
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2023) 14:11123–11138
https://doi.org/10.1007/s12652-022-04392-w

ORIGINAL RESEARCH

Reinforcement learning iterated greedy algorithm for distributed
assembly permutation flowshop scheduling problems

Kuo‑Ching Ying1 · Shih‑Wei Lin2,3,4

Received: 27 January 2022 / Accepted: 30 August 2022 / Published online: 19 September 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Integrating component and final assembly production plans is critical to optimizing the global supply chain production
system. This research extends the distributed assembly permutation flowshop scheduling problem to consider unrelated
assembly machines and sequence-dependent setup times. A mixed-integer linear programming (MILP) model and a novel
metaheuristic algorithm, called the Reinforcement Learning Iterated Greedy (RLIG) algorithm, are proposed to minimize
the makespan of this problem. The RLIG algorithm applies a multi-seed hill-climbing strategy and an �−greedy selection
strategy that can exploit and explore the existing solutions to find the best solutions for the addressed problem. The compu-
tational results, as based on extensive benchmark instances, show that the proposed RLIG algorithm is better than the MILP
model at solving tiny-size problems. In solving the small- and large-size test instances, RLIG significantly outperforms the
traditional iterated greedy algorithm. The main contribution of this work is to provide a highly effective and efficient approach
to solving this novel scheduling problem.

Keywords Scheduling · Distributed manufacturing · Distributed assembly permutation flowshop · Sequence-dependent
setup times · Reinforcement learning algorithm

1 Introduction

The energetic applications of Industry 4.0 have attracted the
attention of researchers in various fields. Recently, boom-
ing global demand and the rapid development of advanced
communication technologies, such as 5G and the Internet
of Things, have driven the development of the distributed
manufacturing system (DMS) and accelerated the pace of
production globalization. The application of DMS can effec-
tively manage complex production decisions for the supply

chain system to reduce production costs, shorten response
times, increase production flexibility, improve product qual-
ity, and reduce management risk (Renna 2012). Production
planning must integrate the production schedules of each
member of the supply chain to enhance the performance of
the DMS (Rossit et al. 2019). The distributed scheduling
problem (DSP) is a vital issue in the globalization of pro-
duction scheduling, which can help facilitate autonomous
manufacturing and take a step towards Industry 4.0. There-
fore, DSP has received increasing attention from researchers
and practitioners (Lin and Ying 2013; Ying and Lin 2017;
Cheng et al. 2019; Pourhejazy et al. 2021) and is becoming
one of the most critical developments in the field of produc-
tion scheduling.

DSP was first proposed by Jia et al. (2002), who presented
a web-based scheduling system for a distributed manufac-
turing environment. Since then, DSP has been one of the
prime examples of growing recognition, motivated by the
fact that advanced communication systems can be used to
make efficient production decisions in various DMSs (Ying
et al. 2022). Many pioneering works on various DSPs have
been proposed and become widely used in the automotive,
consumer electronics, and other globalized manufacturing

 * Shih-Wei Lin
 swlin@mail.cgu.edu.tw

 Kuo-Ching Ying
 kcying@ntut.edu.tw

1 Department of Industrial Engineering and Management,
National Taipei University of Technology, Taipei, Taiwan

2 Department of Information Management, Chang Gung
University, Taoyuan, Taiwan

3 Department of Industrial Engineering and Management,
Ming Chi University of Technology, Taipei, Taiwan

4 Department of Emergency Medicine, Keelung Chang Gung
Memorial Hospital, Keelung 204, Taiwan

http://orcid.org/0000-0003-1343-0838
http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-022-04392-w&domain=pdf

11124 K.-C. Ying, S.-W. Lin

1 3

industries; for example, Chan et al. (2005, 2006) presented
genetic algorithms for DSPs in five multi-factory models and
a flexible manufacturing system environment; Naderi and
Ruiz (2010) proposed the distributed permutation flowshop
scheduling problem (DPFSP) and proposed six mixed inte-
ger linear programming (MILP) models, two simple factory
assignment rules, and 14 algorithms to minimize the makes-
pan among factories. The research boundaries of DSP were
extended to distributed jobshop scheduling problems by Jia
et al. (2007), De Giovanni and Pezzella (2010), and Naderi
and Azab (2014), and to the distributed parallel-machine
scheduling problem by Behnamian (2014). Based on the
seminal study by Naderi and Ruiz (2010), some extensions
of the basic DPFSP setting have been proposed for other
modern industrial manufacturing systems. Among these pio-
neering research works, the distributed assembly permuta-
tion flowshop scheduling problem with flexible assembly
(DAPFSP-FA, Zhang et al. 2018) is one of the most signifi-
cant problems.

Sequence-dependent setup times are the essential pro-
duction factors considered in many practical DMSs. Moreo-
ver, unrelated parallel machines have more general settings
than the uniform parallel machines used in the assembly
stage of DAPFSP-FA. However, to the best of our knowl-
edge, there has been no research on the DAPFSP-FA with
unrelated assembly machines and sequence-dependent setup
times, which is a significant production setting in a variety
of industries. These facts inspired our research to extend
DAPFSP-FA to include unrelated assembly machines and
sequence-dependent setup times for a more general and prac-
tical globalized production scheduling mode. As shown in
Fig. 1, the DMS of DAPFSP-FASDST has the two stages of
production and assembly. The first stage (production) con-
sists of a distributed production system with g homogene-
ous factories/shops capable of handling all jobs/components,
and each factory/shop is a permutation flowshop equipped
with m machines disposed of in series. The second stage
(flexible assembly) is equipped with q unrelated parallel
machines that are functionally equivalent but have different

processing speeds for different products. In line with a pre-
defined assembly plan,n components/jobs are assembled
into t products, where each component/job belongs to only
one product. Each component/job j(j ∈ {1, 2, ..., n}) must
be assigned and produced in one of the factories, and the
processing time of component/job j(j ∈ {1, 2, ..., n}) on
the production machine PMi (i ∈ {1, 2, ..., m}) is Pj,i . The
processing sequence of the components/jobs assigned to the
same factory/shop remains unchanged on each machine.
A product can be assembled when all of its jobs/compo-
nents have been completed in the production stage. Each
product p (p = 1, 2, ..., t) requires a single assembly opera-
tion on any one of the assembly machines, denoted as AMs

(s = 1, 2, ..., q) , with corresponding assembly time APp, s ,
depending on the assembly machine to which it is assigned.
The speeds of the assembly machines are not in constant pro-
portion to each other. Before processing each component/job,
a job sequence-dependent setup time,Sj′, j, i (j� = 0, 1, ..., n;
j = 1, 2, ..., n; j� ≠ j; i = 1, 2, ..., m), is incurred when job j
is processed immediately after job j′ on production machine
i . Similarly, the machines at the assembly stage have prod-
uct sequence-dependent setup times, denoted as ASp′, p, s
(p� = 0, 1, ..., t; p = 1, 2, ..., t; p� ≠ p;s = 1, 2, ..., q), i f
product p is assembled on assembly machine s immediately
after product p′ . The objective is to generate the correspond-
ing production sequence of jobs/components in each fac-
tory/shop and the corresponding assembly sequence in each
assembly machine, in order to minimize the makespan.

Using the three-field notation proposed by Framinan
et al. (2019), the addressed DAPFSP-FASDST is signified
as DFm → Rm|prmu, STsd|Cmax, where DFm → Rm denotes
that the DMS has two stages. The first stage, i.e., the pro-
duction stage, consists of distributed flowshops, and the
second stage, i.e., the flexible assembly stage, is equipped
with unrelated parallel machines; prmu designates that
the shop type of each component production factory/
shop in the production stage is a permutation flowshop;
STsd represents that sequence-dependent setup times are
considered in both the production and assembly stages;

Fig. 1 Schematic diagram of
DAPFSP-FASDST

J1 J2

J3 J4

J5 J6

J7

J9

J8

Jobs

PM1 PM2 PM3

Factory 1

PM1 PM2 PM3

Factory 2

Production Stage

AM1

AM2

Assembly Stage Products

P1

P2

P3

J10

P4
AM3

11125Reinforcement learning iterated greedy algorithm for distributed assembly permutation…

1 3

and Cmax indicates that the objective of the schedule is to
minimize the makespan. Without the production stage, the
DFm → Rm|prmu, STsd|Cmax problem is reduced to the solu-
tion of the unrelated parallel machine scheduling problem
with sequence-dependent setup times, which is an NP-hard
problem in the strong sense (Ying et al. 2012). Therefore,
we can easily conclude that the DFm → Rm|prmu, STsd|Cmax
problem is also an NP-hard problem in the strong sense.

In addition, the following basic assumptions and limita-
tions are asserted for the DFm → Rm|prmu, STsd|Cmax prob-
lem addressed in this study:

Once a component/product is assigned to a factory/
machine, the planner cannot interrupt the processing/
assembly operation of a component/product or transfer
it to other factories/machines.
Each component/product can only be processed on one
production/assembly machine at a time, and each pro-
duction/assembly machine can handle only one compo-
nent/product at a time. Once the process has begun on a
production/assembly machine, it cannot be interrupted
until it is completed.
The ready times of all components/jobs are assumed to
be zero; i.e., the components/jobs are available at the
beginning of the planning horizon.
The component/product orders are independent of each
other; therefore, the sequence of the component/product
does not affect the production/assembly time.
The production/assembly machine is available through-
out the planning horizon, and there are no maintenance
issues, failures, or other issues throughout the planning
horizon.
The number of factories/machines, the number of com-
ponents/products, the production/assembly times, and
the job/product sequence-dependent setup times are
given by deterministic nonnegative integers.
Excluding the trivial cases, the number of components/
jobs is larger than the number of production/assembly
machines.

Given the originality of the DFm → Rm|prmu, STsd|Cmax
problem, a MILP model and a novel IG-based metaheuris-
tic, called the reinforcement learning iterated greedy
(RLIG) algorithm, are presented in this study to mini-
mize the makespan. The main novelty and contribu-
tions of this study are to fill the research gap on the
DFm → Rm|prmu, STsd|Cmax problem and offer a practical
method for the promotion of real-world applications in a
variety of industries.

2 Literature review

The DPFSP has been extended to various production set-
tings, such as DMSs with heterogeneous factories (Li et al.
2020a, 2020b; Meng and Pan 2021), group scheduling
(Pan et al. 2022), hybrid flowshops (Ying and Lin 2018;
Li et al. 2020c; Lei and Wang 2020), and integrated assem-
bly-production flowshops (Lin 2018; Wu et al. 2018, 2019;
Lei et al. 2021). In addition, DPFSPs have been integrated
with a number of practical features that facilitate their
application in the real world; blocking conditions (Zhang
et al. 2018; Li et al. 2019; Zhao et al. 2020), limited buffer
constraints (Zhang and Xing 2019), no-wait (Lin and Ying
2016; Komaki and Malakooti 2017; Li et al. 2020a), no-
idle (Ying et al. 2017; Cheng et al. 2019; Zhao et al. 2021),
customer order-priority (Meng et al. 2019), time window
constraints (Jing et al. 2020), machine-breakdowns (Wang
et al. 2016), and preventive maintenance (Mao et al. 2021)
are notable examples.

This section reviews the most important literature
regarding the two well-known branches of the DPFSP,
i.e., the distributed assembly permutation f lowshop
scheduling problem (DAPFSP, Hatami et al. 2013) and
the distributed assembly permutation flowshop schedul-
ing problem with flexible assembly (DAPFSP-FA, Zhang
et al. 2018). Regarding the first branch of DPFSPs, Hatami
et al. (2013) first added an assembly stage to DPFSP to
form DAPFSP, which has the two stages of production and
assembly. In the first stage (production), all jobs/compo-
nents are assigned to a distributed permutation flowshop
manufacturing system, and upon completing all the jobs/
components of a particular product, product assembly is
conducted in the second stage (assembly) using an assem-
bly machine. This setting usually occurs when different
manufacturers supply the components and an assembly
center in the parent company processes the final products.
Hatami et al. (2013) proposed three construction heuristics
and a variable neighborhood descent (VND) metaheuristic
to minimize the makespan of DAPFSPs. The following
year, Hatami et al. (2014) extended the DAPFSP prob-
lem to include sequence-dependent setup time constraints
and presented two constructive heuristics for solving the
distributed assembly permutation flowshop scheduling
problem with sequence-dependent setup times. After that,
Hatami et al. (2015) proposed two construction heuristic
algorithms and an iterated greedy (IG)-based algorithm
to solve this problem, and their computational results
revealed that the IG-based algorithm performed better than
the VND algorithm. To further improve the solution qual-
ity of the algorithms presented by Hatami et al. (2013),
Li et al. (2015) presented a genetic algorithm (GA), Lin
and Zhang (2016) presented a hybrid biogeography-based

11126 K.-C. Ying, S.-W. Lin

1 3

optimization (HBBO) algorithm, and Wang and Wang
(2016) proposed an estimation of the distribution algo-
rithm-based memetic algorithm (EDAMA) to solve
DAPFSPs. Their experimental results showed that GA is
superior to the three construction heuristic algorithms of
Hatami et al. (2013), and HBBO and EDAMA outperform
VND. Following these studies, Lin et al. (2017) presented
a backtracking search hyper-heuristic (BS-HH) algorithm,
and their results showed that BS-HH provides better solu-
tion quality and a shorter computation time than VND,
HBBO, and EDAMA. Then, Pan et al. (2019) presented
two VND metaheuristics and an IG-based approach for
minimizing the makespan of DAPFSPs, and the experi-
mental results of 810 benchmark test problems confirmed
that their approaches significantly outperform VND, GA,
HBBO, EDAMA, BS-HH, and other existing algorithms.
Huang et al. (2021) considered the DAPFSP problem
with the criterion of total flow time and proposed an IG-
based algorithm (gIGA) to solve it, and their computa-
tional results showed that gIGA is superior to the seven
algorithms available in the literature. These breakthrough
studies on DAPFSPs could effectively and efficiently
coordinate the production components and final assembly
scheduling to optimize the global supply chain system.
More recently, Pourhejazy et al. (2022) extended the lim-
ited literature on DAPFSPs to the distributed two-stage
production-assembly scheduling problems, proposed a
meta-Lamarckian-based iterated greedy algorithm and
compared it with the current-best-performing algorithm
in the literature. The computational results revealed that
this approach is a strong benchmark algorithm for solv-
ing this problem. Although this setting is widely used in
globalized production, very little attention has been paid
to this branch of the problem.

Regarding the second branch of DPFSPs, Zhang et al.
(2018) first introduced DAPFSP-FA, which extends the
assembly stage of DAPFSP from a single machine to multi-
ple machines. In the first stage (production), all jobs/compo-
nents are first assigned to a distributed permutation flowshop
manufacturing system. As existing globalization production
systems usually require greater flexibility during the assem-
bly stage to accommodate the paradigms of concurrent and
mass production, the product assembly work is carried out
directly after the production stage with a uniform parallel
machine in the second stage (assembly). DAPFSP-FAs are
widely used in many industries, especially globalized manu-
facturing companies, such as automotive and consumer elec-
tronics, which have many outsourced components. Zhang
et al. (2018) proposed two metaheuristics, the hybrid varia-
ble neighborhood search (HVNS) and hybrid particle swarm
optimization (HPSO), for minimizing the makespan on the
DAPFSP with flexible assembly and sequence-independent
setup times, and the extensive numerical results revealed

that the performance of HPSO is superior to that of HVNS.
Subsequently, Zhang et al. (2020) further investigated this
new generation of scheduling problems and proposed a
MILP model and a memetic algorithm to solve the same
problem more effectively than HPSO. More recently, Yang
and Xu (2021) proposed the distributed assembly permuta-
tion flowshop scheduling problem with flexible assembly
and batch delivery to coordinate the supply chain scheduling
of production and transportation, and presented four heu-
ristics algorithms, one VND algorithm, and two IG-based
approaches (IG_desP and IG_desJ) to minimize the total cost
of delivery and tardiness. The computational results revealed
that IG_desJ provides higher quality solutions among the
approaches. Pourhejazy et al. (2021) developed another
IG-based algorithm, named iterated greedy with a product
destruction mechanism (IGPD), to solve the DAPFSP with
flexible assembly and sequence-independent setup times,
and the computational results showed that IGPD significantly
outperforms the HPSO and HVNS methods. More recently,
Ying et al. (2022) extended DAPFSP to consider flexible
assembly and sequence-independent setup times in a supply
chain-like setting and proposed a MILP model, a construc-
tive heuristic, and customized metaheuristic algorithms to
solve this problem. The computational results showed that
the proposed algorithms outperformed the best performing
algorithms and yielded the best-known solutions in almost
all benchmark instances. As only a handful of articles have
been published, and all of them were submitted in the last
five years, further studies are needed to support the develop-
ment of this new branch of DPFSPs.

3 Methodology

3.1 MILP model

In this sub-section, a novel MILP model for solving small-
size DFm → Rm|prmu, STsd|Cmax problems was formulated.
For this purpose, the various indices, parameters, and deci-
sion variables are defined, as follows.

3.1.1 Indices

j′, j : Job, j ∈ {1, 2, ..., n} and j� ∈ {0, 1, ..., n} , where 0
represents the dummy job.

i : Machine, i ∈ {1, 2, ..., m} at the production stage.
f : Factory/Shop, f ∈ {1, 2, ..., g} at the production stage.
p, p′ : Product, p, p� ∈ {0, 1, 2, ..., t} , where 0 represents

the dummy product.
s : Machine, s ∈ {1, 2, ..., q} at the assembly stage.

11127Reinforcement learning iterated greedy algorithm for distributed assembly permutation…

1 3

3.1.2 Parameters

n : Number of jobs to be processed.
m : Number of available production machines.
g : Number of production factories.
t : Number of products.
q : Number of available assembly machines (q ≤ t).
Pj,i : Processing time of job j on the production machine i.
Sj′, j, i : Setup time of job j on the production machine i

when it is processed after job j′.
APp, s : Assembly time of product p on the assembly

machine s.
ASp′, p, s : Setup time of product p on the assembly machine

s when it is processed after product p′.
Gp : The jobs associated with product p.
M : A sufficiently large constant.

3.1.3 Decision variables

Ck, i, f : Completion time of the job in position k on machine
i at factory/shop f.

Xj, k, f : Binary variable that takes value 1 if job j occupies
position k in factory/shop f, and 0 otherwise.

Yp′, p, s : Binary variable; = 1 if product p is assembled after
product p′ on assembly machine s ; = 0 , otherwise.

Zp, s : Binary variable; = 1 if product p is dispatched to
assembly machine s ; = 0 , otherwise.

ARp, s : Starting time of assembling the product p on the
assembly machine s.

ACp, s : Completion time of assembling product p on the
assembly machine s.

This study proposed a position-based MILP model for the
DFm → Rm|prmu, STsd|Cmax problem, as follows.

Minimize Cmax

subject to

(1)
n∑

k=1

g∑

f=1

Xj, k, f = 1, j = 0, 1, ..., n

(2)
n∑

j=1

Xj, k, f ≤ 1, k = 1, 2, ..., n; f = 1, 2, ..., g

(3)C1, 1, f =

n∑

j=1

Xj, 1, f ⋅ (pj, 1 + S0, j, 1), f = 1, 2, ..., g

(4)
Ck,i,f ≥ Ck,i−1,f +

n
∑

j=1
Xj,k,f ⋅ Pj,i + (

n
∑

j=1
Xj,k,f − 1) ⋅M,

k = 1, 2, ..., n; i = 2, 3, ..., m; f = 1, 2, ..., g

(5)

Ck,i,f ≥ Ck−1,i,f + Pj,i + Sj′,j, i + (Xj,k,f + Xj′,k−1,f − 2) ⋅M,
k = 1, 2, ..., n; i = 1, 2, ..., m; f = 1, 2, ..., g;
j′ = 0, 1, ..., n;, j = 1, 2, ..., n; j ≠ j′

(6)
n∑

j=1

Xj,k−1,f ≥

n∑

j=1

Xj,k,f , k = 1, 2, ..., n; f = 1, 2, ..., g

(7)

t∑

p�=0

p�≠p

Yp�,p,s−

t∑

p�=0

p�≠p

Yp,p�,s = 0; p = 1, 2,⋯ , n;s = 1, 2,⋯ , q,

(8)
q∑

s=1

t∑

p�=0, p�≠p

Yp�,p, s = 1 ; p = 1, ..., t

(9)
q∑

s=1

t∑

p=1, p�≠p

Yp�,p, s ≤ 1 ; p� = 1, 2, ..., t

(10)
t∑

p=1

Y0,p, s = 1, s = 1, 2, ..., q

(11)
Yp�, p, s + Yp,p�, s ≤ 1 , p� = 1, 2, ..., t − 1; p > p�; s = 1, 2, ..., q

(12)Zp,s −

t∑

p�

Yp�,p,s = 0;p = 1,⋯ t;s = 1,⋯ q;

(13)

ARp, s ≥ Ck,m, f + (Xj,k,f + Zp, s − 2) ⋅M,
p = 1, ..., t; s = 1, 2, ..., q; j ∈ Gp;
k = 1, 2, ..., n; ; f = 1, 2, ..., g

(14)
ACp, s ≥ ARp, s + APp, s + (Zp, s − 1) ⋅M,
s = 1, 2, ..., q; p = 0, 1, ..., t

(15)

ACp, s ≥ ACp′, s + ASp′,p, s + APp, s +
(

Yp′, p, s − 1
)

⋅M ,
s = 1, 2, ..., q; p, p′ = 0, 1, ..., t; p ≠ p′

(16)Cmax ≥ ACp, s, p = 0, 1, ..., t; s = 1, 2, ..., q

(17)
Ck,i,f ≥ 0 ; k = 1, 2, ..., n; i = 1, 2, ..., m; f = 1, 2, ..., g

(18)C0,i,f = 0 ; i = 1, 2, ..., m; f = 1, 2, ..., g

(19)
Xj,k,f ∈ {0, 1}, j = 0, 1, ..., n; i = 1, 2, ..., m; f = 1, 2, ..., g

11128 K.-C. Ying, S.-W. Lin

1 3

Constraint sets 1 and 2 restrict that a component/job can
be assigned to only one position in a factory/shop, and a
position in each factory/shop can be assigned one compo-
nent/job at most. Constraint set 3 computes the completion
times of the first component/job to be processed on the first
machine in each factory/shop. Constraint sets 4 and 5 set
the inequality relationships between the completion times
of the components/jobs on successive machines and priori-
ties, respectively. Constraint set 6 ensures that the positions
of the assigned components/jobs in each factory/shop are
consecutive. Constraint set 7 guarantees that the products
are assembled on each machine sequentially. Constraint sets
8 to 11 specify that a product can have only one predecessor
and at most one successor. Constraint set 12 establishes a
link between the two binary decision variables of Yp′, p, s and
Zp, s . Constraint set 13 defines the start times of the prod-
ucts at the assembly machines. Constraint set 14 defines the
inequality relations between the completion times and start
times of the products at the assembly machines. Constraint
set 15 defines the inequality relation between the comple-
tion time of a product and its predecessor. Constraint set 16
calculates the maximum completion time of the products,
i.e., the makespan. Finally, constraint sets 17 to 25 define
the range for each decision variable. This MILP model has
a large number of binary variables, which makes it superior
in terms of both model size and computational complexity.

3.2 Proposed metaheuristic

In recent decades, various optimization algorithms have
been developed to solve complex problems (Vanchinathan
and Valluvan 2018; Vanchinathan and Selvaganesan 2021;
Vanchinathan et al. 2021; Khalifa et al. 2021). IG-based
algorithms (Pourhejazy et al. 2021, 2022) have gained
recognition among researchers due to their effectiveness
and efficiency in solving various DAPFSPs. Considering
that the DFm → Rm|prmu, STsd|Cmax problem is NP-hard
in the strong sense, this work proposed a novel IG-based

(20)X0,0,f = 1, f = 1, 2, ..., g

(21)Y l, k, s ∈ {0, 1}l, k = 0, 1, ..., t; l ≠ k; s = 1, 2, ..., q

(22)Zp, s ∈ {0, 1},p = 0, 1, ..., t; s = 0, 1, ..., q;

(23)Cj, i ≥ 0 ; j = 0, 1, ..., n; i = 1, 2, ..., m

(24)ARk, s ≥ 0 ; k = 0, 1, ..., t; s = 1, 2, ..., q

(25)ACk, s ≥ 0 ; k = 0, 1, ..., t; s = 1, 2, ..., q

metaheuristic called RLIG to solve this complex supply-
chain-integrated scheduling problem.

The flowchart of the RLIG is shown in Fig. 2. First, a
set of initial solutions � = {Π

1, Π2, ..., ΠNmax
} are gener-

ated using a specific constructive heuristic. Second, let
Πbest be the best solution among {Π1, Π2, ..., ΠNmax

} and
Cmax(Πbest) is the objective function value of the best solu-
tion Πbest . For each iteration, a solution ΠN is chosen from
{Π

1, Π2, ..., ΠNmax
} by applying the �−greedy strategy and

setting it as the incumbent solution, Π
incumbent

 . Then, apply
the destruction and reconstruction operator to generate a new
solution Πnew . Furthermore, the acceptance criteria are used
to assess whether ΠN and Πbest are replaced by Πnew . The
Boltzmann function, Exp(−100 ∗ ΔE), is used to determine
whether or not ΠN is replaced by an inferior new solution,
which may contribute to the search procedure escaping from
the local optimum. A random number, r ∈ (0, 1) , is produced
for this process. If r < Exp(−100 ∗ ΔE) , ΠN is replaced by
Πnew� ; otherwise, Πnew� must be discarded. At the end of each
iteration, the fitness values of solutions {Π1, Π2, ..., ΠNmax

}
are updated. If the computational time exceeds the maximum
allowable computation time, the RLIG procedure is termi-
nated. Following the termination of the RLIG procedure,
the (near) global optimal schedule can be derived using the
Πbest . The RLIG algorithm is explained in more detail in the
following subsections.

3.2.1 Solution representation

In this study, solution Π is represented by a single vector
(SStage 1|SStage 2) , where SStage 1 and SStage 2 are the sequence of
jobs/components of the production stage and the sequence of
products of the assembly stage, respectively. SStage 1 consists
of a permutation of n jobs/components divided into g divi-
sions by g − 1 “0”, where the f th (f = 1, 2, ..., g) division
represents the processing sequence of jobs/components in
the f th factory. Similarly, SStage 2 consists of a permutation of
t products divided into q divisions by q − 1 “0”, where the sth
(s = 1, 2, ..., q) division represents the processing sequence
of the products on the sth assembly machine.

For example, solution Π = (SStage 1|SStage 2) =(2, 3, 5, 0, 1,
4, 6 | 1, 2, 0, 3) can be decoded, as follows. In the production
stage, six jobs/components are assigned to two factories. The
process sequences of jobs/components for factories 1 and
2 are 2–3–5 and 1–4–6, respectively. Then, these compo-
nents are assigned and assembled into three products in the
assembly stage using two assembly machines. The assembly
sequences of the products for assembly machines 1 and 2 are
1–2 and 3, respectively.

11129Reinforcement learning iterated greedy algorithm for distributed assembly permutation…

1 3

Fig. 2 Flowchart of the RLIG
algorithm

11130 K.-C. Ying, S.-W. Lin

1 3

3.2.2 Main steps of RLIG

The main steps of RLIG are, as follows:

3.2.2.1 Step 1: generate an initial solution set Step 1.1:
Sort t products in non-ascending order of the total process-
ing times of their jobs/components on all production
machines,

∑
j∈Gp

∑m

i=1
Pj,i , and insert them into the initial list

of products,LP ∶= {P
[1], ..., P[t]}, where P

[p] denotes the
product in the position p (p = 1, 2, ..., t). Then, sort the cor-
responding jobs/components of each product in LP in non-
ascending order of their total processing times on all pro-
duction machines,

∑m

i=1
Pj,i, and insert them into the initial

list of jobs/components, LC ∶= {�
[1],, �[n]}, where �

[j]
denotes the job in the position j(j = 1, 2, ..., n).

Step 1.2: Initialize the partial sequence of the produc-
tion stage, SStage 1 ∶= {�

[1]}, and remove the corresponding
job/component from LC.

Step 1.3: Sequence the first job/component in LC with
the minimum makespan in the respective position in
the current partial job/component sequence, SStage 1 , and
remove this job/component from LC . Repeat this proce-
dure until all jobs/components in LC are sequenced and a
complete schedule of jobs/components, SStage 1 , is yielded.

Step 1.4: Initialize the partial sequence of the assem-
bly stage, SStage 2 ∶= {P

[1]}, and remove the corresponding
product from LP.

Step 1.5: Sequence the first product in LP with the mini-
mum makespan in the respective position in the current
partial product sequence, SStage 2 , and remove this product
from LP . Repeat this procedure until all products in LP are
sequenced and a complete schedule of products, SStage 2 ,
is yielded.

Step 1.6: Let ΠN
∶= (SStage 1|SStage 2),∀N = 1, ..., Nmax ,

and Π
best

∶=(SStage 1|SStage 2).

3.2.2.2 Step 2: "−greedy destruction phase Step 2.1:
Apply the �−greedy strategy to select solution ΠN from the
current solution set,{Π1, Π2, ..., ΠNmax

}, and set it as the
incumbent solution, Πincumbent . When applying the �−greedy
strategy, there is a probability of 1 − � (0 < 𝜀 < 1) selecting
Π

best
 and a probability of � selecting a solution from other

Nmax − 1 solutions using the roulette wheel selection tech-
nique.

Step 2.2: Select a product from the assembly machine
with the maximum makespan among all assembly
machines and randomly select � − 1 (� ≤ t) products from
other assembly machines. Remove the jobs/components of
the selected products from Πincumbent to Πd in their selecting
order, and set the residual partial solution of Πincumbent after
removing the jobs/components of the selected products as
Πp . To avoid removing too many jobs/components, each

job/component of the removed products has a 50% prob-
ability of being removed.

3.2.2.3 Step 3: reconstruction phase Reinsert the jobs/
components in Πd into Πp one by one until a new complete
solution, Πnew , is reconstructed. When inserting a job/
component in Πd into Πp , evaluate and select the best one
among all possible positions.

3.2.2.4 Step 4: acceptance criteria Use the following crite-
ria to assess whether or not ΠN and Πbest are replaced by
Πnew:

IF Cmax(Πnew) ≤ Cmax(Π
N
) , set ΠN

∶= Πnew.
ELSE_IF generate Πnew� by swapping/inserting the com-

ponents/products of Πnew.
IF Cmax(Πnew�) ≤ Cmax(Π

N
) , set ΠN

∶= Πnew�

ELSE_IF Cmax(Πnew�) > Cmax(Π
N
) , generate r ~ U (0,1);

IF r < Exp(−100 ⋅ ΔE), , set ΠN
∶= Πnew�.

Otherwise, reject Πnew�.
IF Cmax(Π

N
) ≤ Cmax(Πbest) , set Πbest ∶= Π

N.
Here, Cmax(∙) is the makespan of a specific solution

(∙) ; r ∈ [0, 1] denotes a random number that is randomly
generated from the uniform distribution U(0,1); and
ΔE = [Cmax(Πnew�) − Cmax(Πincumbent)]∕[Cmax(Πincumbent)].

3.2.2.5 Step 5: update the fitness function values Apply
the following formula to update the fitness function value
of ΠN:

where fitN
iter

 denotes the fitness function value of ΠN used
in the next iteration of the roulette wheel selection proce-
dure, and nN means the cumulative selected times of ΠN in
the solution procedure.

3.2.2.6 Step 6: stop criterion Repeat Steps 2 to 5 until the
maximum allowable computation time, Tmax , is reached. In
this study, Tmax = � ⋅ (g + m + q) ⋅ (n + t)∕1000 (CPU time
in seconds), in which � is a parameter that controls the maxi-
mum allowed computation time.

The proposed RLIG algorithm benefits from both the
multi-seed hill-climbing strategy and the �−greedy selection
strategy. The multi-seed hill-climbing strategy can effec-
tively improve the diversification of traditional hill-climbing,
which is one of the simplest and oldest local search tech-
nologies (Ying and Lin 2020, 2022). As the use of multi-
seed can prevent the search from being trapped in the local
optima, this mechanism usually leads to relatively high-
quality results (Lin et al. 2011, 2013; Lin and Ying 2013;
2015). To implement the multi-seed hill-climbing strategy,
in Step 1, Nmax initial solutions were generated using the
famous NEH constructive heuristic (Nawaz et al. 1983) to

fitN
iter

=

nN − 1

nN
⋅ fitN

iter−1
+

1

nN
⋅ [Cmax(Πincumbent) − Cmax(Πnew)]

11131Reinforcement learning iterated greedy algorithm for distributed assembly permutation…

1 3

increase diversification and escape local optimums. Steps 2
and 3 are tailored �−greedy destruction and reconstruction
mechanisms that are repeatedly used to improve the incum-
bent and best solutions found so far. The RLIG algorithm
removed the selected products and 50% of the associated
jobs/components from the incumbent solution using the
�−greedy selection strategy in the deconstruction mecha-
nism. The �−greedy selection strategy is one of the most
popular exploration methods used in reinforcement learning
(Maqbool et al. 2012). This mechanism can be used as a per-
turbation mechanism to better balance the dilemma between
exploration and exploitation in solving many combination
optimization problems (Guo et al. 2020), as it allows more
effective searching during the iterative process through
reinforcement learning, thus, escaping the local optimum.
Although the greedy algorithm has a strong exploitation
capability, it neglects ‘inferior’ incumbent solutions, which
can be significantly improved in the future; therefore, the
main point of the �−greedy selection strategy is to adjust
the utilization rate of the greedy or random algorithm by the
probability � (𝜀 < 1). After that, the reconstruction mecha-
nism was applied to insert the removed jobs/components
back into the remaining partial solution one by one, in order
to generate a new complete solution. In Step 4, the accept-
ance criteria were applied to judge whether ΠN and Πbest
are updated by Πnew or the neighborhood solution Πnew� as
generated by swap or insertion operations. In Step 5, the
fitness function value of ΠN , which is used in the next itera-
tion of the roulette wheel selection procedure, was updated
according to the formula modified from the �−greedy algo-
rithm. To ensure a fair comparison with different compared
algorithms, the iterative solution procedure was repeated
until the termination condition, i.e., the maximum allowed
computation time, is reached.

4 Numerical analysis

The following section presents the experimental results
to demonstrate the performance of RLIG and the MILP
model in solving the DFm → Rm|prmu, STsd|Cmax problem.
All compared algorithms were programmed using Visual
C + + (2019) and executed on a PC with the following speci-
fications: an Intel® Xeon® E3-1245 3.7 GHz V6 processor
with 64 GB of RAM, and a Windows 10 operating system.
The numerical analysis began with a description of the data-
set, performance measurement, and calibration parameters
of the algorithm, followed by the solution of the MILP for-
mulation using Gurobi version 9.0, and concluded with a
discussion of the performance of RLIG in the context of
solving test problems of different sizes.

4.1 Test problem set

The numerical experiments in this study were performed
using the benchmark instances created by Zhang et al.
(2018). The dataset contained tiny-, small- and large-sized
test instances. The tiny-size test instances were generated
based on n = 10 jobs, f = {2, 3} factories, m = {2, 3}
machines, t = {4, 5} products, and q = {2, 3, 4} assem-
bly machines, and one test instance was generated for each
of the 1 × 23 × 3 = 24 combinations, thus, 24 tiny-size
test instances were used in this study. The small-size test
instances were generated based on n = {20, 24, 30} jobs,
f = {2, 3} factories, m = {2, 3} machines, t = {6, 8} prod-
ucts, and q = {2, 3, 4} assembly machines, and ten test
instances were generated for each of the 3 × 23 × 3 = 72
combinations; therefore, 72 × 10 = 720 small-size test
instances were used in this study. The large-size test
instances were generated based on n = {100, 200} jobs,
f = {6, 8} factories, m = {5, 10} machines, t = {30, 40}
products, and q = {6, 8} assembly machines, and ten test
instances were generated for each of the 25 = 32 combina-
tions; hence, 32 × 10 = 320 large-size test instances, as cre-
ated by Zhang et al. (2018), were used in this study. To eval-
uate the performance of the compared algorithms on larger
test instances, we generated 32 × 10 = 320 very large-size
test instances based on n = {500, 1000} jobs, f = {10, 20}
factories,m = {12, 16} machines,t = {30, 40} products, and
q = {60, 80} assembly machines, and ten test instances were
generated for each of the 25 = 32 combinations, therefore, a
total of 640 large-size test instances were used in this study.
Following the approach of Zhang et al. (2018), six small-
size and six large-size test instances were generated to cali-
brate the parameters of RLIG, and the processing times of
the jobs/components, the assembly times of the products,
and the sequence-dependent setup times were all randomly
generated from uniform distribution U[1, 99] and U[1, 20],
respectively.

4.2 Parameter calibration

As with many metaheuristics, the setting of the parameter
values affected the performance of the RLIG algorithm. In
this study, four levels for each of the Nmax,�,� , and � param-
eters were considered for the calibration of the RLIG algo-
rithm, where Nmax is the number of solutions in the solution
set; � is the selection probability used in the �−greedy selec-
tion strategy; � is the number of products to be removed in
the destruction phase; and � is a parameter controlling the
maximum allowable computation time. A summary of the
calibration configurations can be found in Table 1. The cali-
bration experiments were performed with 12 test instances
considering 44 possible scenarios of parameter values. In
order to efficiently obtain the best setting for each parameter,

11132 K.-C. Ying, S.-W. Lin

1 3

type B of the Taguchi L16 orthogonal experimental design
was employed, including 16 combinations of parameter set-
tings that underwent 20 runs for each random test instance,
resulting in a total of 20 × 16 = 320 runs. To evaluate the
performance of different scenarios of parameter values, we
used the average relative percentage deviation (ARPD) of
the obtained makespan value, which was calculated using
the following equation, as the desired performance measure:

where Cave
max

(�) denotes the average makespan value for a
particular parameter combination obtained by the algorithm
in one run for a particular instance, and Cbest

max
(�) represents

the best makespan value obtained by the algorithm when
considering all 16 parameter combinations and 20 runs for
the same test instance.

A comparison of the ARPDs obtained using different lev-
els of each parameter is presented in Table 2. According to
the range of the ARPDs,� was the most significant parameter
among the four parameters. Under a fixed maximal allowed

(26)ARPD =

(
12∑

r=1

Cave
max

(�) − Cbest
max

(�)

Cbest
max

(�)

× 100

)
∕12

computation time, the larger the value of � , the more prod-
ucts and their associated jobs/components would be selected
and removed from the incumbent solution, resulting in more
time spent in the subsequent reconstruction phase. In other
words, it would require more computation time to perform
one iteration of the algorithm, resulting in fewer total itera-
tions. Consequently, if the maximum computation time was
fixed, a larger � value would result in fewer candidate solu-
tions being evaluated and the best solution not being found.
Among the four parameters, the allowed maximum computa-
tion time,� , was the second significant parameter. When the
value of � was increased, better solutions could be obtained
with more computation time. Compared with � and � ,
parameters Nmax and � had no significant impacts on the per-
formance of RLIG. According to the parameter calibration
experimental results, the parameter values of Nmax,�,� , and
� were set to 6, 2, 0.4, and 60, respectively. In related stud-
ies (Pan et al 2019; Zhang et al. 2020; Huang et al. 2021),
the maximal computational time is set to � ⋅ m ⋅ n∕1000 sec-
onds, in which � is a parameter that controls the maximum
allowed computation time, and n and m is the number of
jobs and number of machines, respectively. In this study,
m and n are expanded to (n + t) and (g + m + q) . Based on
these estimates, the maximum allowable computation time
of the RLIG algorithm in the following experiments was set
to Tmax = 60 ⋅ (g + m + q) ⋅ (n + t)∕1000(CPU time in sec-
onds) to achieve an equilibrium between solution quality
and computing time.

4.3 Numerical results

To evaluate the performance of the compared algorithms
from a broader perspective, the average relative percentage
deviation (ARPD) was used to measure solutions obtained
by different algorithms. The formula for calculating ARPD
is, as follows:

where Cmax(�) is the makespan value obtained by a single
run of the algorithm for a given test instance, and Cbest

max
(�)

denotes the best makespan value obtained by all compared
algorithms performing five runs for that test instance. An
algorithm with smaller ARPDs would indicate that it could
produce higher quality solutions than the compared algo-
rithms. Finally, the paired t-test was performed to determine
whether the differences between the computational results
of RLIG and IG were statistically significant.

To the best of our knowledge, in existing literature, IG-
based algorithms are by far the best meta-heuristics for
solving DAPFSP-FA problems. Therefore, this study used
the IG (i.e., the RLIG algorithm without the reinforcement

(27)ARPD =

n∑

i=1

C
max

(�) − Cbest
max

(�)

Cbest
max

(�)

∕n × 100

Table 1 Orthogonal array and
the obtained ARPDs

No N
max

� � � ARPD

1 3 2 0.1 30 1.0251
2 3 3 0.2 40 1.0463
3 3 4 0.3 50 1.2908
4 3 5 0.4 60 1.3015
5 4 2 0.2 50 0.9364
6 4 3 0.1 60 0.9510
7 4 4 0.4 30 1.3727
8 4 5 0.3 40 1.4267
9 5 2 0.3 60 0.8652
10 5 3 0.4 50 1.0071
11 5 4 0.1 40 1.3084
12 5 5 0.2 30 1.4834
13 6 2 0.4 40 0.9209
14 6 3 0.3 30 1.1595
15 6 4 0.2 60 1.1979
16 6 5 0.1 50 1.3367

Table 2 ARPDs obtained by different levels of each parameter

Setting N
max

� � �

1 1.1659 0.9369 1.1553 1.2601
2 1.1717 1.0410 1.1660 1.1756
3 1.1660 1.2924 1.1855 1.1427
4 1.1537 1.3871 1.1505 1.0789
Range 0.0180 0.4502 0.0350 0.1812
Rank 4 1 3 2

11133Reinforcement learning iterated greedy algorithm for distributed assembly permutation…

1 3

learning mechanism) as the benchmark algorithms to
evaluate the performance of RLIG. In order to compare
the performance of RLIG with that of IG (i.e., the RLIG
algorithm without the reinforcement learning mechanism)
and the MILP model for solving the 24 tiny-size instances,
the makespan value of the best solution (Cmax), the average
makespan value (Ave.Cmax), and the average computation
time (T(s)) for five runs of each instance was summarized,
as shown in Table 3. The MILP model was solved using
Gurobi version 9.0, which is one of the strongest and
widely used solvers with a maximum computation time of
7200 s. As can be seen in Table 3, RLIG and IG achieved
the same best solutions for each tiny-size instance. The
solution quality of IG was as good as that of RLIG, except
that the average makespan value of test instance T14, as
obtained with IG, was slightly worse than that of RLIG.
As shown in Table 3, both IG and RLIG yielded the same
optimal solutions for the 19 test instances that could be
optimally solved within 7200 s using the MILP model.
Regarding the remaining five test instances that could not
be optimally solved within 7200 s using the MILP model,
the best solutions, as obtained using both IG and RLIG,
were superior to the feasible solutions obtained using the

MILP model. Since the computation times required by the
RLIG and IG algorithms were significantly shorter than
those of the MILP model, we could conclude that these
algorithms were more appropriate for solving tiny-size
problems.

In order to compare the performance of RLIG with that
of IG for solving the small- and large-size test instances,
the average makespan value of the best solution (Cmax), the
average makespan value of five runs (Ave.Cmax), and the
average computation time (T(s)) for five runs of each subset
test instance with different configurations are summarized
in Table 4. In order to evaluate the performance of RLIG
and IG from a broader perspective, the best ARPD values
and total average ARPD values of their obtained makespan
values with different configurations of the small- and large-
size test instances are summarized in Table 5. As shown in
Tables 4 and 5, RLIG was superior to IG for all examined
workloads and production scales, except for the subset of test
instances n = 20 and q = 2 . The larger the production scale
and workload, the greater the differences between RLIG and
IG performance.

The overall computational results were visually com-
pared with various configurations, as shown in Fig. 3. As

Table 3 Computational results of tiny-scale instances (best in bold)

MILP IG RLIG
Instance n f m p q C

max
LB T (s) C

max
Ave.C

max
T (s) C

max
Ave.C

max
T (s)

T01 10 2 2 4 2 363 363 2970.68 363 363.0 5.04 363 363.0 5.04
T02 10 2 2 4 3 329 329 5639.15 329 329.0 5.88 329 329.0 5.88
T03 10 2 2 4 4 348 348 4184.19 348 348.0 6.72 348 348.0 6.72
T04 10 2 2 5 2 259 259 2063.90 259 259.0 5.40 259 259.0 5.40
T05 10 2 2 5 3 415 212 7200.10 410 410.0 6.30 410 410.0 6.30
T06 10 2 2 5 4 339 153 7200.12 339 339.0 7.20 339 339.0 7.20
T07 10 2 3 4 2 386 386 5098.02 386 386.0 5.88 386 386.0 5.88
T08 10 2 3 4 3 421 215 7200.09 421 421.0 6.72 421 421.0 6.72
T09 10 2 3 4 4 347 244 7200.10 347 347.0 7.56 347 347.0 7.56
T10 10 2 3 5 2 404 181 7200.08 404 404.0 6.30 404 404.0 6.30
T11 10 2 3 5 3 412 167 7200.09 410 410.0 7.20 410 410.0 7.20
T12 10 2 3 5 4 479 183 7200.10 478 478.0 8.10 478 478.0 8.10
T13 10 3 2 4 2 344 344 1129.94 344 344.0 5.88 344 344.0 5.88
T14 10 3 2 4 3 269 263 7200.09 269 269.0 6.72 269 269.2 6.72
T15 10 3 2 4 4 210 210 1167.91 210 210.0 7.56 210 210.0 7.56
T16 10 3 2 5 2 294 294 6071.49 294 294.0 6.30 294 294.0 6.30
T17 10 3 2 5 3 286 286 6641.62 286 286.0 7.20 286 286.0 7.20
T18 10 3 2 5 4 256 256 5948.52 256 256.0 8.10 256 256.0 8.10
T19 10 3 3 4 2 237 237 839.69 237 237.0 6.72 237 237.0 6.72
T20 10 3 3 4 3 322 322 5420.35 322 322.0 7.56 322 322.0 7.56
T21 10 3 3 5 4 346 211 7200.15 335 335.0 9.00 335 335.0 9.00
T22 10 3 3 5 2 335 328 7200.15 335 335.0 7.20 335 335.0 7.20
T23 10 3 3 5 3 315 210 7200.12 311 311.0 8.10 311 311.0 8.10
T24 10 3 3 5 4 306 292 7200.15 306 306.0 9.00 306 306.0 9.00

11134 K.-C. Ying, S.-W. Lin

1 3

depicted in Fig. 3, the RLIG algorithm performed better
with different production scales, such as the number of
machines, factories, products, and assembly machines.
When testing different workloads and production scales,
IG performed slightly better than RLIG for n = 20 and
q = 2 test instances; however, as the workload and produc-
tion scales were increased, the visual analysis of the com-
putational results clearly revealed that RLIG was superior
to IG.

In order to verify whether the differences between the
computational results of RLIG and IG were statistically
significant, paired t-testing was performed, as shown in
Table 6. The t-values in Table 6 confirmed at the confi-
dence interval of 0.05 that RLIG was significantly bet-
ter than IG, indicating that the multi-seed hill-climbing

strategy and �−greedy selection strategy could improve the
performance of IG and help RLIG find the best solution
for the DFm → Rm|prmu, STsd|Cmax problem.

5 Discussion

This study presented a MILP model and a highly
effective and efficient RLIG algorithm to solve the
DFm → Rm|prmu, STsd|Cmax problem. The analytical
results, as based on extensive benchmark instances, show
that the proposed RLIG algorithm is better than the MILP
model in solving tiny-size problems. In addition, it signifi-
cantly outperformed the IG algorithm in solving small and
large test instances.

Table 4 Results analysis for
small- and large-size test
instances (best in bold)

Configuration IG RLIG

C
max

Ave.C
max

T (s) C
max

Ave.C
max

T (s)

n 20 543.24 544.56 12.96 543.30 544.59 12.96
24 633.67 635.84 14.88 633.53 635.78 14.88
30 765.14 767.77 17.76 765.11 767.77 17.76
100 1244.93 1248.69 172.20 1244.86 1248.63 172.20
200 2119.38 2124.12 299.70 2114.98 2119.57 299.70
500 3097.08 3104.66 1453.80 3095.50 3102.55 1453.80
1000 5555.40 5560.36 2889.32 5554.09 5557.51 2889.32

f 2 757.59 759.60 14.25 757.58 759.67 14.25
3 537.11 539.18 16.15 537.05 539.09 16.15
6 1864.05 1868.36 224.85 1861.66 1866.18 224.85
8 1500.26 1504.44 247.05 1498.18 1502.03 247.05
15 4009.03 4014.90 2030.11 4008.11 4013.14 2030.11
20 4643.45 4650.12 2313.02 4641.49 4646.92 2313.01

m 2 613.82 615.78 14.25 613.76 615.74 14.25
3 680.88 683.00 16.15 680.88 683.02 16.15
6 1482.88 1487.05 210.90 1481.06 1484.90 210.90
8 1881.43 1885.76 261.00 1878.78 1883.31 261.00
12 4803.36 4810.13 2073.16 4801.71 4807.50 2073.16
16 3849.12 3854.88 2269.96 3847.89 3852.56 2269.96

t 6 648.58 650.58 14.72 648.54 650.60 14.72
8 646.12 648.20 15.68 646.09 648.16 15.68
30 1681.68 1685.88 226.80 1679.45 1683.69 226.80
40 1682.64 1686.93 245.10 1680.39 1684.51 245.10
60 4332.67 4338.42 2120.71 4330.64 4335.34 2120.71
80 4319.81 4326.60 2222.41 4318.96 4324.72 2222.41

q 2 655.36 657.70 13.30 655.40 657.62 13.30
3 642.81 644.72 15.20 642.73 644.76 15.20
4 643.88 645.74 17.10 643.81 645.76 17.10
6 1725.51 1730.09 231.72 1723.26 1727.75 231.72
8 1609.90 1613.60 243.00 1607.68 1611.36 243.00
12 4329.21 4335.66 2097.46 4328.31 4333.55 2097.46
16 4323.26 4329.36 2245.66 4321.28 4326.51 2245.66

11135Reinforcement learning iterated greedy algorithm for distributed assembly permutation…

1 3

The advantage of the proposed RLIG algorithm is that
it applies a multi-seed hill-climbing strategy, which is a
framework to achieve diversification for preventing the
search from being trapped in a local optimum, to generate
the initial solution set founded on the NEH constructive
heuristic. Furthermore, this study embedded an �−greedy
selection strategy in the destruction phase of RLIG, which
is used in reinforcement learning to formalize the notion of
decision making under uncertainty. The �−greedy selec-
tion strategy can combine the random algorithm and the
IG-based algorithm to handle the exploration and exploita-
tion dilemma through reinforcement learning during the
iterative process. While traditional IG-based algorithms
have strong exploitation ability, they easily get stuck in
the local optimum. The �−greedy selection strategy is a

perturbation mechanism that uses knowledge reinforce-
ment, as learned from historical search results, to adjust
the exploration and exploitation of the RLIG algorithm
and help the algorithm escape the local optimum. With-
out the multi-seed hill-climbing strategy and the �−greedy
selection strategy, the IG-based algorithm may be local-
ized in a small region of the solution space, and thus, be
trapped in a local optimum, which eliminates the possibil-
ity of finding an optimal solution.

The drawback of the proposed RLIG algorithm is that the
multi-seed hill-climbing strategy and the �−greedy selection
strategy may not work very well for small test instances,
e.g., the subset test instances of n = 20 and q = 2 . The pos-
sible reasons are that the diversification, as resulted from
the multi-seed hill-climbing strategy, and the perturbation,
as resulted from the �−greedy selection strategy, are not able
to exploit and explore the existing solutions to find the best
solution for small test instances. The major limitation of the
proposed RLIG algorithm is the computation time required
for very large problems, e.g., n = 500 and 1000, which
needs to be improved to make it more suitable for solving
real-time scheduling problems. An additional limitation of
this research is that the operational parameters were assumed
to be deterministic.

6 Conclusions and future research
directions

Globalization and the rapid development of communication
technology have accelerated the development of DMSs, and
scheduling literature has evolved significantly with the inte-
gration of production and assembly operations in DMSs.
This study addressed the DFm → Rm|prmu, STsd|Cmax
problem, which has wide application in globalized produc-
tion but has never been explored. Given the novelty of the
DFm → Rm|prmu, STsd|Cmax problem, we first contribute to
the literature by developing a MILP model for the problem
to fill the research gap of the scheduling theory. Consid-
ering that the DFm → Rm|prmu, STsd|Cmax problem is NP-
hard in the strong sense, an effective and efficient RLIG
algorithm was also presented to solve this problem. The
RLIG algorithm uses a multi-seed hill-climbing strategy
and an �−greedy selection strategy that could exploit and
explore the existing solutions to find the best solutions for
the DFm → Rm|prmu, STsd|Cmax problem. Extensive numeri-
cal analysis with 1360 test instances shows that RLIG can
achieve high quality solutions under different production
scales and workloads, which makes it a viable approach for
use in various industries with supply-chain-integrated sched-
uling requirements and a strong benchmark algorithm for
optimizing the DFm → Rm|prmu, STsd|Cmax problem.

Table 5 ARPDs for small- and large-size test instances (best in bold)

Configura-
tion

IG RLIG

Best ARPD Ave. ARPD Best ARPD Ave. ARPD

n 20 0.046 0.301 0.057 0.305
24 0.135 0.490 0.113 0.477
30 0.131 0.487 0.126 0.484
100 0.131 0.437 0.130 0.435
200 0.232 0.464 0.023 0.242
500 0.114 0.359 0.066 0.296
1000 0.041 0.131 0.017 0.079

f 2 0.108 0.436 0.086 0.357
3 0.101 0.416 0.111 0.486
6 0.170 0.464 0.072 0.331
8 0.194 0.437 0.081 0.346
15 0.071 0.242 0.041 0.187
20 0.083 0.247 0.042 0.188

m 2 0.086 0.349 0.097 0.425
3 0.123 0.503 0.100 0.418
6 0.178 0.427 0.079 0.350
8 0.186 0.474 0.074 0.327
12 0.076 0.241 0.047 0.203
16 0.078 0.249 0.036 0.172

t 6 0.107 0.421 0.102 0.423
8 0.102 0.431 0.095 0.421
30 0.189 0.456 0.082 0.352
40 0.175 0.445 0.071 0.325
60 0.084 0.244 0.030 0.162
80 0.070 0.246 0.053 0.212

q 2 0.104 0.470 0.109 0.452
3 0.115 0.418 0.100 0.424
4 0.094 0.390 0.086 0.389
6 0.187 0.470 0.089 0.363
8 0.174 0.418 0.056 0.298
12 0.069 0.242 0.050 0.196
16 0.085 0.248 0.033 0.179

11136 K.-C. Ying, S.-W. Lin

1 3

Future research can be extended in several directions.
First, as this study is the first theoretical advance made on
the DFm → Rm|prmu, STsd|Cmax problem, further studies
are desirable, and in particular, the development of sophis-
ticated exact, approximation, and heuristic algorithms to

solve this problem. Second, the DAPFSP-FASDST prob-
lem with other performance criteria, e.g. the total weighted
completion time, the total weighted tardiness, and the
number of tardy jobs, deserves further study. Third, the
DAPFSP-FASDST problem with process-related constraints,

0.00

0.05

0.10

0.15

0.20

0.25

0.30

IG MLIG

n m f t

(a) Best RPD

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

IG MLIG

n m f t

(b) Average RPD

Fig. 3 Visual analysis of the computational results

11137Reinforcement learning iterated greedy algorithm for distributed assembly permutation…

1 3

such as blocking, no-wait, and no-idle, in the distributed
flowshops of the production stage is worthy of further inves-
tigation. Fourth, a corresponding stochastic model of the
DFm → Rm|prmu, STsd|Cmax problem is needed to bridge
the gap between theoretical progress and industrial prac-
tice with non-deterministic operational parameters. Fifth,
further investigation is essential to solve multi-objective
DAPFSP-FASDST. Finally, the related problems of produc-
tion and assembly stages with additional or heterogeneous
shop types, e.g., non-permutation flowshops, jobshops, and
openshops, deserve further discussion.

Funding Ministry of Science and Technology, Taiwan, MOST109-
2221-E-027-073, Kuo-Ching Ying, MOST109-2410-H-182-009MY3,
Shih-Wei Lin, Chang Gung Memorial Hospital, Linkou, BMRPA19,
Shih-Wei Lin.

Declarations

Conflict of interest The authors declare no conflict of interest.

References

Behnamian J (2014) Decomposition based hybrid VNS–TS algorithm
for distributed parallel factories scheduling with virtual corpora-
tion. Comput Oper Res 52:181–191

Chan FTS, S.H. Chung SH, and P.L.Y. Chan. (2005) An Adaptive
genetic algorithm with dominated genes for distributed scheduling
problems. Expert Syst Appl 29:364–371

Chan FTS, Chung SH, Chan PLY (2006) Application of genetic algo-
rithms with dominant genes in a distributed scheduling problem
in flexible manufacturing systems. Int J Prod Res 44:523–543

Cheng CY, Ying KC, Chen HH, Lu HS (2019) Minimizing makespan
in distributed mixed no-idle flowshops. Int J Prod Res 57:48–60

De Giovanni L, Pezzella F (2010) An improved genetic algorithm for
the distributed and flexible job-shop scheduling problem. Eur J
Oper Res 200:395–408

Framinan JM, Perez-Gonzalez P, Fernandez-Viagas V (2019) Deter-
ministic assembly scheduling problems: a review and classifica-
tion of concurrent-type scheduling models and solution proce-
dures. Eur J Oper Res 273:401–417

Guo F, Li Y, Liu A, an Z. Liu, Z. (2020) A reinforcement learning
method to scheduling problem of steel production process. J Phys
Conf Ser 1486:072035

Hatami S, Ruiz R, Andrés-Romano C (2013) The distributed assem-
bly permutation flowshop scheduling problem. Int J Prod Res
51:5292–5308

Hatami S, Ruiz R, Romano CA (2014) “Two simple constructive algo-
rithms for the distributed assembly permutation flowshop schedul-
ing problem”, managing complexity. Int J Prod Res 51:139–45

Hatami S, Ruiz R, Andrés-Romano C (2015) Heuristics and
metaheuristics for the distributed assembly permutation flowshop
scheduling problem with sequence dependent setup times. Int J
Prod Econ 169:76–88

Huang YY, Pan QK, Huang JP, Suganthan PN, Gao L (2021) An
improved iterated greedy algorithm for the distributed assem-
bly permutation flowshop scheduling problem. Comput Ind Eng
152:107021

Jia HZ, Fuh JYH, Nee AYC, Zhang YF (2002) 2002, “Web-based
multi-functional scheduling system for a distributed manufactur-
ing environment.” Concurr Eng 10:27–39

Jia HZ, Fuh JYH, Nee AYC, Zhang YF (2007) Integration of genetic
algorithm and gantt chart for job shop scheduling in distributed
manufacturing systems. Comput Ind Eng 53:313–320

Jing XL, Pan QK, Gao L, Wang YL (2020) An effective iterated greedy
algorithm for the distributed permutation flowshop scheduling
with due windows. Appl Soft Comput 96:106629

Khalifa HAE, Alodhaibi SS, Kumar P (2021) Solving constrained
flow-shop scheduling problem through multistage fuzzy binding
approach with fuzzy due dates. Adv Fuzzy Syst 2021:6697060

Komaki M, Malakooti B (2017) General variable neighborhood search
algorithm to minimize makespan of the distributed no-wait flow
shop scheduling problem. Prod Eng Res Devel 11:315–329

Lei D, Wang T (2020) Solving Distributed two-stage hybrid flowshop
scheduling using a shuffled frog-leaping algorithm with memeplex
grouping. Eng Optim 52:1461–1474

Lei D, Su B, Li M (2021) Cooperated teaching-learning-based optimi-
sation for distributed two-stage assembly flow shop scheduling.
Int J Prod Res 59:7232–7245

Li W, Li J, Gao K, Han Y, Niu B, Liu Z, Sun Q (2019) Solving robotic
distributed flowshop problem using an improved iterated greedy
algorithm. Int J Adv Rob Syst 2019:1–16

Li H, Li X, Gao L (2020a) A discrete artificial bee colony algorithm
for the distributed heterogeneous no-wait flowshop scheduling
problem. Appl Soft Comput 100:106946

Li Y, Li X, Gao L, Meng L (2020b) An Improved artificial bee colony
algorithm for distributed heterogeneous hybrid flowshop schedul-
ing problem with sequence-dependent setup times. Comput Ind
Eng 147:106638

Li Y, Li X, Gao L, Zhang B, Pan QK, Tasgetiren MF, Meng L (2020c)
A discrete artificial bee colony algorithm for distributed hybrid
flowshop scheduling problem with sequence-dependent setup
times. Int J Prod Res 59:1–20

Li X., X. Zhang, M. Yin, and J. Wang. 2015, “A Genetic Algorithm
for the Distributed Assembly Permutation Flowshop Scheduling
Problem,” In: 2015 IEEE Congress on Evolutionary Computation,
pp. 3096–3101.

Lin WC (2018) “Minimizing the makespan for a two-stage three-
machine assembly flow shop problem with the sum-of-processing-
time based learning effect. Discret Dyn Nat Soc 2018:1–15

Lin J, S. Zhang S. (2016) An Effective hybrid biogeography-based
optimization algorithm for the distributed assembly permutation
flow-shop scheduling problem. Comput Ind Eng 97:128–136

Lin SW, Ying KC (2013) Minimizing makespan and total flowtime in
permutation flowshops by a bi-objective multi-start simulated-
annealing algorithm. Comput Oper Res 40:1625–1647

Lin SW, Ying KC (2015) A multi-point simulated annealing heuristic
for solving multiple-objective unrelated parallel machine schedul-
ing problem. Int J Prod Res 53:1065–1076

Table 6 Statistical test of significance for the benchmark results for
RPD

Best RPD among five runs Average RPD among five runs

RLIG vs. IG RLIG vs IG

Difference 0.03643 Difference 0.042
Degree of freedom 1360 Degree of freedom 1360
t-value 4.718 t-value 8.500
P-value 0.0000 P-value 0.0000

11138 K.-C. Ying, S.-W. Lin

1 3

Lin SW, Ying KC (2016) Minimizing makespan for solving the dis-
tributed no-wait flowshop scheduling problem. Comput Ind Eng
99:202–209

Lin SW, Ying KC, Lu CC, Gupta JND (2011) Applying multi-start
simulated annealing to schedule a flowline manufacturing cell
with sequence dependent family setup times. Int J Prod Econ
130:246–254

Lin SW, Ying KC, Huang CY (2013) Minimising makespan in distributed
permutation flowshops using a modified iterated greedy algorithm.
Int J Prod Res 51:5029–5038

Lin J, Wang ZJ, Li X (2017) A backtracking search hyper-heuristic for
the distributed assembly flow-shop scheduling problem. Swarm Evol
Comput 36:124–135

Mao J, Pan Q, Miao Z, Gao L (2021) An Effective multi-start iterated
greedy algorithm to minimize makespan for the distributed permu-
tation flowshop scheduling problem with preventive maintenance.
Expert Syst Appl 169:114495

Maqbool SD, Ahamed TI, Ali SQ, Pazheri FR, Malik NH (2012) Com-
parison of pursuit and ε-Greedy algorithm for load scheduling under
real time pricing. 2012 IEEE International Conference on Power and
Energy (PECon). Kota Kinabalu, Malaysia, pp 515–519

Meng T, Pan QK (2021) A distributed heterogeneous permutation
flowshop scheduling problem with lot-streaming and carryover
sequence-dependent setup time. Swarm Evol Comput 60:100804

Meng T, Pan QK, Wang L (2019) A Distributed permutation flowshop
scheduling problem with the customer order constraint. Knowl-
Based Syst 184:104894

Naderi B, Azab A (2014) Modeling and heuristics for scheduling of dis-
tributed job shops. Expert Syst Appl 41:7754–7763

Naderi B, Ruiz R (2010) The distributed permutation flowshop schedul-
ing problem. Comput Oper Res 37:754–768

Nawaz M Jr, Enscore E, Ham I (1983) A Heuristic algorithm for the
M-machine, N-job flow-shop sequencing problem. Omega 11:91–95

Pan QK, Gao L, Li XY, Jose FM (2019) Effective constructive heuris-
tics and meta-heuristics for the distributed assembly permutation
flowshop scheduling problem. Appl Soft Comput 81:105492

Pan QK, Gao L, Wang L (2022) An effective cooperative co-evolutionary
algorithm for distributed flowshop group scheduling problems. IEEE
Trans Cybern Forthcom. https:// doi. org/ 10. 1109/ TCYB. 2020. 30414
94

Pourhejazy P, Cheng CY, Ying KC, Lin SY (2021) Supply chain-oriented
two-stage assembly flowshops with sequence-dependent setup times.
J Manuf Syst 61:139–154

Pourhejazy P, Cheng CY, Ying KC, Nam NH (2022) Meta-lamarckian-
based iterated greedy for optimizing distributed two-stage assembly
flowshops with mixed-setups. Ann Oper Rese Forthc. https:// doi. org/
10. 1007/ s10479- 022- 04537-2

Renna P. 2012, Production and Manufacturing System Management:
Coordination Approaches and Multi-site Planning. IGI Global.

Rossit DA, Tohmé F, Frutos M (2019) “Industry 4.0: smart scheduling.
Int J Prod Res 57:3802–3813

Vanchinathan K, Selvaganesan N (2021) Adaptive fractional order PID
controller tuning for brushless DC motor using artificial bee colony
algorithm. Results Control Optim 4:100032

Vanchinathan K, Valluvan KR (2018) “A metaheuristic optimization
approach for tuning of fractional-order PID controller for speed
control of sensorless BLDC motor. J Circ Sys Comput 27:1850123

Vanchinathan K, Valluvan KTR, Gnanavel C, Gokul C, Albert JR (2021)
An improved incipient whale optimization algorithm based robust
fault detection and diagnosis for sensorless brushless dc motor drive
under external disturbances. Int Trans Electr Energy Syst 31:e13251

Wang SY, Wang L (2016) An Estimation of distribution algorithm-
based memetic algorithm for the distributed assembly permutation
flow-shop scheduling problem. IEEE Trans Syst Man Cybern Syst
46:139–149

Wang K, Huang Y, Qin H (2016) A Fuzzy Logic-based hybrid estima-
tion of distribution algorithm for distributed permutation flowshop
scheduling problems under machine breakdown. J Oper Res Soc
67:68–82

Wu CC, Chen JY, Lin WC, Lai K, Liu SC, Yu PW (2018) A two-stage
three-machine assembly flow shop scheduling with learning consid-
eration to minimize the flowtime by six hybrids of particle swarm
optimization. Swarm Evol Comput 41:97–110

Wu CC, Chen JY, Lin WC, Lai K, Bai D, Lai SY (2019) A two-stage
three-machine assembly scheduling flowshop problem with both
two-agent and learning phenomenon. Comput Ind Eng 130:485–499

Yang S, Xu Z (2021) The distributed assembly permutation flowshop
scheduling problem with flexible assembly and batch delivery. Int J
Prod Res 59:4053–4071

Ying KC, Lin SW (2017) Minimizing makespan in distributed blocking
flowshops using hybrid ierated greedy algorithms. IEEE Access
5:15694–15705

Ying KC, Lin SW (2018) Minimizing makespan for the distributed hybrid
flowshop scheduling problem with multiprocessor tasks. Expert Syst
Appl 92:132–141

Ying KC, Lin SW (2020) Solving no-wait job-shop scheduling problems
using a multi-start simulated annealing with bi-directional shift
timetabling algorithm. Comput Ind Eng 146:106615

Ying KC, Lin SW (2022) Minimizing total completion time in no-wait
jobshops using a backtracking multi-start simulated annealing algo-
rithm. Comput Ind Eng 169:108238

Ying KC, Lee ZJ, Lin SW (2012) Makespan minimization for schedul-
ing unrelated parallel machines with setup times. J Intell Manuf
23:1795–1803

Ying KC, Lin SW, Cheng CY, He CD (2017) Iterated Reference Greedy
Algorithm for Solving Distributed No-idle Permutation Flowshop
Scheduling Problems. Comput Ind Eng 110:413–423

Ying KC, Pourhejazy P, Cheng CY, Syu RS (2022) “Supply chain-ori-
ented permutation flowshop scheduling considering flexible assem-
bly and setup times. Int J Prod Res Forthc. https:// doi. org/ 10. 1080/
00207 543. 2020. 18429 38

Zhang G, Xing K (2019) Differential evolution metaheuristics for distrib-
uted limited-buffer flowshop scheduling with makespan criterion.
Comput Oper Res 108:33–43

Zhang G, Xing K, Cao F (2018) Scheduling distributed flowshops with
flexible assembly and set-up time to minimise makespan. Int J Prod
Res 56:3226–3244

Zhang G, Xing K, Zhang G, He Z (2020) Memetic algorithm with meta-
lamarckian learning and simplex search for distributed flexible
assembly permutation flowshop scheduling problem. IEEE Access
8:96115–96128

Zhao F, Zhao L, Wang L, Song H (2020) An ensemble discrete differ-
ential evolution for the distributed blocking flowshop scheduling
with minimizing makespan Criterion. Expert Syst Appl 160:113678

Zhao F, Zhang L, Cao J, Tang J (2021) A Cooperative water wave opti-
mization algorithm with reinforcement learning for the distributed
assembly no-idle flowshop scheduling problem. Comput Ind Eng
153:107082

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and
applicable law.

https://doi.org/10.1109/TCYB.2020.3041494
https://doi.org/10.1109/TCYB.2020.3041494
https://doi.org/10.1007/s10479-022-04537-2
https://doi.org/10.1007/s10479-022-04537-2
https://doi.org/10.1080/00207543.2020.1842938
https://doi.org/10.1080/00207543.2020.1842938

	Reinforcement learning iterated greedy algorithm for distributed assembly permutation flowshop scheduling problems
	Abstract
	1 Introduction
	2 Literature review
	3 Methodology
	3.1 MILP model
	3.1.1 Indices
	3.1.2 Parameters
	3.1.3 Decision variables

	3.2 Proposed metaheuristic
	3.2.1 Solution representation
	3.2.2 Main steps of RLIG
	3.2.2.1 Step 1: generate an initial solution set
	3.2.2.2 Step 2: greedy destruction phase
	3.2.2.3 Step 3: reconstruction phase
	3.2.2.4 Step 4: acceptance criteria
	3.2.2.5 Step 5: update the fitness function values
	3.2.2.6 Step 6: stop criterion

	4 Numerical analysis
	4.1 Test problem set
	4.2 Parameter calibration
	4.3 Numerical results

	5 Discussion
	6 Conclusions and future research directions
	References

