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Abstract
Diverse plant diseases have a major impact on the yield of food crops, and if plant diseases are not recognized in time, they 
may spread widely and directly cause losses to crop yield. In this work, we studied the deep learning techniques and cre-
ated a convolutional ensemble network to improve the capability of the model for identifying minute plant lesion features. 
Using the method of ensemble learning, we aggregated three lightweight CNNs including SE-MobileNet, Mobile-DANet, 
and MobileNet V2 to form a new network called Es-MbNet to recognize plant disease types. The transfer learning and 
two-stage training strategy were adopted in model training, and the first phase implemented the initialization of network 
weights. The second phase re-trained the network using the target dataset by injecting the weights trained in the first phase, 
thereby gaining the optimum parameters of the model. The proposed method attained a 99.37% average accuracy on the 
local dataset. To verify the robustness of the model, it was also tested on the open-source PlantVillage dataset and reached 
an average accuracy of 99.61%. Experimental findings prove the validity and deliver superior performance of the proposed 
method compared to other state-of-the-arts. Our data and codes are provided at https:// github. com/ xtu502/ Ensem ble- learn 
ing- for- crop- disea se- detec tion.
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1 Introduction

The 2020 World Population Data Sheet declares that the 
population of the world is expected to increase to over 9 
billion by 2050 (https:// inter activ es. prb. org/ 2020- wpds/), 
which requires increasing crop yields and minimizing plant 
damage by timely recognition of plant diseases. As a result, 

recent studies on plant disease recognition that involve 
food security have attracted a lot of attention. The diverse 
plant diseases have great threats to food production, and 
serious disease types can even cause no harvest entirely. 
In particular, the major food crops such as rice and maize, 
which occupy important positions from the production per-
spective, are consumed as staple foods by over half of the 
world population, but they are quite susceptible to various 
diseases too. In the past several years, the degree of damage 
caused by plant diseases is rapidly growing at an alarming 
rate due to primary changes in methods adopted for crop 
cultivation and the influence of harmful organisms. Early 
recognition and diagnosis acts a pivotal part in suppressing 
the outbreak of plant diseases (Atoum et al. 2016). It can 
effectively reduce the losses caused by various plant dis-
eases and has the dual effects of increasing crop yields while 
avoiding the excessive usage of biocides. However, to date, 
the most used approach for plant disease recognition still 
relies on the visual observations of plant disease experts or 
experienced growers in many areas, explicitly in developing 
countries. This approach requires experts to monitor con-
tinuously, which is prohibitively labor-intensive, expensive, 

 * Junde Chen 
 chen2wo@126.com

 * Defu Zhang 
 dfzhang@xmu.edu.cn

 Adnan Zeb 
 adnanzeb@stu.xmu.edu.cn

 Y. A. Nanehkaran 
 artavil20@gmail.com

1 Department of Electronic Commerce, Xiangtan University, 
Xiangtan 411105, China

2 School of Informatics, Xiamen University, Xiamen 361005, 
China

3 School of Information Engineering, Yancheng Teachers 
University, Yancheng 224002, China

http://orcid.org/0000-0003-1748-4374
https://github.com/xtu502/Ensemble-learning-for-crop-disease-detection
https://github.com/xtu502/Ensemble-learning-for-crop-disease-detection
https://interactives.prb.org/2020-wpds/
http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-022-04334-6&domain=pdf


12360 J. Chen et al.

1 3

and unfeasible for many farms (Chug et al. 2022; Ding and 
Taylor 2016). Additionally, it is not always possible to meet 
plant disease experts at any time. In most cases, farmers 
must go long distances to access plant protection experts 
for plant disease problems, which makes consultation time-
consuming and expensive. Other than that, this approach 
cannot be transplanted in a broad range. Hence, there are 
realistic importance and a great need to construct a useful, 
simple, quick, and reliable method to automatically recog-
nize diverse plant diseases.

In the last few decades, a new manner for identifying 
plant diseases is being provided with the advancement of 
pattern recognition and machine learning (ML) techniques. 
A specific classifier that categorizes the plant images into 
diseased or healthy types is usually employed in the iden-
tification of plant diseases. For instance, Kaur et al. (2018) 
introduced a support vector machine (SVM) classifier to 
recognize 3 varieties of soybean leaf diseases comprised 
of downy mildew, frog eye, and septoria leaf blight; their 
average accuracy approximately reached 90.00%. After 
performing the extraction of Scale invariant feature trans-
form (SIFT) features, Mohan et al. (2016) used the clas-
sifiers including k-nearest neighbour (k-NN) and SVM to 
identify three types of paddy diseases, and they realized the 
recognition accuracy of 93.33% with k-NN while 91.10% 
with SVM. Kumari et al. (2019) utilized an artificial neural 
network (ANN) method to identify cotton and tomato dis-
eases; they attained an average accuracy of 92.5%. Chouhan 
et al. (2018) trained an ANN model called BRBFNN, which 
was based on the radial function, to identify tomato and cot-
ton crop diseases, and they realized an average accuracy 
of 86.21%, etc. Despite promising results introduced in the 
literature, the aforementioned methods primarily rely on the 
manual feature extraction of the preprocessed corpus, which 
has a certain subjectivity and consumes a large amount of 
work, especially, when the image dataset is large-scale. In 
recent years, a novel ML technique named deep learning 
(DL), explicitly convolutional neural network (CNN), which 
can overcome the above-mentioned challenges and automati-
cally extract image features (Chen et al. 2021a, b, c), has 
been developed to become a preferred method owing to the 
competitive performance (Tuncer 2021; Qi et al. 2021). 
Jayagopal et al. (2022) trained a CNN model to recognize 
leaf-borne infestation and they achieved the best accuracy 
of 95%. Sethy et al. (2020) introduced a network structure, 
which used CNN to extract features and SVM for classifi-
cation. In the experiment of 5,932 samples, they identified 
4 classes of rice plant diseases including tungro, bacterial 
blight, brown spot, and blast, and the combination of SVM 
and ResNet50 performed better with a 98.38% F1-score. 
Coulibaly et al. (2019) reported a deep CNN-based approach 
and transfer learning to identify the mildew disease of pearl 
millet. They identified 6 mildew diseases as well as healthy 

types on a dataset of 500 natural rice crop images and real-
ized an accuracy of 95.00%. By using 500 natural rice plant 
images, Lu et al. (2017) proposed a deep CNN model to 
recognize 10 typical rice plant diseases, and they attained a 
95.48% accuracy. In another research, Gandhi et al. (2018) 
used generative adversarial networks (GAN) to enrich the 
local images, and the MobileNet along with Inception V3 
models were employed to identify plant diseases. For their 
experiments on the PlantVillage dataset (Hughes and Sala-
thé 2015), their models attained the accuracy of 92% and 
88.6%, respectively. Based on the ResNet50, Wenchao and 
Zhi (2022) introduced the focal loss function and proposed 
a new model, namely G-ResNet50, to recognize four types 
of Strawberry leaf diseases. They achieved an average rec-
ognition accuracy of 98.67%. Mohanty et al. (2016) trained 
a CNN model on the PlantVillage dataset to recognize plant 
disease types comprised of 26 plant diseases and 14 species, 
and their model realized a 99.35% accuracy, etc. Although 
very useful results were attained in the aforementioned lit-
erature, the difference and diversity of the images used in 
the research are limited because most materials are photo-
graphed in laboratory environments rather than in natural 
on-field scenarios. In practice, images should be taken under 
a wide range so that they contain diverse symptom features 
of plant diseases (Barbedo 2018). Next, various crop dis-
eases can appear on any part of the plant, whether it is stems, 
leaves, fruits, or roots. Additionally, the deep learning mod-
els used above are primarily the classical deep CNN mod-
els with a large volume, which are not easy to be deployed 
into embedded systems. Despite the limitations, previous 
research has successfully demonstrated the capability of 
deep CNNs (DCNNs) to identify various plant diseases. In 
this study, using the approaches of convolutional ensemble 
learning, three lightweight CNNs including SE-MobileNet, 
Mobile-DANet, and MobileNet V2 were employed as the 
backbone extractor to generate a new convolutional ensem-
ble network called Es-MbNet, where three logistic regres-
sions were designed as the base-classifiers and the Softmax 
were explored as the meta-classifiers depending upon a two-
level stacking strategy. The first-level classifier produces out-
put values for training data that are highly differentiated and 
have good predictive ability, and the second-level classifier 
learns from the first-level classifier to improve the accuracy 
and stability of model prediction. Furthermore, the transfer 
learning and two-stage training strategy were adopted in 
model training. The first stage performed the initialization 
of the network weights, and the second stage fine-tuned the 
network weights using the target dataset. In brief, the major 
contributions of this study can be recapitulated below.

• We have collected a plant disease dataset of major food 
crops like rice and maize. It contains approximately 
1000 images captured from real field wild conditions, 
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and each image has been assigned to a specific cat-
egory. This dataset is expected to facilitate further 
research on plant disease recognition.

• A two-level stacking-based convolutional ensemble 
learning model, namely Es-MbNet, is proposed for the 
recognition of crop diseases. In the proposed Es-MbNet, 
three lightweight CNNs were used as the feature extrac-
tors and the corresponding three logistic regression mod-
els were designed as the base-classifiers. The Softmax 
was finally explored as the meta-classifiers based on the 
stacking strategy.

• The two-stage transfer learning was executed in model 
training. This progressive strategy helps the model dis-
cover the coarse features of crop disease images first, and 
then transform its attention to delicate details gradually, 
without the need for learning all scale features of the 
images meantime.

The rest of this writing is organized as follows. Section 2 
presents the details of the acquired images followed by an 
introduction of related work. This section primarily dis-
cusses the proposed method for crop disease recognition. 
Section 3 brings the experimental analyses; extensive exper-
iments are conducted and assessed through comparative 
analysis. Finally, Sect. 4 concludes the paper and advises 
on future work.

2  Materials and methods

2.1  Acquired images

In the experiments of plant disease recognition, we have 
obtained around 1000 plant disease images containing 466 

maize and 500 rice plant disease samples, which are both 
captured in an on-field cultivation farm environment from 
the innovation base of ZeHuo Digital Technology Co., Ltd. 
The plant disease type of each image is known in advance 
referring to the expertise of the domain experts. It is note-
worthy that all the plant disease images are provided in 
JPG format and have complicated backdrop conditions. For 
example, some images were photographed with the back-
ground of other plant leaves or clutter field grasses, and in 
other images, the background conditions are the on-field 
soils of diverse colors. Also, the photographers’ fingers are 
included in the context of the images sometimes. Besides, 
the lighting strengths were uneven because of the varied 
weather conditions at the different photographing time. 
After acquiring the raw images, we used Photoshop soft-
ware to uniformly adjusted the size of these photographs to 
256 × 256 pixels. The rice plant diseases mainly consist of 
rice blast, brown spot, leaf smut, leaf scald, stackburn, white 
tip, straighthead, and stem rot. The maize diseases contain 
crazy top, gibberella ear rot, maize eyespot, Goss’s bacterial 
wilt, gray leaf spot, common smut, and phaeosphaeria spot. 
Figure 1 displays the sample images of those plant disease 
types.

Moreover, the publicly accessible datasets, such as the 
PlantVillage dataset, AI Challenger dataset (https:// www. 
kaggle. com/ jinbao/ ai- chall enger- pdr20 18), and Sethy et al. 
(2020) dataset, are also used in our experiments. Among 
them, PlantVillage is an open-source plant image repository 
used for the algorithm test of identifying and classifying 
diverse plant diseases. It includes 54,306 plant leaf images 
comprised of 12 healthy plants and 26 disease types in 14 
species, and all the images are raw colored photographs of 
plant leaves captured under controlled backdrop conditions. 
All the sample images have been adjusted to a fixed size of 

(a) Maize common rust (b) Goss's Bacterial Wilt (c) Gray Leaf Spot (d) Phaeosphaeria Spot

(e) Rice blast  (f) Leaf scald (g) Stem rot (h) White tip

Fig. 1  Examples of plant disease images

https://www.kaggle.com/jinbao/ai-challenger-pdr2018
https://www.kaggle.com/jinbao/ai-challenger-pdr2018


12362 J. Chen et al.

1 3

256 × 256 pixels to fit the model. The partial data of the AI 
Challenger dataset is derived from the PlantVillage, and 4 
types of potato plant disease images, including early blight 
fungus general, early blight fungus serious, late blight fun-
gus general, and late blight fungus serious, as well as the 
healthy category are selected in our experiments. The Sethy 
et al. dataset is a paddy leaf image dataset, in which 5,932 
paddy leaf images are collected under a natural field envi-
ronment. Figure 2 presents the partial sample images of the 
public paddy and potato datasets, and the detailed sample 
numbers and categories are summarized in Table 1.

2.2  Related work

2.2.1  Mobile‑DANet

To our knowledge, DenseNet (Huang et al. 2017) reveals the 
latest state-of-the-art with excellent feature extraction capa-
bility because the feature layers receive all the features from 
its preceding layers and its feature maps are output to all 
later layers. In many image recognition fields, DenseNet has 
attained impressive performance. Nevertheless, such dense 
connections also increase the amount of calculation and con-
sume more memory. Besides, each layer connects feature 
maps gained from the previous layers without considering 

the channel relationship characteristics, which does not 
involve the inter-dependencies between channels. There-
fore, on the basis of this, Chen et al. (2021a, b, c) proposed 
a new network architecture named Mobile-DANet which 
compressed the size of the model using depthwise separable 
convolutions (DWSC) (Sifre 2014) in place of the standard 
convolution layers. Further, a hybrid attention mechanism 
including channel-wise and spatial attention modules was 
incorporated into the network to learn the importance of 
inter-channel relationships and space-wise points for the 
input features, thereby improving the accuracy of model 
classification. Their experimental findings demonstrate the 
effectiveness and feasibility of the proposed method. Hence, 
the Mobile-DANet was used in our network.

2.2.2  SE‑MobileNet

Due to plenty of parameters and great volume for the clas-
sical deep CNN models, it is hard for them to be practically 
applied in mobile portable devices. As a consequence, the 
research and application of lightweight networks has gained 
significant attention in the past years. MobileNet is a type 
of lightweight network architecture depending upon DWSC 
and has shown promising capability in addressing both 
large-scale and small-scale problems (Sifre 2014; Li et al. 

(a) Paddy bacterial blight (b) Paddy brown spot (c) Potato early blight
bungus

(d) Potato late blight
fungus

Fig. 2  The sample images of paddy and potato datasets

Table 1  The details of the 
public paddy and potato 
datasets

Species Plant disease type Number of sample 
images

Number of training 
and validation

Number 
of testing

Paddy Bacterial blight 1584 1384 200
Blast 1440 1240 200
Brown spot 1600 1400 200
Tungro 1308 1108 200

Potato Healthy 1634 1430 204
Early blight fungus general 232 203 29
Early blight fungus serious 583 510 73
Late blight fungus general 510 446 64
Late blight fungus serious 287 251 36
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2019). However, as mentioned earlier, the inter-dependen-
cies between channels are not considered in the classical 
MobileNet architecture, which does not involve the channel 
relationship characteristics. Therefore, the SE block incor-
porated MobileNet, namely SE-MobileNet, was introduced 
in reference (Chen et al. 2021a, b, c), where the existing 
MobileNet was optimized by embedding the SE block into 
the pre-trained model. Concretely, the top layers of classi-
cal MobileNet were truncated and the SE block was added 
behind the pre-trained MobileNet, which was followed by 
an additional convolutional layer of 3 × 3 × 512 for high-
dimensional feature extraction. Then, the completely linked 
(CL) layer was replaced by a global pooling layer, which was 
followed by a new CL ReLU layer with 1024 neutrons. At 
last, a CL Softmax layer with the actual number of catego-
ries was used as the top layer of the modified network for 
the classification. Thus, SE-MobileNet is also used as the 
feature extractor of our proposed network.

2.3  Proposed approach

2.3.1  Es‑MbNet model

As mentioned previously, SE-MobileNet is memory effi-
cient. It achieves considerable accuracy compared with other 
deep CNNs, while saving more overhead. The volume of 
SE-MobileNet is only half of the deep convolution neural 
network Densenet-121 and about 1/30 of VGGNet-19. On 
the other hand, using the deep separable convolution in place 
of the traditional convolution, Mobile-DANet compresses 
the model volume and realizes the maximum reuse of input 
features by incorporating the channel-wise and spatial 
attention mechanism and preserving the structure of tran-
sition layers in DenseNet. Additionally, in the mainstream 
lightweight networks, MobileNet V2 (Sandler et al. 2018) 
is relatively small and has fewer parameters. Derived from 
the MobileNet V1, the inverted residual connections and 
linear bottleneck architecture are introduced in MobileNet 
V2, which primarily aims to solve the problem of vanishing 
gradient and achieves some improvement over MobileNet 
V1. Therefore, based on the three lightweight CNN models, 
this study integrates the SE-MobileNet, Mobile-DANet, and 
MobileNet V2 to form a new convolutional ensemble net-
work, which we termed Es-MbNet, to enhance the stability 
and robustness of the model for plant disease recognition.

In general, there are three main ensemble learning strat-
egies, such as Bagging, Boosting, and Stacking. Among 
them, the Stacking strategy can be used to represent Bag-
ging and Boosting methods, and it also has better classifi-
cation performance (Doan 2017). Therefore, in this study, 
we adopted the Stacking strategy and a two-level stacking 
architecture was utilized in the proposed method. Where 
the first-level classifier produces output values for training 

data that are highly differentiated and have good predic-
tive ability, and the second-level classifier learns further 
from the first-level classifier to enhance the accuracy and 
stability of model prediction. Three logistic regressions 
are designed as the base-classifiers in Es-MbNet and the 
Softmax is explored as the meta-classifier by applying the 
idea of stacking strategy. Algorithm 1 depicts the specific 
procedure of stacking-based ensemble learning. More spe-
cifically, the detailed processes of the proposed method are 
presented below.

1. Use three network models to extract the features from 
the training images and construct a migrated feature 
training set: D = {D1, D2, D3}, where Dk = {(xk,1, yk,1), 
(xk,2, yk,2),…, (xk,N, yk,N)}, (xk,i, yk,i) denotes the features 
extracted by image i using the CNN model k and the cor-
responding category information, k ∈ {1, 2, 3}, yk,i ∈ {1, 
2, …, C}, C indicates the number of image classes and 
N is the total number of training samples.

2. Construct a base classifier H = {H1, H2, H3} composed 
of three logistic regression models, and train a logistic 
regression model using each of the three features in the 
migration feature training set.

3. The probability feature space is constructed and a meta-
classifier L comprised of Softmax classification function 
is trained. For arbitrary data xk,1 ∈ Dk, the classifier Hk 
is used to predict and obtain the probability distribution 
Pi,k = [p1

i,k
, p2

i,k
, ..., pM

i,k
] , where pj

i,k
 denotes the probability 

that sample i is predicted by the classifier Hk to the cat-
egory j. The dataset DH = {(x

�

1
, y1), (x

�

2
, y2), ..., (x

�

N
, yN)}

,x�

i
= [Pi,1,Pi,2,Pi,3] is then constructed depending on 

the probability distribution, and it is used for training 
the classifier L. Figure 3 depicts the architecture of the 
proposed Es-MbNet.

Fig. 3  The proposed Es-MbNet architecture
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Furthermore, the network heads of these three backbone 
extractors were discarded and the global average pooling (GAP) 
layers were embedded behind these lightweight network mod-
els, which were used to take care of the resolution of various 
input images. One block comprised of the dropout, batch nor-
malization, and completely associated Sigmoid layer with regu-
larization items is added in each network. In the dropout layer, 
we adopted a dropout factor of 0.5, and a batch normalization 
layer was utilized to enhance the robustness of the network and 
suppress the over-fitting risk to a certain extent. To prevent the 
over-fitting, the L1 regularization term was applied in this dense 
layer with a fixed value of 1 ×  10–4, and the Adam (adaptive 
moment estimation) (Kingma and Ba 2014) was employed 
as the inner optimizer with a 1 ×  10–3 learning rate. Next, the 
binary cross-entropy was employed as the loss function for the 
pre-trained backbone networks, and the logistic regression clas-
sifier was added to each network for the classification. Then, a 
fully connected (FC) Softmax layer with the practical number 
of categories was used as the classification layer of the con-
volutional ensemble network, and particularly, the optimized 
focal loss function was applied to process the multi-classifica-
tion problems. Last but not least, inspired by the performance 
of Grad_CAM (gradient-weighted class activation mapping) 
(Selvaraju et al. 2017), the visualization technique was used to 
position the defect areas of crop disease images, and the plant 
disease activation map (PDAM) was formed using a weighted 
sum of the activation maps of last convolutional layer with the 
weights learned in the last FC Softmax layer, where the signifi-
cant regions of the images that caused the classification results 
made by the CNN were presented.

2.3.2  Training procedure and loss function

The transfer learning and two-stage training strategy were 
adopted in our model training. In the first stage, the parameters 
were initialized and an adaptation was implemented for the net-
works, where the original top layers of the backbone networks 
were substituted by new Sigmoid classification layers, and all 
the bottom convolution layers were kept frozen, while the newly 
extended layers were trained using the target dataset. Adam 
solver was used to update the weights. In the second stage, 
the network was re-trained (fine-tuned) using the target dataset 
by injecting the weights learned in the first stage, and all the 
weights were updated by the SGD optimizer in this stage. The 
first-level classifiers of the ensemble model used the binary 
cross-entropy as the loss function, and a logistic regression clas-
sifier was added to each network for classification. The formula 
of the loss function is expressed by

where y denotes the label (1 indicates the positive sample, 
and 0 is the negative sample), and p(y) is the prediction 
probability of the positive sample for all N samples. The 
second-level classifiers used the FC Softmax layer with the 
actual category numbers as the classification layer of the 
network, and the boost focal loss (γ = 2) function was used as 
the loss function of classification for plant disease recogni-
tion. The hyper-parameters of the model are the minimum 
batch size of 64, the learning rate of 1 ×  10–3, the momentum 
of 0.9, and other parameters are set referring to Sethy et al. 
(2020) work. Algorithm 2 summarizes the detailed proce-
dures of model training.

(1)L= −
1

N

N
∑

i=1

yi log(p(yi)) + (1 − yi) ⋅ log(1 − p(yi)),
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3  Experimental analysis

We have primarily used Python 3.6 to perform the experi-
ments apart from some image processing operations 
executed by the Photoshop and Matlab software. Where 
OpenCV-python3, Tensorflow, and Keras libraries are uti-
lized for algorithm running. The hardware configuration 
includes the  Intel® Xeon(R) E5-2620V4 CPU, 64G memory, 
and GeForce RTX 2080 TI GPU.

3.1  Experiments on the open database

Using the method proposed in Sect. 2.3, we performed the 
model training and test on the PlantVillage dataset. Except 
that some raw images were drawn from the database as the 
test set to evaluate the model, the ratio of the samples ran-
domly assigned to the training set to those in the validation 
set was 4:1, and the choice of the division ratio referred to 
the work of Mohanty et al. (2016). In particular, to further 
investigate the performance of the proposed method, we con-
sidered the well-known CNNs, such as VGGNet (Simonyan 
and Zisserman 2014), Inception V3 (Szegedy et al. 2016), 
ResNet (He et al. 2016), DenseNet, InceptionResNet (Sze-
gedy et al. 2017), and others, to compare models. Through 
transfer learning, these baseline CNN models were built 
and the weights of the bottom convolutional layers were 

initialized by injecting the weights pre-trained on ImageNet 
(Russakovsky et al. 2015). The completely associated layers 
of all the network heads that are used for the classification 
were substituted by new FC Softmax layers with the actual 
number of classes, and the parameter training optimizer was 
Adam, with a 64 mini-batch size, 100 epochs, and a 1 ×  10–3 
learning rate. By doing this, we accomplished the training 
of these CNN models and multiple experiments were carried 
out on the publicly accessible dataset.

An exhaustive analysis was implemented on the results 
output by these CNN models, and we measured the per-
formance of the plant disease recognition model using the 
metrics like Accuracy, Recall, and F1-Score, which were 
separately calculated as follows.

where TP (true positive) means the number of correctly 
identified crop images in each class, TN (true negative) 
indicates the sum of accurately identified crop samples in 

(2)Accuracy =
TP + TN

TN + TP + FN + FP
,

(3)Recall =
TP

TP + FN
,

(4)F1−Score =
2TP

2TP + FN + FP
,
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all other types except for the related ones, FP (false posi-
tive) denotes the number of samples that don’t belong to the 
category but mistakenly classified as this one, and FN (false 
negative) is the number of inaccurately identified samples. 
Table 2 displays the training and validation accuracy of the 
different methods.

As seen in Table 2, the proposed Es-MbNet has achieved 
a superior performance gain compared to other state-of-the-
art methods. After training for 20 and 100 epochs, the train-
ing Accuracy of the model has separately reached 97.12% 
and 98.37%, and especially, the validation accuracy of the 
proposed method has attained the top value of 98.96% in all 
the compared methods except for DenseNet-121, which is a 
deep CNNs with a relatively large volume. Because of the 
dense connection, DenseNet-121 requires more storage and 
computational resource to train the model, e.g., it took more 
than 4 h for DenseNet-121 to complete the entire 100 epochs 
of iteration training, while the time-consuming of Es-MbNet 
is around 24 min. In contrast, the proposed Es_MbNet 
achieves the best trade-off between classification accuracy 

and model efficiency. The crucial explanation behind the 
solid performance of the proposed method is that the Es-
MbNet integrated the merits of multiple networks through 
the stacking-based convolutional ensemble learning, which 
enhances the feature extraction of plant lesion symptoms. In 
addition, the transfer learning and two-stage training strategy 
make the network acquire the optimal weight parameters, 
which helps the model obtain satisfying results. Last but 
not least, the time-consuming of the proposed method is 
even less than that of either skeleton model used in the Es-
MbNet, which is because that the three simple classifiers, 
the logistic regressions instead of Softmax classifiers are 
designed as the base-classifiers in the completely associated 
layers of the Es-MbNet, reducing the computational com-
plexity and the number of model parameters. Conversely, 
owing to the single network, other CNNs did not achieve 
the best results through the parameters of the networks were 
initialized by loading the models pre-trained on ImageNet 
instead of inferring from scratch. As a consequence, the 
model trained by the proposed method was further used to 

Table 2  The results trained on the PlantVillage repository

Models 20 epochs of iteration training 100 epochs of iteration training Time (h)

Training 
accuracy %

Validation 
accuracy %

Training losses Training 
accuracy %

Validation 
accuracy %

Training losses Validation losses

VGGNet-19 94.15 92.55 0.6578 95.53 91.74 0.8492 0.6003 02:11:08
Inception V3 99.83 98.00 0.0727 99.96 98.69 0.9996 0.6016 03:17:23
ResNet-50 99.52 97.60 0.0183 99.99 98.21 0.0004 0.0924 01:51:14
DenseNet-121 99.95 98.91 0.0430 100.00 99.13 0.0058 0.4343 04:44:51
InceptionResNetV2 99.68 97.98 0.1260 99.98 98.26 0.0164 0.9977 07:46:55
MobileNet V2 97.09 97.00 0.1092 99.80 98.48 0.0163 0.0464 02:47:35
Mobile-DANet 97.35 97.41 1.0758 97.84 98.69 0.8980 0.5617 04:53:32
SE-MobileNet 97.62 97.43 1.1801 99.72 98.57 0.9972 1.0074 02:52:23
Es-MbNet 97.12 98.96 0.9786 98.37 98.96 0.6108 0.5808 00:24:28

Table 3  The recognition results 
and measure metrics analysis

ID Plant types Number of rec-
ognized samples

Number of 
correct sam-
ples

Accuracy (%) Recall (%) F1-Score (%)

1 Apple_healthy 129 127 99.80 99.84 99.22
2 Apple_scab 126 126 99.80 100.00 99.21
3 Maize_healthy 70 70 99.23 100.00 94.59
4 Maize_cercospora 40 32 99.23 80.00 88.88
5 Grape_healthy 84 84 99.61 100.00 98.24
6 Grape_black_rot 236 233 99.71 98.72 99.36
7 Tomato_healthy 118 117 99.42 99.15 97.50
8 Tomato_blight 112 109 99.61 97.32 98.19
9 Potato_healthy 30 27 99.71 90.00 94.73
10 Potato_blight 100 100 99.90 100.00 99.50
– Average – – 99.61 98.08 98.08
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recognize plant diseases on new unseen images, and refer-
ring to the work introduced by Hari et al. (2019), the partial 
crop species like maize, tomato, grape, apple, and potato 
were chosen to perform the test of plant disease identifica-
tion. Table 3 represents the recognition results and related 
metrics measurement.

It can be visualized from Table 3 that most of the sam-
ples in each class have been accurately recognized by the 
proposed method and an average Accuracy reaches 99.61%, 
which reveals that the Es-MbNet model has an outstand-
ing capability to recognize plant diseases under controlled 
backdrop conditions. Moreover, apart from recognizing the 
normal or diseased crops, the Es-MbNet also distinguishes 
the specific types of plant diseases, and both the average 
Recall and F1-Score achieve 99.08%, respectively. On 

another front, the experimental findings on the PlantVillage 
dataset obtained by some previous research have also been 
summarized in Table 4. The details such as the references, 
years, used models, the number of classifications, and the 
highest accuracy are all included in this table. The compari-
son of the proposed approach with other influential methods 
demonstrates the superiority of our approach for identifying 
plant diseases under simple backdrop conditions.

Furthermore, a series of experiments were carried out 
on the public paddy and potato image datasets, and Fig. 4 
portrays the training performance of different methods. After 
training for 30 epochs, the proposed method has attained a 
validation Accuracy of 98.51%, which is the highest accu-
racy of all the methods, as shown in Fig. 4f. Thereupon, the 
model trained by the proposed method was further employed 

Table 4  Comparison to the 
results of recent literature on the 
PlantVillage repository

References Years CNN models No. of types Accuracy (%)

Tm et al. (2018) 2018 LeNet 10 94.95
Elhassouny et al. (2019) 2019 Smart CNN 10 90.30
Geetharamani and Pandian (2019) 2019 Nine-layer deep CNN 39 96.46
Karthik et al. (2020) 2020 Attention-based Residual CNN 4 98.00
Tuncer (2021) 2021 Cost-optimized hybrid CNN 30 99.00
Zeng et al. (2022) 2022 GMA-Net 38 99.43
Hassan and Maji (2022) 2022 Inception based CNN 17 99.39
Proposed approach (2022) 2022 Es-MbNet 38 99.61

(a) VGGNet-19                     (b) Inception V3                       (c) ResNet-50   

(d) DenseNet-121                  (e) InceptionResNetV2             (f) The proposed Es_MbNet  

Fig. 4  The training performance of different methods
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to identify the classes of new sample images, and the test 
results are summarized in Table 5. Plus, Table 6 presents 
the report in literature (Sethy et al. 2020) for comparison, 
and Table 7 lists the results compared with the existing work 
(Liang et al. 2019).

As seen in Table 5, the tested 200 samples per category 
for all the paddy disease images have been properly identi-
fied by the proposed method, and the recognition Accuracy 
reaches 100%, outperforming the results reported by Sethy 
et al. (2020) (see Table 6). In addition, for the healthy potato 
plant, all the 204 samples have been accurately identified 
by the proposed method except for 1 misidentification, 
and the Accuracy achieves 99.91%. The 27 potato “Early 
Blight Fungus general” disease samples have been correctly 

recognized by the proposed method apart from 2 incorrect 
identification, and thus the proposed method has gained an 
Accuracy of 99.25%. Among 73 potato “Early Blight Fungus 
serious” disease images, 66 samples have been accurately 
identified by the proposed method, and the Accuracy rate 
realizes 99.41%. To sum up, in the 1206 paddy and potato 
plant images, 1183 samples have been successfully identified 
by the proposed method and the average Accuracy reaches 
99.57%. Besides, the average Recall and F1-Score realize 
98.09%, respectively. More than that, from the comparison 
results between the proposed method and the existing work 
(Liang et al. 2019) on the identification of potato plant dis-
eases, the proposed Es_MbNet has also shown strong rec-
ognition capability, as shown in Table 7.

3.2  Experiments on the local dataset

In like manner, the proposed method was further tested 
on the local image dataset. To enhance the diversity and 
difference of local sample images, the data enhancement 
scheme was utilized to produce new synthetic images for 
model training, thereby alleviating the risks of over-fitting. 
The conventional data enhancement techniques paired with 
the improved DCGAN method were adopted in our data 
enhancement scheme. In general, the conventional data 
enhancement techniques including random translation, scale 
transformation, angle rotation, color jittering, and horizon-
tal or vertical flipping, can generate new images but may 
destroy the linear relationship of original images too. In 
comparison, the latest DCGAN can generate diverse images 
automatically, although the process is more complex than the 
traditional methods. The classical architecture of DCGAN is 
designed to produce new images with a size of 64 × 64 pixels 
since training DCGAN with larger scales is not stable as 
one module (generator or discriminator) becomes stronger 
than the other one. But for most of the successful CNNs, the 
dimensions of input images are assigned a greater value like 

Table 5  The identified results of the proposed method

Species Plant disease types Tested samples Correct 
samples

Accuracy (%) Recall (%) F1-Score (%)

Paddy Bacterial blight 200 200 100.00 100.00 100.00
Blast 200 200 100.00 100.00 100.00
Brown spot 200 200 100.00 100.00 100.00
Tungro 200 200 100.00 100.00 100.00

Potato Healthy 204 203 99.91 99.50 99.75
Early blight fungus general 29 27 99.25 93.10 85.71
Early blight fungus serious 73 66 99.41 90.41 94.96
Late blight fungus general 64 55 98.67 85.93 87.30
Late blight fungus serious 36 32 98.92 88.88 83.11

Average – – – 99.57 98.09 98.09

Table 6  The recognized results of paddy diseases in literature (Sethy 
et al. 2020)

Paddy disease types Bacterial blight Rice blast Rice 
brown 
spot

Tungro

Bacterial blight 197 3 0 0
Blast 7 193 0 0
Brown spot 0 4 196 0
Tungro 0 0 0 200

Table 7  The potato disease identification results compared with the 
literature (Liang et al. 2019)

Potato disease types Accuracy in literature 
(Liang et al. 2019) (%)

Accuracy of 
this study (%)

Healthy 100 99.91
Early blight fungus general 89 99.25
Early blight fungus serious 88 99.41
Late blight fungus general 88 98.67
Late blight fungus serious 92 98.92
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256 × 256 pixels to improve the performance of the model. 
Due to this reason, we enhanced the classical DCGAN by 
modifying the input assignment as 256 × 256 pixels and 
embedding a convolutional block of 128 × 64 × 3 followed 
by a 32 × 3 convolutional block in the generator module. 
Correspondingly, the input size of the discriminator was 
assigned as 256 × 256 × 3, and then the convolutional block 
of 32 × 3 followed by a 64 × 128 × 3 convolutional block was 
also incorporated into the networks. The hyper-parameters 
of model training were set to the mini-batch size of 16, the 

learning rate of 1 ×  10–4, the epochs of 5 ×  105, and the Adam 
solver. By doing this, the new samples were synthesized and 
greater than 200 images were guaranteed per category.

In addition to preserving a certain number of original 
images for the model test, the augmented samples were 
divided into the training and validation sets with the ratio 
of 4:1 to separately train and determine whether the model 
was over-fitting. Using the model trained by the proposed 
method, the new sample images outside modeling were 

(a) ROC curve                                     (b) Confusion matrix 

Fig. 5  The identification results on local crop images

Table 8  The measure metrics analysis of identification results

Species ID Crop disease types Number of identi-
fied samples

Number of cor-
rect samples

Accuracy (%) Recall (%) F1-Score (%)

Maize 1 Common rust 38 37 99.16 97.36 96.10
2 Crazy top 28 28 99.72 100.00 98.24
3 Gibberella ear Rot 28 27 99.72 96.42 98.18
4 Goss bacterial Wilt 20 17 98.88 85.00 89.47
5 Common smut 38 37 99.44 97.36 97.36
6 Gray leaf spot 20 18 99.16 90.00 92.31
7 Maize eyespot 33 32 98.88 96.96 94.12
8 Phaeosphaeria leaf spot 11 10 99.72 90.90 95.24

Rice 9 Rice blast 18 17 99.44 100.00 94.44
10 Brown spot 19 19 99.72 100.00 97.43
11 Leaf scald 19 17 98.88 89.47 89.47
12 Leaf smut 19 18 99.72 94.73 97.29
13 Rice stackburn 14 14 99.44 100.00 93.33
14 Rice stem rot 25 25 100.00 100.00 100.00
15 Rice straighthead 19 19 99.44 100.00 95.00
16 White tip 16 12 98.60 75.00 82.75
– Average – – 99.37 95.32 95.06
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selected for the test of plant disease identification. Figure 5 
shows the ROC curve and confusion matrix of the identifi-
cation results, and the corresponding evaluation metrics are 
summarized in Table 8.

It can be visualized from Fig. 5a that the identification 
result of the proposed method shows ideal operating points 
and the curves of all the categories are generally convex to 
the left upper corner of the figure. The recognized plant dis-
ease types are with a greater true positive rate (TPR) while a 
smaller false positive rate (FPR), which can also be reflected 
by the confusion matrix of recognition results in Fig. 5b. 
Most images in various categories have been accurately rec-
ognized by the proposed Es-MbNet method. For instance, 
except for one misidentification, the other 37 examples were 
correctly identified in the "common rust" category, and the 
identification accuracy realizes 99.72%. Likewise, all 28 
“Crazy Top” disease samples have been properly recognized 
by the proposed method, and also, the proposed method 
has accurately recognized 27 instances of "gibberellin ear 
rot" in 28 samples, with an accuracy of 99.72%. In sum-
mary, a total of 347 instances have been successfully identi-
fied in 365 samples, and the average recognition accuracy 
achieves 99.37%. Again, the average Recall and F1-Score 
have attained no less than 95.32% and 95.06%, respectively, 
as shown in Table 8. In another aspect, there are individual 
identification errors, such as 2 misclassified samples in the 
category "Leaf scald", and 4 errors in the category "White 
tip". This is due to that some different disease types like rice 

"Leaf scald" and "White tip" have some similarities in their 
own pathological characteristics, such as whitening, twist-
ing, and withering of leaves. Additionally, the serious clutter 
field backdrop conditions and irregular illumination inten-
sities, which impact the feature extraction of disease spot 
images, can lead to the misclassification of crop diseases too. 
Figure 6 shows the examples of partially recognized results. 
Among them, the upper samples are the original images, 
the middle samples are the lesion images presented by the 
classification activation map (CAM) visualization technol-
ogy, and the bottom images are the plant disease samples 
recognized by our method.

As can be observed in Fig. 6, most of the tested sample 
images have been accurately recognized by the proposed 
method. Such as Fig. 6a, the practical category of this sam-
ple is “Rice Stackburn”, which is successfully recognized 
with a 0.89 probability. Similarly in Fig. 6b, c, these samples 
are both correctly recognized with a probability greater than 
0.99 and 0.74, respectively. In contrast, individual samples 
such as Fig. 6d are mistakenly categorized because of the 
extreme clutter field backdrops and non-uniform lighting 
intensities. Besides, some different crop diseases appear-
ing on the same crop may also influence the identification 
results. Although individual disease spot images are mis-
classified, the types of most crop disease samples that have 
been identified are consistent with their actual types. Fur-
thermore, from the middle defect positioning images exhib-
ited by PDAM in Fig. 6, it can also be observed that most 

(a) Rice Stackburn          (b) Common Rust       (c) Goss Bacterial Wilt          (d) Leaf Scald 

Fig. 6  The examples of identified crop disease images
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disease areas have been successfully located by the proposed 
method. Consequently, based on the results of experimental 
analysis, we can conclude that the proposed Es-MbNet has 
a significant ability to recognize diverse crop diseases under 
natural field wild scenarios and can also be transplanted in 
other related fields.

4  Conclusions

To guarantee a substantial crop yield, the timely and effi-
cient recognition of plant diseases plays a crucial role, and 
therefore looking for a useful, simple, and fast tool to auto-
matically recognize various plant diseases has a great need 
and important realistic significance. In this study, a novel 
convolutional ensemble learning method is proposed to rec-
ognize plant disease types. Using a two-level stacking strat-
egy, the three lightweight networks including SE-MobileNet, 
Mobile-DANet, and MobileNet V2 were employed as the 
backbone extractor to generate a new convolutional ensem-
ble network, namely Es-MbNet, in which three logistic 
regressions were designed as the base-classifiers and the 
Softmax were explored as the meta-classifiers. Further, 
the transfer learning and two-stage training strategy were 
adopted in model training, and the first phase only trained 
the weights on the newly extended layers from scratch while 
freezing the parameters of the bottom convolutional layers, 
thereby initializing the network weights. The second phase 
re-trained the network using the target dataset by injecting 
the weights trained in the first phases, and thus the optimum 
weight parameters are gained for the ensemble convolutional 
network. Experimental findings reveal the proposed method 
with solid efficacy for plant disease recognition on both the 
open-source and local datasets. Though competitive perfor-
mance has been achieved by the proposed method, individ-
ual misidentifications still exist in samples with extremely 
complicated background conditions. In the future, we will 
collect a wider range of plant disease images under practi-
cal on-field wild scenarios to automatically recognize the 
broad range of plant disease images. Additionally, we want 
to extend the method to other related fields, such as online 
fault inspection, computer-aided evaluation, and so on.

Acknowledgements The authors want to thank Fundamental Research 
Funds for the Central Universities with Grant No. 20720181004. The 
authors also thank editors and unknown reviewers for providing useful 
suggestions.

References

Atoum Y, Afridi MJ, Liu X, McGrath JM, Hanson LE (2016) On devel-
oping and enhancing plant-level disease rating systems in real 
fields. Pattern Recognit 53:287–299

Barbedo JG (2018) Factors influencing the use of deep learning for 
plant disease recognition. Biosyst Eng 172:84–91

Chen J, Wang W, Zhang D, Zeb A, Nanehkaran YA (2021a) Atten-
tion embedded lightweight network for maize disease recognition. 
Plant Pathol 70(3):630–642

Chen J, Zhang D, Suzauddola M, Nanehkaran YA, Sun Y (2021b) 
Identification of plant disease images via a squeeze-and-excitation 
MobileNet model and twice transfer learning. IET Image Proc 
15(5):1115–1127

Chen J, Zhang D, Zeb A, Nanehkaran YA (2021c) Identification of 
rice plant diseases using lightweight attention networks. Expert 
Syst Appl 169:1–12

Chouhan SS, Kaul A, Singh UP, Jain S (2018) Bacterial foraging 
optimization based radial basis function neural network (BRB-
FNN) for identification and classification of plant leaf diseases: 
an automatic approach towards plant pathology. IEEE Access 
6:8852–8863

Chug A, Bhatia A, Singh AP, Singh D (2022) A novel framework for 
image-based plant disease detection using hybrid deep learning 
approach. Soft Comput 1–26

Coulibaly S, Kamsu-Foguem B, Kamissoko D, Traore D (2019) Deep 
neural networks with transfer learning in millet crop images. Com-
put Ind 108:115–120

Ding W, Taylor G (2016) Automatic moth detection from trap images 
for pest management. Comput Electron Agric 123:17–28

Doan TS (2017) Ensemble learning for multiple data mining problems. 
University of Colorado at Colorado Springs. PhD thesis

Elhassouny A, Smarandache F (2019) Smart mobile application to rec-
ognize tomato leaf diseases using Convolutional Neural Networks. 
In: 2019 international conference of computer science and renew-
able energies (ICCSRE). IEEE, pp 1–4

Gandhi R, Nimbalkar S, Yelamanchili N, Ponkshe S (2018) Plant 
disease detection using CNNs and GANs as an augmentative 
approach. In: 2018 IEEE international conference on innovative 
research and development (ICIRD). IEEE, pp 1–5

Geetharamani G, Pandian A (2019) Identification of plant leaf diseases 
using a nine-layer deep convolutional neural network. Comput 
Electr Eng 76:323–338

Hari SS, Sivakumar M, Renuga P, Suriya S (2019) Detection of plant 
disease by leaf image using convolutional neural network. In: 
2019 international conference on vision towards emerging trends 
in communication and networking (ViTECoN). IEEE, pp 1–5

Hassan SM, Maji AK (2022) Plant disease identification using a novel 
convolutional neural network. IEEE Access 10:5390–5401

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image 
recognition. In: Proceedings of the IEEE conference on computer 
vision and pattern recognition, pp 770–778

Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely 
connected convolutional networks. In: Proceedings of the IEEE 
conference on computer vision and pattern recognition, pp 
4700–4708

Hughes D, Salathé M (2015) An open access repository of images on 
plant health to enable the development of mobile disease diagnos-
tics. http:// arxiv. org/ abs/ 1511. 08060

http://arxiv.org/abs/1511.08060


12372 J. Chen et al.

1 3

Jayagopal P, Rajendran S, Mathivanan SK, Sathish Kumar SD, Raja 
KT, Paneerselvam S (2022) Identifying region specific seasonal 
crop for leaf borne diseases by utilizing deep learning techniques. 
Acta Geophys pp 1–14

Karthik R, Hariharan M, Anand S, Mathikshara P, Johnson A, Menaka 
R (2020) Attention embedded residual CNN for disease detection 
in tomato leaves. Appl Soft Comput 86:1–27

Kaur S, Pandey S, Goel S (2018) Semi-automatic leaf disease detection 
and classification system for soybean culture. IET Image Proc 
12(6):1038–1048

Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. 
http:// arxiv. org/ abs/ 1412. 6980

Kumari CU, Prasad SJ, Mounika G (2019) Leaf disease detection: fea-
ture extraction with K-means clustering and classification with 
ANN. In: 2019 3rd international conference on computing meth-
odologies and communication (ICCMC). IEEE, pp 1095–1098

Li X, Zhang S, Jiang B, Qi Y, Chuah MC, Bi N (2019) Dac: data-free 
automatic acceleration of convolutional networks. In: 2019 IEEE 
Winter conference on applications of computer vision (WACV). 
IEEE, pp 1598–1606

Liang Q, Xiang S, Hu Y, Coppola G, Zhang D, Sun W (2019) PD2SE-
Net: computer-assisted plant disease diagnosis and severity esti-
mation network. Comput Electron Agric 157:518–529

Lu Y, Yi S, Zeng N, Liu Y, Zhang Y (2017) Identification of rice dis-
eases using deep convolutional neural networks. Neurocomputing 
267:378–384

Mohan KJ, Balasubramanian M, Palanivel S (2016) Detection and rec-
ognition of diseases from paddy plant leaf images. Int J Comput 
Appl 144(12):34–41

Mohanty SP, Hughes DP, Salathé M (2016) Using deep learning for 
image-based plant disease detection. Front Plant Sci 7:1–10

Qi H, Liang Y, Ding Q, Zou J (2021) Automatic identification of pea-
nut-leaf diseases based on stack ensemble. Appl Sci 11(4):1–14

Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Fei-Fei 
L (2015) Imagenet large scale visual recognition challenge. Int J 
Comput vis 115(3):211–252

Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC (2018) Mobile-
netv2: inverted residuals and linear bottlenecks. In: Proceedings of 
the IEEE conference on computer vision and pattern recognition, 
pp 4510–4520

Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D 
(2017) Grad-cam: visual explanations from deep networks via 

gradient-based localization. In: Proceedings of the IEEE interna-
tional conference on computer vision, pp 618–626

Sethy PK, Barpanda NK, Rath AK, Behera SK (2020) Deep fea-
ture based rice leaf disease identification using support vector 
machine. Comput Electron Agric 175:1–9

Sifre L (2014) Rigid-motion scattering for image classification. Ecole 
Polytechnique, CMAP. PhD thesis

Simonyan K, Zisserman A (2014) Very deep convolutional networks 
for large-scale image recognition. http:// arxiv. org/ abs/ 1409. 1556

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking 
the inception architecture for computer vision. In: Proceedings of 
the IEEE conference on computer vision and pattern recognition, 
pp 2818–2826

Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-
v4, inception-ResNet and the impact of residual connections 
on learning. In: Thirty-first AAAI conference on artificial 
intelligence(AAAI-17), pp 4278–4284

Tm P, Pranathi A, SaiAshritha K, Chittaragi NB, Koolagudi SG 
(2018) Tomato leaf disease detection using convolutional neural 
networks. In: 2018 eleventh international conference on contem-
porary computing (IC3). IEEE, pp 1–5

Tuncer A (2021) Cost-optimized hybrid convolutional neural networks 
for detection of plant leaf diseases. J Ambient Intell Humaniz 
Comput 12(8):8625–8636

Wenchao X, Zhi Y (2022) Research on strawberry disease diagnosis 
based on improved residual network recognition model. Math 
Probl Eng 2022:1–12

Zeng T, Li C, Zhang B, Wang R, Fu W, Wang J, Zhang X (2022) Rub-
ber leaf disease recognition based on improved deep convolutional 
neural networks with an cross-scale attention mechanism. Front 
Plant Sci 274:1–12

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); 
author self-archiving of the accepted manuscript version of this article 
is solely governed by the terms of such publishing agreement and 
applicable law.

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1409.1556

	Stacking ensemble model of deep learning for plant disease recognition
	Abstract
	1 Introduction
	2 Materials and methods
	2.1 Acquired images
	2.2 Related work
	2.2.1 Mobile-DANet
	2.2.2 SE-MobileNet

	2.3 Proposed approach
	2.3.1 Es-MbNet model
	2.3.2 Training procedure and loss function


	3 Experimental analysis
	3.1 Experiments on the open database
	3.2 Experiments on the local dataset

	4 Conclusions
	Acknowledgements 
	References




