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Abstract
Integrating component and final assembly production plans is critical to optimizing the global supply chain production 
system. This research extends the distributed assembly permutation flowshop scheduling problem to consider unrelated 
assembly machines and sequence-dependent setup times. A mixed-integer linear programming (MILP) model and a novel 
metaheuristic algorithm, called the Reinforcement Learning Iterated Greedy (RLIG) algorithm, are proposed to minimize 
the makespan of this problem. The RLIG algorithm applies a multi-seed hill-climbing strategy and an �−greedy selection 
strategy that can exploit and explore the existing solutions to find the best solutions for the addressed problem. The compu-
tational results, as based on extensive benchmark instances, show that the proposed RLIG algorithm is better than the MILP 
model at solving tiny-size problems. In solving the small- and large-size test instances, RLIG significantly outperforms the 
traditional iterated greedy algorithm. The main contribution of this work is to provide a highly effective and efficient approach 
to solving this novel scheduling problem.

Keywords  Scheduling · Distributed manufacturing · Distributed assembly permutation flowshop · Sequence-dependent 
setup times · Reinforcement learning algorithm

1  Introduction

The energetic applications of Industry 4.0 have attracted the 
attention of researchers in various fields. Recently, boom-
ing global demand and the rapid development of advanced 
communication technologies, such as 5G and the Internet 
of Things, have driven the development of the distributed 
manufacturing system (DMS) and accelerated the pace of 
production globalization. The application of DMS can effec-
tively manage complex production decisions for the supply 

chain system to reduce production costs, shorten response 
times, increase production flexibility, improve product qual-
ity, and reduce management risk (Renna 2012). Production 
planning must integrate the production schedules of each 
member of the supply chain to enhance the performance of 
the DMS (Rossit et al. 2019). The distributed scheduling 
problem (DSP) is a vital issue in the globalization of pro-
duction scheduling, which can help facilitate autonomous 
manufacturing and take a step towards Industry 4.0. There-
fore, DSP has received increasing attention from researchers 
and practitioners (Lin and Ying 2013; Ying and Lin 2017; 
Cheng et al. 2019; Pourhejazy et al. 2021) and is becoming 
one of the most critical developments in the field of produc-
tion scheduling.

DSP was first proposed by Jia et al. (2002), who presented 
a web-based scheduling system for a distributed manufac-
turing environment. Since then, DSP has been one of the 
prime examples of growing recognition, motivated by the 
fact that advanced communication systems can be used to 
make efficient production decisions in various DMSs (Ying 
et al. 2022). Many pioneering works on various DSPs have 
been proposed and become widely used in the automotive, 
consumer electronics, and other globalized manufacturing 
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industries; for example, Chan et al. (2005, 2006) presented 
genetic algorithms for DSPs in five multi-factory models and 
a flexible manufacturing system environment; Naderi and 
Ruiz (2010) proposed the distributed permutation flowshop 
scheduling problem (DPFSP) and proposed six mixed inte-
ger linear programming (MILP) models, two simple factory 
assignment rules, and 14 algorithms to minimize the makes-
pan among factories. The research boundaries of DSP were 
extended to distributed jobshop scheduling problems by Jia 
et al. (2007), De Giovanni and Pezzella (2010), and Naderi 
and Azab (2014), and to the distributed parallel-machine 
scheduling problem by Behnamian (2014). Based on the 
seminal study by Naderi and Ruiz (2010), some extensions 
of the basic DPFSP setting have been proposed for other 
modern industrial manufacturing systems. Among these pio-
neering research works, the distributed assembly permuta-
tion flowshop scheduling problem with flexible assembly 
(DAPFSP-FA, Zhang et al. 2018) is one of the most signifi-
cant problems.

Sequence-dependent setup times are the essential pro-
duction factors considered in many practical DMSs. Moreo-
ver, unrelated parallel machines have more general settings 
than the uniform parallel machines used in the assembly 
stage of DAPFSP-FA. However, to the best of our knowl-
edge, there has been no research on the DAPFSP-FA with 
unrelated assembly machines and sequence-dependent setup 
times, which is a significant production setting in a variety 
of industries. These facts inspired our research to extend 
DAPFSP-FA to include unrelated assembly machines and 
sequence-dependent setup times for a more general and prac-
tical globalized production scheduling mode. As shown in 
Fig. 1, the DMS of DAPFSP-FASDST has the two stages of 
production and assembly. The first stage (production) con-
sists of a distributed production system with g homogene-
ous factories/shops capable of handling all jobs/components, 
and each factory/shop is a permutation flowshop equipped 
with m machines disposed of in series. The second stage 
(flexible assembly) is equipped with q unrelated parallel 
machines that are functionally equivalent but have different 

processing speeds for different products. In line with a pre-
defined assembly plan,n components/jobs are assembled 
into t products, where each component/job belongs to only 
one product. Each component/job j(j ∈ {1, 2, ..., n}) must 
be assigned and produced in one of the factories, and the 
processing time of component/job j(j ∈ {1, 2, ..., n}) on 
the production machine PMi (i ∈ {1, 2, ..., m}) is Pj,i . The 
processing sequence of the components/jobs assigned to the 
same factory/shop remains unchanged on each machine. 
A product can be assembled when all of its jobs/compo-
nents have been completed in the production stage. Each 
product p (p = 1, 2, ..., t) requires a single assembly opera-
tion on any one of the assembly machines, denoted as AMs

(s = 1, 2, ..., q) , with corresponding assembly time APp, s , 
depending on the assembly machine to which it is assigned. 
The speeds of the assembly machines are not in constant pro-
portion to each other. Before processing each component/job, 
a job sequence-dependent setup time,Sj′, j, i (j� = 0, 1, ..., n; 
j = 1, 2, ..., n; j� ≠ j; i = 1, 2, ..., m), is incurred when job j 
is processed immediately after job j′ on production machine 
i . Similarly, the machines at the assembly stage have prod-
uct sequence-dependent setup times, denoted as ASp′, p, s 
(p� = 0, 1, ..., t; p = 1, 2, ..., t; p� ≠ p;s = 1, 2, ..., q),  i f 
product p is assembled on assembly machine s immediately 
after product p′ . The objective is to generate the correspond-
ing production sequence of jobs/components in each fac-
tory/shop and the corresponding assembly sequence in each 
assembly machine, in order to minimize the makespan.

Using the three-field notation proposed by Framinan 
et al. (2019), the addressed DAPFSP-FASDST is signified 
as DFm → Rm|prmu, STsd|Cmax, where DFm → Rm denotes 
that the DMS has two stages. The first stage, i.e., the pro-
duction stage, consists of distributed flowshops, and the 
second stage, i.e., the flexible assembly stage, is equipped 
with unrelated parallel machines; prmu designates that 
the shop type of each component production factory/
shop in the production stage is a permutation flowshop; 
STsd represents that sequence-dependent setup times are 
considered in both the production and assembly stages; 

Fig. 1   Schematic diagram of 
DAPFSP-FASDST
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and Cmax indicates that the objective of the schedule is to 
minimize the makespan. Without the production stage, the 
DFm → Rm|prmu, STsd|Cmax problem is reduced to the solu-
tion of the unrelated parallel machine scheduling problem 
with sequence-dependent setup times, which is an NP-hard 
problem in the strong sense (Ying et al. 2012). Therefore, 
we can easily conclude that the DFm → Rm|prmu, STsd|Cmax 
problem is also an NP-hard problem in the strong sense.

In addition, the following basic assumptions and limita-
tions are asserted for the DFm → Rm|prmu, STsd|Cmax prob-
lem addressed in this study:

Once a component/product is assigned to a factory/
machine, the planner cannot interrupt the processing/
assembly operation of a component/product or transfer 
it to other factories/machines.
Each component/product can only be processed on one 
production/assembly machine at a time, and each pro-
duction/assembly machine can handle only one compo-
nent/product at a time. Once the process has begun on a 
production/assembly machine, it cannot be interrupted 
until it is completed.
The ready times of all components/jobs are assumed to 
be zero; i.e., the components/jobs are available at the 
beginning of the planning horizon.
The component/product orders are independent of each 
other; therefore, the sequence of the component/product 
does not affect the production/assembly time.
The production/assembly machine is available through-
out the planning horizon, and there are no maintenance 
issues, failures, or other issues throughout the planning 
horizon.
The number of factories/machines, the number of com-
ponents/products, the production/assembly times, and 
the job/product sequence-dependent setup times are 
given by deterministic nonnegative integers.
Excluding the trivial cases, the number of components/
jobs is larger than the number of production/assembly 
machines.

Given the originality of the DFm → Rm|prmu, STsd|Cmax 
problem, a MILP model and a novel IG-based metaheuris-
tic, called the reinforcement learning iterated greedy 
(RLIG) algorithm, are presented in this study to mini-
mize the makespan. The main novelty and contribu-
tions of this study are to fill the research gap on the 
DFm → Rm|prmu, STsd|Cmax problem and offer a practical 
method for the promotion of real-world applications in a 
variety of industries.

2 � Literature review

The DPFSP has been extended to various production set-
tings, such as DMSs with heterogeneous factories (Li et al. 
2020a, 2020b; Meng and Pan 2021), group scheduling 
(Pan et al. 2022), hybrid flowshops (Ying and Lin 2018; 
Li et al. 2020c; Lei and Wang 2020), and integrated assem-
bly-production flowshops (Lin 2018; Wu et al. 2018, 2019; 
Lei et al. 2021). In addition, DPFSPs have been integrated 
with a number of practical features that facilitate their 
application in the real world; blocking conditions (Zhang 
et al. 2018; Li et al. 2019; Zhao et al. 2020), limited buffer 
constraints (Zhang and Xing 2019), no-wait (Lin and Ying 
2016; Komaki and Malakooti 2017; Li et al. 2020a), no-
idle (Ying et al. 2017; Cheng et al. 2019; Zhao et al. 2021), 
customer order-priority (Meng et al. 2019), time window 
constraints (Jing et al. 2020), machine-breakdowns (Wang 
et al. 2016), and preventive maintenance (Mao et al. 2021) 
are notable examples.

This section reviews the most important literature 
regarding the two well-known branches of the DPFSP, 
i.e., the distributed assembly permutation f lowshop 
scheduling problem (DAPFSP, Hatami et al. 2013) and 
the distributed assembly permutation flowshop schedul-
ing problem with flexible assembly (DAPFSP-FA, Zhang 
et al. 2018). Regarding the first branch of DPFSPs, Hatami 
et al. (2013) first added an assembly stage to DPFSP to 
form DAPFSP, which has the two stages of production and 
assembly. In the first stage (production), all jobs/compo-
nents are assigned to a distributed permutation flowshop 
manufacturing system, and upon completing all the jobs/
components of a particular product, product assembly is 
conducted in the second stage (assembly) using an assem-
bly machine. This setting usually occurs when different 
manufacturers supply the components and an assembly 
center in the parent company processes the final products. 
Hatami et al. (2013) proposed three construction heuristics 
and a variable neighborhood descent (VND) metaheuristic 
to minimize the makespan of DAPFSPs. The following 
year, Hatami et al. (2014) extended the DAPFSP prob-
lem to include sequence-dependent setup time constraints 
and presented two constructive heuristics for solving the 
distributed assembly permutation flowshop scheduling 
problem with sequence-dependent setup times. After that, 
Hatami et al. (2015) proposed two construction heuristic 
algorithms and an iterated greedy (IG)-based algorithm 
to solve this problem, and their computational results 
revealed that the IG-based algorithm performed better than 
the VND algorithm. To further improve the solution qual-
ity of the algorithms presented by Hatami et al. (2013), 
Li et al. (2015) presented a genetic algorithm (GA), Lin 
and Zhang (2016) presented a hybrid biogeography-based 
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optimization (HBBO) algorithm, and Wang and Wang 
(2016) proposed an estimation of the distribution algo-
rithm-based memetic algorithm (EDAMA) to solve 
DAPFSPs. Their experimental results showed that GA is 
superior to the three construction heuristic algorithms of 
Hatami et al. (2013), and HBBO and EDAMA outperform 
VND. Following these studies, Lin et al. (2017) presented 
a backtracking search hyper-heuristic (BS-HH) algorithm, 
and their results showed that BS-HH provides better solu-
tion quality and a shorter computation time than VND, 
HBBO, and EDAMA. Then, Pan et al. (2019) presented 
two VND metaheuristics and an IG-based approach for 
minimizing the makespan of DAPFSPs, and the experi-
mental results of 810 benchmark test problems confirmed 
that their approaches significantly outperform VND, GA, 
HBBO, EDAMA, BS-HH, and other existing algorithms. 
Huang et  al. (2021) considered the DAPFSP problem 
with the criterion of total flow time and proposed an IG-
based algorithm (gIGA) to solve it, and their computa-
tional results showed that gIGA is superior to the seven 
algorithms available in the literature. These breakthrough 
studies on DAPFSPs could effectively and efficiently 
coordinate the production components and final assembly 
scheduling to optimize the global supply chain system. 
More recently, Pourhejazy et al. (2022) extended the lim-
ited literature on DAPFSPs to the distributed two-stage 
production-assembly scheduling problems, proposed a 
meta-Lamarckian-based iterated greedy algorithm and 
compared it with the current-best-performing algorithm 
in the literature. The computational results revealed that 
this approach is a strong benchmark algorithm for solv-
ing this problem. Although this setting is widely used in 
globalized production, very little attention has been paid 
to this branch of the problem.

Regarding the second branch of DPFSPs, Zhang et al. 
(2018) first introduced DAPFSP-FA, which extends the 
assembly stage of DAPFSP from a single machine to multi-
ple machines. In the first stage (production), all jobs/compo-
nents are first assigned to a distributed permutation flowshop 
manufacturing system. As existing globalization production 
systems usually require greater flexibility during the assem-
bly stage to accommodate the paradigms of concurrent and 
mass production, the product assembly work is carried out 
directly after the production stage with a uniform parallel 
machine in the second stage (assembly). DAPFSP-FAs are 
widely used in many industries, especially globalized manu-
facturing companies, such as automotive and consumer elec-
tronics, which have many outsourced components. Zhang 
et al. (2018) proposed two metaheuristics, the hybrid varia-
ble neighborhood search (HVNS) and hybrid particle swarm 
optimization (HPSO), for minimizing the makespan on the 
DAPFSP with flexible assembly and sequence-independent 
setup times, and the extensive numerical results revealed 

that the performance of HPSO is superior to that of HVNS. 
Subsequently, Zhang et al. (2020) further investigated this 
new generation of scheduling problems and proposed a 
MILP model and a memetic algorithm to solve the same 
problem more effectively than HPSO. More recently, Yang 
and Xu (2021) proposed the distributed assembly permuta-
tion flowshop scheduling problem with flexible assembly 
and batch delivery to coordinate the supply chain scheduling 
of production and transportation, and presented four heu-
ristics algorithms, one VND algorithm, and two IG-based 
approaches (IG_desP and IG_desJ) to minimize the total cost 
of delivery and tardiness. The computational results revealed 
that IG_desJ provides higher quality solutions among the 
approaches. Pourhejazy et al. (2021) developed another 
IG-based algorithm, named iterated greedy with a product 
destruction mechanism (IGPD), to solve the DAPFSP with 
flexible assembly and sequence-independent setup times, 
and the computational results showed that IGPD significantly 
outperforms the HPSO and HVNS methods. More recently, 
Ying et al. (2022) extended DAPFSP to consider flexible 
assembly and sequence-independent setup times in a supply 
chain-like setting and proposed a MILP model, a construc-
tive heuristic, and customized metaheuristic algorithms to 
solve this problem. The computational results showed that 
the proposed algorithms outperformed the best performing 
algorithms and yielded the best-known solutions in almost 
all benchmark instances. As only a handful of articles have 
been published, and all of them were submitted in the last 
five years, further studies are needed to support the develop-
ment of this new branch of DPFSPs.

3 � Methodology

3.1 � MILP model

In this sub-section, a novel MILP model for solving small-
size DFm → Rm|prmu, STsd|Cmax problems was formulated. 
For this purpose, the various indices, parameters, and deci-
sion variables are defined, as follows.

3.1.1 � Indices

j′, j : Job, j ∈ {1, 2, ..., n} and j� ∈ {0, 1, ..., n} , where 0 
represents the dummy job.

i : Machine, i ∈ {1, 2, ..., m} at the production stage.
f  : Factory/Shop, f ∈ {1, 2, ..., g} at the production stage.
p, p′ : Product, p, p� ∈ {0, 1, 2, ..., t} , where 0 represents 

the dummy product.
s : Machine, s ∈ {1, 2, ..., q} at the assembly stage.
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3.1.2 � Parameters

n : Number of jobs to be processed.
m : Number of available production machines.
g : Number of production factories.
t : Number of products.
q : Number of available assembly machines ( q ≤ t).
Pj,i : Processing time of job j on the production machine i.
Sj′, j, i : Setup time of job j on the production machine i 

when it is processed after job j′.
APp, s : Assembly time of product p on the assembly 

machine s.
ASp′, p, s : Setup time of product p on the assembly machine 

s when it is processed after product p′.
Gp : The jobs associated with product p.
M : A sufficiently large constant.

3.1.3 � Decision variables

Ck, i, f  : Completion time of the job in position k on machine 
i at factory/shop f.

Xj, k, f  : Binary variable that takes value 1 if job j occupies 
position k in factory/shop f, and 0 otherwise.

Yp′, p, s : Binary variable; = 1 if product p is assembled after 
product p′ on assembly machine s ; = 0 , otherwise.

Zp, s : Binary variable; = 1 if product p is dispatched to 
assembly machine s ; = 0 , otherwise.

ARp, s : Starting time of assembling the product p on the 
assembly machine s.

ACp, s : Completion time of assembling product p on the 
assembly machine s.

This study proposed a position-based MILP model for the 
DFm → Rm|prmu, STsd|Cmax problem, as follows.

Minimize Cmax

subject to

(1)
n∑

k=1

g∑

f=1

Xj, k, f = 1, j = 0, 1, ..., n

(2)
n∑

j=1

Xj, k, f ≤ 1, k = 1, 2, ..., n; f = 1, 2, ..., g

(3)C1, 1, f =

n∑

j=1

Xj, 1, f ⋅ (pj, 1 + S0, j, 1), f = 1, 2, ..., g

(4)
Ck,i,f ≥ Ck,i−1,f +

n
∑

j=1
Xj,k,f ⋅ Pj,i + (

n
∑

j=1
Xj,k,f − 1) ⋅M,

k = 1, 2, ..., n; i = 2, 3, ..., m; f = 1, 2, ..., g

(5)

Ck,i,f ≥ Ck−1,i,f + Pj,i + Sj′,j, i + (Xj,k,f + Xj′,k−1,f − 2) ⋅M,
k = 1, 2, ..., n; i = 1, 2, ..., m; f = 1, 2, ..., g;
j′ = 0, 1, ..., n;, j = 1, 2, ..., n; j ≠ j′

(6)
n∑

j=1

Xj,k−1,f ≥

n∑

j=1

Xj,k,f , k = 1, 2, ..., n; f = 1, 2, ..., g

(7)

t∑

p�=0

p�≠p

Yp�,p,s−

t∑

p�=0

p�≠p

Yp,p�,s = 0; p = 1, 2,⋯ , n;s = 1, 2,⋯ , q,

(8)
q∑

s=1

t∑

p�=0, p�≠p

Yp�,p, s = 1 ; p = 1, ..., t

(9)
q∑

s=1

t∑

p=1, p�≠p

Yp�,p, s ≤ 1 ; p� = 1, 2, ..., t

(10)
t∑

p=1

Y0,p, s = 1, s = 1, 2, ..., q

(11)
Yp�, p, s + Yp,p�, s ≤ 1 , p� = 1, 2, ..., t − 1; p > p�; s = 1, 2, ..., q

(12)Zp,s −

t∑

p�

Yp�,p,s = 0;p = 1,⋯ t;s = 1,⋯ q;

(13)

ARp, s ≥ Ck,m, f + (Xj,k,f + Zp, s − 2) ⋅M,
p = 1, ..., t; s = 1, 2, ..., q; j ∈ Gp;
k = 1, 2, ..., n; ; f = 1, 2, ..., g

(14)
ACp, s ≥ ARp, s + APp, s + (Zp, s − 1) ⋅M,
s = 1, 2, ..., q; p = 0, 1, ..., t

(15)

ACp, s ≥ ACp′, s + ASp′,p, s + APp, s +
(

Yp′, p, s − 1
)

⋅M ,
s = 1, 2, ..., q; p, p′ = 0, 1, ..., t; p ≠ p′

(16)Cmax ≥ ACp, s, p = 0, 1, ..., t; s = 1, 2, ..., q

(17)
Ck,i,f ≥ 0 ; k = 1, 2, ..., n; i = 1, 2, ..., m; f = 1, 2, ..., g

(18)C0,i,f = 0 ; i = 1, 2, ..., m; f = 1, 2, ..., g

(19)
Xj,k,f ∈ {0, 1}, j = 0, 1, ..., n; i = 1, 2, ..., m; f = 1, 2, ..., g
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Constraint sets 1 and 2 restrict that a component/job can 
be assigned to only one position in a factory/shop, and a 
position in each factory/shop can be assigned one compo-
nent/job at most. Constraint set 3 computes the completion 
times of the first component/job to be processed on the first 
machine in each factory/shop. Constraint sets 4 and 5 set 
the inequality relationships between the completion times 
of the components/jobs on successive machines and priori-
ties, respectively. Constraint set 6 ensures that the positions 
of the assigned components/jobs in each factory/shop are 
consecutive. Constraint set 7 guarantees that the products 
are assembled on each machine sequentially. Constraint sets 
8 to 11 specify that a product can have only one predecessor 
and at most one successor. Constraint set 12 establishes a 
link between the two binary decision variables of Yp′, p, s and 
Zp, s . Constraint set 13 defines the start times of the prod-
ucts at the assembly machines. Constraint set 14 defines the 
inequality relations between the completion times and start 
times of the products at the assembly machines. Constraint 
set 15 defines the inequality relation between the comple-
tion time of a product and its predecessor. Constraint set 16 
calculates the maximum completion time of the products, 
i.e., the makespan. Finally, constraint sets 17 to 25 define 
the range for each decision variable. This MILP model has 
a large number of binary variables, which makes it superior 
in terms of both model size and computational complexity.

3.2 � Proposed metaheuristic

In recent decades, various optimization algorithms have 
been developed to solve complex problems (Vanchinathan 
and Valluvan 2018; Vanchinathan and Selvaganesan 2021; 
Vanchinathan et al. 2021; Khalifa et al. 2021). IG-based 
algorithms (Pourhejazy et  al. 2021, 2022) have gained 
recognition among researchers due to their effectiveness 
and efficiency in solving various DAPFSPs. Considering 
that the DFm → Rm|prmu, STsd|Cmax problem is NP-hard 
in the strong sense, this work proposed a novel IG-based 

(20)X0,0,f = 1, f = 1, 2, ..., g

(21)Y l, k, s ∈ {0, 1}l, k = 0, 1, ..., t; l ≠ k; s = 1, 2, ..., q

(22)Zp, s ∈ {0, 1},p = 0, 1, ..., t; s = 0, 1, ..., q;

(23)Cj, i ≥ 0 ; j = 0, 1, ..., n; i = 1, 2, ..., m

(24)ARk, s ≥ 0 ; k = 0, 1, ..., t; s = 1, 2, ..., q

(25)ACk, s ≥ 0 ; k = 0, 1, ..., t; s = 1, 2, ..., q

metaheuristic called RLIG to solve this complex supply-
chain-integrated scheduling problem.

The flowchart of the RLIG is shown in Fig. 2. First, a 
set of initial solutions � = {Π

1, Π2, ..., ΠNmax
} are gener-

ated using a specific constructive heuristic. Second, let 
Πbest be the best solution among {Π1, Π2, ..., ΠNmax

} and 
Cmax(Πbest) is the objective function value of the best solu-
tion Πbest . For each iteration, a solution ΠN is chosen from 
{Π

1, Π2, ..., ΠNmax
} by applying the �−greedy strategy and 

setting it as the incumbent solution, Π
incumbent

 . Then, apply 
the destruction and reconstruction operator to generate a new 
solution Πnew . Furthermore, the acceptance criteria are used 
to assess whether ΠN and Πbest are replaced by Πnew . The 
Boltzmann function, Exp(−100 ∗ ΔE), is used to determine 
whether or not ΠN is replaced by an inferior new solution, 
which may contribute to the search procedure escaping from 
the local optimum. A random number, r ∈ (0, 1) , is produced 
for this process. If r < Exp(−100 ∗ ΔE) , ΠN is replaced by 
Πnew� ; otherwise, Πnew� must be discarded. At the end of each 
iteration, the fitness values of solutions {Π1, Π2, ..., ΠNmax

} 
are updated. If the computational time exceeds the maximum 
allowable computation time, the RLIG procedure is termi-
nated. Following the termination of the RLIG procedure, 
the (near) global optimal schedule can be derived using the 
Πbest . The RLIG algorithm is explained in more detail in the 
following subsections.

3.2.1 � Solution representation

In this study, solution Π is represented by a single vector 
(SStage 1|SStage 2) , where SStage 1 and SStage 2 are the sequence of 
jobs/components of the production stage and the sequence of 
products of the assembly stage, respectively. SStage 1 consists 
of a permutation of n jobs/components divided into g divi-
sions by g − 1 “0”, where the f th (f = 1, 2, ..., g) division 
represents the processing sequence of jobs/components in 
the f th factory. Similarly, SStage 2 consists of a permutation of 
t products divided into q divisions by q − 1 “0”, where the sth
(s = 1, 2, ..., q) division represents the processing sequence 
of the products on the sth assembly machine.

For example, solution Π = (SStage 1|SStage 2) =(2, 3, 5, 0, 1, 
4, 6 | 1, 2, 0, 3) can be decoded, as follows. In the production 
stage, six jobs/components are assigned to two factories. The 
process sequences of jobs/components for factories 1 and 
2 are 2–3–5 and 1–4–6, respectively. Then, these compo-
nents are assigned and assembled into three products in the 
assembly stage using two assembly machines. The assembly 
sequences of the products for assembly machines 1 and 2 are 
1–2 and 3, respectively.
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Fig. 2   Flowchart of the RLIG 
algorithm
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3.2.2 � Main steps of RLIG

The main steps of RLIG are, as follows:

3.2.2.1  Step 1: generate an  initial solution set  Step 1.1: 
Sort t products in non-ascending order of the total process-
ing times of their jobs/components on all production 
machines,

∑
j∈Gp

∑m

i=1
Pj,i , and insert them into the initial list 

of products,LP ∶= {P
[1], ..., P[t]}, where P

[p] denotes the 
product in the position p (p = 1, 2, ..., t). Then, sort the cor-
responding jobs/components of each product in LP in non-
ascending order of their total processing times on all pro-
duction machines,

∑m

i=1
Pj,i, and insert them into the initial 

list of jobs/components, LC ∶= {�
[1], ...., �[n]}, where �

[j] 
denotes the job in the position j(j = 1, 2, ..., n).

Step 1.2: Initialize the partial sequence of the produc-
tion stage, SStage 1 ∶= {�

[1]}, and remove the corresponding 
job/component from LC.

Step 1.3: Sequence the first job/component in LC with 
the minimum makespan in the respective position in 
the current partial job/component sequence, SStage 1 , and 
remove this job/component from LC . Repeat this proce-
dure until all jobs/components in LC are sequenced and a 
complete schedule of jobs/components, SStage 1 , is yielded.

Step 1.4: Initialize the partial sequence of the assem-
bly stage, SStage 2 ∶= {P

[1]}, and remove the corresponding 
product from LP.

Step 1.5: Sequence the first product in LP with the mini-
mum makespan in the respective position in the current 
partial product sequence, SStage 2 , and remove this product 
from LP . Repeat this procedure until all products in LP are 
sequenced and a complete schedule of products, SStage 2 , 
is yielded.

Step 1.6: Let ΠN
∶= (SStage 1|SStage 2),∀N = 1, ..., Nmax , 

and Π
best

∶=(SStage 1|SStage 2).

3.2.2.2  Step 2: "−greedy destruction phase  Step 2.1: 
Apply the �−greedy strategy to select solution ΠN from the 
current solution set,{Π1, Π2, ..., ΠNmax

}, and set it as the 
incumbent solution, Πincumbent . When applying the �−greedy 
strategy, there is a probability of 1 − � (0 < 𝜀 < 1) selecting 
Π

best
 and a probability of � selecting a solution from other 

Nmax − 1 solutions using the roulette wheel selection tech-
nique.

Step 2.2: Select a product from the assembly machine 
with the maximum makespan among all assembly 
machines and randomly select � − 1 (� ≤ t) products from 
other assembly machines. Remove the jobs/components of 
the selected products from Πincumbent to Πd in their selecting 
order, and set the residual partial solution of Πincumbent after 
removing the jobs/components of the selected products as 
Πp . To avoid removing too many jobs/components, each 

job/component of the removed products has a 50% prob-
ability of being removed.

3.2.2.3  Step 3: reconstruction phase  Reinsert the jobs/
components in Πd into Πp one by one until a new complete 
solution, Πnew , is reconstructed. When inserting a job/
component in Πd into Πp , evaluate and select the best one 
among all possible positions.

3.2.2.4  Step 4: acceptance criteria  Use the following crite-
ria to assess whether or not ΠN and Πbest are replaced by 
Πnew:

IF Cmax(Πnew) ≤ Cmax(Π
N
) , set ΠN

∶= Πnew.
ELSE_IF generate Πnew� by swapping/inserting the com-

ponents/products of Πnew.
IF Cmax(Πnew� ) ≤ Cmax(Π

N
) , set ΠN

∶= Πnew�

ELSE_IF Cmax(Πnew� ) > Cmax(Π
N
) , generate r ~ U (0,1);

IF r < Exp(−100 ⋅ ΔE), , set ΠN
∶= Πnew�.

Otherwise, reject Πnew�.
IF Cmax(Π

N
) ≤ Cmax(Πbest) , set Πbest ∶= Π

N.
Here, Cmax(∙) is the makespan of a specific solution 

(∙) ; r ∈ [0, 1] denotes a random number that is randomly 
generated from the uniform distribution U(0,1); and 
ΔE = [Cmax(Πnew� ) − Cmax(Πincumbent)]∕[Cmax(Πincumbent)].

3.2.2.5  Step 5: update the  fitness function values  Apply 
the following formula to update the fitness function value 
of ΠN:

where fitN
iter

 denotes the fitness function value of ΠN used 
in the next iteration of the roulette wheel selection proce-
dure, and nN means the cumulative selected times of ΠN in 
the solution procedure.

3.2.2.6  Step 6: stop criterion  Repeat Steps 2 to 5 until the 
maximum allowable computation time, Tmax , is reached. In 
this study, Tmax = � ⋅ (g + m + q) ⋅ (n + t)∕1000 (CPU time 
in seconds), in which � is a parameter that controls the maxi-
mum allowed computation time.

The proposed RLIG algorithm benefits from both the 
multi-seed hill-climbing strategy and the �−greedy selection 
strategy. The multi-seed hill-climbing strategy can effec-
tively improve the diversification of traditional hill-climbing, 
which is one of the simplest and oldest local search tech-
nologies (Ying and Lin 2020, 2022). As the use of multi-
seed can prevent the search from being trapped in the local 
optima, this mechanism usually leads to relatively high-
quality results (Lin et al. 2011, 2013; Lin and Ying 2013; 
2015). To implement the multi-seed hill-climbing strategy, 
in Step 1, Nmax initial solutions were generated using the 
famous NEH constructive heuristic (Nawaz et al. 1983) to 

fitN
iter

=

nN − 1

nN
⋅ fitN

iter−1
+

1

nN
⋅ [Cmax(Πincumbent) − Cmax(Πnew)]
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increase diversification and escape local optimums. Steps 2 
and 3 are tailored �−greedy destruction and reconstruction 
mechanisms that are repeatedly used to improve the incum-
bent and best solutions found so far. The RLIG algorithm 
removed the selected products and 50% of the associated 
jobs/components from the incumbent solution using the 
�−greedy selection strategy in the deconstruction mecha-
nism. The �−greedy selection strategy is one of the most 
popular exploration methods used in reinforcement learning 
(Maqbool et al. 2012). This mechanism can be used as a per-
turbation mechanism to better balance the dilemma between 
exploration and exploitation in solving many combination 
optimization problems (Guo et al. 2020), as it allows more 
effective searching during the iterative process through 
reinforcement learning, thus, escaping the local optimum. 
Although the greedy algorithm has a strong exploitation 
capability, it neglects ‘inferior’ incumbent solutions, which 
can be significantly improved in the future; therefore, the 
main point of the �−greedy selection strategy is to adjust 
the utilization rate of the greedy or random algorithm by the 
probability � ( 𝜀 < 1 ). After that, the reconstruction mecha-
nism was applied to insert the removed jobs/components 
back into the remaining partial solution one by one, in order 
to generate a new complete solution. In Step 4, the accept-
ance criteria were applied to judge whether ΠN and Πbest 
are updated by Πnew or the neighborhood solution Πnew� as 
generated by swap or insertion operations. In Step 5, the 
fitness function value of ΠN , which is used in the next itera-
tion of the roulette wheel selection procedure, was updated 
according to the formula modified from the �−greedy algo-
rithm. To ensure a fair comparison with different compared 
algorithms, the iterative solution procedure was repeated 
until the termination condition, i.e., the maximum allowed 
computation time, is reached.

4 � Numerical analysis

The following section presents the experimental results 
to demonstrate the performance of RLIG and the MILP 
model in solving the DFm → Rm|prmu, STsd|Cmax problem. 
All compared algorithms were programmed using Visual 
C +  + (2019) and executed on a PC with the following speci-
fications: an Intel® Xeon® E3-1245 3.7 GHz V6 processor 
with 64 GB of RAM, and a Windows 10 operating system. 
The numerical analysis began with a description of the data-
set, performance measurement, and calibration parameters 
of the algorithm, followed by the solution of the MILP for-
mulation using Gurobi version 9.0, and concluded with a 
discussion of the performance of RLIG in the context of 
solving test problems of different sizes.

4.1 � Test problem set

The numerical experiments in this study were performed 
using the benchmark instances created by Zhang et  al. 
(2018). The dataset contained tiny-, small- and large-sized 
test instances. The tiny-size test instances were generated 
based on n = 10 jobs, f = {2, 3} factories, m = {2, 3} 
machines, t = {4, 5} products, and q = {2, 3, 4} assem-
bly machines, and one test instance was generated for each 
of the 1 × 23 × 3 = 24 combinations, thus, 24 tiny-size 
test instances were used in this study. The small-size test 
instances were generated based on n = {20, 24, 30} jobs, 
f = {2, 3} factories, m = {2, 3} machines, t = {6, 8} prod-
ucts, and q = {2, 3, 4} assembly machines, and ten test 
instances were generated for each of the 3 × 23 × 3 = 72 
combinations; therefore, 72 × 10 = 720 small-size test 
instances were used in this study. The large-size test 
instances were generated based on n = {100, 200} jobs, 
f = {6, 8} factories, m = {5, 10} machines, t = {30, 40} 
products, and q = {6, 8} assembly machines, and ten test 
instances were generated for each of the 25 = 32 combina-
tions; hence, 32 × 10 = 320 large-size test instances, as cre-
ated by Zhang et al. (2018), were used in this study. To eval-
uate the performance of the compared algorithms on larger 
test instances, we generated 32 × 10 = 320 very large-size 
test instances based on n = {500, 1000} jobs, f = {10, 20} 
factories,m = {12, 16} machines,t = {30, 40} products, and 
q = {60, 80} assembly machines, and ten test instances were 
generated for each of the 25 = 32 combinations, therefore, a 
total of 640 large-size test instances were used in this study. 
Following the approach of Zhang et al. (2018), six small-
size and six large-size test instances were generated to cali-
brate the parameters of RLIG, and the processing times of 
the jobs/components, the assembly times of the products, 
and the sequence-dependent setup times were all randomly 
generated from uniform distribution U[1, 99] and U[1, 20], 
respectively.

4.2 � Parameter calibration

As with many metaheuristics, the setting of the parameter 
values affected the performance of the RLIG algorithm. In 
this study, four levels for each of the Nmax,�,� , and � param-
eters were considered for the calibration of the RLIG algo-
rithm, where Nmax is the number of solutions in the solution 
set; � is the selection probability used in the �−greedy selec-
tion strategy; � is the number of products to be removed in 
the destruction phase; and � is a parameter controlling the 
maximum allowable computation time. A summary of the 
calibration configurations can be found in Table 1. The cali-
bration experiments were performed with 12 test instances 
considering 44 possible scenarios of parameter values. In 
order to efficiently obtain the best setting for each parameter, 
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type B of the Taguchi L16 orthogonal experimental design 
was employed, including 16 combinations of parameter set-
tings that underwent 20 runs for each random test instance, 
resulting in a total of 20 × 16 = 320 runs. To evaluate the 
performance of different scenarios of parameter values, we 
used the average relative percentage deviation (ARPD) of 
the obtained makespan value, which was calculated using 
the following equation, as the desired performance measure:

where Cave
max

(�) denotes the average makespan value for a 
particular parameter combination obtained by the algorithm 
in one run for a particular instance, and Cbest

max
(�) represents 

the best makespan value obtained by the algorithm when 
considering all 16 parameter combinations and 20 runs for 
the same test instance.

A comparison of the ARPDs obtained using different lev-
els of each parameter is presented in Table 2. According to 
the range of the ARPDs,� was the most significant parameter 
among the four parameters. Under a fixed maximal allowed 

(26)ARPD =

(
12∑

r=1

Cave
max

(�) − Cbest
max

(�)

Cbest
max

(�)

× 100

)
∕12

computation time, the larger the value of � , the more prod-
ucts and their associated jobs/components would be selected 
and removed from the incumbent solution, resulting in more 
time spent in the subsequent reconstruction phase. In other 
words, it would require more computation time to perform 
one iteration of the algorithm, resulting in fewer total itera-
tions. Consequently, if the maximum computation time was 
fixed, a larger � value would result in fewer candidate solu-
tions being evaluated and the best solution not being found. 
Among the four parameters, the allowed maximum computa-
tion time,� , was the second significant parameter. When the 
value of � was increased, better solutions could be obtained 
with more computation time. Compared with � and � , 
parameters Nmax and � had no significant impacts on the per-
formance of RLIG. According to the parameter calibration 
experimental results, the parameter values of Nmax,�,� , and 
� were set to 6, 2, 0.4, and 60, respectively. In related stud-
ies (Pan et al 2019; Zhang et al. 2020; Huang et al. 2021), 
the maximal computational time is set to � ⋅ m ⋅ n∕1000 sec-
onds, in which � is a parameter that controls the maximum 
allowed computation time, and n and m is the number of 
jobs and number of machines, respectively. In this study, 
m and n are expanded to (n + t) and (g + m + q) . Based on 
these estimates, the maximum allowable computation time 
of the RLIG algorithm in the following experiments was set 
to Tmax = 60 ⋅ (g + m + q) ⋅ (n + t)∕1000(CPU time in sec-
onds) to achieve an equilibrium between solution quality 
and computing time.

4.3 � Numerical results

To evaluate the performance of the compared algorithms 
from a broader perspective, the average relative percentage 
deviation (ARPD) was used to measure solutions obtained 
by different algorithms. The formula for calculating ARPD 
is, as follows:

where Cmax(�) is the makespan value obtained by a single 
run of the algorithm for a given test instance, and Cbest

max
(�) 

denotes the best makespan value obtained by all compared 
algorithms performing five runs for that test instance. An 
algorithm with smaller ARPDs would indicate that it could 
produce higher quality solutions than the compared algo-
rithms. Finally, the paired t-test was performed to determine 
whether the differences between the computational results 
of RLIG and IG were statistically significant.

To the best of our knowledge, in existing literature, IG-
based algorithms are by far the best meta-heuristics for 
solving DAPFSP-FA problems. Therefore, this study used 
the IG (i.e., the RLIG algorithm without the reinforcement 

(27)ARPD =

n∑

i=1

C
max

(�) − Cbest
max

(�)

Cbest
max

(�)

∕n × 100

Table 1   Orthogonal array and 
the obtained ARPDs

No N
max

� � � ARPD

1 3 2 0.1 30 1.0251
2 3 3 0.2 40 1.0463
3 3 4 0.3 50 1.2908
4 3 5 0.4 60 1.3015
5 4 2 0.2 50 0.9364
6 4 3 0.1 60 0.9510
7 4 4 0.4 30 1.3727
8 4 5 0.3 40 1.4267
9 5 2 0.3 60 0.8652
10 5 3 0.4 50 1.0071
11 5 4 0.1 40 1.3084
12 5 5 0.2 30 1.4834
13 6 2 0.4 40 0.9209
14 6 3 0.3 30 1.1595
15 6 4 0.2 60 1.1979
16 6 5 0.1 50 1.3367

Table 2   ARPDs obtained by different levels of each parameter

Setting N
max

� � �

1 1.1659 0.9369 1.1553 1.2601
2 1.1717 1.0410 1.1660 1.1756
3 1.1660 1.2924 1.1855 1.1427
4 1.1537 1.3871 1.1505 1.0789
Range 0.0180 0.4502 0.0350 0.1812
Rank 4 1 3 2
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learning mechanism) as the benchmark algorithms to 
evaluate the performance of RLIG. In order to compare 
the performance of RLIG with that of IG (i.e., the RLIG 
algorithm without the reinforcement learning mechanism) 
and the MILP model for solving the 24 tiny-size instances, 
the makespan value of the best solution ( Cmax ), the average 
makespan value (Ave.Cmax ), and the average computation 
time (T(s)) for five runs of each instance was summarized, 
as shown in Table 3. The MILP model was solved using 
Gurobi version 9.0, which is one of the strongest and 
widely used solvers with a maximum computation time of 
7200 s. As can be seen in Table 3, RLIG and IG achieved 
the same best solutions for each tiny-size instance. The 
solution quality of IG was as good as that of RLIG, except 
that the average makespan value of test instance T14, as 
obtained with IG, was slightly worse than that of RLIG. 
As shown in Table 3, both IG and RLIG yielded the same 
optimal solutions for the 19 test instances that could be 
optimally solved within 7200 s using the MILP model. 
Regarding the remaining five test instances that could not 
be optimally solved within 7200 s using the MILP model, 
the best solutions, as obtained using both IG and RLIG, 
were superior to the feasible solutions obtained using the 

MILP model. Since the computation times required by the 
RLIG and IG algorithms were significantly shorter than 
those of the MILP model, we could conclude that these 
algorithms were more appropriate for solving tiny-size 
problems.

In order to compare the performance of RLIG with that 
of IG for solving the small- and large-size test instances, 
the average makespan value of the best solution ( Cmax ), the 
average makespan value of five runs (Ave.Cmax ), and the 
average computation time (T(s)) for five runs of each subset 
test instance with different configurations are summarized 
in Table 4. In order to evaluate the performance of RLIG 
and IG from a broader perspective, the best ARPD values 
and total average ARPD values of their obtained makespan 
values with different configurations of the small- and large-
size test instances are summarized in Table 5. As shown in 
Tables 4 and 5, RLIG was superior to IG for all examined 
workloads and production scales, except for the subset of test 
instances n = 20 and q = 2 . The larger the production scale 
and workload, the greater the differences between RLIG and 
IG performance.

The overall computational results were visually com-
pared with various configurations, as shown in Fig. 3. As 

Table 3   Computational results of tiny-scale instances (best in bold)

MILP IG RLIG
Instance n f m p q C

max
LB T (s) C

max
Ave.C

max
T (s) C

max
Ave.C

max
T (s)

T01 10 2 2 4 2 363 363 2970.68 363 363.0 5.04 363 363.0 5.04
T02 10 2 2 4 3 329 329 5639.15 329 329.0 5.88 329 329.0 5.88
T03 10 2 2 4 4 348 348 4184.19 348 348.0 6.72 348 348.0 6.72
T04 10 2 2 5 2 259 259 2063.90 259 259.0 5.40 259 259.0 5.40
T05 10 2 2 5 3 415 212 7200.10 410 410.0 6.30 410 410.0 6.30
T06 10 2 2 5 4 339 153 7200.12 339 339.0 7.20 339 339.0 7.20
T07 10 2 3 4 2 386 386 5098.02 386 386.0 5.88 386 386.0 5.88
T08 10 2 3 4 3 421 215 7200.09 421 421.0 6.72 421 421.0 6.72
T09 10 2 3 4 4 347 244 7200.10 347 347.0 7.56 347 347.0 7.56
T10 10 2 3 5 2 404 181 7200.08 404 404.0 6.30 404 404.0 6.30
T11 10 2 3 5 3 412 167 7200.09 410 410.0 7.20 410 410.0 7.20
T12 10 2 3 5 4 479 183 7200.10 478 478.0 8.10 478 478.0 8.10
T13 10 3 2 4 2 344 344 1129.94 344 344.0 5.88 344 344.0 5.88
T14 10 3 2 4 3 269 263 7200.09 269 269.0 6.72 269 269.2 6.72
T15 10 3 2 4 4 210 210 1167.91 210 210.0 7.56 210 210.0 7.56
T16 10 3 2 5 2 294 294 6071.49 294 294.0 6.30 294 294.0 6.30
T17 10 3 2 5 3 286 286 6641.62 286 286.0 7.20 286 286.0 7.20
T18 10 3 2 5 4 256 256 5948.52 256 256.0 8.10 256 256.0 8.10
T19 10 3 3 4 2 237 237 839.69 237 237.0 6.72 237 237.0 6.72
T20 10 3 3 4 3 322 322 5420.35 322 322.0 7.56 322 322.0 7.56
T21 10 3 3 5 4 346 211 7200.15 335 335.0 9.00 335 335.0 9.00
T22 10 3 3 5 2 335 328 7200.15 335 335.0 7.20 335 335.0 7.20
T23 10 3 3 5 3 315 210 7200.12 311 311.0 8.10 311 311.0 8.10
T24 10 3 3 5 4 306 292 7200.15 306 306.0 9.00 306 306.0 9.00
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depicted in Fig. 3, the RLIG algorithm performed better 
with different production scales, such as the number of 
machines, factories, products, and assembly machines. 
When testing different workloads and production scales, 
IG performed slightly better than RLIG for n = 20 and 
q = 2 test instances; however, as the workload and produc-
tion scales were increased, the visual analysis of the com-
putational results clearly revealed that RLIG was superior 
to IG.

In order to verify whether the differences between the 
computational results of RLIG and IG were statistically 
significant, paired t-testing was performed, as shown in 
Table 6. The t-values in Table 6 confirmed at the confi-
dence interval of 0.05 that RLIG was significantly bet-
ter than IG, indicating that the multi-seed hill-climbing 

strategy and �−greedy selection strategy could improve the 
performance of IG and help RLIG find the best solution 
for the DFm → Rm|prmu, STsd|Cmax problem.

5 � Discussion

This study presented a MILP model and a highly 
effective and efficient RLIG algorithm to solve the 
DFm → Rm|prmu, STsd|Cmax problem. The analytical 
results, as based on extensive benchmark instances, show 
that the proposed RLIG algorithm is better than the MILP 
model in solving tiny-size problems. In addition, it signifi-
cantly outperformed the IG algorithm in solving small and 
large test instances.

Table 4   Results analysis for 
small- and large-size test 
instances (best in bold)

Configuration IG RLIG

C
max

Ave.C
max

T (s) C
max

Ave.C
max

T (s)

n 20 543.24 544.56 12.96 543.30 544.59 12.96
24 633.67 635.84 14.88 633.53 635.78 14.88
30 765.14 767.77 17.76 765.11 767.77 17.76
100 1244.93 1248.69 172.20 1244.86 1248.63 172.20
200 2119.38 2124.12 299.70 2114.98 2119.57 299.70
500 3097.08 3104.66 1453.80 3095.50 3102.55 1453.80
1000 5555.40 5560.36 2889.32 5554.09 5557.51 2889.32

f 2 757.59 759.60 14.25 757.58 759.67 14.25
3 537.11 539.18 16.15 537.05 539.09 16.15
6 1864.05 1868.36 224.85 1861.66 1866.18 224.85
8 1500.26 1504.44 247.05 1498.18 1502.03 247.05
15 4009.03 4014.90 2030.11 4008.11 4013.14 2030.11
20 4643.45 4650.12 2313.02 4641.49 4646.92 2313.01

m 2 613.82 615.78 14.25 613.76 615.74 14.25
3 680.88 683.00 16.15 680.88 683.02 16.15
6 1482.88 1487.05 210.90 1481.06 1484.90 210.90
8 1881.43 1885.76 261.00 1878.78 1883.31 261.00
12 4803.36 4810.13 2073.16 4801.71 4807.50 2073.16
16 3849.12 3854.88 2269.96 3847.89 3852.56 2269.96

t 6 648.58 650.58 14.72 648.54 650.60 14.72
8 646.12 648.20 15.68 646.09 648.16 15.68
30 1681.68 1685.88 226.80 1679.45 1683.69 226.80
40 1682.64 1686.93 245.10 1680.39 1684.51 245.10
60 4332.67 4338.42 2120.71 4330.64 4335.34 2120.71
80 4319.81 4326.60 2222.41 4318.96 4324.72 2222.41

q 2 655.36 657.70 13.30 655.40 657.62 13.30
3 642.81 644.72 15.20 642.73 644.76 15.20
4 643.88 645.74 17.10 643.81 645.76 17.10
6 1725.51 1730.09 231.72 1723.26 1727.75 231.72
8 1609.90 1613.60 243.00 1607.68 1611.36 243.00
12 4329.21 4335.66 2097.46 4328.31 4333.55 2097.46
16 4323.26 4329.36 2245.66 4321.28 4326.51 2245.66
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The advantage of the proposed RLIG algorithm is that 
it applies a multi-seed hill-climbing strategy, which is a 
framework to achieve diversification for preventing the 
search from being trapped in a local optimum, to generate 
the initial solution set founded on the NEH constructive 
heuristic. Furthermore, this study embedded an �−greedy 
selection strategy in the destruction phase of RLIG, which 
is used in reinforcement learning to formalize the notion of 
decision making under uncertainty. The �−greedy selec-
tion strategy can combine the random algorithm and the 
IG-based algorithm to handle the exploration and exploita-
tion dilemma through reinforcement learning during the 
iterative process. While traditional IG-based algorithms 
have strong exploitation ability, they easily get stuck in 
the local optimum. The �−greedy selection strategy is a 

perturbation mechanism that uses knowledge reinforce-
ment, as learned from historical search results, to adjust 
the exploration and exploitation of the RLIG algorithm 
and help the algorithm escape the local optimum. With-
out the multi-seed hill-climbing strategy and the �−greedy 
selection strategy, the IG-based algorithm may be local-
ized in a small region of the solution space, and thus, be 
trapped in a local optimum, which eliminates the possibil-
ity of finding an optimal solution.

The drawback of the proposed RLIG algorithm is that the 
multi-seed hill-climbing strategy and the �−greedy selection 
strategy may not work very well for small test instances, 
e.g., the subset test instances of n = 20 and q = 2 . The pos-
sible reasons are that the diversification, as resulted from 
the multi-seed hill-climbing strategy, and the perturbation, 
as resulted from the �−greedy selection strategy, are not able 
to exploit and explore the existing solutions to find the best 
solution for small test instances. The major limitation of the 
proposed RLIG algorithm is the computation time required 
for very large problems, e.g., n = 500 and 1000, which 
needs to be improved to make it more suitable for solving 
real-time scheduling problems. An additional limitation of 
this research is that the operational parameters were assumed 
to be deterministic.

6 � Conclusions and future research 
directions

Globalization and the rapid development of communication 
technology have accelerated the development of DMSs, and 
scheduling literature has evolved significantly with the inte-
gration of production and assembly operations in DMSs. 
This study addressed the DFm → Rm|prmu, STsd|Cmax 
problem, which has wide application in globalized produc-
tion but has never been explored. Given the novelty of the 
DFm → Rm|prmu, STsd|Cmax problem, we first contribute to 
the literature by developing a MILP model for the problem 
to fill the research gap of the scheduling theory. Consid-
ering that the DFm → Rm|prmu, STsd|Cmax problem is NP-
hard in the strong sense, an effective and efficient RLIG 
algorithm was also presented to solve this problem. The 
RLIG algorithm uses a multi-seed hill-climbing strategy 
and an �−greedy selection strategy that could exploit and 
explore the existing solutions to find the best solutions for 
the DFm → Rm|prmu, STsd|Cmax problem. Extensive numeri-
cal analysis with 1360 test instances shows that RLIG can 
achieve high quality solutions under different production 
scales and workloads, which makes it a viable approach for 
use in various industries with supply-chain-integrated sched-
uling requirements and a strong benchmark algorithm for 
optimizing the DFm → Rm|prmu, STsd|Cmax problem.

Table 5   ARPDs for small- and large-size test instances (best in bold)

Configura-
tion

IG RLIG

Best ARPD Ave. ARPD Best ARPD Ave. ARPD

n 20 0.046 0.301 0.057 0.305
24 0.135 0.490 0.113 0.477
30 0.131 0.487 0.126 0.484
100 0.131 0.437 0.130 0.435
200 0.232 0.464 0.023 0.242
500 0.114 0.359 0.066 0.296
1000 0.041 0.131 0.017 0.079

f 2 0.108 0.436 0.086 0.357
3 0.101 0.416 0.111 0.486
6 0.170 0.464 0.072 0.331
8 0.194 0.437 0.081 0.346
15 0.071 0.242 0.041 0.187
20 0.083 0.247 0.042 0.188

m 2 0.086 0.349 0.097 0.425
3 0.123 0.503 0.100 0.418
6 0.178 0.427 0.079 0.350
8 0.186 0.474 0.074 0.327
12 0.076 0.241 0.047 0.203
16 0.078 0.249 0.036 0.172

t 6 0.107 0.421 0.102 0.423
8 0.102 0.431 0.095 0.421
30 0.189 0.456 0.082 0.352
40 0.175 0.445 0.071 0.325
60 0.084 0.244 0.030 0.162
80 0.070 0.246 0.053 0.212

q 2 0.104 0.470 0.109 0.452
3 0.115 0.418 0.100 0.424
4 0.094 0.390 0.086 0.389
6 0.187 0.470 0.089 0.363
8 0.174 0.418 0.056 0.298
12 0.069 0.242 0.050 0.196
16 0.085 0.248 0.033 0.179
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Future research can be extended in several directions. 
First, as this study is the first theoretical advance made on 
the DFm → Rm|prmu, STsd|Cmax problem, further studies 
are desirable, and in particular, the development of sophis-
ticated exact, approximation, and heuristic algorithms to 

solve this problem. Second, the DAPFSP-FASDST prob-
lem with other performance criteria, e.g. the total weighted 
completion time, the total weighted tardiness, and the 
number of tardy jobs, deserves further study. Third, the 
DAPFSP-FASDST problem with process-related constraints, 
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Fig. 3   Visual analysis of the computational results
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such as blocking, no-wait, and no-idle, in the distributed 
flowshops of the production stage is worthy of further inves-
tigation. Fourth, a corresponding stochastic model of the 
DFm → Rm|prmu, STsd|Cmax problem is needed to bridge 
the gap between theoretical progress and industrial prac-
tice with non-deterministic operational parameters. Fifth, 
further investigation is essential to solve multi-objective 
DAPFSP-FASDST. Finally, the related problems of produc-
tion and assembly stages with additional or heterogeneous 
shop types, e.g., non-permutation flowshops, jobshops, and 
openshops, deserve further discussion.
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