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Abstract
Owing to the high uncertainty and variability of renewable energy, power system operators require an accurate forecast 
method. Considering that the cloud cover significantly affects the photovoltaic (PV) generation, critical factors for accurate 
PV forecast are the future shape and trajectory of clouds, which weather information services hardly provide. The paper 
proposes an innovative PV generation forecast method based on future cloud image prediction, for which a hybrid deep 
learning technique combining the generative adversarial network (GAN) and the long short-term memory (LSTM) model 
is used. The role of GAN is to generate cloud images from random latent vectors while LSTM learns patterns of time-series 
input images. To verify the effectiveness of the proposed methodology, the paper compares it with various hybrid PV fore-
cast models in terms of prediction accuracy, using field data of satellite images and meteorological information. For testing 
the proposed method, a total of 30,507 infrared images shot by Communication, Ocean, and Meteorological Satellite 1 of 
the National Meteorological Satellite Center of Korea every 15 min were collected and utilized. In the end, it is concluded 
that the proposed LSTM–GAN model presents better prediction accuracy over CNN–ANN, CNN–LSTM, GRU–GAN, and 
BILSTM-GAN.
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Abbreviations
ANN  Artificial neural network
ARIMAX  Autoregressive integrated moving average 

exogenous
ARMA  Autoregressive moving average
CNN  Convolutional neural network
DCGAN  Deep convolutional GAN
GAN  Generative adversarial network

GHI  Global horizontal irradiance
KMA  Korea meteorological administration
LSTM  Long short-term memory
MSE  Mean squared error
PV  Photovoltaic
RMSE  Root mean squared error
SVM  Support vector machine

1 Introduction

With the global eco-friendly trend, renewable energy 
resources such as photovoltaic (PV) systems now become a 
large percentage of the energy mix. In the end, their uncer-
tain and variable nature requires abundant energy reserves 
and resources for maintaining power system reliability, which 
in turn increases operation costs (Mohandes et al. 2019). A 
fine method that can proactively handle the uncertainty is to 
predict future PV outputs accurately. Based on the prediction, 
power system operators can prepare economic, dispatchable 
resources for power balances in the future. In this sense, many 
researchers have studied various forecast methodologies rely-
ing on big data to increase forecast accuracy.
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For improving PV forecast accuracy and practical use, it 
is necessary to utilize satellite image prediction because the 
images have essential information about weather, especially 
cloud shapes, locations, and trajectories. Furthermore, the 
predicted satellite images can track the movement of clouds, 
which significantly affects the PV power forecasting. For 
example, a moving cloud can cover the PV panel directly, 
and PV power can be temporarily lowered. However, the 
computation complexity of handling satellite images is so 
high that image prediction is quite challenging. To be spe-
cific, high-resolution images require more memory resources 
for calculation and more parameters for extracting features. 
Because the computer resources are finite, excessive com-
putations can overload and take long to obtain results. In 
this context, this study first employs a hybrid deep learn-
ing model combining LSTM and GAN to predict satellite 
images and then quantifies cloud covers shown in predicted 
satellite images. The quantified numeric values are finally 
applied to the PV generation forecast model based on mul-
tivariate-LSTM. Indeed, GAN is a generative model that 
can efficiently produce a fake image that looks real from a 
random latent vector, and LSTM is a learning model with 
feedback structures that can extract time-series features 
from sequence images to predict future latent vectors. In 
this way, the hybrid LSTM-GAN model predicts future satel-
lite images efficiently. The major contributions of this paper 
are twofold:

• By applying the hybrid model of the time-series model 
and generative model in the PV prediction domain, it was 
confirmed that LSTM-GAN, GRU-GAN, and BILSTM-
GAN predict future satellite images with cloud cover 
information.

• By comparing the combinations with and without the 
satellite image prediction, it was confirmed that the com-
bination of satellite image prediction and weather infor-
mation represented the highest performance.

The rest of this paper is organized as follows. Related to the 
PV forecasting model, diverse research studies are described 
in Sect.  2. In Sect.  3, several deep learning algorithms 
that the proposed method employs are explained, followed 
by the detailed description of the proposed hybrid forecast 
model in Sect. 4. Then, experimental results are presented 
and discussed in Sect.  5, and the paper is finally concluded 
in Sect. 6.

2  Related work

Since PV generation considerably depends on weather 
conditions, several PV forecast models have used the past 
weather data recorded or meteorological information from 

numerical weather prediction (Yang et al. 2014; Du 2019). 
Among the information, solar irradiance and cloud coverage 
have been commonly-used variables for PV forecast (Lor-
enz et al. 2009), and the authors of Kanwal et al. (2018) 
formulated a power conversion curve from solar irradiance. 
In Eom et al. (2020), Kim et al. (2019), correlations among 
variables were analyzed, and then only highly correlated 
variables were used for regression models. Note that the 
accuracy of these forecast models using only meteorological 
data is affected by weather information prediction. Never-
theless, most weather information sites do not accurately 
forecast solar irradiation or cloud coverage and amount as 
numerical values.

In contrast, statistical models can forecast PV genera-
tion from the past power generation trends without weather 
information. The well-known statistical forecast models 
include the persistence, autoregressive moving average 
(ARMA) (Atique et al. 2019; Colak et al. 2015), artificial 
neural network (ANN) (Methaprayoon et al. 2007), support 
vector machine (SVM) (Shi et al. 2012), and long short-term 
memory (LSTM) (Zhou et al. 2019) models. The persistence 
and ARMA models are traditional linear models, while the 
ANN and SVM models can learn nonlinear characteristics 
from data. The prediction performance of linear models 
may substantially degrade when data suddenly fluctuate, 
whereas nonlinear models are robust to the fluctuation. The 
LSTM model is a time-series model based on deep learning 
(Hochreiter and Schmidhuber 1997), which has been widely 
used in voice recognition, stock price prediction, and power 
generation forecasting. Statistical models have outstanding 
performance in the short-term forecast but yield continu-
ous errors as prediction periods increase because they only 
follow power generation trends. Even worse, the models 
are highly vulnerable to external disturbances that cause 
power generation fluctuation. For example, if a cloud casts 
a shadow on PV panels and then moves away, unspecific 
fluctuation may occur in power generation. This fluctuation 
is not reflected in generation trends and often results in sig-
nificant errors. In the end, hybrid models that reflect both 
external factors and trends have been studied (Mosaico and 
Saviozzi 2019). For example, an autoregressive integrated 
moving average exogenous (ARIMAX) model fundamen-
tally uses the previous time-series data and simultaneously 
involves external inputs in consideration of variability.

Despite the methodological improvement of prediction 
models, PV forecast performance still needs to depend on the 
accurate prediction of irradiation and cloud amount. In Ryu 
et al. (2019), sky images, captured by a camera on a rooftop, 
and the past global horizontal irradiance (GHI) values were 
used to predict short-term irradiance through a convolutional 
neural network (CNN). The authors of Wood-Bradley et al. 
(2012) predicted cloud movement using a cloud and optical 
flow tracking algorithm based on an individual ground-based 
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sky camera. However, these methods based on sky cameras 
on the ground afford only ultra-short-term predictions because 
sky conditions can only be captured in the surrounding region.

Unlike sky images captured on the ground, satellite images 
can cover geographically large areas, providing irradiance 
(Catalina et al. 2020). In Marchesoni-Acland et al. (2019), 
an ARMA-based GHI forecasting model using the regional 
short-term local variability index and satellite images as exog-
enous inputs was proposed. It should be noted that the use of 
satellite images improved prediction performance. However, 
these methods were based on only past satellite images and 
underestimated the fact that the cloud movement patterns keep 
changing over time. Ultimately, the PV forecast requires to 
predict the future movement of clouds.

The prediction of future satellite images has not been 
generally attempted as it requires significant computations. 
To overcome this, the authors of Hong et al. (2017) reduced 
image dimensions via a convolutional sequence-to-sequence 
auto-encoder model. In Cheng et al. (2022), the authors 
designed an auto-encoder framework to process multiple 
satellite images and suggested shifting receptive attention to 
dynamic regions of interest to avoid complex computations. 
The authors of Si et al. (2021) extracted cloud cover fac-
tors from satellite visible images using a modified CNN and 
combined meteorological data with cloud cover factors to 
develop a GHI forecasting model. Si et al. (2021) utilized the 
convolutional LSTM model to extract the feature of satellite 
images and applied it to PV power forecasting. Schulte et al. 
(2021) suggested the ANN-based forecast model for training 
cloud motion vectors and predicting future cloud positions. 
Furthermore, (Xu et al. 2019) proposed a satellite image 
forecast model that can efficiently learn the characteristics 
of satellite images using a generative adversarial network 
(GAN)-LSTM, which can generate more precise images 
than auto-encoder models. However, the authors of Xu 
et al. (2019) did not fully utilize the image prediction model 
for PV generation forecast. The authors of Moskolaï et al. 
(2021) investigated many proposed DL-based methods for 
satellite image prediction based on CNN, MLP, and LSTM. 
In addition, Moskolaï et al. (2021) reviewed hybrid models, 
such as GAN-LSTM, ConvLSTM-AE, and CNN-LSTM in 
various prediction domains. However, LSTM-GAN has not 
yet been proposed as a PV forecasting model and can be 
considered a state-of-the-art method. In other words, the 
accuracy of image prediction might not guarantee that of 
the PV generation forecast without further investigation.

3  Deep learning algorithm

This section briefly describes deep learning algorithms that 
the proposed forecast model uses: deep convolutional GAN 
(DCGAN), convolutional LSTM, and multivariate-LSTM.

3.1  DCGAN

The GAN is a deep learning model that can learn a spe-
cific data distribution and create new data from the same 
distribution. Figure  1 depicts the GAN training process, 
pointing out that the GAN consists of two neural net-
works: the generator and discriminator. The generator 
aims to create (or imitate) data with the same structure 
as training data from a random vector, while the role of 
the discriminator is to determine whether input data are 
real or generated (i.e., imitated) correctly (Radford et al. 
2016). The DCGAN is an extended concept of GAN that 
uses convolutional and deconvolutional layers, thereby 
improving stability in GAN learning. Furthermore, this 
structure can reduce the image-processing data complexity 
by using vector arithmetic operations. In addition, the fact 
that unsupervised learning does not require labeling acts 
as an advantage in linking with other models. In DCGAN, 
changes in the input are also reflected in the correspond-
ing output. For example, when an input vector changes 
slightly and linearly, image creation also changes in the 
corresponding pattern.

In Fig. 1, x is the image in training data, and z ∈ R|z| 
is the latent vector. G(⋅) is the generator function, which 
maps z to the two-dimensional space, and G(z) indicates 
the generated image. D(⋅) is the discriminator function, 
which judges whether the argument image is real or gener-
ated (i.e., fake). For example, D(x) outputs the probability 
that x is from training data, while D(G(z)) represents the 
probability that the generated image is real. In general, the 
GAN objective function can be written as follows:

where E[⋅] refers to the expected value, and pdata(x) and pz(z) 
are the probability density function of x and z, respectively. 
The subscripts conv and deconv indicate convolution and 
deconvolution, respectively, as described in Fig.  2.

In convolution, the pixel at the ith row and jth column 
in the filtered image, Gij , can be processed by (2).

(1)
min
G

max
D

V(D,G) = −Ex∼pdata(x)

[
logDconv(x)

]

−Ez∼pz(z)

[
log

{
1 − Dconv

(
Gdeconv(z)

)}]
,

Fig. 1  Scheme of the DCGAN training process
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where F and X indicate the filter and original image, respec-
tively, and the subscript H and W are the height and width, 
respectively. Then, the output can be obtained as follows:

where the stride S determines the movement size of the filter, 
and the padding P adjusts the spatial size of the output.

3.2  Convolutional LSTM

Figure 3 shows the structure of a general LSTM cell, of which 
operations are expressed as follows:

(2)

Gij = (F ∗ X)(i, j)

=

FH−1∑

x=0

FW−1∑

y=0

F(x, y) ⋅ X(i − x, j − y),

(3)
(OH ,OW ) =(
XH + 2P − FH

S
+ 1,

XW + 2P − FW

S
+ 1

)
,

(4)ft = �g(Wf xt +Wfht−1 + bf ),

(5)it = �g(Wixt +Wiht−1 + bi),

(6)ot = �g(Woxt +Woht−1 + bo),

(7)c�
t
= tanh(Wcxt +Wcht−1 + bc),

(8)ct = ft◦ct−1 + it◦c
�

t
,

(9)ht = ot◦ tanh(ct),

where xt is the input vector; ft , it , and ot are the activation 
vectors of the forget, input, and output gates, respectively; 
ht is the output vector; c′

t
 is the cell input activation vector; 

ct is the cell state vector; the subscript t is the time step; W 
is the weight; b is the bias; the subscripts f, i, o, and c denote 
the forget, input, output, and cell, respectively; �g(⋅) is the 
sigmoid function; and the operator ◦ indicates the element-
wise product.

In a general LSTM model, a slight increase of the input 
image size excessively increases the number of parameters, 
which might hinder proper learning because of computational 
complexity and limited resources. This problem can be solved 
by a convolutional LSTM model that learns a temporal cor-
relation of successive images (Marchesoni-Acland et al. 2019). 
The convolutional LSTM is a model that combines CNN and 
LSTM. While CNN reduces data dimension and finds data 
features, LSTM learns time-series characteristics of data. As 
shown in Fig. 4, feature vectors with a preferred size can be 
extracted from images through convolution operations. Finally, 
from successive time-series satellite images, a single feature 
vector vt can be obtained as follows:

where fc−lstm(⋅) is the convolutional LSTM model, x̃ are the 
input images, and n is the number of input images.

(10)vt = fc−lstm(x̃t−n+1, x̃t−n+2,⋯ , x̃t),

Fig. 2  Structures of the generator and discriminator networks. Trans-
Conv indicates transpose and convolution

Fig. 3  Structure of an LSTM cell

Fig. 4  Structure of the convolutional LSTM
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3.3  Multivariate‑LSTM

Since a univariate-LSTM-based forecast model that uses 
only historical data is vulnerable to external disturbances, 
this work employs a multivariate-LSTM that reflects trends 
of external variables for PV generation forecast. Before 
training, min-max normalization of multiple inputs is nec-
essary for preventing biased learning due to relative volume 
differences among inputs. Figure  5 describes the structure 
of the multivariate-LSTM used in this work, which finally 
outputs a single forecasted value as follows:

where ŷt+1 is the output, fm−lstm(⋅) is the multivariate-LSTM 
model, u are the inputs, and k is the number of inputs.

4  Proposed hybrid forecast model

From time-series satellite images, one can extract cloud 
amount and movement, which are useful information for 
PV forecast. To that end, the paper proposes a hybrid fore-
cast model that can imitate cloud shapes and patterns and 
predict cloud movement. The model consists of three parts 
as follows:

• a DCGAN model that creates cloud images
• an LSTM-GAN model that forecasts cloud images
• a multivariate-LSTM model that forecasts PV genera-

tions

Figure 6 illustrates the overview and process of the proposed 
hybrid forecast model. As presented in the figure, the first 
step is to generate cloud images using the DCGAN, which 
is specialized for image learning through convolution lay-
ers. The LSTM–GAN model in Step 2 predicts future satel-
lite images by combining time-series and image generation 
components. Finally, the multivariate-LSTM model in Step 
3 converts the predicted cloud images to numerical values of 
cloud cover, which are then used to forecast PV generation 
along with weather information and historical PV generation 

(11)ŷt+1 = fm−lstm(u1,t, u2,t,⋯ , uk,t),

data. The following subsections describe the details of each 
step.

4.1  Cloud image creation model based on DCGAN

Since image patterns are difficult to identify owing to large 
data size and complexity, their learning for precise image 
imitation has been challenging as existing image-related 
techniques created broken or blurred images. In contrast, 
DCGAN can express a large-sized image with a small-
sized latent vector like a single point inside a specific space, 
thereby significantly reducing computational and memory 
resources used for learning. In this study, the dimension of 
original satellite images was reduced through bicubic inter-
polation for reducing computational complexity and experi-
mental efficiency. Then, satellite image archives store the 
resized images, providing minibatch images in sequence 
to the discriminator as real data inputs, as described in 
Fig. 6. After many attempts to generate and discriminate 
images, the performance of the generator and discriminator 
improves, and DCGAN can eventually create cloud images 
that look like those in real satellite images. The detailed 
DCGAN training procedure is described in Algorithm 1.Fig. 5  Structure of the multivariate-LSTM

Fig. 6  Structure of the proposed hybrid model
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4.2  Cloud image forecast model based on LSTM–
GAN

In the previous step, a trained generator that imitates 
real satellite images from random latent vectors can be 
obtained, and then this step uses the generator for future 
cloud image prediction. To that end, one needs to identify 
how a latent vector is correlated with cloud image pat-
terns and to predict future latent vectors from the previous 
time-series ones. However, if the latent vector dimension 
is large, it is impossible for humans to characterize the 
correlation between the vector and image patterns. Hence, 
as described in Fig. 6, this study combines the previously-
trained DCGAN generator model with the convolutional 
LSTM model, of which role is to predict future latent vec-
tors from time-series image inputs by inherently learning 
to produce a latent vector corresponding to specific fea-
tures of cloud images. Then, the DCGAN generator creates 
a future satellite image from the predicted latent vector. 
In the end, the combined LSTM–GAN model works as a 
black-box model that can extract a future image from time-
series input images.

Algorithm 2 presents the detailed training process of the 
LSTM–GAN model. During the process, the loss function to 
evaluate the similarity between a predicted image and a real 
one is the mean squared error (MSE) between them, which 
is used to update LSTM–GAN model parameters. After suf-
ficient iterations, the LSTM–GAN model can identify pat-
terns of cloud shape and movement and predict future cloud 
images, which is then used for an accurate PV forecast in 
the next step.

4.3  PV forecast model based on multivariate‑LSTM

In the end, predicted cloud images should be converted to 
numerical values, which are then used as inputs to the PV gen-
eration forecast model. This numerical transition first requires 
finding a PV generation location–specifically a pixel–in an 
image and then obtaining the corresponding pixel value. Note 
that pixels are represented by normalized gray-scale values, 
ranging from zero to one. Considering that cloud (land) colors 
are white (black) in infrared satellite images, a higher pixel 
value indicates more clouds. If the image resolution is so high 
that a PV location may span over several pixels, a single rep-
resentative value should be computed through proper methods 
such as simple averaging, weight assignment, and filter con-
volution. In this study, an image pixel contains the PV spot; 
and, therefore, a normalized gray-scale value corresponding 
to the pixel is selected.

As shown in Fig. 6, PV generation prediction is imple-
mented by the multivariate-LSTM model, which is advanta-
geous in time-series data analysis with long-period depend-
ence and provides better accuracy with more data. The model 
can learn correlations between meteorological data and stead-
ily respond to climate changes by solving a vanishing gradi-
ent problem in a recurrent neural network. More importantly, 
various external variables, including weather data, historical 
PV generation data, and numerical cloud data, are employed to 
improve prediction accuracy and robustness to external distur-
bances. Algorithm 3 describes the multivariate-LSTM training 
process of the proposed PV generation forecast method.
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5  Simulation result

To test the performance of the PV generation forecast pro-
posed by this work, Haenam, the southernmost area of the 
Korean Peninsula, was selected. The satellite cloud images 
of the East Asia region, meteorological data in Haenam, 
and power generation data in Haenam PV stations were 
used for the test. The total capacity of the stations was 
7.3 MW, and the forecast horizons of image prediction and 
PV forecast were three hours. This experiment was con-
ducted using MATLAB R2020b, and the computer speci-
fications were a Windows 10-based workstation with a 
3.9 GHz Intel Xeon CPU, 64 GB memory, and two Nvidia 
Quadro RTX 5000 graphic cards. The hyperparameters of 
DCGAN, LTSM–GAN, and Multivariate-LSTM are pre-
sented in Appendix.

5.1  Dataset description

Dataset can be classified into two sets: infrared satellite 
images for cloud image prediction and the historical data 
of weather information and PV generation for PV forecast.

5.1.1  Infrared satellite images

Infrared images are suitable for the proposed image pre-
diction method since cloud shapes are visible even at night 
in those images. A total of 30,507 infrared images shot 
by Communication, Ocean, and Meteorological Satellite 
1 of the National Meteorological Satellite Center of Korea 
every 15 min during 2018 were collected. Among them, 
80% and 20% were used for training and test, respectively. 
The original image size was 1300-by-1500, but inputting 
this size of the image can cause system overload and 
errors due to the shortage of RAM capacity. Although 

the minibatch size was decreased to four to make the sys-
tem work without any problems, the result of the model 
showed low quality and diversity of the images. Therefore, 
the size of the image was reduced to 128-by-128 for train-
ing efficiency.

5.1.2  Historical meteorological and pV generation data

The Korea Meteorological Administration (KMA) provides 
various meteorological observation data, of which tem-
perature and humidity data were used for the proposed PV 
generation forecast model because of their high correlation 
with solar irradiance. Hourly data collected from October 
21, 2018, to December 31, 2018, were used, divided into 
60% training data and 40% testing data.

5.2  Prediction scheme

The prediction scheme is designed by multiple multi-step 
forecasting, consisting of separate forecast models for dif-
ferent forecast horizons. This scheme is advantageous for 
maintaining a constant prediction accuracy because the 
models are independent, and errors are not accumulated. 
For example, Fig.  7 illustrates three forecast models for 
consecutive future values, which are expressed as follows:

where f̂  is the predicted image, f is the future image, d̄ is the 
set of input images, and n is the input window size.

5.3  Performance evaluation of satellite image 
generation

The DCGAN performance can be evaluated by comparing 
the generated and real images. Indeed, DCGAN compares an 
image created by the generator with a randomly selected real 
image, then updating internal model parameters. Figure 8 

(12)f̂t+1 = argmax
ft+1

p(ft+1|d̄t−n+1, d̄t−n+2,⋯ , d̄t),

(13)f̂t+2 = argmax
ft+2

p(ft+2|d̄t−n+1, d̄t−n+2,⋯ , d̄t),

(14)f̂t+3 = argmax
ft+3

p(ft+3|d̄t−n+1, d̄t−n+2,⋯ , d̄t),

Fig. 7  Scheme of the multiple multi-step forecast method
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represents real images chosen randomly from test data and 
images created by a DCGAN model at different epochs, 
showing that how the DCGAN model learns to create cloud 
images looking real as training iterates. After the first epoch, 
cloud images created obviously looked noises, and then the 
cloud shapes eventually became clearer as epochs increase. 
Around 30 epochs, DCGAN simulates the cloud form well. 
At 50 epochs, clouds that are visually more like real ones 
were created. Therefore, epoch 50 was chosen for the gen-
erating model. Furthermore, in Fig. 9, these results were 
obtained under the same conditions except for minibatch 
size. At minibatch size 16, most images looked similar and 

seemed to be cracked. Various sizes of the minibatch were 
tested to increase the performance of the generating model, 
and minibatch size 128 showed the best performance. If the 
minibatch sizes were over 128, the system sometimes suf-
fered memory errors and a long computing time.

Precise evaluation of GAN performance is somewhat dif-
ficult since there is no general and strict criterion for the 
evaluation. In this context, a human subjectively assesses 
whether created images are acceptable or not or verifies 
whether image patterns change smoothly and linearly when 
a latent vector is linearly changed. For example, the image in 
the red circled area varied smoothly according to the linear 
change of the latent vector shown in Fig. 10. Evaluating 
the performance of the latent vectors generated by LSTM is 
difficult because LSTM-GAN is a black-box model that pro-
duces information without revealing any information about 
its internal workings. However, it is possible to indirectly 
evaluate the performance of LSTM by reviewing the distri-
bution of the latent vectors. Figure  11 presents the distribu-
tion of 64-dimensional latent vectors generated by LSTM, 
and LSTM performs sufficiently well in creating latent vec-
tors with various values of each dimension. Therefore, a 
128-minibatch DCGAN model at 50 epochs is used for the 
LSTM–GAN model in the end.

5.4  Performance evaluation of satellite image 
prediction

Figure 12 presents three examples of comparison between 
the three-hour-ahead image predicted with real one at the 

Fig. 8  Comparison among results at different epochs: 1, 3, 5, 15, 30, 
and 50

Fig. 9  Comparison between results with different minibatch sizes

Fig. 10  Smooth variation of the image according to the gradual 
change of the 32nd space of the latent vector Z
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same time. The figure represents that the predicted and real 
images are not exactly identical to each other. Neverthe-
less, cloud shapes, movement patterns, appearance, and 
disappearance are similar to each other, and thus this image 
prediction model can be reasonably used for PV generation 
forecast using the multivariate-LSTM model.

5.5  Performance evaluation of PV generation 
forecast

This section evaluates the performance of the 3-h-ahead PV 
generation forecast model for a week and a month. As a 
performance metric to measure the forecast accuracy, the 
root MSE (RMSE) was used as follows:

where yt,predict and yt,target denote the forecasted and actual 
PV generations, respectively, and ns is the total number of 
steps tested.

Table 1 presents RMSEs in four combinations of input 
variables for one month. Note that weather data indi-
cate temperature and humidity. To compare the accuracy 
and performance of solar power generation prediction, 
CNN-ANN, CNN-LSTM, LSTM-GAN, GRU-GAN, and 
BILSTM-GAN were tested. Figures  13 and 14 represent 
the three-day simulation results of the five models. Fig-
ure  13 compared measurements and forecasted values of 
PV power, and Fig.  14 showed absolute errors between 
the measurements and forecasted values. These methods 
extract features and predict solar radiation using satellite 

(15)RMSE =

√√√√ 1

ns

ns∑

t

(
yt,predict − yt,target

)2
,

images and weather data. In this work, LSTM–GAN 
is proposed as a new prediction methodology, and 
GRU–GAN and BILSTM–GAN are added for the diver-
sity of the comparative group. Note that the GRU–GAN 
or BILSTM–GAN has yet to be applied to clouds or solar 
radiation forecasting. Although the performance of each 
GAN-based model has little difference, the performance 
of LSTM-GAN is the best. Apparently, LSTM–GAN accu-
racy is much superior to that of the CNN-based models, 
CNN–ANN and CNN–LSTM.

For all the five models, the forecast accuracy is highest 
when historical power data, hour information, and satellite 
images, which are converted to numerical values, are used 
as inputs. Moreover, the input combinations with satellite 
images yield more accurate results than those without the 
images. Figures  15, 16, 17 and 18 represent the weekly 
simulation results with four different combination inputs, 
showing forecast and observed values and their absolute 
errors.

Fig. 11  Latent vectors with various values output from the LSTM

Fig. 12  Comparison between three-hour-ahead predicted images and 
real ones
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6  Conclusion

This study designs an innovative hybrid model that pro-
vides a new type of data for PV generation prediction. The 
model combines two deep learning models, DCGAN and 
convolutional LSTM, to predict future satellite images, 
which are then used for PV generation forecast based 

on multivariate-LSTM after numerical conversion. Ulti-
mately, the proposed forecast method presents better accu-
racy than existing forecast models without using satellite 
images.The model can be used in various ways in real 
life. First, the primary purpose of PV forecasting is to 
provide precise information to power system operators and 
utilities. A warning system with the industrial internet of 
things (IIoT) can be used to check the abnormal status of 

Table 1  Error Comparison in Various Combinations of Input Variables (one month)

RMSE (MW)

Input variables CNN-ANN CNN-LSTM LSTM-GAN GRU-GAN BILSTM-GAN

Power, hour 2.0462 2.0462 2.0462 2.0462 2.0462
Power, hour, weather 0.9721 0.9721 0.9721 0.9721 0.9721
Power, hour, satellite image 1.5620 1.8430 1.2709 1.2890 1.3645
Power, hour, weather, satellite image 0.9996 1.0423 0.9491 0.9887 0.9698

Fig. 13  3h-ahead forecast com-
parison (three days). Input data 
are hour, temperature, humidity, 
satellite image, and power

Fig. 14  Absolute errors of 
3h-ahead forecast (three days)
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the PV plant based on the difference between the fore-
casted PV generation and the actual PV output. Second, 
the installation of IIoT devices in a plant can increase the 

Fig. 15  Forecast results during a week when the input combinations 
are hour information and historical power data

Fig. 16  Forecast results during a week when the input combinations 
are hour information, weather data, and historical power data

Fig. 17  Forecast results during a week when the input combina-
tions are hour information, satellite image information, and historical 
power data

Fig. 18  Forecast results during a week when the input combinations 
are hour information, weather data, satellite image information, and 
historical power data
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accuracy of the forecasting model because it can provide 
data that is highly correlated with the plant. In addition, 
using federating learning to update the parameters of the 
forecasting model may help decrease the system overload 
and improve the performance of the forecasting model, 
although the total amount of data increases. For exam-
ple, divided learning can reduce the overload of a single 
computing device and train more diverse cloud images via 
multiple devices. Cloud images provided by cell phones or 
individual measurements on the ground will also be avail-
able as new input data. This federated learning approach 
for handling a large amount of data will be studied further. 
Furthermore, the current version of the method has yet to 
predict exact cloud patterns or locations with high resolu-
tion. However, this limitation can be overcome in further 
research by a longer period of data, higher image resolu-
tion, and ensemble use of other types of satellite images 
such as visible light images.

Appendix

Tables 2, 3, 4, 5, 6,  7, and 8 list the hyperparameters 
of DCGAN, CNN–ANN, CNN–LSTM, LTSM–GAN, 
GRU–GAN, BILSTM–GAN, and Multivariate-LSTM, 
respectively.
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ing the current study are available from the corresponding author on 
reasonable request.

Table 2  GAN Hyperparameters

Parameter Value

Input size [128, 128, 3]
Number of latent vectors 64
Filter size [5, 5]
Number of filters (generator) 256 / 128 / 64 / 3
Number of filters (discriminator) 64/ 128 / 256 / 512/1
Learning rate 0.0002
Minibatch size 128
Epochs 50
Optimizer Adam

Table 3  CNN-ANN Hyperparameters

Parameter Value

Input size [128, 128, 3]
Number of CNN output features 8
Filter size [3, 3]
Number of filters 16 / 32
Number of ANN output features 1
Number of Neurons 256 / 1
Minibatch size 256
Epochs 20
Optimizer Adam

Table 4  CNN-LSTM Hyperparameters

Parameter Value

Input size [128, 128, 3]
Number of CNN output features 8
Filter size [3, 3]
Number of filters 16 / 32
Number of LSTM output features 1
Number of Neurons 128 / 1
Minibatch size 256
Epochs 20
Optimizer Adam

Table 5  LSTM-GAN Hyperparameters

Parameter Value

Input size [128, 128, 3]
Number of input images 12
Number of output images 1
Filter size [3, 3]
Number of filters 32 / 64 / 128
Learning rate 0.0002
Epochs 50
Optimizer Adam

Table 6  GRU-GAN Hyperparameters

Parameter Value

Input size [128, 128, 3]
Number of input images 12
Number of output images 1
Filter size [3, 3]
Number of filters 32 / 64 / 128
Learning rate 0.0002
Epochs 50
Optimizer Adam
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