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Abstract
The constrained application protocol (CoAP) is an application layer protocol in IoT, with underlying support for conges-
tion control mechanism. It minimizes the frequent retransmissions, but does not optimize the throughput or adapt dynamic 
conditions. However, designing an efficient congestion control mechanism over the IoT poses new challenges because of its 
resource constraint nature. In this context, this article presents a new Intelligent congestion control algorithm (iCoCoA) for 
constraint devices, motivated by the success of the deep reinforcement learning in various applications. The iCoCoA learns 
from the various network features to decide the best Retransmission Timeout to mitigate the congestion in the dynamic 
environments. It also optimizes the throughput, energy, and unnecessary frequent retransmissions compared with the exist-
ing models. iCoCoA is developed and tested on the Cooja simulator and compared it with the standard protocols such as 
CoAP, CoCoA, and CoCoA+ in continuous and burst traffic conditions. The proposed iCoCoA mitigates congestion, out-
performs 4–15% in throughput, 3–10% better packet delivery ratio, and 7–16% energy-efficiency with reduced number of 
retransmissions.

Keywords  Constrained application protocol · Congestion control · Deep reinforcement learning · Internet of Things · 
Retransmission timeout

1  Introduction

Internet of things (IoT) is the most promising technology 
because of its appealing features such as scalability, cost-
effective, low-complexity, self-organize, ease of use and 
deployment. With the proliferation of IoT applications, many 

devices are connected over the Internet every day (Jamshed 
et al. 2022). These devices are battery-powered, with limited 
buffer, communication bandwidth and processing capabili-
ties. The primary goal of these devices is to exchange data 
among them or the cloud by interacting with the environ-
ment. Furthermore, the cloud extracts the knowledge from 
this data and communicates with the user through devices 
(Kaur and Sood 2017). For reliable data transmissions, the 
application layer of IoT is composed with a variety of pro-
tocols such as HTTP, CoAP, XMPP, MQTT, AMQP, DDS, 
WebSocket, etc (Donta et al. 2022; Sun and Ansari 2018). 
These protocols use either transmission control protocol 
(TCP) or user datagram protocol (UDP) transport control 
to fill this gap like the Internet (Sandell and Raza 2019; 
Mahajan et al. 2022). In this context, the standard protocols 
which are used in the regular Internet are not preferable for 
IoT because of its constraints in nature.

In IoT, as there are large number of devices with con-
tinuous monitoring, occasionally the traffic of the network 
exceeds the available capacities of channel contention or 
the buffer. It is usually uncontrollable and creates the con-
gestion in IoTs (Donta et al. 2020; Sangaiah et al. 2020). 
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Congestion is an increasingly significant challenging issue 
in IoTs because it has more impact on various QoS parame-
ters. Mainly, it degrades the throughput, packet delivery rate 
(PDR), and increases the packet retransmissions and losses, 
energy wastage, and end-to-end delay (Salkuti 2018). There 
are several congestion control techniques in various IoT pro-
tocols (from different layers), and this article focuses on the 
congestion control mechanism in the Constrained Applica-
tion Protocol (CoAP) (Bormann et al. 2012).

The Constrained RESTful Environments (CoRE) group 
under the Internet Engineering Task Force (IETF) standard-
ized CoAP (RFC 7252). It is a low-powered, low-bandwidth 
and light-weight constrained protocol for IoT and is inspired 
by the Hyper-text transfer protocol (HTTP) over the UDP. 
CoAP supports the conformable (CON) or NON-message 
transmissions. CON messages receive an acknowledgement 
(ACK) for successful message delivery, and there is no ACK 
for the NON messages (Bormann et al. 2012). The basic con-
gestion control mechanism in CoAP, primarily considers the 
packet loss (within the specified time) for congestion detec-
tion. Thus it supports only the CON messages, and the CoAP 
uses Binary Exponential Backoff (BEB) function to compute 
the Retransmission timeout (RTO) for unsuccessful message 
delivery (Mišić et al. 2018). The initial RTO selects ran-
domly between the interval [2s, 3s], and BEB doubles (up to 
60 s) it for each retransmission (i.e. RTOnew = RTOold << 1 ). 
For example, the four RTOs when the initial RTO is 2 are 4, 
8, 16, and 32. The major limitations of CoAP are, it does not 
avoid the congestion; moreover, it increases the delay and 
also degrades the buffer utilization (Kim et al. 2019; Betzler 
et al. 2016a, 2016b).

Some of the RTO computations over CoAP use Round 
Trip Time (RTT) to estimate or control the congestion 
(Rathod et  al. 2019; Suwannapong and Khunboa 2019; 
Akpakwu et al. 2020). Most of these techniques are using 
the TCP congestion control mechanism based on the pre-
vious RTT. These techniques are not works dynamically 
according to the change of network properties. It also take 
more resources and produce static RTO values. The non-
continuous conditions of the IoT environments, with highly 
variable multiple complex network features such as RTTs, 
buffer sizes, bandwidths, flow sizes, and burst traffic condi-
tions between the devices or devices and server (Uroz and 
Rodríguez 2022). These variable factors create dynamic 
problems and require dynamic decisions to control the con-
gestion in the CoAP. Hence, there is a need for efficient 
and dynamic RTO computation techniques over CoAP for 
efficient congestion control. So, there is a need of Intelligent 
protocol, which works dynamically according to the changes 
in the network features. We strongly believe that the deep 
reinforcement learning (DRL) algorithm is the best solution 
to address the congestion problem of the CoAP in the above 
mentioned conditions.

The DRL is a machine learning (ML) approach, which 
learns with experiences by interacting with the environ-
ment. DRL is being used in various application such as 
gaming, robotic, computer vision, Internet congestion 
control, etc., (Praveen Kumar et al. 2019; Xiao et al. 2019; 
Nie et al. 2019). Success of these applications have moti-
vated to choose DRL for addressing the congestion issue 
in the CoAP. The major benefits identified from the DRL 
are (1) the DRL does not require any predetermined data 
sets to train the system unlike other ML approaches such 
as supervised or unsupervised, (2) It provides the best deci-
sions based on the trial and error methods by considering 
the exploitation or exploration algorithms with the previous 
optimal decisions (Xiao et al. 2019), (3) Unlike RL, DRL 
does not require additional space to maintain a Q-table and 
thus it is also not required to compute all the Q-values asso-
ciated with each state. The major contributions of this article 
are as follows:

–	 The proposed Intelligent Congestion Control algorithm 
(iCoCoA) uses DRL algorithm to predict and mitigate 
congestion by computing dynamic RTOs.

–	 The iCoCoA considers various network features such as 
number of retransmissions, RTTVAR, RTT and previous 
RTO to estimate the efficient RTO, whereas the exist-
ing CoAP, CoCoA, CoCoA+, pCoCoA, and CoCoA++ 
algorithms estimate RTO by considering only RTT​ value 
and sometimes these RTTs are noisy.

–	 The proposed iCoCoA efficiently manages the limited 
buffer and minimizes unnecessary computations of the 
agent during training and running process.

–	 iCoCoA is implemented on the Contiki v3.0 Cooja simu-
lator and its efficiency is compared against standard (by 
IETF) algorithms CoAP, CoCoA, and CoCoA+ algo-
rithms.

The remaining sections of this article is arranged as fol-
lows. In Sect. 2, we review congestion control approaches 
for CoAP. In Sect. 3, we formulate the problem. In Sect. 4, 
we describe the proposed iCoCoA in detail. In Sect. 5, we 
compare the simulation results of the existing approaches 
with the proposed iCoCoA, with various parameters. The 
paper is concluded in Sect. 6.

2 � Related work

In the recent years, several congestion control mechanisms 
have been introduced across the different layers of IoT, but 
this paper focuses only on congestion control in CoAP. The 
extensive literature on other aspect of CoAP is available in 
Donta et al. (2022). In this section, we review various exist-
ing but related congestion control approaches used in CoAP.
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In Betzler et al. (2013), an end-to-end congestion control 
mechanism Congestion Control/Advanced (CoCoA) has 
been developed for CoAP. It uses the TCP’s retransmission 
timer computing strategy (RFC-6298) to calculate the over-
all RTO (Sargent et al. 2011). The CoCoA enhances the 
CoAP with two RTO estimators called strong RTO and weak 
RTO depending on the previous RTTs. The strong estimator 
uses the RTT of successful transmissions in the first attempt 
and whereas weak estimator considers the RTT of at least 
one retransmission. The overall RTO of CoCoA is computed 
based on the previous overall RTO and the weighted average 
of either weak or strong estimator. The major limitations 
identified in CoCoA algorithm are producing the overall 
RTO value with a very successive time and it also calculates 
two estimators to decide the overall RTO. Later CoCoA+ 
was introduced by enhancing the CoCoA from the authors 
of CoCoA in Betzler et al. (2015). In this, Variable Backoff 
Factor (VBF) was introduced in place of the BEB. Addi-
tionally, the computational strategy of the weak estimator 
was also upgraded. The BEB doubles the previous RTO, 
whereas VBF uses different variable backoff values for high 
or low initial RTO as shown in Eq. (1) to avoid the frequent 
retransmissions.

Still CoCoA+ depends on the weak and strong estimators at 
both the endpoints to determine the overall RTO. The prior-
ity of the weak or strong estimator is less compared with the 
previous overall RTO. So, the computed overall RTOs are 
very close to the RTTs. Besides, the per-packet estimation 
of RTT not always the proper measure of the congestion in 
both CoCoA and CoCoA+, because sometimes the RTTs are 
noisy (Rathod et al. 2019).

Further extension of CoCoA+ with optimized RTO esti-
mator is done in precise CoCoA (pCoCoA) (Bolettieri et al. 
2018) and CoCoA++ (Rathod et al. 2019). The pCoCoA 
uses only one RTO (smooth RTO) rather than maintain-
ing two RTO estimators. Additionally, pCoCoA uses the 
retransmission count at each ACK during the CON mes-
sage. Because of this feature, it avoids the duplicate retrans-
missions of a packet. Its computational complexity of RTO 
calculation is minimum when compared with CoCoA+ or 
CoCoA. The CoCoA++ also maintains a single RTO esti-
mator, and it computes an overall RTO by integrating with 
the CAIA Delay-Gradient (CDG) and Probabilistic Back-
off Function (PBF). CDG gets the congestion information 
from the TCP’s congestion window (queue) and packet loss. 
CoCoA++ replaces the VBF with PBF during the RTO 
computation, and it does not consider per-packet RTT like 

(1)VBF =

⎧⎪⎨⎪⎩

3 initial RTO < 1s

2 initial RTO for the interval [1s, 3s]

1.3 Otherwise

others discussed above. In CoCoA++, there is an ambiguity 
that either minimum or maximum delay-gradient results in 
the best overall RTO. Genetic CoCoA++ has been intro-
duced in Yadav et al. (2020) for CoAP by extending the 
CoCoA++ protocol.

The congestion control Random Early Detection (CoCo-
RED) has been developed in Suwannapong and Khunboa 
(2019) using revised random early detection (RevRED) 
and a Fibonacci Pre-Increment Backoff (FPB) function to 
compute the RTO estimator. For each retransmission in 
CoCo-RED, the overall RTO value is determined by multi-
plying the i th Fibonacci value with the initial RTO value. 
The CoCo-RED is enhanced recently by Suwannapong and 
Khunboa (2021) to manage the buffer and traffics. In these 
two approaches, the RTO computation strategy is straight-
forward and has low computational overhead. But, increas-
ing the number of retransmissions also increases the RTO 
value exponentially. Overall, most of the advancements done 
in the CoAP are concerning avoiding congestion by comput-
ing an optimal overall RTO estimator in a static environ-
ment. Figure 1 shows the four continuous RTO values with 
the initial RTO of 2 of CoCoA, CoCoA+, pCoCoA, and 
CoCo-RED. Demir and Abut (2020) use machine learning-
based CoAP to address the congestion. They use support 
vector machine to estimate the congestion level in the net-
work. Zhang et al. (2022) proposed an upper confidence 
bound strategy to make the CoAP dynamic. A fuzzy logic 
based adaptive CoAP is introduced by Aimtongkham et al. 
(2021) to determine the adaptive RTO. The CoAP message 
format is analyzed in both TCP and UDP formats by Agy-
emang et al. (2022).

Xiao et al. (2019), Nie et al. (2019) have used DRL 
to address the congestion control for TCP protocol. In 
Xiao et al. (2019), a DRL-based smart congestion control 
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protocol has been developed. It controls the conges-
tion based on past experiences. In Nie et al. (2019), the 
authors used the Asynchronous Actor-Critic Agents (A3C) 
approach, a DRL method, to address the congestion issue 
over the TCP and also manages the TCP initial window 
size.

The existing methods which are discussed in this section 
are similar to Internet congestion control methods. These are 
also consider the static environment and previous RTTs to 
decide the best RTO for further transmissions. So, dynamic, 
efficient and intelligent protocols require to mitigate the 
challenges for IoT including the congestion issues. In this 
context, proposed iCoCoA method uses UDP transport and 
applies DRL for correctly predicting the RTO to minimize 
unnecessary retransmission for congestion mitigation.

3 � Problem formulation

In this section, we present the problem formulation of the 
proposed iCoCoA. The energy consumption (EC) of an IoT 
device mainly considers the energy drain for data acquisition 
by the sensor embedded in it, processing and the transmis-
sions (Martinez et al. 2015). Based on these assumptions, 
we compute the EC of a device i using Eq. (2):

where Ep(i) is the EC for processing the data and depends on 
the Ed(i) in terms of data type (arithmetic or non-arithmetic), 
and selected hardware architecture, clock cycles used, etc. 
Ed(i) denotes the energy drain during the data acquisition of 
node i and it is computed as follows:

where Es indicates the energy needed for a sample of sensed 
data or payload, and ℙt indicate the probability of the occur-
rence of the event during a unit time interval t. The P(i) is 
the total number of packets collected by a node i.

where Pt(i) means the number of samples acquired during a 
unit time interval t at mote i, and T means the total simula-
tion time. The Etx(i, j) denotes the energy dissipated dur-
ing the data transmission from device i to j, is computed as 
shown in Eq. (5) Donta et al. (2020).

(2)Ei = Ep(i) + Ed(i) + Etx(i) + �

(3)Ed(i) =

{
P(i) × Es For Continuous

P(i) × Es × ℙt(i) For Event driven

(4)P(i) =

⎧
⎪⎪⎨⎪⎪⎩

T∑
t=0

Pt(i) For Continuous

T∑
t=0

�
Pt(i) × ℙt(i)

�
For Event driven

where �tx is the EC for processing the data by circuits, �fs is 
the energy dissipation for amplification, Δij is the distance 
between the devices i to j, and the Γi is the number of data 
transmissions by mote i, and it is computed as follows:

where �(k) denotes the number of retransmissions required 
to the sensed data packet k. The � indicates the additional EC 
to handle the resource and managing the tasks. Additionally, 
the average EC of the network is computed as follows:

where n indicates the number of clients/devices in the net-
work. The packet delivery ratio (PDR ( Ψ )) is the ratio of the 
total number of packets received by the server by excluding 
ACKs ( R ) and the total number of packets transmitted by 
other nodes to the server by excluding ACKs ( T  ) during the 
time T. PDR is computed as follows.

where R ≤ T  , and T  is calculated using the Eq. (9)

from Eqs. (8) and (9), the number of packets lost ( Φ ) dur-
ing T can be estimated as Φ = T −R or the percentage of 
packet lost is Φa = (1 − Ψ) × 100 . The throughout ( � ) of the 
network is determined based on the total amount of pack-
ets received by the server during the time T as shown in 
Eq. (10).

The end-to-end delay/latency (d) of a packet is computed 
as the total time taken by a packet to travel from the source 
to destination. The d includes the queuing delay ( dq ), radio 
propagation delay ( dr ), signal processing delay ( ds ), and 
transmission delay ( dt ). From these, dr(k) ≈ ds(k) ≤ 1 , so 
we neglect dr(k) and ds(k) because of no effect on outcome. 
The latency of the packet k is calculated as shown in Eq. (11)

(5)Etx(i, j) =
(
�tx + �fs × Δ2

ij

)
× Γi

(6)Γi =

P(i)∑
k=0

(�(k) + 1)

(7)E =
1

n

n∑
i=1

Ei

(8)Ψ =
R

T

(9)T ≅

n∑
i=1

P(i)

(10)� =
R

T

(11)d(k) =

{
dq(k) + dt(k) For Successful(
dq(k) + dt(k)

)
× �(k) For retransmitted
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The average d of the network is computed as shown in 
Eq. (12)

The RTT is the time delay for a packet to send from source 
and receive an ACK from the server, it may be asymmetric, 
and not always equal. Simply, the sum of d(k) and the time 
taken to receive an ACK ( A ) i.e. shown in Eq. (13)

the average RTT time is computed using Eq. (14)

The maximum � always minimizes the E. The E also can be 
minimized by minimizing the � , where � indicates the aver-
age number of retransmissions computed as shown below:

The minimization of � value maximizes the � , and it also 
minimizes the d and � . The � is also maximized when 
Φ value is minimized. It will be minimized when Ψ is 

(12)d =

n∑
i=1

(
P(i)∑
k=1

(d(k))

)
×

1

R

(13)�(k) = d(k) +A(k)

(14)� =

n∑
i=1

(
P(i)∑
j=1

(
�(j)∑
k=0

�(k) ×
1

�(j)

)
×

1

P(i)

)
×

1

T × n

(15)� =
1

n

n∑
i=1

(
1

P(i)

P(i)∑
j=1

�(j)

)

maximized. Finally, we achieve the Eq. (16) through � with 
optimal RTOs.

With the observations from Fig. 2, The primary goal of 
the congestion control is for handling trade-off between 
maximizing � , minimizing � and other parameters (Jay et al. 
2019). To trade-off the design goal of low � and high � , 
we adopt a utility function (Xiao et al. 2019) as shown in 
Eq. (16)

where � ∈ [0, 1] is the relative importance of the � and � and 
the U�(x) is computed as follows

where � is the fairness value ranging (0,∞ ), and x is either � 
or � (Xiao et al. 2019). The goal of the proposed algorithm 
is to optimize the Eq. (16).

4 � Proposed iCoCoA protocol

This section provides the detailed discussion on the pro-
posed iCoCoA. Initially, we provide the discussion on the 
DRL and its elements. Subsequently, we discuss about 
Experience Replay Buffer (ERB) followed by the design 
of the agent for the proposed model. Furthermore, we 

(16)U(�, �) =
(
(1 − �) × U�(�)

)
−
(
� × U�(�)

)

(17)U�(x) =

{
log(x) if � = 1
x1−�

1−�
Otherwise

Fig. 2   Dependency of various 
network features Minimize 
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present the training and running process of the iCoCoA. 
The working model of the proposed iCoCoA is summa-
rized using Fig. 3. The client and server are the main com-
ponents of this model to transmit their data packets and the 
control signal. The agent works in server to determine the 
best and most dynamic RTO based on previous RTO and 
other features, which further help to mitigate the congested 
situations in the network.

4.1 � Deep reinforcement learning

The proposed method uses a deep-Q-network (DQN), it 
is a category of the DRL approach. In general, the agent 
and environment are the two basic elements of the DQN 
(Sutton and Barto 2018). The agent trains by interacting 
with the environments in a fixed time slot t and it operates 
from the CoAP server. During each t, the agent receives � 
inputs as state st to take an action at depending on a policy 
��(st, at) and receives a reward r(st, at) . The agent updates 
the st values in each iteration at the predetermined t. The 
agent considers various network features such as minimum 
RTT ( �m ), RTTVAR ( � ), initial RTO ( � ) and the number 
of retransmission ( � ) as a state information. The �m value 
is computed using Eq. (18) which is similar to TCPs com-
putation used in Sargent et al. (2011):

where �′

m
 is the new �m , � = 0.125 , t1 and t2 are the two con-

secutive time slots. The � can be estimated using Eq. (18).

where � = 0.25 , and the � is computed using Eq. (20):

where G is the granularity time (1 ms), and the value of 
k = 4 . From these, we form a state set to compute the new 
RTO. The combination of the � = 4 states at t are denoted 
in Eq. (21).

The action space A considers four possible actions to control 
the congestion with the new RTO ( � ′′ ) computations. The 
possible action sequences are to update the previous RTO 
by increasing or decreasing it, the previous RTO � ′ , consider 
the initial RTO ( �t ), or drop the packet (no further transmis-
sion). The action space at t is defined as shown in Eq. (22).

The selection of any possible action at is decided by the 
agent after it receives the state st information using a policy 
( �� ). Note that the DQN used in iCoCoA is a model-free and 
off-policy approach (Krizhevsky et al. 2017), which trains 
the agent over various adjustable parameters ( � ) to maintain 
the ��(st, at) to determine the best possible action at to the 
current state st depends on the Eq. (23).

where � denotes the weights of the DQN. The distribution 
approach which followed by Eq. (23) ensures apposite explo-
ration of the states.

Another important considerable parameter in the agent 
is the reward function ( Rt ). Designing an accurate Rt is a 
challenging issue for DQN to control the congestion over 
CoAP. The agent receives a scalar value as a reward Rt 
from each desirable action at+1 for a state st+1 . The primary 
goal of the agent is to maximize the expected cumulative 
reward that it receives from the reward function, which 
aims to improve the throughput by controlling the conges-
tion. The reward function Rt we consider in the proposed 
work is shown in Eq. (24).

(18)�m =

{
min
x

�m(x) on x ∈ [t1, t2] � = 0

(1 − �) × �m + � × �
�

m
Otherwise

(19)� =

{ �m

2
� = 0

(1 − �) × � + � ×
(
�m − �

�

m

)
Otherwise

(20)� = �m + max(G, k × �)

(21)st =
{
�t, �mt, �t, �t

}

(22)A =
{
�

��

t
= Eq. (20), �

��

t
= �

�

t
, �

��

t
= �t, �

��

t
= 0

}

(23)��
(
st, at

)
= argmax

a
Q(s, a;�)

RTT Updates

RTO Estimations

New Transactions

Retransmissions

Client

Client
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Server

RTT Set on
[ t1, t2 ]

Minimum 
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Calculate
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Deep Reinforcement Learning
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Update

Apply
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Fig. 3   The working model of the Proposed iCoCoA
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where � ∈ [0, 1] , and ri(si, ai) is defined as shown in Eq. (25). 
The aim of Rt is to keep the network channel busy, but not 
overflow. The agent consider the immediate reward if the 
� value is closer zero. If the � is closer to one, the future 
reward with highest weight is considered by the agent.

The Q-value function Q�(st, at) in this article basically uses 
a given input state st to determine optimal action at for a 
given policy �� is determined based on the Eq. (26) Mnih 
et al. (2015).

where the expanded Q-value function is shown in Eq. (27).

where YDQN
t  is represented as shown in Eq. (28).

where Q(st, at,�) ≈ Q�(st, at) , and the optimized loss func-
tion at i th iteration for DQN is computed as shown below:

At each iteration, the previous value of �′

i
 ( = �i−1 ) holds 

when fixing Eq. (29). But in the final iteration �′

i
 will be 

ignored because, this stage of optimization uses the variance 
of the targets.

4.2 � Experience replay buffer (ERB)

However, the IoT environment performs the dynamic 
changes in the network features, sometimes the set of fea-
tures to cause of congestion are repeated. This kind of 
repeated situations does not require new solutions or fur-
ther learning process. Unlike recent RL approaches, the 
DRL takes this advantage by using ERB. The ERB main-
tains a set of past experiences of the agent, and allow the 
agent to stabilize training and break undesirable temporal 
correlations to minimize the computational time. In which, 
each time-stamp t, the set of values Γt = (st, at,Rt+1, st+1) 
updates the ERB in each iteration and the dataset becomes 
Dt = {Γ1,Γ2, ...,Γ|D|} . Generally, the size of the ERB |D| in 
DRL is set to be multiples of 10K (Xiao et al. 2019). Due to 

(24)Rt = rt + �1Rt+1 + �2Rt+2 +⋯ =

∞∑
i=t

� i−tri
(
si, ai

)

(25)ri
(
si, ai

)
= �i × log

(
�i

�i

)

(26)Q�
(
st, at

)
= �s

[
Rt|st, at,�

]

(27)Q�
(
st, at

)
= �s

�

[
Y
DQN
t |st, at, ;�

]

(28)Y
DQN
t = rt + � max

a
�
Q∗

(
s
�

t
, a

�

t
;�

�)

(29)Li(�i) = �s,a,r,s
�

[(
Y
DQN

i
− Q(s, a;�i)

)2
]

the memory constraints in IoT, we set the �D� = ⌈n × loge(n)⌉
.

The agent considers the set of input state values from 
ERB in the iCoCoA. The data stored in ERB decides either it 
requires further training process or not. Initially, the ERB is 
empty, and it fills during the training and running process. If 
the set of input features are available in the ERB, it provides 
the stored reward and action without additional computa-
tions. If the input network features are not available in the 
ERB, it moves to further training process and the outcome 
of the training results are stored into the ERB. The ERB 
updates the buffer according to the first-in-first-out (FIFO) 
when it is full. So, it maintains only the most recent data 
because of the limited available memory.

4.3 � Design of agent

The agent periodically checks the network to detect the 
changes in the network features, to improve the learning 
process by adopting the changing conditions. The iCoCoA 
learns from these experiences to determine the new RTO, 
to control the unnecessary retransmission over the network. 
The agent uses the Deep Convolutional Neural Network 
(DCNN) to produce the actions of the system. The DCNN 
is processing the data in a sequence of layers, and each layer 
performs a differentiable function to transform the input 
from one format to another format to produce the desired 
output. From Fig. 4, the three main layers between input 
and fully-connected (FC) layers of the DCNN architecture 
are one or more convolutional (CONV), Non-linearity, and 
pooling layers, respectively.

The DCNN chooses M consecutive state features from the 
ERB periodically and convert them into � (value is equal to 
the number of states) frames of size ⌊√M⌋ × ⌊√M⌋ . These 
frames are taken as input by the CONV layer. The CONV 
layer is the core building block of a DCNN, that does most 
of the computations with a set of learnable parameters. In 
this work, we consider two CONV layers, and each associ-
ated with a non-linearity layer. In general, a Non-linearity 
layer uses a rectified linear unit (ReLU) activation function, 
whereas the iCoCoA adopts an experimental linear unit 
(ELU).

where Sx indicate the state value belongs to x. The primary 
goal of the ELU is to suppress the negative values.

The first CONV layer uses the input volume size √
M ×

√
M × � by considering the receptive field of 3 × 3 

neurons, with a stride of one, and the zero-padding value of 
one. Each receptive field extracts a feature at every part of 
the input frame using the Eq. (31):

(30)ELU(x) =

{
Sx × (ex − 1) x ≤ 0

x x > 0
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where wi is the random weight of each neuron example 
w={1, 0, -1}, and the b is the bias. The expected output vol-
ume size of the first CONV layer is ⌈√M⌉ × ⌈√M⌉ × � , and 
it will be the input to the second CONV layer. The second 
CONV layer constructed with the 3 × 3 filter with the stride 
of one and no zero-padding hyperparameters. This layer uses 
the Eqs. (30) and (31) internally, and produce the output 
volume for the input to the pooling layer.

The primary purpose of the pooling layer is to reduce the 
spatial dimensions of the CONV layer output. In the agent 
of iCoCoA, we consider a single pooling layer of 3 × 3 neu-
rons in the receptive field, with sliding of two and no zero-
padding. The output volume of pooling layer is input to the 
Flatten layer and the Flatten layer process of the output of 
the pooling layer to convert it into to single dimension vec-
tor. During this conversion, Flatten uses Softplus or Smoo-
thReLU as a Non-linearity layer as shown below:

Finally, the FC layer extracts the desired number of resultant 
feature values from the preceding layers. Further, the policy 
�� will choose the desired action based on the Q-values 
available in the FC layer.

4.4 � Training and running

The DRL gains knowledge from the experiences, and it gen-
erates the right decisions by training with different network 
conditions and various features. Initially, the agent chooses 
an action randomly because of the dataset unavailability for 
the training process. After a few iterations, the agent decides 
and performs the actions based on �� using Eq. (23) with the 
output Q-values. The resultant action and reward are stored 
in the ERB, along with a set of network features. Further 

(31)f (x) =
∑
i=1

wixi + b

(32)f (x) = log (1 + ex)

simulation runs over time will frequently change the net-
work environment, and keep on varying the features. With 
these features, the proposed iCoCoA operates training by the 
agent using a DCNN approach, and it decides an appropri-
ate action for a given set of states to determine RTO value.

After training, the state, reward, and action set will 
remain stored into the ERB, which are useful during the 
online running process. The ERB determines the changes in 
the input network features before the agent starts its train-
ing process. So, it reduces unnecessary computations over 
the duplicate features and also speedup the online running 
process with earlier action decisions. Note that it is neces-
sary to use off-policy �� while retrieving the values form 
the ERB. Similar to Mnih et al. (2015), the training clips 
the loss function value while updating the Eq. (29) to [– 1, 
1] and the values between the interval (– 1, 1) are clipped to 
absolute values. Thus the negative values are clipped to -1 
and positive values to 1. Along with these, the rewards also 
clipped to 1 for all positive values, – 1 for all negative values 
and leaving 0 if no change. The stability of the proposed 
algorithm will improve with this form of clipping on the loss 
function and rewards.

5 � Experimental results

We compare the existing but related standard algorithms 
such as CoAP, CoCoA and CoCoA+ with the proposed 
iCoCoA. The simulation setup of the network and the 
implementation of algorithms were tested in the Contiki 
v3.0 using Cooja simulator. We consider the Zolertia (Z1) 
mote with the specification of 8 KB RAM, 96 KB ROM, 
MSP430F2167 (v4.7.3) MCU model with CC2420 Radio 
for both CoAP server and client. These nodes are deployed 
randomly in a rectangular plane, and all the nodes are stat-
ically placed. The channel model used in the simulation 
is the Unit Disk Graph Medium with the Tx range of 10 m 
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and an interface range of 25 m. Further parameters which 
we consider during the simulations are listed in Table 1. 
The comparison parameters consider an average number 
of retransmissions with variable initial RTO values, PDR, 
throughput, energy consumption, fairness index of the con-
gestion and energy consumption. In this study, we tested 
both bursty and continuous network traffic scenarios. In 
the bursty traffic, the network traffic varies such as sudden 
peak or fall in various parts of the network. In continues 
scenario, the traffic is flow at a regular speed without any 
interruption. The simulation study perform multiple tests 
under various conditions with more number of iterations. 

To avoid the replication of the result, we presented a few 
of the results and analysis here.

5.1 � Average number of retransmissions

The number of packet retransmissions is directly pro-
portional to the level of congestion. It means increasing 
the congestion affects packet loss or ACK delays, and it 
leads to increasing the number of retransmissions. It also 
affects the unwanted energy consumption of the nodes. 
The average number of retransmissions ( � ) in this article is 
computed using Eq. (15). Figure 5 shows the � during the 
simulation time between 0-300 seconds for both continu-
ous and burst scenarios.

From Fig. 5a, we observe that no retransmissions are 
there until few iterations because of less traffic. After some 
time, the network traffic increases, gradually raising the 
retransmissions. The � of four algorithms are varied, and 
the proposed iCoCoA results in less or equal number of 
retransmissions in most of the cases. From Fig. 5b, the 
performance of the iCoCoA is better and performs less 
number of retransmissions and the � value rarely touches 
four. In a continuous network scenario, the iCoCoA 
achieves more than 18–29% less retransmission, whereas, 
in a burst scenario, it improved up to 13–27% compared 
with existing approaches. The cause of fewer retransmis-
sions is because of the efficient RTO computation based 
the network traffic and the experience of the previous con-
gestion cases.

Table 1   Simulation parameters

Parameter Value

1. Routing protocol RPL
2. Max no. of retransmissions Four
3. MAC level max retransmis-

sions
Eight

4. Number of motes 100
5. Number of mote types 3 (RPL, Client, and CoAP Server)
6. CoAP ACK-Timeout 3 s
7. CoAP request buffer size Four
8. Network Protocol IPv6 + 6LoWPAN
9. Physical IEEE 802.14.4, 250Kbps PHY
10. Maximum overall RTO 60 s
11. CONV1 Frame size (M) 49
12. Size of Payload 0–28 − 1
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5.2 � Carried load per node

The carried load is an important parameter, and it shows 
the nodes’ congestion levels during the data transmissions. 
The heavy carried load indicates the more chance to lead 
the congestion. The load may be increased due to ACKs 
for the successful and unsuccessful transmissions. The car-
ried load of the first 50 sensor nodes during the simulation 
time T = 20S for both the Continuous and Burst scenarios 
in Fig. 6a, respectively. The iCoCoA results in less carried 
load over the default CoAP, CoCoA, CoCoA+ and EnCoCo-
RED. We observe the better-carried load in the iCoCoA is 
because it avoids unnecessary data transmissions and ACKs. 
From Fig. 6a, we can also observe that the congestion is not 
equally shared among all the nodes in the network. Some-
times, the nodes far from the server are discarded earlier 
than the nodes closer to the server. In iCoCoA, it can be con-
trolled to reduce the carried load of the ACKs, and overall 
it improves the performance by mitigating the congestion.

5.3 � Packet delivery ratio (PDR)

The PDR is defined as the ratio of number of packets 
received at destination and the number of packets trans-
mitted by the motes. It is directly proportional to � and 
inversely proportional to the congestion degree. The PDR 
of the proposed method is computed using the Eq. (8). The 
data driven application such as IoT, reducing packet loss is 
very important.

Figure 7a, b show the comparisons of the proposed 
and existing methods concerning the PDR during the 
simulation runs for both continuous and burst scenarios, 
respectively. The percentage of PDR reduces gradually 
as the simulation time increases, and it happens because 
of occurring the congestion. The mote holds the packet 
until a specified deadline called RTO, and if it exceeds, 
the mote drops the packet. The iCoCoA outperforms 
compared with the existing approaches and gives the best 
PDR. It increased the PDR to approximately 10%, 6–8%, 
3–7%, and 3–6% when compared with the CoAP, CoCoA, 
CoCoA+, and EnCoCo-RED, respectively. These improve-
ments are achieved because of the proper estimation of 
RTO by considering past experiences. The iCoCoA still 
causes packet loss when there is no possibility of control-
ling the congestion and exceeds the buffer timeout. How-
ever, it is minimal when compared with the other existing 
approaches.

The simulations runs are tested with varying the pay-
load size of the CoAP request, and responses for 25–215 are 
shown in Fig. 8. The continuous and burst scenarios of the 
PDR with variable payload size are presented in Fig. 8a 
and Fig. 8b, respectively. From Fig. 8, we notice that the 
increasing payload is decreasing the PDR. Increasing the 
payload will also increase the carried load. It also affects 
the buffer occupancy of the packets. So, each retransmis-
sion of a packet is highly affected by the various perfor-
mance metrics, including PDR.
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5.4 � Throughput

The throughput ( � ) of the iCoCoA is computed using the 
Eq. (10). It depends on the various parameters which are 
described in the Sect. 3. The congestion and � are inversely 
proportional to each other, it means decreasing the conges-
tion automatically improves the throughput. Figure 9, shows 

the comparison of the percentage of the throughput during 
the simulation runs and we plot up to 300 s.

Figure 9a shows the comparison of throughput in con-
tinuous scenario and Fig. 9b represents burst strategy. 
From there, we observe that the throughput of the system 
decreases gradually in both the scenarios. Initially, the 
retransmissions of the iCoCoA are similar to the existing 
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approaches because of the arbitrary decisions. Slowly, 
the proposed approach increased its throughput because 
of handling congestion based on the experiences. It also 
avoids unnecessary frequent retransmissions to reduce 
network traffic and channel overflows. Hence, the iCo-
CoA increases approximately 10–15%, 5–7%, 3–5%, , 
and 2–5% of the throughput when compared with CoAP, 

CoCoA, CoCoA+, and EnCoCo-RED, respectively, for 
both continuous and burst scenarios varying the simulation 
time. The throughput of the proposed and existing CoAP, 
CoCoA and CoCoA+ are presented in Fig. 10 by varying 
the payload size. Even when the payload size increases the 
iCoCoA is performing better than the other existing algo-
rithms. The improvement of the iCoCoA is 11–14% better 
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than CoAP, 4–7% than CoCoA, 2–5% than CoCoA+, and 
2–4% than EnCoCo-RED.

5.5 � Fairness index of congestion

The fairness index of the congestion estimation ( F� ) deter-
mines the equal share of bottleneck of congestion among the 
network. There are several methods to calculate fairness index 
(HoBfeld et al. 2017), whereas we follow Donta et al. (2021) 
to compute F� . The F� value ranges 0 ≤ F ≤ 1 , whereas the 
higher value of the F� shows that the maximum fairness 
and vice versa. The F� of the given network is computed as 
follows:

where S� indicates the standard deviation (SD) of the 
throughput during the total simulation time T, L� and H� 
denote the minimum and maximum throughput during T. 
The lower the SD, the higher the F� value and vice versa. 
The Eq. (34) shows the calculation of the SD of the through-
put. The value of t is updated as t = t + k , where the value 
of k is same as Eq. (20).

(33)F� = 1 −

(
2 × S�

H� − L�

)

(34)
S� =

������
T∑
t=1

�
�t − �

�2

T

The F� of the congestion for the CoAP, CoCoA, CoCoA+, 
EnCoCo-RED and iCoCoA for the running example of 
continuous scenario are 0.8464, 0.8663, 0.8781, 0.8816 
and 0.9006, respectively. Whereas for the burst network the 
F� is 0.8594, 0.8776, 0.8846, 0.8898 and 0.9009 for CoAP, 
CoCoA, CoCoA, EnCoCo-RED and iCoCoA, respectively. 
The proposed iCoCoA achieves the higher F� compared with 
the existing strategies. The higher F� indicates the equal 
share of the bottleneck in the congestion among the motes. 
The iCoCoA achieves the best F� over existing methods due 
to choosing efficient and dynamic RTOs by avoiding fre-
quent retransmissions. The proposed method decides these 
RTOs based on the experience from the previous congestion 
cases.

5.6 � Average energy consumption

The energy is one of the primary constraints for the IoT 
devices, because it operate with a low powered battery and 
continuous monitoring. In this work, we compute the EC of 
a device using the Eq. (2) and the average energy consump-
tion (E) is determined as shown in Eq. (7). As we discussed 
in Sect. 3, more energy is consumed for data transmissions. 
The congestion decreases the E while increasing the number 
of retransmissions.

The comparison results of the proposed and exist-
ing methods are presented in Figs. 11 and 12. From the 
Fig.  11a, the E of the continuous scenario decreased 
approximately 8%, 7%, 5%, and 2–5% when compared 
with the CoAP, CoCoA, CoCoA+, and EnCoCo-RED, 
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Fig. 11   Average Energy Consumption vs. Simulation Time a continuous b burst
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respectively during the increasing of simulation time. 
Similarly, Fig. 11a shows the growth in the burst scenario 
approximately 9%, 7%, 4–6%, and 2–5% when compared 
with the CoAP, CoCoA, CoCoA+, and EnCoCo-RED, 
respectively. The average EC of the proposed and existing 
methods by varying the payload size is tested and plotted 
in Fig. 12 for both the scenarios. From Fig. 12a, we notice 
that the energy consumption of the proposed work is less 
compared to the CoAP, CoCoA, CoCoA+, and EnCoCo-
RED, approximately 15%, 11% and 9%, and 8%, respec-
tively. Similarly, in the burst scenario, the performance 
improvement of the proposed iCoCoA is approximately 
11% than CoAP, 8% than CoCoA, 7% than CoCoA+, 
and 4–7% than EnCoCo-RED protocols. The EC of the 
proposed method outperformed because of eliminating 
the unnecessary frequent retransmission in the network 
through RTO’s proper estimation. iCoCoA also considers 
the packet drop scenario for heavy traffic when there is no 
possibility of retransmission within the deadline.

5.7 � Fairness index of energy consumption

The fairness index of EC ( Fe ) determines the equal share 
of bottleneck of EC among all the devices in the network. 
The Fe computation is similar as shown in section 5.5. The 
Fe of the given network’s EC is shown in Eq. (35), which 
is similar when compared with Eq. (33) but varies in terms 
of input data as shown below:

where Se indicates the SD of the average EC of the motes 
computed using Eq. (36), Le = min{Se} and He = max{Se} 
in the network.

We examine the Fe of the existing and proposed algo-
rithms in continuous and burst scenarios. The Fe of CoAP, 
CoCoA, CoCoA+, EnCoCo-RED and iCoCoA for the con-
tinuous scenario is approximately 0.5309, 0.5521, 0.593, 
0.6011, and 0.6209, respectively. The Fe of CoAP, CoCoA, 
CoCoA+, EnCoCo-RED and iCoCoA for the burst scenario 
is approximately 0.4389, 0.4379, 0.4433, 0.4612 and 0.5426, 
respectively. The Fe of the iCoCoA is always higher when 
compared with the existing approaches. The higher Fe indi-
cates the equal share of the bottleneck for the motes EC 
in the network. The proposed iCoCoA achieves the best Fe 
over existing methods due to avoiding unnecessary packet 
retransmissions.

5.8 � Discussion

While, the proposed iCoCoA predicts and controls the con-
gestion efficiently, some of the pitfalls are still possible in 

(35)Fe = 1 −
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2 × Se
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)
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Fig. 12   Average Energy Consumption by varying the payload size a continuous b burst
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iCoCoA. Here, we listed some of the limitations and possible 
alternate solutions to overcome them. The agent is trained 
after a few iterations of the network, so it is not possible to 
avoid the congestion in the initial stages of the simulation. 
However, it does not affect the system because the traffic is 
not so high up to few iterations. Due to this, the possibility 
of congestion occurrence is very low. If the unanticipated 
congestion appears in the network, iCoCoA selects a random 
action to generate RTO values for controlling it. Another 
limitation is the memory requirements to store the experi-
ences in constrained IoT devices for training. This limitation 
is overcome by limiting a set of few most recent experiences 
instead of maintaining all the outcomes of the agent.

The time taken to train and provide the results by the 
agent is overcome by limiting the amount of the training 
dataset. Further, we can still reduce the computational load 
by using frame-skipping method used in Mnih et al. (2015) 
for Atari game. Furthermore, even the changes in the net-
work conditions are dynamic, but for some of the cases, 
these changes are not effected on the network features. With 
these features, the agent provides an action based on past 
experiences (available in ERB) without further training. 
The required computational resources for the agent also 
depend on the number of CONV or Pooling layers used for 
the agent. Deciding the number of layers in the agent for 
achieving the best result is a challenging task. However, in 
Lippmann (1987), the author proved that the two hidden 
layers are sufficient for the efficient classification. So, the 
proposed method also uses only two CONV layer to limit the 
computational overhead. So, we invent an efficient conges-
tion prediction techniques within the protocol.

6 � Conclusion

IoT is connected with a large number of devices, and these 
are exchanging their data continuously among them by 
interacting with the environment. These data transmissions 
slowly increase the traffic and lead to congestion in the net-
work. It causes unnecessary retransmissions, thus it degrades 
the performance of the IoT such as throughput, PDR, energy 
consumption, packet loss etc. CoAP is an application layer 
protocol, which use to control the congestion in a static envi-
ronment, but it is not complete relief from the congestion. 
In this article, we proposed an intelligent congestion control 
algorithm named iCoCoA for CoAP using deep reinforce-
ment learning approach to predict and control the congestion 
in the dynamic environments. This iCoCoA extracts the vari-
ous network features and produces RTO values dynamically 
using DRL agent to avoid unnecessary frequent retransmis-
sions. It also confirms the possibility of retransmission of 
a packet within certain amount of time or it will drop the 
packet. The performance of the iCoCoA is substantiated 

using Contiki v3.0 with cooja simulator in continuous and 
burst environments, and it outperforms the existing CoAP, 
CoCoA, and CoCoA+ algorithms. As a further work, area 
of research in CoAP is to and avoid the congestion before 
it occurs in the network so that it completely avoids the 
retransmissions by choosing alternative decisions.
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