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Abstract
Design complexities of trending UAVs and the operational harsh environments necessitates Control Law formulation utiliz-
ing intelligent techniques that are both robust, model-free and adaptable. In this research, an intelligent control architecture 
for an experimental Unmanned Aerial Vehicle (UAV) having an unconventional inverted V-tail design, is presented. Due to 
unique design of the vehicle strong roll and yaw coupling exists, making the control of vehicle challenging. To handle UAV’s 
inherent control complexities, while keeping them computationally acceptable, a variant of distinct Deep Reinforcement 
learning (DRL) algorithm, namely Reformed Deep Deterministic Policy Gradient (R-DDPG) is proposed. Conventional 
DDPG algorithm after being modified in its learning architecture becomes capable of intelligently handling the continuous 
state and control space domains besides controlling the platform in its entire flight regime. The paper illustrates the applica-
tion of modified DDPG algorithm (namely R-DDPG) towards the design, while the performance of the resulting controller 
is assessed in simulation using dynamic model of the vehicle. Nonlinear simulations were then performed to analyze UAV 
performance under different environmental and launch conditions. The effectiveness of the proposed strategy is further 
demonstrated by comparing the results with the linear controller for the same UAV whose feedback loop gains are optimized 
by employing technique of optimal control theory achieved through application of Linear quadratic regulator (LQR) based 
control strategy. The efficacy of the results and performance characteristics, demonstrated the ability of the presented algo-
rithm to dynamically adapt to the changing environment, thereby making it suitable for UAV applications.

Keywords Control law · Flight dynamics · Linear quadratic regulator · Machine learning · Reinforcement learning · Deep 
deterministic policy gradient · Optimal reward function · Optimal control theory · Linear quadratic regulator nonlinear 
simulations

List of symbols

Abbreviation
API  Application programming interface
b  Wing span (m)
c̃  Mean aerodynamic chord (m)
CAD  Computer aided design
CFD  Computational fluid dynamics
CMx

  Rolling moment coefficient
CMy

  Pitching moment coefficient
CMz

  Yawing moment coefficient
CFx

  X-direction force coefficient
CFy

  Y-direction force coefficient
CFz

  Z-direction force coefficient
DDPG  Deep deterministic policy gradient
DoF  Degree of freedom
g  Acceleration due Gravity (m/s2)
h  Altitude (m)
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LCF  Left control fin
ML  Machine learning
O-PPO  Optimal proximal policy optimization
POMDP  Partial observable Markov decision process
R-DDPG  Reformed deep deterministic policy gradient
m  Vehicle’s mass (kg)
P  Roll rate (deg/s)
PE  Position vector—east (km)
PN  Position vector—north (km)
Q  Pitch rate (deg/s)
Parm  Parameter
R  Yaw rate (deg/s)
RL  Reinforcement Learning
RCF  Right control fin
S  Wing area (m2)
UAV  Unmanned aerial vehicle
VT  Free stream velocity (m/s)
NNs  Neural networks
wti  Numerical weight (ith number)
Xcut  Current X-position (m)
Ycut  Current Y-position (m)
Zcut  Current Z-position (m)
R  Instantaneous reward
TR  Total reward
Py  Penalty

Greek symbols
�  Angle of attack (deg)
�  Sideslip angle (deg)
�  Flight path angle (deg)
�  Yaw angle (deg)
�  Roll angle (deg)
�  Theta angle (deg)
�L  LCF deflection (deg)
�R  RCF deflection (deg)
�  Density of air (kg/m3)

1 Introduction

UAVs represent one of the fastest progressing and dynamic 
segment within the paradigm of aviation industry (Mir et al. 
2017b, c, 2018c, d, 2022a, b; Yanushevsky 2011). Although 
UAVs are being widely used in military applications (Paucar 
et al. 2018), but their potential for non-military purposes 
(disaster management, search and rescue/health care, jour-
nalism, shipping etc) is enormous (Nikolakopoulos et al. 
2017; Nurbani 2018; Winkler et al. 2018), and is continually 
increasing with the advent of new technologies (Cai et al. 
2014; Mir et al. 2019a, b, 2021a). To date, there are over 
1000 UAV models being developed in over 52 countries, 
serving as indispensable assistant for human operators in 
a broad range of military and civil applications (Elmeseiry 

et al. 2021) including engineering geology (Cai et al. 2014; 
Giordan et al. 2020; Mir et al. 2022c). The rapidly increas-
ing fleet of UAVs, along with the widening sphere of their 
utility, therefore presents a serious challenge for the design-
ers with regards to formulation of unique optimal control 
strategies. However, technological advancements including 
development of advanced design tools in the aviation sector 
(Mir et al. 2017a, 2018a, b, 2021b) and the manufacturing 
of contemporary ground control vehicles (Gul and Rahiman 
2019; Gul et al. 2019, 2020a, b, 2021a, b, c, 2022b, c, d; 
Szczepanski and Tarczewski 2021; Szczepanski et al. 2019, 
2021) marked the requirement for the development of hi-
fidelity systems. The rapidly increasing fleet of UAVs, along 
with the widening sphere of their applications, therefore pre-
sents a serious challenge for the UAV designers.

Linear and Non-linear control strategies have been used 
in the past in diverse ways for solving varying control prob-
lems to achieve desired objectives (Din et al. 2022; Mir et al. 
2018c, d, 2019a, b). However, in depth understanding of 
inherent limitations of linear (Araar and Aouf 2014; Pok-
sawat et al. 2017; Rinaldi et al. 2013) and non-linear control 
techniques (Aboelezz et al. 2021; Adams and Banda 1993; 
Adams et al. 1994, 2012; Chowdhary et al. 2014; Enomoto 
et al. 2013; Gul et al. 2022a; Peng 2021) along with the 
aim of achieving autonomy in controls for complex aero-
space systems, provoked researchers, to look for intelligent 
methods (Zhou 2018) which are self capable of optimal, 
sequential decision making for a complex control problem. 
Under the ambit of ML, RL based algorithms (Kaelbling 
et al. 1996) have emerged as an effective technique for the 
design of autonomous intelligent control (Bansal et al. 2017; 
Zhou et al. 2019). Coupled with NNs, RL based algorithms 
have emerged as a robust methodology in solving complex 
continuous domain problems (Azar et al. 2021; Lillicrap 
et al. 2015; Wang et al. 2018) in changing environments 
which significantly overshadow the contemporary linear and 
nonlinear control strategies. Further, with the computer’s 
increasing computation power, state of the art RL algorithms 
have started to exhibit promising results. RL due to its highly 
adaptive characteristics has increasingly found use in aero-
space control applications for platforms like aircraft, missile 
trajectory control, fixed wing UAVs and so on.

RL inspired by human and animal behavior, can be 
defined as sequential events and their effects being rein-
forced by virtue of the actions taken (Thorndike 1898) in an 
evolving environment. Fundamentally, RL (Sutton and Barto 
1998) at its core has an agent, which by virtue of its inter-
action with a given environment, gains experience through 
trial and error, thus improving its learning curve. Agent has 
no explicit knowledge of the underlying system (Verma 
2020) and it’s controllability. But it understands a notion 
of reward signal, on the basis of which the next decision 
is taken. Agent during training phase, learns about optimal 
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action choices on the basis of reward function. In order to 
achieve optimal task performance, the trained agent selects 
actions which result in highest rewards. With the evolving 
system dynamics, dynamic reward signal correspondingly 
changes, agent thus in pursuit of higher rewards accordingly 
adapts its action policy. Though above facts declare RL as 
a strong tool to be utilized in controls problems; however, 
RL carries a baggage related to safety of its actions during 
the exploration phase of its learning (Dalal et al. 2018). To 
cope with increasing complexity of system dynamics and 
management of complex controls for enhancing adaptability 
with the changing environment, control system design based 
upon intelligent techniques is considered most appropriate 
(Mnih et al. 2015).

Later part of the last decade witnessed an increase in 
use of RL for aerospace control applications primarily 
because of the success of Deep Deterministic Policy Gradi-
ent (DDPG)—a deep RL algorithm for continuous domain 
problems like balancing of inverted pendulum or cart-pole 
system. Some researchers have applied DDPG on Quad-
copters (Lin et al. 2020) and for morphing optimization on 
few other platforms (Xu et al. 2019). Further, application of 
Deep RL policy gradient algorithms is limited for conven-
tional Quadcopters only, primarily focusing on controlling 
some specific phases of flight like attitude control (Koch 
et al. 2019) or compensating disturbances (Pi et al. 2021); 
with O-PPO outperforming others (Hu and Ql 2020). Fur-
ther similar studies from 2019 and 2018 also discuss appli-
cation of Deep RL for aerospace applications yet again in 
specific phases of the flight regimes and for conventional 
Quadcopters or fixed wing UAVs but not on any novel plat-
form having unique design characteristics that too on the 
entire flight regime as in the current research.So to the best 
of our knowledge current research work differs form other 
contemporary works by following:- 

(a) This study represents one of the pioneering work that 
applies DRL on controlling a non conventional UAV 
over its complete trajectory and flight envelope.

(b) Although a conventional DDPG algorithm lies at the 
core of current problem solving but it is pertinent to 
highlight that applied DDPG was modified with 
regards to its learning architecture through data 
feeding sequence to the replay buffer. Generated data 
was fed to the agent in smaller chunks to ensure posi-
tive learning through actor policy network. This data 
feeding distribution also makes it easier for the critic 
network to follow the policy and to help in positive 
learning of the agent.

(c) An optimal reward function was incorporated which 
primarily focuses on controlling the roll and yaw rates 
of the platform because of strong coupling between 
them due to inherent inverted V-tail design of the UAV. 

Optimal reward function was formulated from initial 
data collected in Replay Buffer before the formal com-
mencement of agent’s learning.

2  Related work

2.1  Implementation of linear controls

For conventional UAVs, onboard Flight Control System 
(FCS) utilizing linear control strategies with well designed 
closed loop feedback have yielded satisfactorily results 
(Araar and Aouf 2014; Brière and Traverse 1993; Mir et al. 
2019a, 2022a, b; Rinaldi et al. 2013; Rosales et al. 2019). 
Poksawat et al. (2017) designed cascaded PID controllers 
with automatic gain scheduling and controller adaption for 
various operating conditions. However, the control archi-
tecture was incapable of adapting to environmental distur-
bances apart from being highly dependent on sensor accu-
racy. Araar and Aouf (2014) utilized two different linear 
control techniques for controlling UAV dynamics. Linear 
Quadratic Servo (LQ-Servo) controller based on L2 and 
L∞ norms were developed. Results however, showed lim-
ited robustness to external disturbances particularly to wind 
gusts. Further, Doyle et al. (1987) utilized H-1 loop shaping 
in connection with �-synthesis, while Kulcsar (2000) uti-
lized LQR architecture for the control of UAV. Both schemes 
satisfactorily manage requisite balance between robustness 
and performance of the devised controller. But both these 
linear methods besides being mathematically intricate, lose 
their effectivity with increasing complexity and non-linearity 
of the system. Similar work Hussain et al. (2020, 2021) has 
been done in the field of ground robotics (Gul et al. 2020b, 
2021a, b, c, 2022c, d) as well.

2.2  Incorporation of non‑linear controls

Linear controls being less robust against disturbances along 
with limitation of operating around varying equilibria with 
employing gain scheduling provoked researchers gradually 
resorted to applying non-linear techniques to make the con-
trollers more adaptive and responsive to changing scenarios. 
Methodologies such as Back-stepping Sliding Mode Con-
trol (SMC) by Hou et al. (2020), Labbadi and Cherkaoui 
(2019), Non-linear Dynamic Inversion (NDI) by Tal and 
Karaman (2020) and Incremental Non-linear Dynamic 
Inversion (INDI) (Yang et al. 2020) have emerged to be 
strong tools in handling uncertainties and nonlinearities sat-
isfactorily; besides having the potential to adapt to changing 
aircraft dynamics in connection with evolving environment. 
Escareno et al. (2006) designed non-linear control for atti-
tude control of a quadcopter UAV using nested saturation 
technique. Results were experimentally verified, however, 
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the control lacked measures for performance control in a 
harsh environment. In another work, Derafa et al. (2011) 
implemented a non-linear control algorithm for a UAV 
incorporating back-stepping sliding mode technique with 
adaptive gain. He was successful in keeping the chattering 
noise low because of the sign function which are pronounced 
in fixed gain controllers. Experimental results of UAV 
showed acceptable performance with regards to stabiliza-
tion and tracking, however the algorithm was computation-
ally expensive.

2.3  Research and use of intelligent controls

Realizing the shortcomings of linear and non-linear control 
strategies besides evolving enhanced performance require-
ments of UAVs, researchers started to resort to intelligent 
techniques coupling them with neural networks. Neural net-
works with varying learning schemes (Pan et al. 2018) are 
now in use in varying fields like smart networking (Chen 
et al. 2020; Xiao et al. 2021), satellite image recognition 
(Pirnazar et al. 2018) using fuzzy algorithms and predic-
tion of certain water based estimates (Golian et al. 2020; 
Ostad-Ali-Askari et al. 2017) along side flight dynamics and 
controls domain. In one of the flight control studies, (Novati 
et al. 2018) employed deep RL for gliding and perching con-
trol of a two-dimensional elliptical body and concluded that 
model-free character and robustness of deep RL suggest a 
promising framework for developing mechanical devices 
capable of exploiting complex flow environments. Kroezen 
(2019) in his research has implemented reinforcement learn-
ing as an adaptive nonlinear control. Lei (2021) in their work 
briefly explain the constituents of DDPG algorithm and fur-
ther elaborate its usage. Rodriguez-Ramos et al. (2019) suc-
cessfully employed deep RL for autonomous landing on a 
moving platform again just focusing on the landing phase.

Bouhamed et al. (2020) employed UAV path planning 
framework using deep reinforcement learning approach. 
Dong and Zou (2020) optimized robot path utilizing deep 
RL techniques. Kim et al. (2017) in their work for Flat Spin 
Recovery for UAV, utilized RL based intelligent control-
lers. Aircraft non-linearities were handled near the upset 
region in two phases as ARA (Angular rate Arrest) and UAR 
(Unusual Attitude Recovery) using DQN (Q-learning with 
ANN (Artificial Neural Network)). Dutoi et al. (2008) in a 
similar work has highlighted the capability of RL framework 
in picking best solution strategy based on its off-line learning 
which is specially useful in controlling UAV in harsh envi-
ronments and during flight critical phases. Wickenheiser and 
Garcia (2008) exploited vehicle morphing for optimizing the 
perching maneuvers to achieve desired objectives.

2.4  Crux of intelligent controls implementation

Based on our review of the related research and cited papers, 
it has been assessed that application of RL, especially deep 
RL for continuous action and state domains is mostly 
limited to simple yet complex tasks of balancing inverted 
pendulums, legged and bipedal robots (Rastogi 2017) and 
miscellaneous board and computer games through effective 
implementation of a novel mix approach of both super-
vised and deep RL (Silver edt al. 2016; Xenou et al. 2018). 
Implementation of RL based control strategy with continu-
ous state & action spaces for developing Flight Controls of 
UAVs have not been applied on the entire flight regime as 
has been accomplished in the current research. It has been 
used only for handling critical flight phases (Kim et al. 2017) 
where linear control theory is difficult to implement and for 
navigation of UAVs (Kimathi 2017). Moreover, the in-depth 
analysis of the results show slightly better performance by 
eliminating overshoots besides tracking a reference head-
ing as compared to well tuned PID controller, however it 
still lacked the required accuracy as was anticipated. Keep-
ing in view the immense potential of RL algorithms and 
its limited application in entirety for UAV Flight Control 
systems development, it is considered mandatory to explore 
this dimension.

2.5  Research contributions

In this research, we explore the efficacy of DRL algorithm 
for an unconventional UAV. DRL based control strategy is 
formulated for continuous state and control space domains, 
that encompasses the entire flight regime of the UAV duly 
incorporating nonlinear dynamical path constraints. To 
reduce the overall cost, an unconventional UAV with an 
inverted V-tail is designed with the least number of control 
surfaces. This distinctive design of UAV resulted in an under 
actuated system, thus making the stability and control of the 
UAV prominently challenging.

Effective RL algorithm known as DDPG has been care-
fully employed for the current problem after being specifi-
cally modified in its learning architecture to achieve the 
desired objective of UAV range enhancement while keeping 
the computational time required for learning of the agent, 
minimal. The designed control framework optimized the 
range of the UAV without explicit knowledge of the under-
lying dynamics of the physical system.

Developed RL control algorithm learns off-line, on the 
basis of a reward function which is formulated and final-
ized after an iterative process. Control algorithm in line with 
the reward function autonomously ascertains the optimum 
sequence of the available deflections of control surfaces at 
each time step (0.2 s) to maximize UAV range.
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An iteratively developed Optimal reward function was 
incorporated which primarily focuses on controlling the 
roll and yaw rates of the platform because of strong cou-
pling between them due to inherent inverted V- tail design 
of the UAV. Optimal reward function was formulated from 
initial data collected in Replay Buffer before the formal com-
mencement of agent’s learning.

Vehicle’s 6-degree of freedom (DoF) model is devel-
oped, registering its transnational and rotational dynamics. 
The effectiveness of the proposed strategy is further dem-
onstrated by comparing the results with conventional LQR 
based control strategy. Simulation results show that apart 
from improved Circular error probable (CEP) of reaching 
the designated location, range of UAV has also significantly 
increased with the proposed RL controller. Based on prom-
ising results, it is evidently deduced that RL has immense 
potential in the domain of intelligent controls for future pro-
gress because of its capability of adaptive, real time decision 
making in uncertain environments.

2.6  Proposed R‑DDPG algorithm features

The proposed R-DDPG architecture embeds three main tech-
niques in baseline DDPG algorithm which differentiates it 
from its contemporary DRL algorithms to perform better. 
These are elaborated below:- 

(a) Incorporation of agent’s unique learning architecture by 
tailoring the standard data feeding sequence to replay 
buffer which results in enhanced episodic learning.

(b) Use of Adam Optimizer for improving the DDPG con-
vergence.

(c) Employment of an optimal reward function which intel-
ligently controls the roll-yaw coupling and also aids in 
quicker learning of the agent.

All these factors ensure better learning and positive conver-
gence of the proposed algorithm to obtain desired objectives 
of range enhancement and overall flight stability over the 
entire flight envelope.

3  Problem setup

Current research analyzes a pure Flight Dynamics problem 
from a perspective of controlling an experimental UAV in its 
entire flight regime employing intelligent control techniques 
that can handle continuous domains.

3.1  Problem modelling as a partial observable 
Markov decision process

Formally, MDP is understood as a mathematical based archi-
tecture in which sequential actions being taken over time, 
affect both the immediate rewards and the future states. A 
Markov process is a tuple of < S,P,R, 𝛾 > where S is a finite 
set of states, P is a state transition probability matrix, R is a 
reward function and � is a discount factor (usually ranging 
from 0 to 1) over cumulative rewards of an episode, Figure 1 
represents student states and immediate rewards in red for 
exiting the states (Silver 2015). It is an ideal framework to 
handle problems that focuses on maximizing longer term 
return by carrying specific sequence of actions depending 
on the current state.

Because of adaptive sequential decision making nature of 
the current problem, it is modelled as a Model-Free Partial 
Observable Markov Decision Process (POMDP) that for-
mally describes an environment for reinforcement learning 
like MDP, however the environment is partially observable 
and is based on the observation function O which becomes 
a part of the tuple of a standard MDP. It is noteworthy that 
almost all RL problems can be formalised as MDPs if they 
exhibit Markov’s property where the future is independent 
of the past given the present.

3.2  UAV geometric and mass parameters

The UAV platform utilized in this research is an experimen-
tal vehicle whose geometrical parameters are designed to 
fulfill the desired stability and performance requirements . 
The UAV has a wing-tail configuration with unconventional 

Fig. 1  Markov decision process
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controls. The control surfaces are kept to a bear minimum to 
reduce the structural complexity and cost.

It has two all moving inverted V tails to function as rud-
dervators. These control surfaces can move both symmetri-
cally for controlling pitch motion and deferentially for cou-
pled roll and yaw movements. An additional ventral fin is 
also placed at the bottom side for enhancing lateral stability.

3.3  Flight dynamics modeling

Flight dynamics modeling is carried out utilizing 6-DOF 
(Mir et al. 2019a) model, which is typically utilized to model 
the vehicle motion in 3D space (Mir et al. 2019a). As the 
intended motion of the UAV spreads over a localized area 
of earth, a flat non-rotating Earth is assumed for all math-
ematical analysis.

The problem is formulated as a nonlinear system of the 
form depicted in Eq. (1):

where, x ∈ ℝ
12 is the state vector, u ∈ ℝ

2 is the control vec-
tor, and ẋ ∈ ℝ

12 are the updated state estimates. The state 
vector in body axis is defined by Eq. (2.

Control vector with continuous action space is defined in 
Eq. (3)

3.4  Aerodynamic parameter estimation

The body aerodynamic force and moment coefficients vary 
with the flight conditions and control settings. A high fidel-
ity aerodynamic model is necessary to accurately determine 
these aerodynamic coefficients. In this research, both empiri-
cal (Napolitano et al. 2000) and non-empirical techniques 
(such as CFD (Petterson 2006) and USAF DATCOM (Finck 
et al. 1978)) are utilized to determine these coefficients. The 
high fidelity model employed for aerodynamic parameter 
estimation is elaborated in Eq. (4):

where Ci = CL , CD , CY , Cl , Cm , Cn represents the coefficient 
of lift, drag, side force, rolling moment, pitching moment, 
and yawing moment respectively.

Evaluation of static (basic) coefficient data (see Eq. (5)) 
is achieved utilizing Computational Fluid Dynamics (CFD) 
(Buning et  al. 2004; Petterson 2006) technique and are 

(1)ẋ = f (x, u)

(2)
x =

[

U, V , W, �, �, � , P, Q, R, h, PN , PE

]T
, x ∈ ℝ

12

(3)u = [LCF, RCF]T , u ∈ ℝ
2

(4)Ci = Ci,static

(

𝛼, 𝛽, 𝛿control,M
)

+ Ci,dynamic

(

�̇�, �̇�, p, q, r
)

conventionally a function of control ( �control) , angle of attack 
( � ), side slip (� ) and mach number (M).

where CDb
 , CLb

 , CYb
 , Clb

 Cmb
 , Cnb

 represents the basic com-
ponents of the aerodynamic forces and moments as a func-
tion of ( �control) , angle of attack ( � ), side slip (� ) and mach 
number (M).

Similarly dynamic component (Eq.  (6)) consists of 
rate and acceleration derivatives and are evaluated utiliz-
ing empirical (Napolitano et al. 2000) and non-empirical 
[‘USAF Stability and Control DATCOM’ (Finck et  al. 
1978)] techniques.

Rate derivatives are the derivatives due to roll rate ( p ), pitch 
rate ( q ) and yaw rate ( r ) while acceleration derivatives are 
the derivatives due to change in the aerodynamic angles 
(�̇�, �̇�) . They are shown in Eqs. (7) and (8) respectively.

The aerodynamic coefficients modeling method employed 
in this research utilize curve-fitting to generate polynomial 
forms of these coefficients. For the platform under study, a 
detailed CFD analysis provided the numerical data for the 
coefficients in different flight regimes (Buning et al. 2004; 
Petterson 2006; Roaskam 2001).

The flight conditions were based on aerodynamic angles 
(�, �) variation along with the control fins varying deflec-
tions. A linear model consisting of the four basic parameters 
( � , � , LCF and RCF) are used to model the coefficients. The 
results were then refined using regression techniques and the 
computed coefficients provided a 95% confidence.

4  Formulation of RL algorithm

4.1  DRL algorithms and appropriate Selection

Reinforcement learning algorithms for discrete domains are 
aimed at finding an optimal state-value function V�∗ or an 

(5)

Ci,static
(

�, �, �control,M
)

⇒ CDb
(�, �, �control,M),

CLb (�, �, �control,M),CYb (�, �, �control,M),

Clb (�, �, �control,M),Cmb
(�, �, �control,M),Cnb (�, �, �control,M),

(6)
Ci,dynamic

(

�̇�, �̇�, p, q, r
)

= Rate derivatives+

Acceleration derivatives

(7)
Rate derivatives =

(

CLq
,CDq

,Cmq

)

+
(

CYp
,Clp

,Cnp

)

+
(

CYr
,Clr

,Cnr

)

(8)
Acceleration derivatives

=
(

C
L�̇�
+ C

D�̇�
+ C

m�̇�

)

+

(

C
Y�̇�
+ C

l�̇�
+ C

n�̇�

)
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action-value function Q�∗ , while following a policy � which 
is a time dependent distribution over actions given states and 
guides the choice of action at any given state.

State-value function (10) is the expected return starting from 
state s, while following policy � and gathers scalar rewards 
once transitioning between the states. The behavior of the 
agent is carefully controlled so that all states have been vis-
ited at least once during the course of learning. However, the 
action-value function (11) is determined by the return that 
is accumulated by the agent being in any particular state s 
and taking an action a.

Selection of appropriate RL algorithm is challenging as its 
implementation varies from problem to problem in terms 
of complexity of states and actions (Hafner and Riedmiller 
2011; Laroche and Feraud 2017). Factors such as state (s) 
and action space (a) domain type (discrete or continuous), 
policy search (�) or value function (v), model free or model 
based, requirement for incorporation of NNs (deep RL) 
etc are deriving parameters in formulating RL algorithms. 
RL algorithms range from Policy Gradients to Q-learning 
besides Actor-Critic methods. All the methods have their 
own strengths and weaknesses, however few factors like 
hyper-parameters, random seeds or environment proper-
ties have profound effects (Henderson et al. 2018) in DRL 
algorithms

As our problem has a complex continuous state and action 
space so policy gradient methods incorporating NNs were 
preferred as they directly optimize the parameterized policy 
by using an estimator of the gradient of the expected cost. 
These primarily include Trust Region Policy Optimization 
(TRPO) (Schulman et al. 2015), Optimized Proximal Policy 
Optimization (O-PPO) (Schulman et al. 2017), Deep Deter-
ministic Policy Gradient (DDPG) (Lillicrap et al. 2015), 
and its variants Twin Delay DDPG (TD3), Soft Actor-
Critic (SAC), Advantage Actor-Critic (A2C), Asynchronous 
Advantage Actor-Critic (A3C) and ACKTR (Actor-Critic 
using Kronecker-Factored Trust Region) (Wu et al. 2017). 
TRPO and O-PPO use constraints and advantage estimation 
to perform network update.

TRPO uses conjugate gradient descent as the optimiza-
tion method with a KL constraint while O-PPO reformulates 
the constraint as a penalty (or clipping objective). DDPG 
and ACKTR use actor-critic methods which estimate Q(s, a) 
and optimize a policy that maximizes the Q-function. DDPG 
does this using deterministic policies, while ACKTR uses 

(9)�(a|s) = ℙ
[
At = a|St = s

]

(10)v
�
(s) =�

�

[
Gt|St = s

]

(11)q
�
(s, a) =�

�

[
Gt|St = s,At = a

]

Kronecketer-factored trust regions to ensure stability with 
stochastic policies. Owing to the nature of problem at hand 
our requirement was to handle multi-processed continuous 
actions which further narrowed down our search to TRPO, 
O-PPO, DDPG and A3C only. Few of issues with said algo-
rithms are as follows that lead to selection of a simpler and 
easily implementable DDPG:- 

(a) Major disadvantage of TRPO is that it’s computation-
ally expensive and is difficult to model.

(b) O-PPO though gives a better convergence and perfor-
mance rate than other techniques but is sensitive to 
changes.

(c) A3C though lacks the convergence rate but is very 
useful when large computation power is available and 
concept of transfer learning on similar environments is 
required.

Critical challenge related to DDPG is sample inefficiency 
because actor is updated based on gradients evaluated 
when training of the critic neural network is taking place. 
Gradient is usually noisy because it relies on the outcome 
of the simulated episodes. Therefore, to avoid divergence 
off-policy DRL training algorithms maintain a copy of the 
actor and critic neural networks while undergoing training. 
DDPG usually faces convergence issues which are handled 
by employing various optimization algorithms among which 
Adam optimizer outperforms others because of its minimum 
training cost. Adam optimizer has also been employed in 
current research as well. But the best part about DDPG is 
that its Q value based and is more intuitive to implement.

The current research work problem is a complex non-
linear problem with mixed coupled controls. The problem 
has a 12 dimensional state space and a 2 dimensional action 
space, both of which are continuous. Realizing the complex-
ity of the problem at hand due to continuous state and action 
space (Kingma and Ba 2014), DRL algorithms were studied 
with regards to practical implementation. Deep Determin-
istic Policy Gradient algorithm is employed which has been 
specifically modified and is named as Reformed Deep Deter-
ministic Policy Gradient (R-DDPG) to adapt to the desired 
problem requirements optimally. DDPG is an effective pol-
icy gradient based RL algorithm (Heess et al. 2015), that 
can be configured for problems involving high dimensional 
continuous state space domain (Luo et al. 2019). It is an 
off-policy algorithm (refer Algorithm 1), whose behavioral 
policy is stochastic in nature while target policy is determin-
istic. Being model-free, it uses deep learning techniques that 
were introduced along with Deep Q Networks (DQNs) for 
efficient learning (Werbos et al. 1990). It utilizes the concept 
of replay buffer and then use experience replay to break up 
the temporal correlations (Silver et al. 2014).
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4.2  Structure, hyper‑paramaterization 
and optimization strategy of implemented 
R‑DDPG algorithm

Based on the basic architecture of the DDPG algorithm as 
articulated in Lillicrap et al. (2015) and Chen et al. (2021), 
Pan et al. (2018), actor and critic NNs along with their target 
networks were established in Python. TFlearn (Tang 2016), 
a modular higher-level API to TensorFlow deep learning 
library (Tang 2016) has been utilized during the research 
and exhibits remarkable performance. Designed NNs had 
three layers each for both actor and critic networks with first 
layer having 400 Neurons while second layer having 300 
Neurons. It is pertinent to highlight that the selection of the 
number of neurons was finalized after repeated hit and trial 
by evaluating the learning performance every time. Two dif-
ferent activation functions have been used in the NNs. tanh 
is used for the actor network function in order to include for 
both the positive and negative deflections of the controls 
while relu is used for the critic network function which gives 
a Q-value of present state based on the action as dictated 
by actor.

Adam optimizer which is an extension to stochastic gra-
dient descent as explained by Kingma and Ba (2014) was 
used for ensuring efficient learning of all the four actor 
critic and their target networks. Empirical results retrieved 
from the analysis of Kinga (2015) demonstrates that Adam 
works well in practice and compares favorably to other sto-
chastic optimization methods besides bearing minimum 
training cost, however some people have also used deriva-
tive of DDPG for positive optimization (Chen et al. 2021). 
As per CS231n (2017); Ruder (2016) among the modern 
optimization methods, Adam possess inherent advantages 
over the two other extensions of stochastic gradient descent 
namely Adaptive gradient algorithm (AdaGrad) and Root 
mean square propagation (RMSProp). AdaGrad maintains 
a per-parameter learning rate which improves performance 
on problems with sparse gradients. RMSProp also main-
tains per-parameter learning rates that are adapted based on 
the average of recent magnitudes of the gradients for the 
weight. Adam instead of adapting the parameter learning 
rates based on the average first moment as in RMSProp, 
Adam also makes use of the average of the second moments 
of the gradients. Acquiring benefits of both, results show 
that it has minimum training cost among the various opti-
mizers in use for DRL algorithms.

Adam updated the network weights iterative in training 
data during the learning phase. For the back-propagation 
optimisation the learning rate of both the actor and the critic 
was set to 1 −3 with first and second moments set to 0.9, 
0.999, respectively. Experience Replay Buffer size was set 
as 1 million i.e. after the complete replay buffer is filled the 
oldest data is popped out making place for the new incoming 

data. Batch size for calculating the gradient descent was 
maintained as 64 to improve the optimization.

The reward discount was set as � =0.95 and the soft 
update of the target NNs was selected as � = 0.005. To 
allow exploration a simple Gaussian noise with � = 0.25 
was also added and during the training the best model was 
saved.

Keeping in view the wide ranging and varying numerical 
data of states and rewards owing to the peculiar nature of 
the problem, batch normalization was incorporated before 
feeding the data to NNs for efficient training of NNs. Addi-
tionally, the data being generated during simulated episodes 
was fed to the NNs in chunks with an aim to speed up the 
learning curve.

In order to improve the efficacy of conventional DDPG 
algorithm, optimal penalty and reward function developed 
after an iterative process was utilized, refer equation 12 & 
13. After incorporation of the final reward function in the 
control algorithm, final results corresponding to all states 
of R-DDPG controller, plotted against sequential episodic 
time steps for the glide vehicle are presented in the results 
section. Selection of optimal control deflections by the con-
troller during the flight regime amidst changing scenario 
can be appreciated from the results of states and the gliding 
range achieved.
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5  Results insight and analysis

This section deliberates on the results achieved by imple-
menting R-DDPG controller. Two different initial launch 
conditions for the Gliding Vehicle are specified in Table 1. 
It is pertinent to highlight that these results pertain to one 
of the best episodes saved over numerous episodes run after 
the agent completes its learning.

Terminal State of the current MDP is recognized as the 
state when the “gliding UAV hits the ground with the 
employed condition of ‘h’ is less than or equal to zero”.

5.1  Results of R‑DDPG controller

Figures 2,  3 and  4 depict the angular rate dynamics of the 
UAV exhibiting variation of body rates P, Q and R, along 

(12)

Py = wt
1
|P| + wt

2
|Q| + wt

3
|R|

+ wt
4
�P + wt

5
�Q + wt

6
�R

+ wt
7
�P + wt

8
�Q + wt

9
�R+

wt
10
Ycut

(13)
IR = 1e−3 × Xcut2 +

(

36e3 − Zcut
)

TR = IR − Py

the episode. During the UAV launch, initially all the body 
rates are zero, subsequently agent selects random actions 
during the exploration phase while all the states result-
ing from the actions are continuously stored in the replay 
buffer. Based on the embedded optimal reward function and 
the learning from the replay buffer, agent gradually starts 
to make optimal trade-off among all three rates. Enhanced 
learning of R-DDPG agent based on NNs can be appreciated 
from the smoothness of graphs with . Though the rates are 
contained in the major part of the episode, however, strong 
coupling between roll and yaw dynamics due to UAVs 
complex controls, the roll and yaw rates show an increasing 
trend just before the culmination of one of the optimal epi-
sodes and thus validate the strong coupling behaviour. This 
behaviour of the agent gives us a peak into its exploration 
behaviour that is being managed through the added noise in 

Table 1  Parametric conditions

No Parameters Value

1 Altitude 39,000 ft
2 Mach No 0.9
3 Angle of Attack ( �) 0

◦ & 4 ◦

Fig. 2  Episodic variation of UAV roll rate

Fig. 3  Episodic variation of UAV pitch rate

Fig. 4  Episodic variation of UAV yaw rate
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the action policy after initially following learnt policy for a 
good reward.

Variation in the attitude of the UAV as observed in the 
Earth’s frame during the complete episodic flight is shown 
in Figs. 5,  6 and  7. During half of the initial flight phase, 
pitch and yaw angles are restricted close to 1◦ . Due to sinu-
soidal behavior in the roll rate, UAV exhibits a wing rocking 
behaviour for initial part of the episode. Owing to the inher-
ent complex geometry of the platform the coupled roll and 
yaw dynamics are complex. With agent learning to optimally 
trade-off rates with time, it gradually decreases the roll angle 
variation, however, pitch and yaw angles continue to show 
variation. Overall the trade-off appears to be controllable and 
optimal path is maintained as variation in roll rate does not 
hamper the glide path range.

Similarly, Fig.  8 depicts the glide path of the UAV 
which initially covers more distance north wards but with 

increasing yaw angle variation the UAV follows the desired 
east ward direction.

Figures 9 and  10 exhibit variation of UAV’s aerodynamic 
angles alpha and beta respectively, during the entire episodic 
flight. While the sideslip is contained between 0.5◦ to − 1◦ , 
the angle of attack initially increases to gain more lift, later 
maintains it close to 6◦ for achieving the desired objective 
of range enhancement.

Figure. 11 gives a complete overview of the variation 
of UAV velocity profile. Velocity of the platform decreases 
gradually and smoothly as a result of increased drag due to 
increase in alpha in the major part of the episode. However, 
during the later part of the flight, velocity decreases sig-
nificantly with the increase in yaw angle and thus sideslip, 
profoundly increasing drag.

Altitude variation as depicted in Fig. 12 is smooth and 
gradual in the initial part where the angle of attack is 

Fig. 5  Episodic variation of UAV roll angle

Fig. 6  Episodic variation of UAV pitch angle

Fig. 7  Episodic variation of UAV yaw angle

Fig. 8  UAV episodic glide path
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maintained close to 5 degs. However, the altitude shows a 
steep decline in the later part of the episode primarily for 
hitting the desired target location.

Reward function variation is shown in Fig. 13. Initially 
the agent is taking random actions thus exploring the action 
space. The moment replay buffer gets filled, the agent based 
on the learning from replay buffer starts to take desired 
actions which help achieve set objectives besides giving a 
rise in reward based on good prediction of actions. Conver-
gence of reward function is also evident as the agent learns 
with increasing iterations and stabilizes itself after almost 
8000 epochs.

All the 12 states of the gliding vehicle have been plotted 
against episodic steps. The simulation step is kept at 0.1 as 
it yields optimum results for all the states keeping in view 
the quantum of change of states. Besides states depiction, 
the reward function is also plotted which is a measure of the 
learning performance of NNs for R-DDPG.

Fig. 9  Episodic variation of UAV alpha angle

Fig. 10  Episodic variation of UAV beta angle

Fig. 11  Episodic variation of UAV velocity

Fig. 12  Episodic variation of UAV altitude

Fig. 13  Reward function of R-DDPG agent
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6  Comparative analysis: proposed R‑DDPG 
controller vs conventional LQR control & 
DRL optimal proximal policy optimization 
(O‑PPO) control architecture

In this section, we preform the comparison of the results 
achieved from the proposed R-DDPG non-linear algo-
rithm with conventional PID based control architecture and 
another DRL method named Optimized proximal policy 
optimization (O-PPO). Results of experimental UAV’s 
optimized trajectory and enhanced range being controlled 
with the help of devised DRL based intelligent R-DDPG 
controller were compared with that of a linear classical LQR 
based controller, to compare the performance of an intel-
ligent control with that of the classical one.

6.1  Formulation of LQR based control architecture

In case of linear LQR based control architecture, steady state 
values for the state and control variables are determined at 
each point of a pre-specified trajectory by computing an 
equilibria point of the differential equations. The key idea 
includes linearizing the nonlinear system along the trajec-
tory, then using the resulting time-varying linearization to 
obtain a time-varying state feedback controller that locally 
stabilizes the system along the trajectory. The optimization 
techniques similar to Gul et al. (2021a), Mir et al. (2017b, 
2017c, 2018d, 2021a) enhanced UAV range to about 85 km 
with high accuracy. The problem is configured as a con-
strained optimization problem (Gul et al. 2021c, b, d; Mir 
et al. 2019a), with an objective to determine, an open loop 
control that optimizes the specified performance index, sub-
ject to certain constraints (Mir et al. 2017b, 2018a, b, d). For 
optimization, Matlabregistered nonlinear constrained optimiza-
tion technique, based on Sequential Quadratic Programming 
(SQP) and quasi-Newton methods is utilized. Steady states 
for the optimized trajectory were obtained for a coordinated 
turn flight at different turn rates as shown in Eq. (14):

In order to generate the optimized trajectories at the desired 
turn rates (as specified in Eq. (14)), the performance meas-
ure that is minimized is defined in Eq. (15):

where w1...w6 = 1 and �̇� , �̇� , ṗ , q̇ , ṙ are the rate derivatives 
of velocity, angle of attack, side slip angle and roll,pitch 
and yaw rates respectively. This cost function is minimized 
by the optimization algorithm at each equilibria point of 

(14)

Turn rate (�̇�) = [−10,−7,−5,−3,−2, 1, 0, 1, 2, 3, 4, 5, 10]T

deg ∕sec.

(15)Jmin = w1V̇T + w2�̇� + w3�̇� + w4ṗ + w5q̇ + w6ṙ

the pre-specified trajectory governed by the differential 
equations.

The state and control variables utilized during the opti-
mization process are defined in Eq. (16):

where LCF and RCF are the control variables.
Path constraints along with the bounds on the state and 

control variables are defined in Eq. (17):

Terminal constraints are defined in Eqs. (18):

where Pn(te),Pe(te), h(te) are the UAV coordinates at the 
terminal point, Pn(te)

,Pe(te)
, hte are the target coordinates, and 

�Pn,�Pe,�h are the permissible tolerances.
According to the model assumptions, the orientation of 

UAV at any point ‘b’ can be described in terms of earlier 
point ‘a’, by Eq. (19):

where x(tb) and x(ta) represents the state variables at time tb 
and ta respectively.

An LQR control based optimization framework was 
therefore formulated which utilizes a set of dynamic con-
straints, path constraints and terminal constraints (Eq. (18)), 
while minimizing the performance measure represented by 
Eq. (15). As a result of the optimization process, steady 
state values for the state and control variables along various 
optimal trajectories (governed by Eq. 14) were obtained. 
The optimization process utilized the optimal flight profile 
parameters (velocity, dynamic pressure, and mach number).

During optimization process, certain states and variables 
were kept fixed along the trim points of the optimal ballis-
tic trajectories while other states and control variables were 
kept free for optimization (Eq. (20)) within the permissible 
ranges.

As a result of the optimization, optimal trim values of the 
state and control variables were ascertained along trim 

(16)
x =

[

VT , �, �,�, �,� , p, q, r,Pn,Pe, h
]T
, x ∈ ℝ

12

u = [LCF,RCF]T , u ∈ ℝ
2

(17)
0 ≤ h ≤ 35000ft, −3◦ < 𝛼 < 6◦, −6◦ < 𝛽 < 6◦,

Mach ≤ 0.75, 100 km ≤ Range ≤ 120 km.

(18)

Pn(te) − Pn(te)
≤ �Pn,

Pe(te) − Pe(te)
≤ �Pe,

h(te) − hte ≤ �h,

(19)x(ta) = x(ta) + ∫
tb

ta

ẋ(t) dt,

(20)

Fixed_states =
[

VT , h, �̇�, �̇�, �̇�
]

Free_states&Controls = [𝛼, 𝛽, 𝛾 ,𝜙, 𝜃, p, q, r, LCF,RCF]
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points for the entire flight envelope (35,000-ground level). 
This included determining optimal trajectories for different 
turn rates governed by Eq. (14).

6.2  Comparison of the results: R‑DDPG Vs LQR 
control architecture

In the designed state feed-back LQR based control archi-
tecture, problem of deviation from the desired course was 
encountered. In spite of having stable system response with 
theoretical range enhancement to about 85 km, the UAV 
has a considerable off shoot from the target location. This 
is shown in Fig. 14. The deviation from desired course was 
encountered as the designed control law did not utilize the 
directional information ( �) provided by navigational equa-
tion. Both the longitudinal and lateral dynamics were inde-
pendent from directional orientation provided by naviga-
tional equation. Accurate guidance to the target, therefore, 
requires incorporation of an additional control loop which 
minimizes the drift in the heading.

However, no such problem of accuracy was encountered 
in the DDPG based control architecture. The UAV was suc-
cessfully guided to the desired target location with reduced 
CEP. This is shown in Figure.  15.

It is evident that R-DDPG flight controller after incorpo-
ration of the final reward function and by virtue of its off-line 
neural networks based learning, intelligently selects optimal 
control deflections at every episodic step thus resulting in 
optimal glide range of 83 kms . Further, R-DDPG controller 
smoothly covered the entire flight envelope while classical 
optimal controller was applicable for certain equilibrium 
points and gain scheduling was manually performed to han-
dle the complex dynamics of the UAV besides causing con-
trollability problems in case of environmental disturbances 
while R-DDPG controller intelligently rejected the external 
disturbances. Due same, accuracy problem was encountered 

in LQR based architecture with much higher Circular Error 
Probabilities (CEPs).

6.3  Optimized proximal policy optimization 
(O‑PPO) Implementation and Comparative 
Analysis

Besides comparing the performance of the implemented 
R-DDPG algorithm in the previous section with LQR based 
controller, an effort was made to compare it with one of 
widely utilized DRL based methods so as to gauge and 
mark true comparison of the efficacy of DDPG. Keeping 
in view the nature of problem in hand, two On Policy algo-
rithms namely TRPO and O-PPO were also studied. In 
this research, O-PPO was selected in comparison to TRPO 
as O-PPO is faster and more sample efficient besides it is 
much simpler to implement. In O-PPO with its two variants 
O-PPO penalty and O-PPO Clipping, O-PPO Clipping 
was selected as it ignores the KL-divergence term in the 
objective function and doesn’t have any constraint. Alter-
natively, it relies on specialized clipping in the objective 
function to eradicate incentives for the new policy �new to 
get far from the old policy �old and this is primarily for the 
exploration phase. Clipping was manged by setting the upper 
and lower limits as 1 + � and 1 − � , respectively with � as 
0.99. For optimization Adam was again utilized because of 
its lowest training cost. Learning rates for both actor and 
critic were set as 0.001. Batch size as 64 and Trajectory 
memory as 200.

Performance of O-PPO (refer Algorithm 2) in conver-
gence is slightly better than R-DDPG. However, O-PPO 
being more susceptible to changes in the environment as 
discussed in Section 3 above, was not able to get good 
return for the current problem as evident from the roll, pitch 
and yaw rate graphs (refer Figs. 16, 17 and 18). As evident 
from these results the rates are initially controlled, but the Fig. 14  UAV trajectory: LQR based stabilization control architecture

Fig. 15  UAV trajectory: R-DDPG based control architecture
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moment O-PPO tries to clip the surrogate objective function 
to ensure that the �new and �old are markedly different that 

is to have an increased step size for enhanced learning, the 
problem of low return commences as the agents learning 
deviates from intended objectives and vehicles inherent roll 
and yaw coupling starts to get more prominent.

7  Conclusion

In current research, DRL based intelligent non-linear con-
troller for an experimental glide UAV was proposed utiliz-
ing R-DDPG (modified version of DDPG algorithm) while 
incorporating an optimal reward function. Implemented con-
trol algorithm showed promising results in achieving the 
primary objective of maximizing the range while keeping 
the platform stable within its design constraints throughout 
the flight regime. R-DDPG approach gave the optimal range 
of around 83 kms ; while handling the non-linearity (control-
ling the roll, pitch and yaw rates in an optimal trade-off) 
of vehicle through effective control deflections which were 
being controlled based on the off-line learning of the agent 
based on the optimized incorporated reward function.

Devised RL algorithm proved to be computationally 
acceptable, wherein the agent was successfully trained for 
large continuous state and action space. The performance of 
the controller was evaluated in a 6-DoF simulation devel-
oped with the help of Matlab and Flight gear software. 
R-DDPG controller outperformed the LQR based optimal 
controller as being effective in the entire flight regime of 
the vehicle thus disregarding the conventional approaches 
of calculating various equilibrium’s during the trajectory, 
and then trying to keep the vehicle stable within the ambit 
of these equilibria utilizing linear / non-linear approaches.

Besides LQR, another DRL algorithm best known for 
its simple implementation and efficient convergence O-PPO 

Fig. 16  UAV Roll Rate: O-PPO based controller

Fig. 17  UAV Pitch Rate: O-PPO based controller

Fig. 18  UAV Yaw Rate : O-PPO based controller
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Clipping was also evaluated in the research. It is noteworthy 
that O-PPO as expected gave better and quicker convergence 
but was unable to handle most uncertainties of the envi-
ronment in the form of varying launch conditions. Further 
probe into this behaviour of O-PPO agent, led to two main 
conclusions. First, R-DDPG is able to benefit from old data 
while O-PPO cannot. This is because O-PPO uses a ratio of 
the policies to limit the step size, while R-DDPG uses the 
policy to predict the action for the value computed by the 
critic. It is because of this that the ratio of the policies in 
O-PPO, limits the distance between the policies and therefor 
needs fresh data. Second important conclusion inferred from 
the comparison of two DRL methods and which has been 
practically observed, that behaviour of deep policy gradi-
ent algorithms, often deviates from the prediction of their 
original motivating framework and therefore their success 
varies for different problems primarily because of different 
environments and changing success objectives.

Authors believe that the investigations made in this 
research provides a mathematical-based analysis for design-
ing a preliminary guidance and control system for the aer-
ial vehicles utilizing intelligent controls. It is noteworthy 
that this research will open the avenues for researchers for 
designing intelligent control systems for aircraft, UAVs and 
the autonomous control of missile trajectories for both pow-
ered and un-powered configurations.
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