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Abstract
Distributed generation (DG) integration with distribution networks has technical and economic implications. Solution for 
optimal DG accommodation problem catering only to technical objectives may not be economically feasible. On the other 
hand, satisfactory enhancement in technical performance of distribution networks may not be attained while economic aspects 
only are considered. This paper tackles this conflict by framing a multiobjective problem embedding technical and economic 
objectives. Multiobjective grey wolf optimizer (MOGWO) and multiobjective grasshopper optimizer algorithm (MOGOA) 
are used for solving the multiobjective optimization problem. A posteriori multiobjective optimization approach is adopted, 
and the technique for order of preference by similarity to ideal solution (TOPSIS) is used to find the best feasible solution 
from non-dominated Pareto optimal solutions. The approach is tested on 33-bus, and 69-bus systems and multiple optimal 
solutions are presented as per the decision-makers preference for the objectives. The maximum reduction in power loss on 
the 33-bus system is noted to be 63.51%, whereas on 69-bus system, it is observed as 68.65%.

Keywords  Distributed generation · Optimal DG accommodation · A posteriori multiobjective optimization · Pareto 
optimality · TOPSIS

1  Introduction

Distributed Generation (DG) systems are small-to-medium 
size (a few kilowatts to 50 MW) electricity generating units 
installed near the load centres (Prakash and Khatod 2016). 
The increased interest in integrating DGs across the distri-
bution network is due to fossil fuel depletion, environmen-
tal concerns, promising DG technologies, cost reduction in 
transmission, reduced risk on investment and less installa-
tion time (Yammani et al. 2016; Dos Santos et al. 2022). 
Although the primary purpose of DG installation is power 
injection, its accommodation in the distribution network 
yields multiple benefits like reduced network power loss, 
enhanced voltage profile and stability, increased loadabil-
ity, and decreased operational and investment costs (Yang 

et al. 2021). Notwithstanding the benefits, non-optimal DG 
accommodation attracts counterproductive results (Meena 
et al. 2017; Jha et al. 2020). Hence it is imperative to opti-
mally locate and size the DG units in the distribution system.

DG accommodation problem is a complex multiobjective 
optimization problem involving multiple contravening objec-
tives. It is customary to solve this problem by considering 
various technical objectives like reduction of network power 
loss (Singh et al. 2009; Hung and Mithulananthan 2013; 
Moradi et al. 2014; Gampa and Das 2015; Meena et al. 2018; 
Kashyap et al. 2022), minimization of node voltage devia-
tion (Singh et al. 2009, 2020; Gampa and Das 2015; Leghari 
et al. 2021) and enhancement of voltage stability (Murty 
and Kumar 2015; Meena et al. 2018; Balu and Mukherjee 
2020). Some studies (Shaaban et al. 2013; Gampa and Das 
2015; Dixit et al. 2017; Tanwar and Khatod 2017; Arulraj 
and Kumarappan 2019; Kumar et al. 2020) also considered 
economic objectives for solving the DG accommodation 
problem. It is worth noting that DG optimal accommodation 
aiming only to improve the technical objectives may attract 
dearer DG investment costs. On the flip side, catering for the 
economic objectives alone may hamper the demanding tech-
nical performance parameters of the distribution network. 
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Few researchers have addressed this issue by including both 
technical and economic objectives in the objective func-
tion for solving the DG accommodation problem. A cost 
factor index (Gampa and Das 2015) is taken as one of the 
minimization objectives to contain the DG investment cost. 
In (Dixit et al. 2017), the DG accommodation problem is 
addressed by considering DG investment cost and operation 
& maintenance costs. A cost index is framed in (Tanwar and 
Khatod 2017; Kumar et al. 2020), and a minimization index 
is developed to meet technical objectives. Recently in (Has-
san et al. 2022) the installation cost of DG is considered as 
one of the objective for DG accommodation.

The studies addressing the economic objectives either 
consider the economic objectives alone (Shaaban et al. 2013; 
Dixit et al. 2017; Arulraj and Kumarappan 2019) or club 
them with some technical objectives (Gampa and Das 2015; 
Tanwar and Khatod 2017; Kumar et al. 2020; Hassan et al. 
2022) to result in a single objective optimization function 
by assigning preference weights using the weighted-sum 
approach. The best solution obtained through the weighted-
sum method depends on the selected preference weights. For 
a particular solution, these weights are fixed, and the solu-
tion may not be feasible if the decision-maker has a different 
preference. Further, inappropriate assignment of preference 
weights may result in a sub-optimal solution. Pareto optimal-
ity based multiobjective optimization enables simultaneous 
optimization of conflicting objectives (Nartu et al. 2019). 
This approach generates a set of solutions, and the deci-
sion-maker is free to select appropriate solution based on his 
preference. Hence, Pareto optimality based multiobjective 
optimization is a more promising approach to address the 
complex DG accommodation problem.

This study adopts a posteriori multiobjective optimiza-
tion approach, and the technical and economic objectives are 
simultaneously optimized using Pareto optimality concept. 
Previous works that used the idea of Pareto optimality for 
the DG accommodation problem relied upon single objec-
tive optimizers. In (Nagaballi and Kale 2020), the authors 
suggested the merit of improved raven roosting optimization 
(IRRO) algorithm for simultaneously optimizing multiple 
objectives. A butterfly optimizer (BO) is used in (Thunu-
guntla and Injeti 2020) for optimal allocation of DGs for 
maximization of loadability and minimization of active 
power loss of the system. A monarch butterfly optimization 
(MBO) is applied (Singh et al. 2020) to cater multiple objec-
tives for improving the distribution network performance. 
In (Ali et al. 2021), the authors highlighted the merit of 
an improved decomposition based evolutionary algorithm 
(I-DBEA) in solving the DG accommodation problem. The 
major drawback of using a single objective optimizer for 
generating the Pareto optimal solutions is the requirement 
of multiple runs to generate the Pareto optimal solutions.

To facilitate an effective a posteriori approach, the opti-
mization algorithm selected should be capable of generating 
the Pareto optimal solutions in a single run (Rao et al. 2021). 
This requirement demands the use of a multiobjective opti-
mizer which can handle multiple objectives simultaneously. 
Literature shows that the most popular multi-objective opti-
mizer is non-dominated sorting genetic algorithm II (NSGA 
– II) (Deb et al. 2002). Although it is regarded as one of the 
strongest metaheuristic methods for solving multi-objective 
problems (Jafari and Rezvani 2021), several studies (Dilip 
et al. 2018; Kebriyaii et al. 2021; Li et al. 2022) report that 
multiobjective grey wolf optimizer (MOGWO) (Mirjalili 
et al. 2016) performs better than NSGA– II. Further in (Mir-
jalili et al. 2018) it can be seen that multiobjective grass-
hopper optimizer algorithm (MOGOA) gave better results 
compared with NSGA – II for multiple test suites. Hence, in 
this paper, MOGWO and MOGOA algorithms are employed 
for solving the multiobjective problem.

Optimizing the multiobjective DG accommodation prob-
lem using MOGWO and MOGOA yields non-dominated 
Pareto optimal solutions. In a posteriori approach, after 
generating these solutions, the task is to determine the best 
feasible solution. To find the best feasible solution, a robust 
multicriteria decision making (MCDM) method (Amiri et al. 
2020), the technique for order of preference by similarity to 
ideal solution (TOPSIS) (Hwang et al. 1993), is employed. 
The fundamental idea of TOPSIS is rather straightforward. 
It originates from the concept of a displaced ideal point 
from which the best feasible solution has the shortest dis-
tance. It is a highly regarded, adopted and applied MCDM 
method due to its simplicity, ease of applicability and sound 
mathematical foundation (Chakraborty 2022). It has been 
extensively used in different fields such as energy (Yang 
and Deuse 2012), supply chain management (Tirkolaee 
et al. 2020, 2021), material selection (Chede et al. 2021) and 
manufacturing decision making (Parkan and Wu 1999). The 
best feasible solution selected through TOPSIS is subject to 
the preference given by the decision-maker for the objec-
tives. Hence, multiple scenarios are created based on the 
decision-makers predisposition to the objectives of the study 
and the corresponding best feasible solutions are presented. 
The critical contributions of the paper are:

(1)	 The traditional DG accommodation problem is 
extended by simultaneously optimizing conflicting 
technical and economic objectives using a posteriori 
approach.

(2)	 The technical objectives include minimising reactive 
power loss, real power loss, voltage deviation and 
maximization of voltage stability index. The economic 
objectives include DG investment cost and DG opera-
tion and maintenance cost.
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(3)	 Maiden application of MOGWO and MOGOA to solve 
the multiobjective DG accommodation problem con-
sidering technical and economic objectives.

(4)	 MCDM, through the TOPSIS approach, is employed 
for tracing the best feasible solution from the Pareto 
optimal solutions. Multiple solutions are presented 
based on the preference given to the objectives by the 
decision maker.

The remainder of the paper is organised as follows: The 
problem formulation is discussed in Sect. 2. The concept of a 
posteriori multiobjective optimization, Pareto optimality and 
TOPSIS are elaborated in Sect. 3. The multiobjective optimi-
zation algorithms are discussed in Sect. 4. The results and dis-
cussion are presented in Sect. 5. The conclusion is presented 
in Sect. 6.

2 � Problem formulation

In this section, the technical and economic objectives that con-
stitute the multiobjective optimization problem are formulated.

2.1 � Technical objective function formulation

2.1.1 � Minimization of real power loss and reactive power 
loss

In traditional centralized power systems, distribution networks 
contribute to substantial power loss. Optimal accommodation 
of DGs contributes significantly to the reduction of real power 
loss ( PT ,loss) and reactive power loss ( QT ,loss) . The PT ,loss and 
QT ,loss of the whole network considered as minimization objec-
tives can be expressed as given in Eqs. 1 and 3 (Balu and 
Mukherjee 2021). For a distribution network with nb branches, 
the expressions for branch real power loss (Pij,loss ) and reactive 
power loss ( Qij,loss) of the branch connecting buses i and j are 
shown in equations 2 and 4.

(1)PT ,loss =

nb∑

i=1

Pij,loss

(2)Pij,loss = Rij ×

(
P2

i
+ Q2

i

|Vi|2

)

(3)QT ,loss =

nb∑

i=1

Qij,loss

(4)Qij,loss = Xij ×

(
P2

i
+ Q2

i

|Vi|2

)

where Pi and Qi are real and reactive power flows from bus 
i, respectively, Rij and Xij are the resistance and reactance 
of branch connecting buses i and j, respectively, Vi is the 
voltage at bus i.

2.1.2 � Minimization of voltage deviation

The voltage deviation of the nodes of the network is an indica-
tor of the voltage quality of the distribution network. Therefore 
the utilities are concerned with maintaining the node voltage 
within permissible limits. The node voltage deviation of the i th 
bus in a n bus network is the difference between the reference 
voltage ( Vref  ) and the i th bus voltage ( Vi ). Total node voltage 
deviation ( TVD ) of the distribution network can be expressed 
as (Nagaballi and Kale 2020):

2.1.3 � Maximization of the voltage stability index

A stability index ( SI) is suggested in (Murty and Kumar 2015) 
to ascertain the probability of voltage collapse at a particular 
node. The node with the lowest value of SI is most vulnerable 
for voltage collapse. The SI of the node j in a n bus network 
is given in Eq. 6 and a maximization objective, total voltage 
stability index ( TVSI) for the network is framed as shown in 
Eq. 7.

2.1.4 � Technical objective function

The technical objectives, viz. Ploss , Qloss , TVD and TVSI are 
combined using weight factors to form a technical objective 
function ( TOF), as shown in Eq. 8, giving equal priority to all 
the objectives. �i being the weight factor of ith objective, the 
minimization objective TOF is treated as one of the two objec-
tives of the multiobjective optimization problem.

where 
∑4

i=1
�i = 1.0 and �i ∈ [0, 1]

(5)TVD =

n∑

i=1

(|Vref − Vi|2)

(6)SIj = |Vi|4 − 4
[
PiXij − QiRij

]2
− 4

[
PiRij + QiXij

]
|Vi|2

(7)TVSI =

n∑

j=1

SIj

(8)
TOF =

(
�1 ∗ PT ,loss

)
+
(
�2 ∗ QT ,loss

)
+
(
�3 ∗ TVD

)
+
(
�4 ∗

1

TVSI

)
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2.1.5 � Constraints

The below-listed constraints (9) – (11) are related to the 
node voltage limits, real power balance and sizing limits of 
DG (Bagheri et al. 2020), respectively. Where Vmin and Vmax 
represent the minimum and maximum permissible node volt-
ages.Vj is the volatge of bus j . Ps is the real power supplied by 
the source station. PDGT is the total real power supplied by the 
DGs. PD is the real power demand on the network. Pi

DG
 is the 

rating of i th DG. Pi
DG,min

 and Pi
DG,max

 are the minimum and 
maximum size limits of i th DG. ng is the number of optimally 
allocated DGs in the network.

The following constraints are imposed on the TOF pre-
sented in Eq. 8

2.2 � Economic objective function formulation

The second objective for multiobjective optimization is DG 
cost minimization. For this purpose, an economic objective 
function ( EOF) is formulated. The total installation cost of 
DG is a function of the type, size and number of DG units 
to be installed in the distribution system. The EOF framed 
(Nagaballi and Kale 2020) involves the DG investment cost 
( DGcost,inv ) and the DG maintenance and operation cost 
( DGcost,m&o ). DGi

rated
 being the rated capacity (MW) of 

optimally allocated DG at ith bus and ng being the number 
of optimally allocated DGs in the network, the DGcost,inv and 
DGcost,m&o expressions for a palnning period of nyr in years are 
shown in the below equations.

where Cinvi
 denotes the ith bus DG investment cost ( $∕ MW), 

Pi
DG

 represents the DG generated active power (MW) at ith 
bus, Cm&o is the operation and maintenance cost ( $∕ MW), 
T denotes the number of hours in one year (8760 h), Infr 
denotes the inflation rate, and Intr indicates the interest rate. 
The EOF is mathematically expressed as shown below:

(9)|Vmin| ≤
|||Vj

||| ≤ |Vmax|

(10)Ps + PDGT = PD + PT ,loss

(11)Pi
DG,min

≤ Pi
DG

≤ Pi
DG,max

i = 1, 2… ng

(12)DGcost,inv =

ng∑

i=1

(DGi
rated

× Cinvi
)

(13)

DGcost,m&o =

ng∑

i=1

(Pi
DG

× Cm&o × T) ×

nyr∑

k=1

(
1 + Infr

1 + Intr

)k

(14)EOF = DGcost,inv + DGcost,m&o

3 � Multiobjective optimization

The concept of multiobjective optimization facilitates the 
optimization of multiple conflicting objectives simultane-
ously. A generalised formulation of n-dimensional multi-
objective problem is given as per the following equations:

where x is the m-dimesnional control variable vector, gi(x) 
and hi(x) denote the equality and inequality constraints, 
respectively. Ubi and Lbi represent the upper and lower 
bounds of the control variable.

3.1 � Pareto optimal method

Pareto optimality is a keystone concept in multiobjective 
optimization. The goodness of a solution in a multiobjective 
optimization problem is determined by Pareto dominance. 
Mathematically for a minimization problem, Pareto domi-
nance, often termed as Pareto optimality, is formulated as,

such that c ∈ C , where k ≥ 2 and C denotes the set of all 
acceptable solutions. A solution c1 is said to dominate solu-
tion c2 if and only if the following conditions are fulfilled.

(1)	 yi
(
c1
)
≤ yi

(
c2
)
 in all dimensions i ∈ {1, 2,… , k} and

(2)	 yj
(
c1
)
< yi

(
c2
)
 for at least in one dimension 

j ∈ {1, 2,… , k}

Solution c1 doesn't dominate c1 if any one of the afore-
mentioned conditions is violated.

3.2 � A posteriori approach of multiobjective 
optimization

Multiobjective optimization problems are handled in two 
approaches (Mirjalili et al. 2018): a priori and a posteriori. In 
the a priori approach multiobjective problem is converted into 
a single objective problem by employing preference weights 
before the optimization process. The decision-maker decides 

(15)Minimize ∶ F
(
�⃗x
)
= {f1

(
�⃗x
)
, f2

(
�⃗x
)
,… .., fn

(
�⃗x
)
}

Subject to ∶

(16)gi
(
�⃗x
)
≥ 0, i = 1, 2,… ., p

(17)hi
(
�⃗x
)
≥ 0, i = 1, 2,… ., q

(18)Lbi ≤
(
xi
)
≤ Ubi, i = 1, 2,… .,m

(19)Minimize
[
y1(c), y2(c),… .yk(c)

]
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the preference weight values based on the preference given to 
each objective. Inappropriate selection of preference weights 
by the decision-maker may result in a sub-optimal solution. 
Further, the summation of objectives results in circumventing 
the solutions lying in the concave region of the Pareto front; 
consequently, the obtained solution may not be the best opti-
mal solution for the weights chosen.

In a posteriori approach, the multiobjective formulation is 
preserved, and all the objectives are optimized simultaneously. 
The decision making is involved after the optimization pro-
cess. This approach demands a multiobjective optimization 
algorithm, and the Pareto optimal solution set can be obtained 
in one run. Because of the apparent shortcomings of the a 
priori approach, a posteriori approach is adopted to solve the 
multiobjective optimization problem. From the Pareto optimal 
set, the decision-maker is free to select the best feasible solu-
tion based on his preference for the objectives.

3.3 � TOPSIS for ranking of solutions

In this study, the best feasible solution from the Pareto optimal 
solutions is found using the TOPSIS approach. TOPSIS is a 
popular MCDM technique based on the premise that the best 
solution is the solution that is closest to the ideal positive solu-
tion and farthest to the ideal negative solution. TOPSIS allows 
ranking the alternatives based on an index that suggests the 
distance of each alternative from the ideal solution. TOPSIS 
involves the following steps (Mathew et al. 2020):

Step I: Construct a decision matrix X = ( xai) of order n × m , 
comprising Pareto optimal solutions, where a = 1, 2,….,n rep-
resents different alternatives and i = 1,2,…,m represent the 
criteria.

Step II: Normalize each element of the decision matrix 
using the below equation to result in a normalized decision 
matrix.

Step III: Convert the normalized decision matrix into a 
weighted matrix, the weighted decision scores uai can be cal-
culated as.

where �i is the weight of ith criterion and 
∑m

i
�i = 1

Step IV: Determine the ideal positive point U+
a
 and ideal 

negative point U−
a
 for each criterion where,

(20)
rai =

xai�∑n

a=1
x2
ai

, a = 1, 2, ....., n and i = 1, 2, .....,m

(21)uai = �i × rai, a = 1, 2, ....., n and i = 1, 2, .....,m

(22)U+
a
=

{
max

(
uai

)
∀a, for the benfit criterion

min
(
uai

)
∀a, for the cost criterion

Step V: For each criterion, find the Euclidean distances d+
a
 

and d−
a
 from U+

a
 and U−

a
 each alternative by using

Step VI: For ranking the alternatives, compute the closeness 
ratio of each alternative as mentioned below:

The alternatives representing the Pareto optimal solutions 
are ranked according to their closeness ratio. The best feasi-
ble solution is the one that has the highest value of closeness 
ratio. The rank of the solution may change if �i i.e. the weight 
assigned to the criterion in step III is changed.

4 � Multiobjective optimization algorithms

In this section, the MOGOA and MOGWO techniques used for 
solving the conflicting objectives TOF and EOF are described. 
The time complexity of both MOGOA and MOGWO algo-
rithms is O(MN2) where M is the number of objectives and N 
is the number of individuals in the population.

4.1 � MOGWO

The Grey wolf optimizer (GWO) algorithm was proposed by 
Mirjalili et al. (Mirjalili et al. 2014). This algorithm emulates 
the hunting strategy and pack leadership of the grey wolves. 
A typical grey wolf pack comprises of four hierarchical levels, 
namely alpha (α), beta (β), delta (δ), and omega (ω), as shown 
in Fig. 3. The α wolves are the most dominant ones, and ω 
wolves are the least dominant ones. The hunting strategy of 
these wolves comprises searching, encircling, harassing and 
attacking the prey. The encircling behaviour is mathematically 
represented as:

(23)U−
a
=

{
min

(
uai

)
∀a, for the benfit criterion

max
(
uai

)
∀a, for the cost criterion

(24)d+
a
=

√√√√
m∑

a=1

(
uai − U+

a

)2

(25)d−
a
=

√√√√
m∑

a=1

(
uai − U−

a

)2

(26)Ca =
d−
a

d+
a
+ d−

a

(27)��⃗D =
|||
��⃗C ⋅

����⃗Xp(t) − ⃗X(t)
|||

(28)⃗X(t + 1) = ����⃗Xp(t) − ⃗A ⋅
⃗D
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Here �⃗X(t) and ����⃗Xp(t) denote the position vectors of grey 
wolf and prey respectively for the tth iteration. �⃗A and ��⃗C 
are the coefficient vectors which are evaluated from equa-
tions given below

The elements of the vector �⃗a are decreased linearly from 
2 to 0 as the iterations progress, and r1, r2 represent random 
vectors in [0, 1]. It is observed that the coefficient vectors �⃗A 
and ��⃗C have the capacity to control exploration and exploita-
tion. |A|> 1 diverges the grey wolves from the location of the 
prey, thereby assisting exploration. The coefficient vector ��⃗C 
also assists exploration, it takes random values in [0,2]. The 
random values of ��⃗C either emphasize (C > 1) or deemphasize 
(C < 1) the effect of prey in determining the distance.

The pack hierarchy of grey wolves is modelled by con-
sidering the best solution as α. Consequently, the next best 
solution as β and the third best solution as δ. All the other 
solutions are treated as ω wolves. The best three solutions 
attained so far are preserved, and the other search agents are 
forced to modify their positions as per the positions of α, β, 
and δ using the following formulas.

In the multiobjective version of GWO, two new compo-
nents are integrated. The first component is an archive, a 
repository to store the Pareto optimal solutions. The second 
component is a leader identification mechanism that ena-
bles to identify α, β and δ solutions from the archive. The 
leader identification mechanism uses a probability as given 

(29)⃗A = 2a⃗ ⋅ ��⃗r1 − a⃗

(30)⃗C = 2 ⋅ ��⃗r2

(31)����⃗D
𝛼
=
|||
���⃗C1 ⋅

���⃗X
𝛼
− ⃗X

|||

(32)����⃗D
𝛽
=
|||
���⃗C2 ⋅

���⃗X
𝛽
− ⃗X

|||

(33)����⃗D
𝛿
=
|||
���⃗C3 ⋅

���⃗X
𝛿
− ⃗X

|||

(34)���⃗X1 = ���⃗X
𝛼
− ���⃗A1 ⋅

(
����⃗D
𝛼

)

(35)���⃗X2 = ���⃗X
𝛽
− ���⃗A2 ⋅

(
����⃗D
𝛽

)

(36)���⃗X3 = ���⃗X
𝛿
− ���⃗A3 ⋅

(
����⃗D

𝛿

)

(37)�⃗X(t + 1) =
���⃗X1 + ���⃗X2 + ���⃗X3

3

in Eq. 38, favouring selection from least crowded search 
spaces and a roulette wheel mechanism to identify the best 
solutions. K being a constant number whose value is greater 
than one and ni being the number of Pareto optimal solutions 
in ith segment, the probability is given as:

4.2 � MOGOA

The grasshopper optimization (GOA) is a swarm intelli-
gence-bases nature inspired algorithm imitating the swarm-
ing tendency of grasshoppers (Saremi et al. 2017). Within 
the swarm, the position of the grasshoppers indicates a 
potential solution for the given problem to be optimized. 
The position model of the pth grasshopper is as follows:

Here Xp indicates the position of pth grasshopper, Sp 
denotes the social component, Gp denotes the gravity com-
ponent, and the component Wp indicates the advection due 
to wind. To simulate the random nature of grasshoppers �1 , 
�2 and �3 are introduced, where �1 , �2 and �3 are random 
numbers in [0,1]. Z being the number of grasshoppers, the 
social component is formulated as:

where dpq which denotes the distance between pth and qth 
grasshoppers, function s indicates the firmness of social 
interaction, f  and l denote the attraction strength and length 
of the attractive scale, respectively. The components G and 
W  are calculated as:

where êg and g represent the unit vector towards the centre 
of the earth and gravitational constant. The êw and u are the 
unit vector in the direction of the wind and drift constant, 

(38)�i =
K
/
ni

(39)Xp = �1Sp + �2Gp + �3Wp

(40)Sp =

Z∑

q=1,q≠p

s(dpq)̂dpq

(41)dpq = |xq − xp|

(42)̂dpq =
xq − xp

dpq

(43)s(r) = fe
−r

l − e−r

(44)Gp = −gêg

(45)Wp = uêw
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respectively. Finally, the grasshopper position for kth dimen-
sion can be updated by the following expression.

where Ubn and Lbn represent the upper and lower bounds of 
kth dimension, T̂d represents the best solution found so far. 
The term c reins the grasshopper agents to favour exploita-
tion as the number of iterations increases.

In the MOGOA (Mirjalili et al. 2018), the concept of 
Pareto dominance is employed, and the resulting Pareto opti-
mal solutions are accumulated in an archive. A target solu-
tion selected from the archive should take into consideration 
the diversity of the solutions in the archive. For this purpose, 
a metric corresponding to the number of adjacent solutions 
in the vicinity of each archived solution is calculated. Based 
on this, the probability of a solution becoming the potential 
target is found. If ni is the number of solutions in the neigh-
bourhood of ith solution, the probability is expressed as:

5 � Results and discussion

The multiobjective DG accommodation problem by simulta-
neously optimizing TOF and EOF is solved using MOGWO 
and MOGOA. The proposed approach is tested on 33 bus 
test system and 69 bus test system. Two case studies are con-
ducted pertaining to the test systems. The criterion weights 
( �1 for TOF and �2 for EOF ) given to each objective at the 
TOPSIS stage III are varied based on the preference given 
to objectives, and the best feasible solution in each scenario 
is presented. This approach provides multiple solutions, and 
the utilities can select an appropriate solution based on their 
preference for the objectives. The flowchart of the proposed 
multiobjective procedure with TOPSIS is depicted in Fig. 1. 
The considered scenarios in each case are:

Scenario 1: Relatively higher weightage to EOF ( �1 = 0.2 
and �2 = 0.8).

Scenario 2: Equal weightage to TOF and EOF ( �1 = 0.5 
and �2 = 0.5).

(46)Xk
p
= c

(
Z∑

q=1,q≠p

c
Ubk − Lbk

2
s(|xk

q
− xk

p
|)
xq − xp

dpq

)
+ T̂d

(47)c = cmax − It
cmax − cmin

Itmax

(48)�i =
1
/
ni

Scenario 3: Relatively higher weightage to TOF ( �1 = 0.8 
and �2 = 0.2).

5.1 � Case studies

The 33 bus distribution network (case 1) caters for a total 
load of 3.7  MW and 2.3 MVAR (Hamouda and Zehar 
2006). The 69 bus network (case 2) caters for a total load 
of 3.80 MW and 2.69 MVAR. The PT ,loss and QT ,loss of the 
network estimated by performing power flow analysis are 
211 kW and 143.04 kVAR  for case 1 and 224.92 kW and 
102.19 kVAR for case 2 respectively. The resulting Pareto 
optimal fronts for the 33 bus test system are depicted in 
Fig. 2. The results obtained for different scenarios of case 
1 are presented in Table 1. The TOF and EOF obtained 
through MOGWO for the best feasible solution are 0.6073 
and 2.5508, 0.5488 and 3.2248, 0.4568 and 5.0789 for sce-
nario 1, scenario 2 and scenario 3 respectively. In the case of 
MOGOA, the TOF and EOF for the best feasible solution are 
0.5804 and 2.7508, 0.5416 and 3.2736, 0.4662 and 4.7864 
for scenario 1, scenario 2 and scenario 3 respectively. After 
the optimal DG accommodation, it was observed that the 
PT ,loss and QT ,loss reduced considerably. Further, an enhance-
ment in the voltage profile and voltage stability of the net-
work can be observed through the improvement of TVD and 
TVSI values after optimal DG accommodation. The voltage 
profiles for case 1 are shown in Fig. 3. The resulting Pareto 
fronts for case 2 are depicted in Fig. 4. The results obtained 
for different scenarios of case 2 are presented in Table 2. The 
voltage profiles for case 2 are shown in Fig. 5. Table 3 shows 
the comparative analysis with multiobjective particle swarm 
optimization (MOPSO) technique and NSGA – II giving 
equal weights to the objectives. Comparing the results, it 
can be inferred that the best values of TOF and EOF are 
provided by MOGOA and MOGWO respectively for case 1 
and MOGWO and MOGOA respectively for case 2.    

5.2 � Discussion

From the results obtained in the aforementioned case stud-
ies, it can be inferred that optimal DG accommodation can 
enhance the performance of the distribution network by 
minimizing the losses and improving the voltage profile 
Fig. 4. The probability of voltage collapse also shrinks after 
accommodating DGs. It can also be observed that the best 
feasible solutions obtained from the algorithms MOGWO 
and MOGOA are different. In case 1, the minimum value of 
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TOF obtained is 0.4568 p.u. in scenario 3 by MOGWO, and 
the minimum value of EOF obtained is 2.5508 million $ in 
scenario 1 by MOGWO. In case 2, the minimum value of 
TOF obtained is 0.427 p.u. in scenario 3 by MOGWO, and 
the minimum value of EOF obtained is 2.5508 million $ in 
scenario 1 by MOGOA Fig. 5.

In case 2 scenario 1, the MOGOA algorithm outper-
formed the MOGWO in both objectives simultaneously. 
Except for case 2 scenario 1, neither of the algorithms 
topped in both objectives simultaneously. This kind of out-
come may be attributed to the conflicting nature of the objec-
tives (Kahourzade et al. 2015). Hence, the superiority of any 

Fig. 1   Flow chart of proposed 
multiobjective approach with 
TOPSIS
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Fig. 2   Pareto optimal fronts 
under various scenarios for 33 
bus system
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Table 1   Results of 33 bus test 
system under different scenarios

Parameters Base Case �
1
= 0.2 and �

2
= 0.8 �

1
= 0.5 and �

2
= 0.5 �

1
= 0.8 and �

2
= 0.2

MOGWO MOGOA MOGWO MOGOA MOGWO MOGOA

Best feasible solution no – 59 6 24 62 87 10
TOF(p.u.) – 0.6073 0.5804 0.5488 0.5416 0.4568 0.4662
EOF(Million $) – 2.5508 2.7508 3.2248 3.2736 5.0789 4.7864
Optimal DG nodes – 10

17
13

14
32
17

17
32
11

17
32
14

10
31
16

11
31
17

Optimal DG sizes (MW) – 0.2
0.2
0.2

0.267
0.207
0.2

0.2
0.385
0.268

0.298
0.370
0.202

0.505
0.675
0.368

0.444
0.667
0.327

DG penetration (%) 0 16.21 18.21 23.05 23.51 41.83 38.86
PT ,loss(kW) 211 145.83 135.669 123.194 121.192 90.804 93.921
 PT ,loss reduction (%) 30.88 35.7 41.61 42.56 56.96 55.48
QT ,loss(kVAR) 143.02 96.78 89.868 81.7 80.337 60.442 62.491
QT ,loss reduction (%) 32.33 37.16 42.87 43.82 57.73 56.3
TVD(p.u.) 0.134 0.0773 0.0739 0.0687 0.0646 0.0446 0.0468
TVSI 25.322 26.83 26.929 27.123 27.304 28.5467 28.3318

Fig. 3   Voltage profile of the 33 bus system under various scenarios
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Fig. 4   Pareto optimal fronts 
under various scenarios for 69 
bus system
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Fig. 5   Voltage profile of the 69 bus system under various scenarios

Table 2   Results of 69 bus test 
system under different scenarios

Parameters Base Case �
1
= 0.2 and �

2
= 0.8 �

1
= 0.5 and �

2
= 0.5 �

1
= 0.8 and �

2
= 0.2

MOGWO MOGOA MOGWO MOGOA MOGWO MOGOA

Best feasible solution no – 100 2 1 91 14 30
TOF(p.u.) – 0.6572 0.6172 0.5506 0.5672 0.427 0.4677
EOF(Million $) – 2.6742 2.5508 3.473 3.0014 6.359 4.7875
Optimal DG nodes – 18

24
62

57
61
62

65
61
68

64
60
65

18
12
61

64
61
65

Optimal DG sizes (MW) – 0.232
0.202
0.211

0.2
0.2
0.2

0.408
0.338
0.200

0.359
0.209
0.2

0.226
0.318
1.485

0.451
0.772
0.217

DG penetration (%) 0 16.97 15.78 24.89 20.21 53.39 37.89
PT ,loss(kW) 224.92 171.827 152.504 124.335 131.008 74.155 90.4816
 PT ,loss reduction (%) 23.61 32.20 44.72 41.75 67.03 59.77
QT ,loss(kVAR) 102.10 78.87 70.901 58.964 62.133 37.21 44.2321
QT ,loss reduction (%) 22.76 30.56 42.25 39.15 63.56 56.68
TVD(p.u.) 0.1032 0.0726 0.0729 0.0586 0.0634 0.0335 0.0449
TVSI 60.919 62.367 62 62.759 62.439 65.015 63.7525
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one of the algorithms cannot be ascertained from the results. 
In both case studies, in scenario 1 where the decision-maker 
favours the EOF , the DG penetration is relatively less, and 
hence the EOF values are better than scenario 2 and scenario 
3. Whereas in scenario 3 where the decision-maker favours 
the TOF , the DG penetration is relatively high and hence the 
TOF values are better than scenario 1 and scenario 2.

To provide more practical and managerial insights to 
the distribution company, the criteria weight ( �i ) is varied, 
and its effects on real power loss and DG cost are inves-
tigated. The summary of results for the MOGWO algo-
rithm in both cases are given in Table 4. Figure 6 depicts 
the changes in real power loss reduction and DG cost by 
varying the criteria weights �1 and �2 . According to the 
results obtained, it is found that in case 1 the DG cost for 
obtaining 50% real power loss reduction is 4.0502 million 
$, whereas in case 2, for obtaining 59% power loss reduc-
tion, the cost incurred is 4.9308 million $. A maximum 
reduction of 63.51% in real power loss can be achieved in 
case 1 when the distribution company can bear a DG cost 
of 8.3863 million $. In case 2, the maximum reduction can 
be up to 68.64%, while the DG cost can go up to 8.7331 
million $. By analyzing these results, the distribution com-
pany can make an informed decision regarding the optimal 
DG accommodation in distribution networks.

6 � Conclusion

The optimal DG accommodation problem was addressed 
in this study by taking into account competing technologi-
cal and economic objectives. A posteriori approach was 
adopted, and the multiobjective nature of the problem was 
maintained during the optimization process. MOGWO and 
MOGOA algorithms were used to solve the multiobjective 
DG accommodation problem, and the Pareto optimal solu-
tions are generated. Three different scenarios were consid-
ered at the decision-making stage based on the decision-
makers bias towards the objectives. The decision-making 
process was facilitated by TOPSIS, and multiple optimal 
solutions were presented to cater to diversity in prefer-
ences for the objectives. The approach was tested on 33 
bus and 69 bus test systems. Results indicated that as the 
DG penetration in the network increased, the performance 
of the distribution network in terms of technical param-
eters improved. At the same time, the DG cost became 
dearer. Given the conflicting nature of the objectives, nei-
ther of the two algorithms outperformed simultaneously 
for both objectives. This study should help the distribution 
network planners and utilities plan the distribution sys-
tems along with DGs to derive technical benefits offered 
by optimally allocated DGs while giving due regard to the 
costs involved. This study can be extended by considering 
different load models and renewable DGs in the future. 
Furthermore, the problem may be solved with NSGA – III 
algorithm, and a comparative analysis can be performed.

Table 4   Impact of criteria weight on real power loss reduction and DG cost

β1 = 0;
β2 = 1

β1 = 0.1;
β2 = 0.9

β1 = 0.2;
β2 = 0.8

β1 = 0.3;
β2 = 0.7

β1 = 0.4;
β2 = 0.6

β1 = 0.5;
β2 = 0.5

β1 = 0.6;
β2 = 0.4

β1 = 0.7;
β2 = 0.3

β1 = 0.8;
β2 = 0.2

β1 = 0.9;
β2 = 0.1

β1 = 1;
β2 = 0

Case 1
PT ,loss(kW) 145.83 145.83 145.83 145.83 128.33 123.19 116.16 104.81 90.80 78.75 76.99
% Reduction in PT ,loss 30.88 30.88 30.88 30.88 39.18 41.61 44.95 50.33 56.96 62.68 63.51
DG cost (Million $) 2.5508 2.5508 2.5508 2.5508 3.0906 3.2248 3.497 4.0502 5.0789 6.6421 8.3863
Case 2
PT ,loss(kW) 181.90 175.49 171.83 159.99 124.34 124.34 124.34 92.11 74.16 71.50 70.52
% Reduction in PT ,loss 19.13 21.98 23.61 28.87 44.72 44.72 44.72 59.05 67.03 68.21 68.65
DG cost (Million $) 2.5508 2.6285 2.6742 2.8714 3.473 3.473 3.473 4.9308 6.359 6.8714 8.7331

Table 3   Comparison of proposed method with existing methods

Objectives Case 1 Case 2

MOPSO (Zein-
alzadeh et al. 
2015)

NSGA – II (Hamidi 
and Chabanloo 2019)

MOGWO MOGOA MOPSO
(Zeinalzadeh 
et al. 2015)

NSGA – II (Hamidi 
and Chabanloo 2019)

MOGWO MOGOA

TOF (p.u.) 0.564 0.55 0.5488 0.5416 0.596 0.5655 0.5506 0.5672
EOF(Million $) 3.7122 3.2345 3.2248 3.2736 3.5568 3.1831 3.473 3.0014
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