the candidate solution. Where n is 
the size of the VM’s to be assigned to tasks.

b. Evaluation Phase

In this phase, the solution in the initial population is 
evaluated using three performance measures: makespan, 
cost, and energy consumption. The solution is accessed 
using a fitness function derived from the three performance 
measures as explained below.

a) Completion (Makespan) Time

The makespan time is the total time elapsed while 
executing the entire task using the available resources. 
When user tasks are submitted to the fog layer, the tasks 
are transferred to the fog broker, who maintains the tasks' 
properties and processing demands. The fog broker requests 
from the fog resource manager the services required to 
process the tasks from users. The tasks are then mapped to 
the detected services.

Given the set of m independent tasks T = {t1, t2,… , tm} 
received from users, the characteristics of the tasks are task 
length measured in millions of instructions (MI), task dead-
line, and task arrival time. The fog broker is responsible for 
allocating those tasks to available resources (VM’s) to meet 
the user’s demands. Given the set of n heterogeneous virtual 

(20)E = e
−

tm

T

Fig. 2  The proposed Model for Workload Allocation
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machines VM =
{
VM1,VM2,… ,VMn

}
 , the time taken to 

execute task ti on VMj can be obtained by Eq. 21 below:

where Et
i,j

 , is the time to execute task ti on VMj. tli is the 
length of task ti and VMp

j
 is the computing power of VMj.

Since VM’s are heterogeneous, their CPU capacities 
will vary from one VM to another. Hence, tasks executed 
on multiple VM’s will encounter multiple costs of 
execution. Based on the characteristics of the VM’s and 
tasks submitted, the fog broker computes an m by n matrix 
that represents the execution time of each task on various 
virtual machines.

The makespan of the schedule X is given as follows:

b) Execution Cost

Cost refers to the total amount to be paid by the user to the 
service provider for the services rendered. The cost of each 
resource (VM) in the fog is dynamically affected by the 
capacity of the resource. This means that a more powerful 
resource is always more expensive. The cost of resource 
usage is charged based on the execution time of a task and 
the cost of VM per unit of time. Therefore, the execution 
cost EC

i,j
 of task ti on resource VMj can be determined using 

Eq. 24.

where Pvm
j

 represents the price of  VMj, Et
i,j

 is the execution 
time of task ti on VMj.

c) Energy Consumption

The amount of energy consumed by a virtual machine 
depends on its state. Virtual machines consume less energy 
in their idle state as compared to their busy state. The energy 
consumed by a virtual machine is calculated as follows:

where �and� represents the energy consumed in joules 
per Millions of Instructions in busy state and the energy 

(21)Et
i,j
=

tl
i

VM
p

j

(22)Et
i,j
=

⎡⎢⎢⎣

Et
1,1

Et
1,2

… .. Et
1,n

… .. ……… .. … ..

Et
m,1

Et
m,2

… .. Et
m,n

⎤⎥⎥⎦

(23)Mt(X) = maxj=1,2,…n

n∑
i=1

Et
i,j

(24)EC
i,j
= Pvm

j
∗

Et
i,j

3600

(25)Energyvm
j

=

(
execvm

j
x� + idlevm

j
x�

)
∗ PSj

consumed at idle state. PSj  represents the processing speed 
of the VM.

d) Fitness Function

The key objective of resource allocation is to determine 
an efficient mapping of a user’s tasks to computing 
resources that optimises some objectives. The key 
objectives of this work are to reduce the makespan time, 
cost of execution, and overall energy consumption of the 
system. The objective function in this work is given as 
follows:

c. Update Phase

In this phase, the initial solution is updated based on the 
output of the evaluation phase (fitness value). The process 
of updating the solution is repeated until the termination 
criteria is reached.

d. Balance Phase

In this phase, a local search is applied to determine the 
resources with the highest and least number of allocated 
tasks. A random task allocated to the resource with the 
highest number of tasks is removed. This task will be 
allocated to a resource with the least number of tasks if 
it lowers the fitness value. The process is repeated until 
optimal load balance is achieved.

(26)

f (x) = min

((
maxj=1,2,…n

n∑
i=1

Et
i,j
∗ 0.5

)
+

n∑
i=1

EC
i
∗ o.5

)
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Algorithm 3: Modified Harris-Hawks Optimization  

Input: number of individual hawk N, number of task m, 

and number of virtual machines n, total no of iterations . 

Generate a random population of hawks. 

Compute the fitness values of each hawk using eqn. 26 

Set  to best value 

repeat 
             Update & J using eqn. 20 & 6  

if (| | ≥ 1) then 
Compute the new position of hawks using eqn. 1 

end if 
if (| | < 1) then  

 if ( | | ≥ 0.5 ) then 
Determine the new value of  using eqn. 4 

else if ( | | < 0.5) then 
Determine the new of  using eqn. 7 

else if ( | | ≥ 0.5) then 
           Determine the new of  using eqn. 11

else if ( | | < 0.5) then 
           Determine the new of  using eqn. 12

end if 
                 end if 

          Sort in order of allocated task 

for i = 
2

+  1 do
randomly remove a task  from vmi

   randomly select (1,
2

)
    assign  to 

if ))then 

                  end if 
           end for 
t = t + 1 

until 
Return 

5  Experimental results and discussion

In this section, the details of the experiment and the results 
obtained are presented.

a. Experimental Setup

Extensive simulations have been carried out using the 
iFogSim (H. Gupta et  al. 2017) simulator to assess the 
efficacy of the proposed approach. The proposed algorithm 
is encoded in Java with the Eclipse IDE using iFogSim and 
ran on a machine with the specifications in Table 1. The fog 
environment consists of 20 heterogeneous virtual machines 
with randomly generated processing and memory capacity. 
The specifications of the virtual machines are presented in 
Table 2. The cost of using the VMs is determined by their 
respective computation power. To obtain the utilisation cost 
of an individual virtual machine, its capacity is divided 
by $10. For example, a VM with a processing speed of 
1000 will cost $100 per unit time. The experiment was 
conducted using 100 randomly generated tasks with varying 
characteristics, as shown in Table 3. The parameter settings 
for the proposed method (MHHO) and the benchmarked 
techniques (PSO, FA, HHO) are presented in Table 4. 

The experiment is conducted in two ways: firstly, by 
increasing the number of VM’s and maintaining the number 
of tasks. Secondly, by increasing the number of tasks and 
maintaining the number of VM's, the performance of the 
approach is measured based on completion time (makespan), 
cost, and energy consumption (Table 4).

b. Results and Discussion

For performance investigation, the experiments con-
ducted include the proposed Modified Harris-Hawk 

Table 1  System Specification

Properties Specification

System Intel (R) Core i5 5th Gen @ 1.7 GHz
RAM 4 GB
OS Windows 10 64-bit Operating System

Table 2  VM specifications Properties Range

No of VM’s 5–20
CPU (MIPS) 1000–3000
RAM (BM) 1000–2000
Cost ($) 100–300

Table 3  Task specifications

Properties Range

No of Instructions (MIPs) 100—500
Memory Required (MB) 100–500
Deadline (ms) 5–50
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Optimization (MHHO), the traditional Harris-Hawks Opti-
mization (HHO), Ant Colony Optimization (ACO), Parti-
cle Swarm Optimization (PSO), and Firefly Algorithm in 
the iFogSim simulator.

The simulation was run fifty (50) times for each num-
ber of VM's, and the average of the makespan time, cost, 
and energy consumed was calculated. Figure 3 shows the 
average makespan time of the five algorithms on differ-
ent VM sizes. It was discovered that increasing the num-
ber of VMs reduces the average makespan time for both 
algorithms. The proposed Modified Harris-Hawks Opti-
mization (MHHO) algorithm records the least average 
makespan time. This proves that the load balancing and the 

exponential energy update strategy in the proposed method 
have an impact on the completion time of the tasks.

Figure 4 shows the average execution cost of 100 tasks on 
different VM sizes for the five algorithms. It was observed 
that there were no changes in the execution cost between 
the traditional HHO and the MHHO. This shows that the 
fitness function is a key part of how both algorithms con-
trol how much it costs to run. Based on the results in the 
figure, the MHHO recorded the least execution cost for the 
100 tasks. This proves that the load balancing feature in 
the proposed method can improve the performance of the 
HHO when employed in resource scheduling where there is 
limited processing capacity.

Table 4  Parameter settings for PSO, FA, HHO, and MHHO

Algorithm Parameters Values

ACO Population size 50
β 2
ρ 6

PSO Population size 50
C1 1.45
C2 1.45

FA Population size 50
α 0.5
β 0.2
γ 1

HHO Population size 50
Eo [ 1, 1]

MHHO Population size 50
Eo [ 1, 1]
β 0.85
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Figure 5 shows the average amount of energy consumed 
with an increase in the size of resources in the environment. 
It can be inferred that the energy consumption increases with 
the rise in the size of resources (VM's), thus inflating the 
total energy consumption of the system.

Figure 6 shows the comparison of the average makespan 
time for 500 tasks with 20 virtual machines. It is observed 
that the average makespan time for the five algorithms 
increases with an increase in the number of tasks. It was 
inferred that the increase was as a result of the increase in 
the workload on the existing virtual machines in the environ-
ment. It was also observed that the proposed MHHO records 
the least average makespan time from tasks 300 to 500 as 
compared to the traditional HHO.

6  Conclusion

Fog computing is a model that aims to overcome the 
drawbacks of cloud computing by performing computation 
at the edge of the network. Fog resources are limited and 
typically resource constrained. To exploit the real benefits 
of the fog, there is a need for a robust approach for allocating 
resources to tasks, especially time-sensitive ones. To prevent 
the fog layer from oversaturation by delay tolerant tasks, the 
proposed layer fit algorithm filters the tasks to be executed 
in the fog and propagates the remaining tasks to the cloud 
layer. The proposed Modified Harris-Hawks Optimization 
(MHHO) algorithm allocates resources to the filtered tasks, 
taking into accounts the completion time, execution cost, 
and energy consumption. To prevent the population of the 
HHO from falling into local optima and avoid overloading 
of resources in the environment, a new energy update 
function and load balance strategy are used in the MHHO. 

The simulation results illustrate that our system recorded the 
least makespan time, execution cost, and resource energy 
consumption when equated to the traditional HHO, ACO, 
PSO, and FA. In our subsequent work, a joint task schedule 
and application module placement on fog devices will be 
considered to further improve the performance of the fog 
system.

Data availability The data used to evaluate the performance of 
the method in this study is synthetic and are available from the 
corresponding author upon request.
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