
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2023) 14:2951–2966
https://doi.org/10.1007/s12652-023-04534-8

ORIGINAL RESEARCH

iCoCoA: intelligent congestion control algorithm for CoAP using deep
reinforcement learning

Praveen Kumar Donta1,2 · Satish Narayana Srirama2,3  · Tarachand Amgoth1 · Chandra Sekhara Rao Annavarapu1

Received: 15 December 2020 / Accepted: 10 January 2023 / Published online: 26 January 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
The constrained application protocol (CoAP) is an application layer protocol in IoT, with underlying support for conges-
tion control mechanism. It minimizes the frequent retransmissions, but does not optimize the throughput or adapt dynamic
conditions. However, designing an efficient congestion control mechanism over the IoT poses new challenges because of its
resource constraint nature. In this context, this article presents a new Intelligent congestion control algorithm (iCoCoA) for
constraint devices, motivated by the success of the deep reinforcement learning in various applications. The iCoCoA learns
from the various network features to decide the best Retransmission Timeout to mitigate the congestion in the dynamic
environments. It also optimizes the throughput, energy, and unnecessary frequent retransmissions compared with the exist-
ing models. iCoCoA is developed and tested on the Cooja simulator and compared it with the standard protocols such as
CoAP, CoCoA, and CoCoA+ in continuous and burst traffic conditions. The proposed iCoCoA mitigates congestion, out-
performs 4–15% in throughput, 3–10% better packet delivery ratio, and 7–16% energy-efficiency with reduced number of
retransmissions.

Keywords  Constrained application protocol · Congestion control · Deep reinforcement learning · Internet of Things ·
Retransmission timeout

1  Introduction

Internet of things (IoT) is the most promising technology
because of its appealing features such as scalability, cost-
effective, low-complexity, self-organize, ease of use and
deployment. With the proliferation of IoT applications, many

devices are connected over the Internet every day (Jamshed
et al. 2022). These devices are battery-powered, with limited
buffer, communication bandwidth and processing capabili-
ties. The primary goal of these devices is to exchange data
among them or the cloud by interacting with the environ-
ment. Furthermore, the cloud extracts the knowledge from
this data and communicates with the user through devices
(Kaur and Sood 2017). For reliable data transmissions, the
application layer of IoT is composed with a variety of pro-
tocols such as HTTP, CoAP, XMPP, MQTT, AMQP, DDS,
WebSocket, etc (Donta et al. 2022; Sun and Ansari 2018).
These protocols use either transmission control protocol
(TCP) or user datagram protocol (UDP) transport control
to fill this gap like the Internet (Sandell and Raza 2019;
Mahajan et al. 2022). In this context, the standard protocols
which are used in the regular Internet are not preferable for
IoT because of its constraints in nature.

In IoT, as there are large number of devices with con-
tinuous monitoring, occasionally the traffic of the network
exceeds the available capacities of channel contention or
the buffer. It is usually uncontrollable and creates the con-
gestion in IoTs (Donta et al. 2020; Sangaiah et al. 2020).

 *	 Satish Narayana Srirama
	 satish.srirama@uohyd.ac.in

	 Praveen Kumar Donta
	 praveeniitism@gmail.com

	 Tarachand Amgoth
	 tarachand@iitism.ac.in

	 Chandra Sekhara Rao Annavarapu
	 acsrao@iitism.ac.in

1	 Department of Computer Science and Engineering, Indian
Institute of Technology (Indian School of Mines), Dhanbad,
Jharkhand, India

2	 Mobile & Cloud Lab, Institute of Computer Science,
University of Tartu, 50090 Tartu, Estonia

3	 School of Computer and Information Sciences, University
of Hyderabad, Hyderabad 500 046, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-023-04534-8&domain=pdf
http://orcid.org/0000-0002-7600-7124

2952	 P. K. Donta et al.

1 3

Congestion is an increasingly significant challenging issue
in IoTs because it has more impact on various QoS parame-
ters. Mainly, it degrades the throughput, packet delivery rate
(PDR), and increases the packet retransmissions and losses,
energy wastage, and end-to-end delay (Salkuti 2018). There
are several congestion control techniques in various IoT pro-
tocols (from different layers), and this article focuses on the
congestion control mechanism in the Constrained Applica-
tion Protocol (CoAP) (Bormann et al. 2012).

The Constrained RESTful Environments (CoRE) group
under the Internet Engineering Task Force (IETF) standard-
ized CoAP (RFC 7252). It is a low-powered, low-bandwidth
and light-weight constrained protocol for IoT and is inspired
by the Hyper-text transfer protocol (HTTP) over the UDP.
CoAP supports the conformable (CON) or NON-message
transmissions. CON messages receive an acknowledgement
(ACK) for successful message delivery, and there is no ACK
for the NON messages (Bormann et al. 2012). The basic con-
gestion control mechanism in CoAP, primarily considers the
packet loss (within the specified time) for congestion detec-
tion. Thus it supports only the CON messages, and the CoAP
uses Binary Exponential Backoff (BEB) function to compute
the Retransmission timeout (RTO) for unsuccessful message
delivery (Mišić et al. 2018). The initial RTO selects ran-
domly between the interval [2s, 3s], and BEB doubles (up to
60 s) it for each retransmission (i.e. RTOnew = RTOold << 1 ).
For example, the four RTOs when the initial RTO is 2 are 4,
8, 16, and 32. The major limitations of CoAP are, it does not
avoid the congestion; moreover, it increases the delay and
also degrades the buffer utilization (Kim et al. 2019; Betzler
et al. 2016a, 2016b).

Some of the RTO computations over CoAP use Round
Trip Time (RTT) to estimate or control the congestion
(Rathod et al. 2019; Suwannapong and Khunboa 2019;
Akpakwu et al. 2020). Most of these techniques are using
the TCP congestion control mechanism based on the pre-
vious RTT. These techniques are not works dynamically
according to the change of network properties. It also take
more resources and produce static RTO values. The non-
continuous conditions of the IoT environments, with highly
variable multiple complex network features such as RTTs,
buffer sizes, bandwidths, flow sizes, and burst traffic condi-
tions between the devices or devices and server (Uroz and
Rodríguez 2022). These variable factors create dynamic
problems and require dynamic decisions to control the con-
gestion in the CoAP. Hence, there is a need for efficient
and dynamic RTO computation techniques over CoAP for
efficient congestion control. So, there is a need of Intelligent
protocol, which works dynamically according to the changes
in the network features. We strongly believe that the deep
reinforcement learning (DRL) algorithm is the best solution
to address the congestion problem of the CoAP in the above
mentioned conditions.

The DRL is a machine learning (ML) approach, which
learns with experiences by interacting with the environ-
ment. DRL is being used in various application such as
gaming, robotic, computer vision, Internet congestion
control, etc., (Praveen Kumar et al. 2019; Xiao et al. 2019;
Nie et al. 2019). Success of these applications have moti-
vated to choose DRL for addressing the congestion issue
in the CoAP. The major benefits identified from the DRL
are (1) the DRL does not require any predetermined data
sets to train the system unlike other ML approaches such
as supervised or unsupervised, (2) It provides the best deci-
sions based on the trial and error methods by considering
the exploitation or exploration algorithms with the previous
optimal decisions (Xiao et al. 2019), (3) Unlike RL, DRL
does not require additional space to maintain a Q-table and
thus it is also not required to compute all the Q-values asso-
ciated with each state. The major contributions of this article
are as follows:

–	 The proposed Intelligent Congestion Control algorithm
(iCoCoA) uses DRL algorithm to predict and mitigate
congestion by computing dynamic RTOs.

–	 The iCoCoA considers various network features such as
number of retransmissions, RTTVAR, RTT and previous
RTO to estimate the efficient RTO, whereas the exist-
ing CoAP, CoCoA, CoCoA+, pCoCoA, and CoCoA++
algorithms estimate RTO by considering only RTT​ value
and sometimes these RTTs are noisy.

–	 The proposed iCoCoA efficiently manages the limited
buffer and minimizes unnecessary computations of the
agent during training and running process.

–	 iCoCoA is implemented on the Contiki v3.0 Cooja simu-
lator and its efficiency is compared against standard (by
IETF) algorithms CoAP, CoCoA, and CoCoA+ algo-
rithms.

The remaining sections of this article is arranged as fol-
lows. In Sect. 2, we review congestion control approaches
for CoAP. In Sect. 3, we formulate the problem. In Sect. 4,
we describe the proposed iCoCoA in detail. In Sect. 5, we
compare the simulation results of the existing approaches
with the proposed iCoCoA, with various parameters. The
paper is concluded in Sect. 6.

2 � Related work

In the recent years, several congestion control mechanisms
have been introduced across the different layers of IoT, but
this paper focuses only on congestion control in CoAP. The
extensive literature on other aspect of CoAP is available in
Donta et al. (2022). In this section, we review various exist-
ing but related congestion control approaches used in CoAP.

2953iCoCoA: intelligent congestion control algorithm for CoAP using deep reinforcement learning﻿	

1 3

In Betzler et al. (2013), an end-to-end congestion control
mechanism Congestion Control/Advanced (CoCoA) has
been developed for CoAP. It uses the TCP’s retransmission
timer computing strategy (RFC-6298) to calculate the over-
all RTO (Sargent et al. 2011). The CoCoA enhances the
CoAP with two RTO estimators called strong RTO and weak
RTO depending on the previous RTTs. The strong estimator
uses the RTT of successful transmissions in the first attempt
and whereas weak estimator considers the RTT of at least
one retransmission. The overall RTO of CoCoA is computed
based on the previous overall RTO and the weighted average
of either weak or strong estimator. The major limitations
identified in CoCoA algorithm are producing the overall
RTO value with a very successive time and it also calculates
two estimators to decide the overall RTO. Later CoCoA+
was introduced by enhancing the CoCoA from the authors
of CoCoA in Betzler et al. (2015). In this, Variable Backoff
Factor (VBF) was introduced in place of the BEB. Addi-
tionally, the computational strategy of the weak estimator
was also upgraded. The BEB doubles the previous RTO,
whereas VBF uses different variable backoff values for high
or low initial RTO as shown in Eq. (1) to avoid the frequent
retransmissions.

Still CoCoA+ depends on the weak and strong estimators at
both the endpoints to determine the overall RTO. The prior-
ity of the weak or strong estimator is less compared with the
previous overall RTO. So, the computed overall RTOs are
very close to the RTTs. Besides, the per-packet estimation
of RTT not always the proper measure of the congestion in
both CoCoA and CoCoA+, because sometimes the RTTs are
noisy (Rathod et al. 2019).

Further extension of CoCoA+ with optimized RTO esti-
mator is done in precise CoCoA (pCoCoA) (Bolettieri et al.
2018) and CoCoA++ (Rathod et al. 2019). The pCoCoA
uses only one RTO (smooth RTO) rather than maintain-
ing two RTO estimators. Additionally, pCoCoA uses the
retransmission count at each ACK during the CON mes-
sage. Because of this feature, it avoids the duplicate retrans-
missions of a packet. Its computational complexity of RTO
calculation is minimum when compared with CoCoA+ or
CoCoA. The CoCoA++ also maintains a single RTO esti-
mator, and it computes an overall RTO by integrating with
the CAIA Delay-Gradient (CDG) and Probabilistic Back-
off Function (PBF). CDG gets the congestion information
from the TCP’s congestion window (queue) and packet loss.
CoCoA++ replaces the VBF with PBF during the RTO
computation, and it does not consider per-packet RTT like

(1)VBF =

⎧⎪⎨⎪⎩

3 initial RTO < 1s

2 initial RTO for the interval [1s, 3s]

1.3 Otherwise

others discussed above. In CoCoA++, there is an ambiguity
that either minimum or maximum delay-gradient results in
the best overall RTO. Genetic CoCoA++ has been intro-
duced in Yadav et al. (2020) for CoAP by extending the
CoCoA++ protocol.

The congestion control Random Early Detection (CoCo-
RED) has been developed in Suwannapong and Khunboa
(2019) using revised random early detection (RevRED)
and a Fibonacci Pre-Increment Backoff (FPB) function to
compute the RTO estimator. For each retransmission in
CoCo-RED, the overall RTO value is determined by multi-
plying the i th Fibonacci value with the initial RTO value.
The CoCo-RED is enhanced recently by Suwannapong and
Khunboa (2021) to manage the buffer and traffics. In these
two approaches, the RTO computation strategy is straight-
forward and has low computational overhead. But, increas-
ing the number of retransmissions also increases the RTO
value exponentially. Overall, most of the advancements done
in the CoAP are concerning avoiding congestion by comput-
ing an optimal overall RTO estimator in a static environ-
ment. Figure 1 shows the four continuous RTO values with
the initial RTO of 2 of CoCoA, CoCoA+, pCoCoA, and
CoCo-RED. Demir and Abut (2020) use machine learning-
based CoAP to address the congestion. They use support
vector machine to estimate the congestion level in the net-
work. Zhang et al. (2022) proposed an upper confidence
bound strategy to make the CoAP dynamic. A fuzzy logic
based adaptive CoAP is introduced by Aimtongkham et al.
(2021) to determine the adaptive RTO. The CoAP message
format is analyzed in both TCP and UDP formats by Agy-
emang et al. (2022).

Xiao et al. (2019), Nie et al. (2019) have used DRL
to address the congestion control for TCP protocol. In
Xiao et al. (2019), a DRL-based smart congestion control

CoAP CoCoA CoCoA+ pCoCoA CoCo-RED

Recent Congestion Control Techniques in CoAP

0

5

10

15

20

25

30

35

R
et

ra
ns

m
is

si
on

 T
im

e
O

ut
 (s

ec
on

ds
) 1st Transmission

1st Re-transmission
2nd Re-transmission
3rd Re-transmission
4th Re-transmission

Fig. 1   Comparison of RTOs in four transmissions to the recent Con-
gestion Control Techniques for CoAP

2954	 P. K. Donta et al.

1 3

protocol has been developed. It controls the conges-
tion based on past experiences. In Nie et al. (2019), the
authors used the Asynchronous Actor-Critic Agents (A3C)
approach, a DRL method, to address the congestion issue
over the TCP and also manages the TCP initial window
size.

The existing methods which are discussed in this section
are similar to Internet congestion control methods. These are
also consider the static environment and previous RTTs to
decide the best RTO for further transmissions. So, dynamic,
efficient and intelligent protocols require to mitigate the
challenges for IoT including the congestion issues. In this
context, proposed iCoCoA method uses UDP transport and
applies DRL for correctly predicting the RTO to minimize
unnecessary retransmission for congestion mitigation.

3 � Problem formulation

In this section, we present the problem formulation of the
proposed iCoCoA. The energy consumption (EC) of an IoT
device mainly considers the energy drain for data acquisition
by the sensor embedded in it, processing and the transmis-
sions (Martinez et al. 2015). Based on these assumptions,
we compute the EC of a device i using Eq. (2):

where Ep(i) is the EC for processing the data and depends on
the Ed(i) in terms of data type (arithmetic or non-arithmetic),
and selected hardware architecture, clock cycles used, etc.
Ed(i) denotes the energy drain during the data acquisition of
node i and it is computed as follows:

where Es indicates the energy needed for a sample of sensed
data or payload, and ℙt indicate the probability of the occur-
rence of the event during a unit time interval t. The P(i) is
the total number of packets collected by a node i.

where Pt(i) means the number of samples acquired during a
unit time interval t at mote i, and T means the total simula-
tion time. The Etx(i, j) denotes the energy dissipated dur-
ing the data transmission from device i to j, is computed as
shown in Eq. (5) Donta et al. (2020).

(2)Ei = Ep(i) + Ed(i) + Etx(i) + �

(3)Ed(i) =

{
P(i) × Es For Continuous

P(i) × Es × ℙt(i) For Event driven

(4)P(i) =

⎧
⎪⎪⎨⎪⎪⎩

T∑
t=0

Pt(i) For Continuous

T∑
t=0

�
Pt(i) × ℙt(i)

�
For Event driven

where �tx is the EC for processing the data by circuits, �fs is
the energy dissipation for amplification, Δij is the distance
between the devices i to j, and the Γi is the number of data
transmissions by mote i, and it is computed as follows:

where �(k) denotes the number of retransmissions required
to the sensed data packet k. The � indicates the additional EC
to handle the resource and managing the tasks. Additionally,
the average EC of the network is computed as follows:

where n indicates the number of clients/devices in the net-
work. The packet delivery ratio (PDR ( Ψ )) is the ratio of the
total number of packets received by the server by excluding
ACKs ( R ) and the total number of packets transmitted by
other nodes to the server by excluding ACKs ( T  ) during the
time T. PDR is computed as follows.

where R ≤ T  , and T is calculated using the Eq. (9)

from Eqs. (8) and (9), the number of packets lost ( Φ ) dur-
ing T can be estimated as Φ = T −R or the percentage of
packet lost is Φa = (1 − Ψ) × 100 . The throughout ( � ) of the
network is determined based on the total amount of pack-
ets received by the server during the time T as shown in
Eq. (10).

The end-to-end delay/latency (d) of a packet is computed
as the total time taken by a packet to travel from the source
to destination. The d includes the queuing delay ( dq ), radio
propagation delay ( dr ), signal processing delay ( ds ), and
transmission delay ( dt ). From these, dr(k) ≈ ds(k) ≤ 1 , so
we neglect dr(k) and ds(k) because of no effect on outcome.
The latency of the packet k is calculated as shown in Eq. (11)

(5)Etx(i, j) =
(
�tx + �fs × Δ2

ij

)
× Γi

(6)Γi =

P(i)∑
k=0

(�(k) + 1)

(7)E =
1

n

n∑
i=1

Ei

(8)Ψ =
R

T

(9)T ≅

n∑
i=1

P(i)

(10)� =
R

T

(11)d(k) =

{
dq(k) + dt(k) For Successful(
dq(k) + dt(k)

)
× �(k) For retransmitted

2955iCoCoA: intelligent congestion control algorithm for CoAP using deep reinforcement learning﻿	

1 3

The average d of the network is computed as shown in
Eq. (12)

The RTT is the time delay for a packet to send from source
and receive an ACK from the server, it may be asymmetric,
and not always equal. Simply, the sum of d(k) and the time
taken to receive an ACK ( A ) i.e. shown in Eq. (13)

the average RTT time is computed using Eq. (14)

The maximum � always minimizes the E. The E also can be
minimized by minimizing the � , where � indicates the aver-
age number of retransmissions computed as shown below:

The minimization of � value maximizes the � , and it also
minimizes the d and � . The � is also maximized when
Φ value is minimized. It will be minimized when Ψ is

(12)d =

n∑
i=1

(
P(i)∑
k=1

(d(k))

)
×

1

R

(13)�(k) = d(k) +A(k)

(14)� =

n∑
i=1

(
P(i)∑
j=1

(
�(j)∑
k=0

�(k) ×
1

�(j)

)
×

1

P(i)

)
×

1

T × n

(15)� =
1

n

n∑
i=1

(
1

P(i)

P(i)∑
j=1

�(j)

)

maximized. Finally, we achieve the Eq. (16) through � with
optimal RTOs.

With the observations from Fig. 2, The primary goal of
the congestion control is for handling trade-off between
maximizing � , minimizing � and other parameters (Jay et al.
2019). To trade-off the design goal of low � and high � ,
we adopt a utility function (Xiao et al. 2019) as shown in
Eq. (16)

where � ∈ [0, 1] is the relative importance of the � and � and
the U�(x) is computed as follows

where � is the fairness value ranging (0,∞ ), and x is either �
or � (Xiao et al. 2019). The goal of the proposed algorithm
is to optimize the Eq. (16).

4 � Proposed iCoCoA protocol

This section provides the detailed discussion on the pro-
posed iCoCoA. Initially, we provide the discussion on the
DRL and its elements. Subsequently, we discuss about
Experience Replay Buffer (ERB) followed by the design
of the agent for the proposed model. Furthermore, we

(16)U(�, �) =
(
(1 − �) × U�(�)

)
−
(
� × U�(�)

)

(17)U�(x) =

{
log(x) if � = 1
x1−�

1−�
Otherwise

Fig. 2   Dependency of various
network features Minimize

Ec

Maximize Minimize

Minimize�
m

Minimize
d

Maximize

Minimize

Minimize��
RTO

Always

Always

Always
Always

Not Always

Always
Most of the

Cases

Most of the
Cases

Always Always

Most of the
Cases

Always

Most of the
Cases

2956	 P. K. Donta et al.

1 3

present the training and running process of the iCoCoA.
The working model of the proposed iCoCoA is summa-
rized using Fig. 3. The client and server are the main com-
ponents of this model to transmit their data packets and the
control signal. The agent works in server to determine the
best and most dynamic RTO based on previous RTO and
other features, which further help to mitigate the congested
situations in the network.

4.1 � Deep reinforcement learning

The proposed method uses a deep-Q-network (DQN), it
is a category of the DRL approach. In general, the agent
and environment are the two basic elements of the DQN
(Sutton and Barto 2018). The agent trains by interacting
with the environments in a fixed time slot t and it operates
from the CoAP server. During each t, the agent receives �
inputs as state st to take an action at depending on a policy
��(st, at) and receives a reward r(st, at) . The agent updates
the st values in each iteration at the predetermined t. The
agent considers various network features such as minimum
RTT ( �m ), RTTVAR ( � ), initial RTO ( � ) and the number
of retransmission ( � ) as a state information. The �m value
is computed using Eq. (18) which is similar to TCPs com-
putation used in Sargent et al. (2011):

where �′

m
 is the new �m , � = 0.125 , t1 and t2 are the two con-

secutive time slots. The � can be estimated using Eq. (18).

where � = 0.25 , and the � is computed using Eq. (20):

where G is the granularity time (1 ms), and the value of
k = 4 . From these, we form a state set to compute the new
RTO. The combination of the � = 4 states at t are denoted
in Eq. (21).

The action space A considers four possible actions to control
the congestion with the new RTO ( � ′′ ) computations. The
possible action sequences are to update the previous RTO
by increasing or decreasing it, the previous RTO � ′ , consider
the initial RTO ( �t ), or drop the packet (no further transmis-
sion). The action space at t is defined as shown in Eq. (22).

The selection of any possible action at is decided by the
agent after it receives the state st information using a policy
( �� ). Note that the DQN used in iCoCoA is a model-free and
off-policy approach (Krizhevsky et al. 2017), which trains
the agent over various adjustable parameters ( � ) to maintain
the ��(st, at) to determine the best possible action at to the
current state st depends on the Eq. (23).

where � denotes the weights of the DQN. The distribution
approach which followed by Eq. (23) ensures apposite explo-
ration of the states.

Another important considerable parameter in the agent
is the reward function ( Rt ). Designing an accurate Rt is a
challenging issue for DQN to control the congestion over
CoAP. The agent receives a scalar value as a reward Rt
from each desirable action at+1 for a state st+1 . The primary
goal of the agent is to maximize the expected cumulative
reward that it receives from the reward function, which
aims to improve the throughput by controlling the conges-
tion. The reward function Rt we consider in the proposed
work is shown in Eq. (24).

(18)�m =

{
min
x

�m(x) on x ∈ [t1, t2] � = 0

(1 − �) × �m + � × �
�

m
Otherwise

(19)� =

{ �m

2
� = 0

(1 − �) × � + � ×
(
�m − �

�

m

)
Otherwise

(20)� = �m + max(G, k × �)

(21)st =
{
�t, �mt, �t, �t

}

(22)A =
{
�

��

t
= Eq. (20), �

��

t
= �

�

t
, �

��

t
= �t, �

��

t
= 0

}

(23)��
(
st, at

)
= argmax

a
Q(s, a;�)

RTT Updates

RTO Estimations

New Transactions

Retransmissions

Client

Client

Server

Server

RTT Set on
[t1, t2]

Minimum
RTT

Calculate
RTO

Initial
 RTO

Deep Reinforcement Learning

Previous
RTO

New
 RTO

Update

Apply
Sets

Retransmission

Fig. 3   The working model of the Proposed iCoCoA

2957iCoCoA: intelligent congestion control algorithm for CoAP using deep reinforcement learning﻿	

1 3

where � ∈ [0, 1] , and ri(si, ai) is defined as shown in Eq. (25).
The aim of Rt is to keep the network channel busy, but not
overflow. The agent consider the immediate reward if the
� value is closer zero. If the � is closer to one, the future
reward with highest weight is considered by the agent.

The Q-value function Q�(st, at) in this article basically uses
a given input state st to determine optimal action at for a
given policy �� is determined based on the Eq. (26) Mnih
et al. (2015).

where the expanded Q-value function is shown in Eq. (27).

where YDQN
t is represented as shown in Eq. (28).

where Q(st, at,�) ≈ Q�(st, at) , and the optimized loss func-
tion at i th iteration for DQN is computed as shown below:

At each iteration, the previous value of �′

i
 ( = �i−1 ) holds

when fixing Eq. (29). But in the final iteration �′

i
 will be

ignored because, this stage of optimization uses the variance
of the targets.

4.2 � Experience replay buffer (ERB)

However, the IoT environment performs the dynamic
changes in the network features, sometimes the set of fea-
tures to cause of congestion are repeated. This kind of
repeated situations does not require new solutions or fur-
ther learning process. Unlike recent RL approaches, the
DRL takes this advantage by using ERB. The ERB main-
tains a set of past experiences of the agent, and allow the
agent to stabilize training and break undesirable temporal
correlations to minimize the computational time. In which,
each time-stamp t, the set of values Γt = (st, at,Rt+1, st+1)
updates the ERB in each iteration and the dataset becomes
Dt = {Γ1,Γ2, ...,Γ|D|} . Generally, the size of the ERB |D| in
DRL is set to be multiples of 10K (Xiao et al. 2019). Due to

(24)Rt = rt + �1Rt+1 + �2Rt+2 +⋯ =

∞∑
i=t

� i−tri
(
si, ai

)

(25)ri
(
si, ai

)
= �i × log

(
�i

�i

)

(26)Q�
(
st, at

)
= �s

[
Rt|st, at,�

]

(27)Q�
(
st, at

)
= �s

�

[
Y
DQN
t |st, at, ;�

]

(28)Y
DQN
t = rt + � max

a
�
Q∗

(
s
�

t
, a

�

t
;�

�)

(29)Li(�i) = �s,a,r,s
�

[(
Y
DQN

i
− Q(s, a;�i)

)2
]

the memory constraints in IoT, we set the �D� = ⌈n × loge(n)⌉
.

The agent considers the set of input state values from
ERB in the iCoCoA. The data stored in ERB decides either it
requires further training process or not. Initially, the ERB is
empty, and it fills during the training and running process. If
the set of input features are available in the ERB, it provides
the stored reward and action without additional computa-
tions. If the input network features are not available in the
ERB, it moves to further training process and the outcome
of the training results are stored into the ERB. The ERB
updates the buffer according to the first-in-first-out (FIFO)
when it is full. So, it maintains only the most recent data
because of the limited available memory.

4.3 � Design of agent

The agent periodically checks the network to detect the
changes in the network features, to improve the learning
process by adopting the changing conditions. The iCoCoA
learns from these experiences to determine the new RTO,
to control the unnecessary retransmission over the network.
The agent uses the Deep Convolutional Neural Network
(DCNN) to produce the actions of the system. The DCNN
is processing the data in a sequence of layers, and each layer
performs a differentiable function to transform the input
from one format to another format to produce the desired
output. From Fig. 4, the three main layers between input
and fully-connected (FC) layers of the DCNN architecture
are one or more convolutional (CONV), Non-linearity, and
pooling layers, respectively.

The DCNN chooses M consecutive state features from the
ERB periodically and convert them into � (value is equal to
the number of states) frames of size ⌊√M⌋ × ⌊√M⌋ . These
frames are taken as input by the CONV layer. The CONV
layer is the core building block of a DCNN, that does most
of the computations with a set of learnable parameters. In
this work, we consider two CONV layers, and each associ-
ated with a non-linearity layer. In general, a Non-linearity
layer uses a rectified linear unit (ReLU) activation function,
whereas the iCoCoA adopts an experimental linear unit
(ELU).

where Sx indicate the state value belongs to x. The primary
goal of the ELU is to suppress the negative values.

The first CONV layer uses the input volume size √
M ×

√
M × � by considering the receptive field of 3 × 3

neurons, with a stride of one, and the zero-padding value of
one. Each receptive field extracts a feature at every part of
the input frame using the Eq. (31):

(30)ELU(x) =

{
Sx × (ex − 1) x ≤ 0

x x > 0

2958	 P. K. Donta et al.

1 3

where wi is the random weight of each neuron example
w={1, 0, -1}, and the b is the bias. The expected output vol-
ume size of the first CONV layer is ⌈√M⌉ × ⌈√M⌉ × � , and
it will be the input to the second CONV layer. The second
CONV layer constructed with the 3 × 3 filter with the stride
of one and no zero-padding hyperparameters. This layer uses
the Eqs. (30) and (31) internally, and produce the output
volume for the input to the pooling layer.

The primary purpose of the pooling layer is to reduce the
spatial dimensions of the CONV layer output. In the agent
of iCoCoA, we consider a single pooling layer of 3 × 3 neu-
rons in the receptive field, with sliding of two and no zero-
padding. The output volume of pooling layer is input to the
Flatten layer and the Flatten layer process of the output of
the pooling layer to convert it into to single dimension vec-
tor. During this conversion, Flatten uses Softplus or Smoo-
thReLU as a Non-linearity layer as shown below:

Finally, the FC layer extracts the desired number of resultant
feature values from the preceding layers. Further, the policy
�� will choose the desired action based on the Q-values
available in the FC layer.

4.4 � Training and running

The DRL gains knowledge from the experiences, and it gen-
erates the right decisions by training with different network
conditions and various features. Initially, the agent chooses
an action randomly because of the dataset unavailability for
the training process. After a few iterations, the agent decides
and performs the actions based on �� using Eq. (23) with the
output Q-values. The resultant action and reward are stored
in the ERB, along with a set of network features. Further

(31)f (x) =
∑
i=1

wixi + b

(32)f (x) = log (1 + ex)

simulation runs over time will frequently change the net-
work environment, and keep on varying the features. With
these features, the proposed iCoCoA operates training by the
agent using a DCNN approach, and it decides an appropri-
ate action for a given set of states to determine RTO value.

After training, the state, reward, and action set will
remain stored into the ERB, which are useful during the
online running process. The ERB determines the changes in
the input network features before the agent starts its train-
ing process. So, it reduces unnecessary computations over
the duplicate features and also speedup the online running
process with earlier action decisions. Note that it is neces-
sary to use off-policy �� while retrieving the values form
the ERB. Similar to Mnih et al. (2015), the training clips
the loss function value while updating the Eq. (29) to [– 1,
1] and the values between the interval (– 1, 1) are clipped to
absolute values. Thus the negative values are clipped to -1
and positive values to 1. Along with these, the rewards also
clipped to 1 for all positive values, – 1 for all negative values
and leaving 0 if no change. The stability of the proposed
algorithm will improve with this form of clipping on the loss
function and rewards.

5 � Experimental results

We compare the existing but related standard algorithms
such as CoAP, CoCoA and CoCoA+ with the proposed
iCoCoA. The simulation setup of the network and the
implementation of algorithms were tested in the Contiki
v3.0 using Cooja simulator. We consider the Zolertia (Z1)
mote with the specification of 8 KB RAM, 96 KB ROM,
MSP430F2167 (v4.7.3) MCU model with CC2420 Radio
for both CoAP server and client. These nodes are deployed
randomly in a rectangular plane, and all the nodes are stat-
ically placed. The channel model used in the simulation
is the Unit Disk Graph Medium with the Tx range of 10 m

IoT
Network

Environment

[s0, a0, R1, s1]
[. . . .]
[. . . .]
[. . . .]
[. . . .]
[st-1, at-1, Rt, st]

[st, at, Rt+1, st+1]

Updated server-side measurements

Experience
Replay Buffer

Reward

Action
[]
[]
[]
[]

State

s

Agent

FC +
Softplus

Flatten +
ELU

Input Frame
Construction

CONV 1 + ELU CONV 2 + ELU Pooling

7 x 7 x 7 x 7 x 5 x 5 x 2 x 2 x 16 x 1 4 x 1
Filter: 3 x 3
Stride: 1
Padding: 1

Filter: 3 x 3
Stride: 1
Padding: 0

Filter: 3 x 3
Stride: 2
Padding: 0

Deep Convolutional Neural Networks

Parameter

(s, a)

New RTO

Fig. 4   Working model of DQN agent for iCoCoA

2959iCoCoA: intelligent congestion control algorithm for CoAP using deep reinforcement learning﻿	

1 3

and an interface range of 25 m. Further parameters which
we consider during the simulations are listed in Table 1.
The comparison parameters consider an average number
of retransmissions with variable initial RTO values, PDR,
throughput, energy consumption, fairness index of the con-
gestion and energy consumption. In this study, we tested
both bursty and continuous network traffic scenarios. In
the bursty traffic, the network traffic varies such as sudden
peak or fall in various parts of the network. In continues
scenario, the traffic is flow at a regular speed without any
interruption. The simulation study perform multiple tests
under various conditions with more number of iterations.

To avoid the replication of the result, we presented a few
of the results and analysis here.

5.1 � Average number of retransmissions

The number of packet retransmissions is directly pro-
portional to the level of congestion. It means increasing
the congestion affects packet loss or ACK delays, and it
leads to increasing the number of retransmissions. It also
affects the unwanted energy consumption of the nodes.
The average number of retransmissions ( � ) in this article is
computed using Eq. (15). Figure 5 shows the � during the
simulation time between 0-300 seconds for both continu-
ous and burst scenarios.

From Fig. 5a, we observe that no retransmissions are
there until few iterations because of less traffic. After some
time, the network traffic increases, gradually raising the
retransmissions. The � of four algorithms are varied, and
the proposed iCoCoA results in less or equal number of
retransmissions in most of the cases. From Fig. 5b, the
performance of the iCoCoA is better and performs less
number of retransmissions and the � value rarely touches
four. In a continuous network scenario, the iCoCoA
achieves more than 18–29% less retransmission, whereas,
in a burst scenario, it improved up to 13–27% compared
with existing approaches. The cause of fewer retransmis-
sions is because of the efficient RTO computation based
the network traffic and the experience of the previous con-
gestion cases.

Table 1   Simulation parameters

Parameter Value

1. Routing protocol RPL
2. Max no. of retransmissions Four
3. MAC level max retransmis-

sions
Eight

4. Number of motes 100
5. Number of mote types 3 (RPL, Client, and CoAP Server)
6. CoAP ACK-Timeout 3 s
7. CoAP request buffer size Four
8. Network Protocol IPv6 + 6LoWPAN
9. Physical IEEE 802.14.4, 250Kbps PHY
10. Maximum overall RTO 60 s
11. CONV1 Frame size (M) 49
12. Size of Payload 0–28 − 1

50 100 150 200 250 300

0

1

2

3

4

Simulation time

A
ve

ra
ge

n
u
m
b
er

of
re
tr
an

sm
is
si
on

s

CoAP CoCoA

CoCoA+ iCoCoA

(a)

50 100 150 200 250 300

0

1

2

3

4

Simulation time

A
ve

ra
ge

n
u
m
b
er

of
re
tr
an

sm
is
si
on

s

CoAP CoCoA

CoCoA+ iCoCoA

(b)

Fig. 5   Average Number of retransmissions in a continuous b burst Scenarios

2960	 P. K. Donta et al.

1 3

5.2 � Carried load per node

The carried load is an important parameter, and it shows
the nodes’ congestion levels during the data transmissions.
The heavy carried load indicates the more chance to lead
the congestion. The load may be increased due to ACKs
for the successful and unsuccessful transmissions. The car-
ried load of the first 50 sensor nodes during the simulation
time T = 20S for both the Continuous and Burst scenarios
in Fig. 6a, respectively. The iCoCoA results in less carried
load over the default CoAP, CoCoA, CoCoA+ and EnCoCo-
RED. We observe the better-carried load in the iCoCoA is
because it avoids unnecessary data transmissions and ACKs.
From Fig. 6a, we can also observe that the congestion is not
equally shared among all the nodes in the network. Some-
times, the nodes far from the server are discarded earlier
than the nodes closer to the server. In iCoCoA, it can be con-
trolled to reduce the carried load of the ACKs, and overall
it improves the performance by mitigating the congestion.

5.3 � Packet delivery ratio (PDR)

The PDR is defined as the ratio of number of packets
received at destination and the number of packets trans-
mitted by the motes. It is directly proportional to � and
inversely proportional to the congestion degree. The PDR
of the proposed method is computed using the Eq. (8). The
data driven application such as IoT, reducing packet loss is
very important.

Figure 7a, b show the comparisons of the proposed
and existing methods concerning the PDR during the
simulation runs for both continuous and burst scenarios,
respectively. The percentage of PDR reduces gradually
as the simulation time increases, and it happens because
of occurring the congestion. The mote holds the packet
until a specified deadline called RTO, and if it exceeds,
the mote drops the packet. The iCoCoA outperforms
compared with the existing approaches and gives the best
PDR. It increased the PDR to approximately 10%, 6–8%,
3–7%, and 3–6% when compared with the CoAP, CoCoA,
CoCoA+, and EnCoCo-RED, respectively. These improve-
ments are achieved because of the proper estimation of
RTO by considering past experiences. The iCoCoA still
causes packet loss when there is no possibility of control-
ling the congestion and exceeds the buffer timeout. How-
ever, it is minimal when compared with the other existing
approaches.

The simulations runs are tested with varying the pay-
load size of the CoAP request, and responses for 25–215 are
shown in Fig. 8. The continuous and burst scenarios of the
PDR with variable payload size are presented in Fig. 8a
and Fig. 8b, respectively. From Fig. 8, we notice that the
increasing payload is decreasing the PDR. Increasing the
payload will also increase the carried load. It also affects
the buffer occupancy of the packets. So, each retransmis-
sion of a packet is highly affected by the various perfor-
mance metrics, including PDR.

10 20 30 40 50

12.5

13

13.5

14

Node Identities

C
a
rr
ie
d
lo
a
d
(B

/
s)

CoAP CoCoA CoCoA+

EnCoCo-RED iCoCoA

(a)

10 20 30 40 50

12.5

13

13.5

14

Node Identities

C
a
rr
ie
d
lo
a
d
(B

/
s)

CoAP CoCoA CoCoA+

EnCoCo-RED iCoCoA

(b)

Fig. 6   Carried load per node at simulation time is 10 s a continuous b burst

2961iCoCoA: intelligent congestion control algorithm for CoAP using deep reinforcement learning﻿	

1 3

5.4 � Throughput

The throughput ( � ) of the iCoCoA is computed using the
Eq. (10). It depends on the various parameters which are
described in the Sect. 3. The congestion and � are inversely
proportional to each other, it means decreasing the conges-
tion automatically improves the throughput. Figure 9, shows

the comparison of the percentage of the throughput during
the simulation runs and we plot up to 300 s.

Figure 9a shows the comparison of throughput in con-
tinuous scenario and Fig. 9b represents burst strategy.
From there, we observe that the throughput of the system
decreases gradually in both the scenarios. Initially, the
retransmissions of the iCoCoA are similar to the existing

50 100 150 200 250 300

80

85

90

95

100

Simulation time

P
a
ck
et

D
el
iv
er
y
R
a
ti
o
(%

)

CoAP

CoCoA

CoCoA+

EnCoCo-RED

iCoCoA

(a)

50 100 150 200 250 300

80

85

90

95

100

Simulation time

P
a
ck
et

D
el
iv
er
y
R
a
ti
o
(%

)

CoAP

CoCoA

CoCoA+

EnCoCo-RED

iCoCoA

(b)

Fig. 7   Packet Delivery Ratio by varying the Simulation time a continuous b burst

0.5 1 1.5 2 2.5 3

·104

90

95

100

Payload size

P
ac
ke

t
D
el
iv
er
y
R
at
io

(%
)

CoAP

CoCoA

CoCoA+

EnCoCo-RED

iCoCoA

(a)

0.5 1 1.5 2 2.5 3

·104

80

85

90

95

100

Payload size

P
ac
ke

t
D
el
iv
er
y
R
at
io

(%
)

CoAP

CoCoA

CoCoA+

EnCoCo-RED

iCoCoA

(b)

Fig. 8   Packet Delivery Ratio by varying the Payload size a continuous b burst

2962	 P. K. Donta et al.

1 3

approaches because of the arbitrary decisions. Slowly,
the proposed approach increased its throughput because
of handling congestion based on the experiences. It also
avoids unnecessary frequent retransmissions to reduce
network traffic and channel overflows. Hence, the iCo-
CoA increases approximately 10–15%, 5–7%, 3–5%, ,
and 2–5% of the throughput when compared with CoAP,

CoCoA, CoCoA+, and EnCoCo-RED, respectively, for
both continuous and burst scenarios varying the simulation
time. The throughput of the proposed and existing CoAP,
CoCoA and CoCoA+ are presented in Fig. 10 by varying
the payload size. Even when the payload size increases the
iCoCoA is performing better than the other existing algo-
rithms. The improvement of the iCoCoA is 11–14% better

50 100 150 200 250 300

70

80

90

100

Simulation time

T
h
ro
u
g
h
p
u
t
(%

)

CoAP

CoCoA

CoCoA+

EnCoCo-RED

iCoCoA

(a)

50 100 150 200 250 300

70

80

90

100

Simulation time

T
h
ro
u
g
h
p
u
t
(%

)

CoAP

CoCoA

CoCoA+

EnCoCo-RED

iCoCoA

(b)

Fig. 9   Throughput vs. Simulation time a continuous b burst

0.5 1 1.5 2 2.5 3

·104

75

80

85

90

95

100

Payload size

T
h
ro
u
gh

p
u
t
(%

)

CoAP

CoCoA

CoCoA+

EnCoCo-RED

iCoCoA

(a)

0.5 1 1.5 2 2.5 3

·104

80

85

90

95

100

Payload size

T
h
ro
u
gh

p
u
t
(%

)

CoAP

CoCoA

CoCoA+

EnCoCo-RED

iCoCoA

(b)

Fig. 10   Throughput vs. Payload size a continuous b burst

2963iCoCoA: intelligent congestion control algorithm for CoAP using deep reinforcement learning﻿	

1 3

than CoAP, 4–7% than CoCoA, 2–5% than CoCoA+, and
2–4% than EnCoCo-RED.

5.5 � Fairness index of congestion

The fairness index of the congestion estimation ( F� ) deter-
mines the equal share of bottleneck of congestion among the
network. There are several methods to calculate fairness index
(HoBfeld et al. 2017), whereas we follow Donta et al. (2021)
to compute F� . The F� value ranges 0 ≤ F ≤ 1 , whereas the
higher value of the F� shows that the maximum fairness
and vice versa. The F� of the given network is computed as
follows:

where S� indicates the standard deviation (SD) of the
throughput during the total simulation time T, L� and H�
denote the minimum and maximum throughput during T.
The lower the SD, the higher the F� value and vice versa.
The Eq. (34) shows the calculation of the SD of the through-
put. The value of t is updated as t = t + k , where the value
of k is same as Eq. (20).

(33)F� = 1 −

(
2 × S�

H� − L�

)

(34)
S� =

������
T∑
t=1

�
�t − �

�2

T

The F� of the congestion for the CoAP, CoCoA, CoCoA+,
EnCoCo-RED and iCoCoA for the running example of
continuous scenario are 0.8464, 0.8663, 0.8781, 0.8816
and 0.9006, respectively. Whereas for the burst network the
F� is 0.8594, 0.8776, 0.8846, 0.8898 and 0.9009 for CoAP,
CoCoA, CoCoA, EnCoCo-RED and iCoCoA, respectively.
The proposed iCoCoA achieves the higher F� compared with
the existing strategies. The higher F� indicates the equal
share of the bottleneck in the congestion among the motes.
The iCoCoA achieves the best F� over existing methods due
to choosing efficient and dynamic RTOs by avoiding fre-
quent retransmissions. The proposed method decides these
RTOs based on the experience from the previous congestion
cases.

5.6 � Average energy consumption

The energy is one of the primary constraints for the IoT
devices, because it operate with a low powered battery and
continuous monitoring. In this work, we compute the EC of
a device using the Eq. (2) and the average energy consump-
tion (E) is determined as shown in Eq. (7). As we discussed
in Sect. 3, more energy is consumed for data transmissions.
The congestion decreases the E while increasing the number
of retransmissions.

The comparison results of the proposed and exist-
ing methods are presented in Figs. 11 and 12. From the
Fig. 11a, the E of the continuous scenario decreased
approximately 8%, 7%, 5%, and 2–5% when compared
with the CoAP, CoCoA, CoCoA+, and EnCoCo-RED,

0 50 100 150 200 250 300
0

10

20

30

40

50

Simulation time

A
v
er
a
g
e
E
n
er
g
y
C
o
n
su

m
p
ti
o
n
(m

J
) CoAP

CoCoA

CoCoA+

EnCoCo-RED

iCoCoA

(a)

0 50 100 150 200 250 300
0

20

40

60

Simulation time

A
v
er
a
g
e
E
n
er
g
y
C
o
n
su

m
p
ti
o
n
(m

J
) CoAP

CoCoA

CoCoA+

EnCoCo-RED

iCoCoA

(b)

Fig. 11   Average Energy Consumption vs. Simulation Time a continuous b burst

2964	 P. K. Donta et al.

1 3

respectively during the increasing of simulation time.
Similarly, Fig. 11a shows the growth in the burst scenario
approximately 9%, 7%, 4–6%, and 2–5% when compared
with the CoAP, CoCoA, CoCoA+, and EnCoCo-RED,
respectively. The average EC of the proposed and existing
methods by varying the payload size is tested and plotted
in Fig. 12 for both the scenarios. From Fig. 12a, we notice
that the energy consumption of the proposed work is less
compared to the CoAP, CoCoA, CoCoA+, and EnCoCo-
RED, approximately 15%, 11% and 9%, and 8%, respec-
tively. Similarly, in the burst scenario, the performance
improvement of the proposed iCoCoA is approximately
11% than CoAP, 8% than CoCoA, 7% than CoCoA+,
and 4–7% than EnCoCo-RED protocols. The EC of the
proposed method outperformed because of eliminating
the unnecessary frequent retransmission in the network
through RTO’s proper estimation. iCoCoA also considers
the packet drop scenario for heavy traffic when there is no
possibility of retransmission within the deadline.

5.7 � Fairness index of energy consumption

The fairness index of EC ( Fe ) determines the equal share
of bottleneck of EC among all the devices in the network.
The Fe computation is similar as shown in section 5.5. The
Fe of the given network’s EC is shown in Eq. (35), which
is similar when compared with Eq. (33) but varies in terms
of input data as shown below:

where Se indicates the SD of the average EC of the motes
computed using Eq. (36), Le = min{Se} and He = max{Se}
in the network.

We examine the Fe of the existing and proposed algo-
rithms in continuous and burst scenarios. The Fe of CoAP,
CoCoA, CoCoA+, EnCoCo-RED and iCoCoA for the con-
tinuous scenario is approximately 0.5309, 0.5521, 0.593,
0.6011, and 0.6209, respectively. The Fe of CoAP, CoCoA,
CoCoA+, EnCoCo-RED and iCoCoA for the burst scenario
is approximately 0.4389, 0.4379, 0.4433, 0.4612 and 0.5426,
respectively. The Fe of the iCoCoA is always higher when
compared with the existing approaches. The higher Fe indi-
cates the equal share of the bottleneck for the motes EC
in the network. The proposed iCoCoA achieves the best Fe
over existing methods due to avoiding unnecessary packet
retransmissions.

5.8 � Discussion

While, the proposed iCoCoA predicts and controls the con-
gestion efficiently, some of the pitfalls are still possible in

(35)Fe = 1 −

(
2 × Se

He − Le

)

(36)Se =
1

n

√√√√ n∑
i=1

(
Ei − E

)2

0.5 1 1.5 2 2.5 3

·104

0

5

10

15

20

Payload size

A
ve

ra
ge

E
n
er
gy

C
on

su
m
p
ti
on

(m
J)

CoAP

CoCoA

CoCoA+

EnCoCo-RED

iCoCoA

(a)

0.5 1 1.5 2 2.5 3

·104

0

5

10

15

20

25

Payload size

A
ve

ra
ge

E
n
er
gy

C
on

su
m
p
ti
on

(m
J)

CoAP

CoCoA

CoCoA+

EnCoCo-RED

iCoCoA

(b)

Fig. 12   Average Energy Consumption by varying the payload size a continuous b burst

2965iCoCoA: intelligent congestion control algorithm for CoAP using deep reinforcement learning﻿	

1 3

iCoCoA. Here, we listed some of the limitations and possible
alternate solutions to overcome them. The agent is trained
after a few iterations of the network, so it is not possible to
avoid the congestion in the initial stages of the simulation.
However, it does not affect the system because the traffic is
not so high up to few iterations. Due to this, the possibility
of congestion occurrence is very low. If the unanticipated
congestion appears in the network, iCoCoA selects a random
action to generate RTO values for controlling it. Another
limitation is the memory requirements to store the experi-
ences in constrained IoT devices for training. This limitation
is overcome by limiting a set of few most recent experiences
instead of maintaining all the outcomes of the agent.

The time taken to train and provide the results by the
agent is overcome by limiting the amount of the training
dataset. Further, we can still reduce the computational load
by using frame-skipping method used in Mnih et al. (2015)
for Atari game. Furthermore, even the changes in the net-
work conditions are dynamic, but for some of the cases,
these changes are not effected on the network features. With
these features, the agent provides an action based on past
experiences (available in ERB) without further training.
The required computational resources for the agent also
depend on the number of CONV or Pooling layers used for
the agent. Deciding the number of layers in the agent for
achieving the best result is a challenging task. However, in
Lippmann (1987), the author proved that the two hidden
layers are sufficient for the efficient classification. So, the
proposed method also uses only two CONV layer to limit the
computational overhead. So, we invent an efficient conges-
tion prediction techniques within the protocol.

6 � Conclusion

IoT is connected with a large number of devices, and these
are exchanging their data continuously among them by
interacting with the environment. These data transmissions
slowly increase the traffic and lead to congestion in the net-
work. It causes unnecessary retransmissions, thus it degrades
the performance of the IoT such as throughput, PDR, energy
consumption, packet loss etc. CoAP is an application layer
protocol, which use to control the congestion in a static envi-
ronment, but it is not complete relief from the congestion.
In this article, we proposed an intelligent congestion control
algorithm named iCoCoA for CoAP using deep reinforce-
ment learning approach to predict and control the congestion
in the dynamic environments. This iCoCoA extracts the vari-
ous network features and produces RTO values dynamically
using DRL agent to avoid unnecessary frequent retransmis-
sions. It also confirms the possibility of retransmission of
a packet within certain amount of time or it will drop the
packet. The performance of the iCoCoA is substantiated

using Contiki v3.0 with cooja simulator in continuous and
burst environments, and it outperforms the existing CoAP,
CoCoA, and CoCoA+ algorithms. As a further work, area
of research in CoAP is to and avoid the congestion before
it occurs in the network so that it completely avoids the
retransmissions by choosing alternative decisions.

Acknowledgements  This work was supported by the Archimedes
Foundation under the Dora plus Grant 11-15/OO/11476 and SERB,
India, through grant CRG/2021/003888. We also thank financial sup-
port to UoH-IoE by MHRD, India (F11/9/2019-U3(A)).

Data availability statement  All data generated or analysed during this
study are generated randomly during the simulation. The details about
data generation is included in this article.

Declarations 

Conflict of interest  There are no potential conflicts of interest.

References

Agyemang JO, Kponyo JJ, Gadze JD, Nunoo-Mensah H, Yu D (2022)
Lightweight messaging protocol for internet of things devices.
Technologies 10(1):21

Aimtongkham P, Horkaew P, So-In C (2021) An enhanced CoAP
scheme using fuzzy logic with adaptive timeout for IoT conges-
tion control. IEEE Access 9:58967–58981

Akpakwu GA, Hancke GP, Abu-Mahfouz AM (2020) CACC: context-
aware congestion control approach for lightweight CoAP/UDP-
based internet of things traffic. Trans Emerg Telecommun Technol
31(2):e3822

Betzler A, Gomez C, Demirkol I, Paradells J (2013) Congestion con-
trol in reliable CoAP communication. In: Proceedings of the 16th
ACM International Conference on Modeling, analysis & simula-
tion of wireless and mobile systems. ACM, pp 365–372

Betzler A, Gomez C, Demirkol I, Paradells J (2015) CoCoA+: an
advanced congestion control mechanism for CoAP. Ad Hoc Netw
33:126–139

Betzler A, Gomez C, Demirkol I, Paradells J (2016a) CoAP con-
gestion control for the Internet of Things. IEEE Commun Mag
54(7):154–160

Betzler A, Isern J, Gomez C, Demirkol I, Paradells J (2016b) Experi-
mental evaluation of congestion control for CoAP communica-
tions without end-to-end reliability. Ad Hoc Nets 52:183–194

Bolettieri S, Tanganelli G, Vallati C, Mingozzi E (2018) pCoCoA: a
precise congestion control algorithm for CoAP. Ad Hoc Netw
80:116–129

Bormann C, Castellani AP, Shelby Z (2012) CoAP: an application
protocol for billions of tiny internet nodes. IEEE Internet Comput
2:62–67

Demir AK, Abut F (2020) mlCoCoA: a machine learning-based
congestion control for CoAP. Turk J Electr Eng Comput sci
28(5):1–20

Donta PK, Amgoth T, Annavarapu CSR (2020) Congestion-aware data
acquisition with q-learning for wireless sensor networks. In: 2020
IEEE International IOT, Electronics and Mechatronics Conference
(IEMTRONICS). IEEE, pp 1–6

Donta PK, Amgoth T, Annavarapu CSR (2021) An extended aco-based
mobile sink path determination in wireless sensor networks. J
Ambient Intell Humaniz Comput 12(10):8991–9006

2966	 P. K. Donta et al.

1 3

Donta PK, Srirama SN, Amgoth T, Annavarapu CSR (2022) Survey
on recent advances in iot application layer protocols and machine
learning scope for research directions. Digit Commun Netw
8(5):727–744

HoBfeld T, Skorin-Kapov L, Heegaard PE, Varela M (2017) Defi-
nition of QoE fairness in shared systems. IEEE Commun Lett
21(1):184–187

Jamshed MA, Ali K, Abbasi QH, Imran MA, Ur-Rehman M (2022)
Challenges, applications and future of wireless sensors in internet
of things: a review. IEEE Sens J 22(6):5482–5494

Jay N, Rotman N, Godfrey B, Schapira M, Tamar A (2019) A deep
reinforcement learning perspective on internet congestion control.
In: International Conference on machine learning, pp 3050–3059

Kaur N, Sood SK (2017) An energy-efficient architecture for the inter-
net of things. IEEE Syst J 11(2):796–805

Kim M, Lee S, Khan MTR, Seo J, Bae Y, Jeong Y, Kim D (2019) A
new CoAP congestion control scheme using message loss feed-
back for IoUT. In: Proceedings of the 34th ACM/SIGAPP Sym-
posium on applied computing. SAC ’19. ACM, pp 2385–2390

Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classifica-
tion with deep convolutional neural networks. Commun ACM
60(6):84–90

Lippmann R (1987) An introduction to computing with neural nets.
IEEE ASSP Mag 4(2):4–22

Mahajan N, Chauhan A, Kumar H, Kaushal S, Sangaiah AK (2022) A
deep learning approach to detection and mitigation of distributed
denial of service attacks in high availability intelligent transport
systems. Mob Netw Appl 20:1–21

Martinez B, Monton M, Vilajosana I, Prades JD (2015) The power of
models: Modeling power consumption for IoT devices. IEEE Sens
J 15(10):5777–5789

Mišić J, Ali MZ, Mišić VB (2018) Architecture for IoT domain with
CoAP observe feature. IEEE Internet Things J 5(2):1196–1205

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG,
Graves A, Riedmiller M, Fidjeland AK, Ostrovski G et al (2015)
Human-level control through deep reinforcement learning. Nature
518(7540):529

Nie X, Zhao Y, Li Z, Chen G, Sui K, Zhang J, Ye Z, Pei D (2019)
Dynamic TCP initial windows and congestion control schemes
through reinforcement learning. IEEE J Sel Areas Commun
37(6):1231–1247

Praveen Kumar D, Tarachand A, Rao ACS (2019) Machine learning
algorithms for wireless sensor networks: a survey. Inf Fusion
49:1–25

Rathod V, Jeppu N, Sastry S, Singala S, Tahiliani MP (2019)
CoCoA++: delay gradient based congestion control for Internet
of Things. Future Gener Comput Syst 100:1053–1072

Salkuti SR (2018) Congestion management using optimal transmission
switching. IEEE Syst J 12(4):3555–3564

Sandell M, Raza U (2019) Application layer coding for IoT: ben-
efits, limitations, and implementation aspects. IEEE Syst J
13(1):554–561

Sangaiah AK, Ramamoorthi JS, Rodrigues JJ, Rahman MA, Muham-
mad G, Alrashoud M (2020) LACCVoV: linear adaptive con-
gestion control with optimization of data dissemination model
in vehicle-to-vehicle communication. IEEE Trans Intell Transp
Syst 22(8):5319–5328

Sargent M, Allman M, Paxson V (2011) Computing TCP’s retransmis-
sion timer. Computing

Sun X, Ansari N (2018) Traffic load balancing among brokers at the IoT
application layer. IEEE Trans Netw Serv Manag 15(1):489–502

Sutton RS, Barto AG (2018) Reinforcement learning: an introduction.
MIT Press

Suwannapong C, Khunboa C (2019) Congestion control in CoAP
observe group communication. Sensors 19(15):3433

Suwannapong C, Khunboa C (2021) EnCoCo-RED: enhanced conges-
tion control mechanism for CoAP observe group communication.
Ad Hoc Netw 112:102377

Uroz D, Rodríguez RJ (2022) Characterization and evaluation of
IoT protocols for data exfiltration. IEEE Internet of Things J
9(19):19062–19072

Xiao K, Mao S, Tugnait JK (2019) TCP-Drinc: smart congestion
control based on deep reinforcement learning. IEEE Access
7:11892–11904

Yadav RK, Singh N, Piyush P (2020) Genetic CoCoA++: genetic
algorithm based congestion control in CoAP. In: 2020 4th Inter-
national Conference on intelligent computing and control systems
(ICICCS). IEEE, pp 808–813

Zhang S, You X, Zhang P, Huang M, Li S (2022) A UCB-based
dynamic CoAP mode selection algorithm in distribution IoT. Alex
Eng J 61(1):719–727

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

	iCoCoA: intelligent congestion control algorithm for CoAP using deep reinforcement learning
	Abstract
	1 Introduction
	2 Related work
	3 Problem formulation
	4 Proposed iCoCoA protocol
	4.1 Deep reinforcement learning
	4.2 Experience replay buffer (ERB)
	4.3 Design of agent
	4.4 Training and running

	5 Experimental results
	5.1 Average number of retransmissions
	5.2 Carried load per node
	5.3 Packet delivery ratio (PDR)
	5.4 Throughput
	5.5 Fairness index of congestion
	5.6 Average energy consumption
	5.7 Fairness index of energy consumption
	5.8 Discussion

	6 Conclusion
	Acknowledgements
	References

