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Abstract
Datacenters are expanding in size and complexity to the point where anomaly detection and infrastructure monitoring become 
critical challenges. One potential strategy for dealing with the reliability of computational nodes in a datacenter is to identify 
cluster nodes or virtual machines exhibiting anomalous behavior. Throughout this paper, we introduce a novel clustering 
approach for analyzing cluster node behavior while running various workloads in a system based on resource usage details 
(CPU utilization, network events, etc.). The new clustering technique aims at boosting the efficiency of fuzzy clustering 
algorithms based on the maximum likelihood estimation (MLE) scheme. We propose the use of a recently developed object-
to-group distance since it does not involve the computation of distances among all pairs of objects to assign the objects 
to the most appropriate group. The experimental findings under realistic settings demonstrate that the newly implemented 
algorithm outperforms many similar algorithms that have been used frequently in such tasks.

Keywords  Datacenter · Computational node · Anomaly detection · Fuzzy clustering · Object-to-group distance

1  Introduction

Datacenters are increasingly recognized as the primary IT 
infrastructure of the modern digital society. As datacent-
ers are handling an ever-increasing number of users and 
increasingly advanced computing applications, the resulting 
workloads are undergoing rapid scalability. Many of these 
workloads experience substantial performance fluctuations. 
Orphaned processes dropped from previous runs; CPU throt-
tling due to material failures; memory leaks; firmware faults; 
and shared resource contention constitute the common hard-
ware- and software-related types of anomalies that lead to 

the performance variation (Brandt et al. 2010; Agelastos 
et al. 2015; Snir et al. 2014; Bhatele et al. 2013).

Data center operators typically lack knowledge of what 
tasks are running in the system at some point. Many users 
are sharing physical hosts and simultaneously performing 
hundreds or thousands of applications per hour (Bari et al. 
2013). No static workload analysis was proven to be effec-
tive in detecting the actual behavior of applications and tasks 
as they run (Egele et al. 2014). In addition, applications run-
ning in a virtualized or high-performance computing (HPC) 
environment incur a workload that is quantified in terms of 
memory usage, storage, network bandwidth, and process-
ing overhead (El Motaki et al. 2019). In most cases, the 
amount of resources claimed by the customer is higher than 
the actual resource usage. Accordingly, identifying work-
load and application behavior using naive methods, such 
as considering information provided by users as a resource 
request or a predefined service level agreement (SLA), are 
not informative.

To deal with the above challenges, in this work, we target 
the adoption of a fuzzy clustering approach for workload 
characterization and anomaly identification in computational 
nodes. A new algorithm is presented to auto-detect compute 
nodes suffering from previously observed and unobserved 
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anomalies and to identify the type of anomaly regardless 
of the applications running on the compute nodes. Using a 
novel unsupervised learning algorithm, our approach detects 
and diagnoses anomalies based on resource utilization meas-
urements and performance statistics.

We propose a new fuzzy clustering algorithm that consists 
of the use of a new object-to-group probabilistic distance 
measure (PDM), introduced by Tavakkol et al. (2017). Clus-
tering refers to the concept of grouping in different ways. 
In this paper, we are concerned with a clustering algorithm 
as a mapping function, into partitions of multiple instances 
of a finite; unlabeled; and multivariate data set. that is, the 
probabilistic or uncertain aspect of the features is taken into 
account when representing the data instances (observations). 
The key idea involves partitioning the dataset into groups 
(clusters) so that the data belonging to one cluster are as 
similar to each other as possible and as different as possible 
from the existing data pertaining to the other clusters. The 
similarities are determined by using new measure object-to-
group PDM function between a particular uncertain object 
and a set of uncertain objects. Specifically, the contributions 
of this paper are the following:

•	 We introduce the fuzzy-PDM clustering algorithm: a 
novel clustering technique that aims at improving the 
efficiency of the fuzzy clustering algorithms based on 
the MLE concept, such as the Gath-Geva clustering 
algorithm (Gath and Geva 1989). We propose the use 
of the recently developed measure object-to-group PDM 
(Tavakkol et al. 2017), which does not involve the cal-
culation of distances between all object pairs, to assign 
an object to the most appropriate cluster, which leads to 
fewer computation requirements.

•	 The proposed algorithm is used for two main tasks: (i) 
checking whether the anomaly occurs or not (regardless 
of its type) and (ii) the multi-fault classification task, in 
which the algorithm is used to recognize and classify 
each anomaly detected.

•	 To validate the accuracy of the proposed algorithm, we 
use a real-world dataset (monitoring data collected peri-
odically at runtime from a computing cluster). The clus-
tering results are compared to the ground truth (the real 
classification of the workloads) using clustering valida-
tion indices.

The motivation for developing a new unsupervised approach 
based on object-to-group distance measure for the classifica-
tion of abnormalities is twofold: (i) the existing literature has 
shown that classification algorithms can accurately detect 
anomalous behavior of cluster nodes, improving monitoring 
and management of a datacenter (Bashir et al. 2019). How-
ever, the available techniques suffer from the lack of labelled 
data extracted from these systems. (ii) The existing fuzzy 

MLE clustering approaches are proven to be effective for 
anomaly detection; yet, the high amount of data that should 
be processed requires a better computation strategy that opti-
mizes the number of distance measure instructions. Thus, 
our algorithm enables us to maintain the high performance 
of the fuzzy MLE clustering algorithm while computing the 
distance between the item and all the group (of data) instead 
of each single datum of the group.

The remaining content of the paper is organized as fol-
lows. We review, in Sect. 2, the existing clustering algo-
rithms applied to workload and application anomalies 
identification in a datacenter and HPC. Then, in Sect. 3, we 
briefly outline the background techniques that are useful 
to implement the proposed work. Section 4 describes the 
proposed clustering algorithm. Section 5 outlines the data 
pipeline involved in the experimental evaluation of our pro-
posal. It provides brief descriptions of the data extraction, 
feature acquisition, and feature selection process. Using the 
resulting experimental dataset, Sect. 6 validates the proposed 
algorithm. In Sect. 7, we synthesize the present work and 
highlight some directions for future work.

2 � Related work

A vast and expanding collection of literature has studied 
clustering methods for providing a compact representa-
tion of the policy behavior while performing diverse work-
loads. Rugwiro and Chunhua (2017) have investigated the 
K-means clustering technique for optimizing the allocation 
strategy for VMs. Their suggested clustering model consid-
ers transforming a collection of tasks to VMs. The authors 
have concentrated on jobs’ CPU, memory, and bandwidth 
employment. They pointed to decreasing energy consump-
tion by effective resource allocation. Khan et al. (2012) have 
studied a co-clustering technique to recognize workload pat-
terns performed on a server that allows the forecast of every 
VM workload.

In Daradkeh et  al. (2020), authors have proposed an 
improved, driven K-Means clustering method to fit the cloud 
elastic model relying on KDE and the Silverman model for 
the discovery of optimal clustering centers and class bounda-
ries. Based on the kernel density estimator, the proposed 
method evaluates the workloads and configuration traces of 
the datacenter in search of class number and centroid. It 
considers the types of workloads based on the submitted 
job and the existing datacenter capabilities, as well as the 
capacity and configuration of servers. The suggested method 
could lower the complexity of the K-means and improve the 
clustering accuracy.

Abdelsalam et al. (2017) have elaborated an unsuper-
vised learning system to identify anomalous VM behavior 
in situations indicating automated scaling in Infrastructure 
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as a Service (IaaS) clouds. The authors have adopted a 
K-means sequential clustering algorithm variant to dis-
cover abnormalities based on resource usage changes. 
These variants have been found while insiders or other 
malware try to execute malicious jobs on VMs of cloud 
clients.

Ismaeel et al. (2016) have introduced a model to forecast 
VM terms in a datacenter. The model fuses the K-means 
algorithm with the extreme learning machine (ELM). Pre-
cisely, it considers the clustering incorporation of users col-
lectively with memory and CPU workload in a prediction 
method. Furthermore, they performed a comparative study 
connecting k-means clustering and FCM to examine VMs 
and user behavior, where each VM request is mapped to a 
particular cluster.

Likewise, the achievement of the principal component 
analysis (PCA) and K-means has been studied by Shirazi 
et al. (2014). These methods have been assessed in a moni-
tored cloud testbed environment. The authors have consid-
ered attack and migration events occurring simultaneously 
or separately. This ended in measures such as performance 
measurement. They have imagined that the undefined 
amount of undesired attacks and false alerts generated while 
migrating VMs influence the VM behavior making it unpre-
dictable. Hence, they have affirmed that the utilized meth-
ods can be adopted straightly in the live migration features. 
Essentially, this work has concentrated on the impact of VM 
migration on anomaly detection methods.

Researchers in Bi et al. (2019) have introduced a machine 
learning-based workload forecasting system named SGW-
SCN. The SGW-SCN predicts the expected quantity of 
assignments coming in the future in geo-distributed cloud 
datacenters. The authors have combined the Savitzky-Golay 
filter and wavelet decomposition (SGW) with stochastic con-
figuration networks (SCNs). The filter excludes potential 
noises and outliers and smooths the non-stationary workload 
time series, which are decomposed into various elements. 
With SCNs, a combined model is constructed to capture the 
statistical characteristics of the detail and trend elements.

For early failure detection, Amruthnath and Gupta (2018) 
have started a testbed to assess various unsupervised learn-
ing algorithms. They have adopted a basic vibration dataset 
assembled by an extraction fan and adjusted several unsu-
pervised learning algorithms, including hierarchical cluster-
ing, K-Means, PCA, and FCM, among others. Next, they 
introduced a methodology to evaluate distinct algorithms 
and determine the decisive model.

In addition, Hui (2018) has designed a standard clustering 
algorithm for clustering data using a similarity metric. The 
VM performance is watched continuously by the cloud plat-
form; hence, Hui has created the Incremental VM workload 
clustering algorithm to collect performance data with identi-
cal VM workloads inside a single cluster. This algorithm’s 

results have revealed that it could efficiently collect perfor-
mance data with similar VM workloads in a unique cluster, 
which assists in the prevention of negative actions when 
anomalies are discovered.

Zhang et al. (2016) have proposed a task-level anomaly 
detection method in a software agnostic way. Using FN-
DBSCAN, an unsupervised learning algorithm, they learned 
the patterned behavior given the appropriate task profiling 
degree measurements within the unlabeled historical data. 
Then, they utilized the clustering output to discover the 
possible performance anomaly. They built the association 
between the network connection and the task.

Pandeeswari and Kumar (2016) have introduced a hybrid 
system that used the FCM clustering algorithm alongside 
artificial neural networks (FCM-ANN) to identify the VMs’ 
abnormal behavior. The system identifies the attack patterns 
saved before in a frequently updated database. Hence, in 
favor of avoiding the old-fashioned manual update of the 
database, the authors have considered the FCM clustering 
algorithm to automatically obtain the new attacks. Identi-
cally, in our earlier work (El Motaki et al. 2019), we have 
adopted the Gath-Geva clustering algorithm for revealing 
similarities between various applications operating on the 
HPC system.

Statistical methods have proven to provide an encouraging 
answer for anomaly detection. Lorido-Botran et al. (2017) 
have developed an online unsupervised anomalies detection 
algorithm. The algorithm analyzes models for diverse lags. 
They adopted Dirichlet Process Gaussian Mixture Models 
to identify the resource usage profile and distance measures 
to obtain the similarity among various models.

Sauvanaud et al. (2018) have introduced an anomaly 
detection system (ADS), which detects errors and service 
level agreements violations while affording two investigation 
stages: distinguishing the anomalous virtual machine and 
the error’s class making the anomaly. The ADS incorporates 
a system monitoring entity that gathers software counters 
describing the cloud service alongside a detection entity. 
This second entity is based on machine learning models 
trained through a fault injection entity (FIE). Furthermore, 
The FIE is adopted to verify and evaluate the ADS.

Authors in Xiao et al. (2021) consider two concerns of 
operation and maintenance (O &M), the cluster machines’ 
unnoticed release and stability detection. They have pro-
posed the Ensemble Learning on Partition Interval (ELPI) 
method for anomaly detection. On the one hand, it starts by 
splitting the data set into two main intervals: the stable and 
the unsteady. This splitting encourages diversification in the 
used methods. On the other hand, they introduce a module 
and execute related integrated learning for various factors 
related to each interval to highlight abnormal data.

In our previous paper (El Motaki et al. 2021), we have 
introduced a new clustering algorithm to analyze the running 
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behaviour of virtual machines. The introduced method is 
aimed at recognizing workloads that over-utilize shared 
resources. We have considered the CPU and memory uti-
lization, as well as the downtime occurrence, as the main 
metrics. Based on the experimental results, it was found 
that sbWFCM was able to generate reasonable partitions for 
given numbers of iterations according to a domain expert’s 
validation.

3 � Background

Let consider a numerical vector-based feature data 
X = {x1, x2, ..., xN} ∈ ℝ

d , representing a set of objects 
O = {o1, o2, ..., oN} . The coordinates of xi are the patterns 
that describe the object oi . A partition matrix corresponding 
to the patterns xi is established as a set of values uki , where 
k = 1, ...,C , and C ≤ N represents the number of clusters. 
Each value (in [0,1]) depicts the membership degree of the 
pattern xi to the kth cluster, forming the vectors ui which are 
arrayed into C × N-matrix U = [uki]C×N.

Generally, the clustering algorithm consists of assigning 
each element in X to a partition P ⊂ ℘ , where ℘ is the set 
of all data partitions. Furthermore, each partition P has a 
prototype (center) denoted by the matrix V = [vk] . Each ele-
ment vk refers to the center of the kth cluster.

Fuzzy c-means is the most widely applied fuzzy cluster-
ing algorithm in literature. The fuzzy c-means algorithm is 
defined as the constrained minimization of the following 
function:

Where 
N
∑

i=1

uki > 0 , 
C
∑

k=1

uki = 1 , and m > 1 is the fuzziness 

parameter that regulates the the overlapping among the clus-
ters. The optimization of Eq. 1 through an iterative process 
builds the fuzzy partitions. The algorithm is outlined in 
Algorithm 1.

(1)QFCM =

N
∑

i=1

C
∑

k=1

um
ki
D2(xi, vk)

Algorithm 1 Fuzzy c-means clustering algorithm

Input: X, m, initial C, and ε
1: Choose primary centroids vk
2: while (u(t+1)

ki − u
(t)
ki ≥ ε) do

3: Compute the membership degree of all
feature vectors in all clusters

u
(t)
ki =

1
C∑

j=1
(D

2(xi,vk)
D2(xi,vj)

)
2

m−1

(2)

4: Update the centroids vk

v
(t)
k =

N∑
i=1

um
kixi

N∑
i=1

um
ki

(3)

5: end while

Computing the degree of membership is based on the 
defined distance measure D which is given as follows:

Including A (a positively defined matrix) in the distance met-
ric allows to assign a proportional weight based on the statis-
tical properties of each characteristic. According to Gath and 
Geva (1989), two alternative distance metrics can be defined 
and used at two different levels of the clustering process: (i) 
if A is equal to the identity matrix, the distance is Euclidean 
which refers to the fuzzy c-mean algorithm. (ii) For clusters 
of varying densities and unequal numbers of data points in 
each cluster, an exponential distance metric Dexp , derived 
from the MLE, is established and given as follows:

Fk denotes the fuzzy covariance matrix of the kth cluster, 
and Pk represents the a priori probability of selecting the kth 
cluster which are computed as follows:

(4)D2(xi − vk) = (xi − vk)
TA(xi − vk)

(5)D2
exp

(xi, vk) =

√

det (Fk)

Pk

exp
�

1

2
(xi − vk)

TF−1
k
(xi − vk)

�

(6)Fk =

N
∑

i=1

h(k ∣ xi)(xi − vk)(xi − vk)
T

N
∑

i=1

h(k ∣ xi)

(7)Pk =
1

N

N
∑

i=1

h(k ∣ xi)
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We note that h(k ∣ xi) is the posterior probability for selecting 
the kth cluster considering the ith feature vector.

Fuzzy c-means is considered the simplest and the most flex-
ible fuzzy clustering algorithm; however, it does not provide 
optimal partitioning in the case of clusters with varying and 
irregular shapes and densities. The fuzzy MLE algorithms 
have been introduced to solve this last problem, and they 
have provided a considerable improvement in clustering 
results by generating an optimal partition even with sig-
nificant variability of cluster shapes and densities. All the 
same, this algorithm can converge to a local optimum in a 
relatively small region due to the incorporated exponential 
distance function; it is, therefore, less efficient and may be 
potentially unstable for unsupervised identification of clas-
sifier prototypes. Moreover, computing distance between 
items remains a serious challenge with the ever-growing 
amount of data to be processed and considered for the learn-
ing process.

To develop a new fuzzy clustering algorithm, which can 
overcome the limitations of both approaches mentioned 
above, we propose a technique that follows a novel strategy 
for defining the distance metric between an object and its 
appropriate cluster.

4 � Fuzzy‑PDM clustering algorithm

The adopted clustering algorithm is implemented following 
the same concept as a fuzzy MLE algorithm, and it uses the 
object-to-group probabilistic distance measure that consid-
ers the correlation between characteristics within each class 
and within each object independently. The distance metric 
is described as follows:

The first term consists of the difference between covariance 
matrices, where fi represents the object-covariance matrix of 
the object xi , and f̄k is the average of the covariance matrices 
of the objects in the kth cluster and is given below.

Where nk is the current number of elements in the kth cluster 
and is updated whenever a new object is added to the cluster. 

(8)
h(k ∣ xi) =

1

C
∑

j=1

�

D2
exp

(xi,vk)

D2
exp

(xi,vj)

�
2

m−1

(9)
D2

og
= w1 log

[

fi + f̄k

2(∣ fi ∣∣ f̄k ∣)
1

2

]

+ w2(xi − vk)
TF−1

k
(xi − vk)

(10)f̄k =
1

nk

nk
∑

l=1

f k
l

It is inspired by the Bhattacharya distance, introduced by 
Bhattacharyya (1946). One reason to choose Bhattachar-
yya’s PDM is that our modeling of uncertain objects is based 
on multivariate normal pdfs. Moreover, this type of measure 
(Bhattacharyya or similar PDMs) can be calculated for all 
general probability distributions by numerical methods.

The second term of Eq. 9 is the Mahalanobis distance 
defined between an object xi and the cluster prototype vk . 
w1 and w2 correspond to the weights associated with the 
two terms; they allow to find the best compromise between 
the distance between the object to be added to the cluster 
and the center (prototype) of this cluster, and, on the other 
hand, the distance between the object and the cluster as a 
whole (given by the first term of Eq. 9.).

The distance between a given item picked and the clus-
ter of leftover items can vary for every randomly sam-
pled object in the probabilistic distance metric that we 
provide. A variety of weighting values may be appropri-
ate for the newly formed object-group PDM. For simpler 
purposes, our paper considers equal weights for the two 
terms w1 and w2. The implementation procedure of the 
proposed Fuzzy-PDM clustering algorithm is detailed in 
Algorithm 2.
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Algorithm 2 Fuzzy-PDM clustering algorithm

Input: X, m, initial C, and ε
1: Choose primary partition uki

2: do
3: Compute the centroids vk, as well as the

number of items nk

v
(l)
k =

N∑
i=1

um
kixi

N∑
i=1

um
ki

(11)

4: Compute the covariance matrix Fk

Fk =

N∑
i=1

h(k | xi)(xi − vk)(xi − vk)T

N∑
i=1

h(k | xi)
(12)

With the a posterior probability h(k | xi)

h(k | xi) =
1

C∑
j=1

(D
2
og(xi,vk)

D2
og(xi,vj)

)
2

m−1

(13)

5: Update the membership degree of all fea-
ture vectors in all clusters.

u
(t)
ki =

1
C∑

j=1
(D

2
ob(xi,vk)

D2
ob(xi,vj)

)
2

m−1

(14)

6: while (|| u(t)
ki − u

(t−1)
ki ||≥ ε)

We note that the choice of the primary partition uki is 
important for an optimal performance of the algorithm. In 
this work, we initialize this parameter using fuzzy c-means 
algorithm.

5 � Material and methods

5.1 � Data extraction

Our work aims to recognize if any compute node accurately 
is anomalous (i.e., behaving abnormally) and to classify the 
anomaly type, regardless of which workload is running on 
the compute node. We exploit the periodic machine, energy, 
and workload data collected from an internal cluster to mon-
itor the overall system’s operational health.

The cluster has been serving as a facility for more than 
400 University students and researchers. Within the time 
span of the dataset, they have submitted thousands of jobs, 
with the majority coming from the disciplines of Physics, 
Chemistry, Bioinformatics, Computer Science, and Machine 
Learning. The Jobs are exclusively per user; currently, no 
multi-user jobs or workflows exist. In addition, SLURM 
is used as the physical resource manager for multi-user, 
sequential and parallel machines to allow users to provide 
scheduling and job planning. The per-stakeholder FIFO 
method is used to schedule all work, with an equitable shar-
ing among stakeholders. The datacenter provides co-alloca-
tion of jobs on the same node as well as exclusive usage of 
nodes through queuing.

In total, the cluster used for testing is composed of 19 
nodes that offer the following capabilities: 760 cores (68 
TFlops); 5.2 TB of Memory; 108 TB of Storage; and 2 GPU 
cards. These nodes are interconnected by a very low latency 
network (OPA) at 100 Gbps, which allows optimizing per-
formance for parallel calculations.

5.2 � Synthetic anomalies

To mimic anomalies observed in real systems, we perform 
synthesized anomalous events on a cluster to stress single 
node components (such as CPU or memory), thereby simu-
lating an impairment or dysfunction occurring in the respec-
tive node component. We use the programs (described in 
Table 1) at random anomaly intensities. The resulting anom-
alies can arise from system or application failures. Typical 
cases of such abnormalities include the following:

•	 Orphan processes: processes that keep consuming system 
resources such as memory and CPU once a job is finished 
inappropriately (Brandt et al. 2010).

•	 Out-of-memory: when the total memory of the system is 
expended (typically due to memory leaks), the running 
application is interrupted by the Linux out-of-memory 
killer (Agelastos et al. 2015).

•	 Undisclosed Physical Assets: a drop in system perfor-
mance caused by the auto-compensation functions used 
for hardware failures. A typical case of such problems 
occurred when some nodes experienced a performance 
degradation in which different CPUs run at lowered 
speed (Snir et al. 2014).

5.3 � Data clean‑up

After having inspected the data, we applied a clean-up pro-
cess on (in)valid and missing data. We have created a clean-
up script-based following different axes: (i) a node-level 
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clean-up, in which we consider 14 nodes used for computa-
tional purposes exclusively. The nodes collectively include 
632 CPU cores, 90 TB of CPU space, and 2 GPUs. 12 nodes 
among the selected ones include only CPUs, yet the two 
come with GPUs onboard. (ii) A job-based clean-up in 
which we eliminate jobs based on the time they were initi-
ated when they occurred outside the time range of the record 
set. (iii) A metric-based clean-up that consists of discursing 
the NaN values or zeroing them out, such as in summing 
during the numerical scans. The initial dataset collectively 
comprises more than 16 billion records, including nearly 0.8 
billion NaN values (4.81%). We note that the data set shows 
missing data for certain measures in cases where the moni-
toring system was down. Eventually, the resulting cleaned 
data is presented in Table 2.

5.4 � Feature selection

Datacenter monitoring frameworks typically capture hun-
dreds of measures related to resource usage and system 
performance per compute node. To run abnormality detec-
tion using a reduced subset of such measurements and to 
compute only the statistical patterns that might be relevant 
for diagnosis can lead to considerable savings in terms of 
computational costs. Besides, the accuracy of clustering 

algorithms may be greatly increased through a prior feature 
selection process.

To this end, we follow, in this paper, the feature selec-
tion technique provided in Genuer et al. (2010). For easy 
reference, we review briefly the basic concept. We select 
a feature Xj to obtain the maximum information gain from 
the data set X or to optimize the entropy. Simply put, we 
maximize I(X,Xj) = H(X) − H(X,Xj) . H(X) stands for the 
entropy of the data set prior to the selection of a feature; 
it is given by H(X) = −

∑C

i=1
pi log2 pi . The probability pi 

of the ith-class is given by pi =
ni

N
 , where ni denotes the 

actual number of items in the ith class C; i = (1, ...,C) and 
N denotes the cardinality of X. Besides, the entropy after 
jth feature selection (so-called the conditional entropy) is 
expressed by H(X,Xj) = −

∑

x p(Xj = x)
∑

y p(X = y ∣ Xj = x)
log2 p(X = y ∣ Xj = x).

This method has proven to be more rapid and more 
selective than the commonly used random forrest (RF) and 
genetic algorithm (GA) feature selection techniques (Tuncer 
et al. 2017). Namely, using this method, we selected only 8 
out of 850 relevant features, as opposed to the GA-based 
method, which selected more features. This basically reflects 
the fact that the employed method is considered as a special 
purpose approach to estimating each feature’s individual 
contributivity; However, GAs are non-special purpose opti-
mizers driven by a fitness function.

6 � Clustering results and discussion

In this section, the proposed algorithm results are compared 
with the results of three other clustering algorithms. The 
choice of these algorithms for the evaluation of our approach 
is due to our intention to compare our algorithm with alterna-
tives that perform almost the same computation but are based 
on other strategies and other ways of distance calculation, 
including the Gath-Geva clustering algorithm; Gustafson-
Kessel clustering; and the fuzzy neighborhood density-based 
spatial clustering with noise algorithm (FN-DBSCAN). For 

Table 1   The programs used to produce anomalous conditions in the cluster

Program Description

Ddot It assigns two equal-sized matrices of a dual-type and fills them using memalign. The scalar product of the two matrices is computed 
repetitively, resulting in a periodic change in the cache size of CPU variying between 0.9, 5 and 10. As a result, an interference gap 
between the CPU and the caches is caused; thus the CPU’s performance is degraded.

Dcopy It also allocates two equal-sized matrices as ddot, but it repeatedly maps one matrix to the other. Unlike ddot, it causes less CPU 
interference.

Leak It allocates a 16 MB array and loads it with a bunch of characters. It is paused periodically within an internal loop for two seconds. 
Subsequently, the memory used is never released, leading to a memory leak.

Memeater It involves allocating an array of integers of 36 MB and loading it with random entries. It increments the array size regularly via 
realloc and adds new values to the array. Subsequently, the system performance is decreased because of bandwidth saturation and 
a memory interference.

Table 2   An overview of the machine dataset measurement

Dataset Aspect Value

Extracted dataset Starting date 01-03-2019
Ending date 30-07-2019
Sampling rate (s) 30
Max. samples per metric per 

node
629,320

No. of measurments 16,653,474,810
Cleaned dataset No. of valid nodes 14

No. of valid meansurments 13,984,822,911
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more details about the implementation of the algorithms, the 
interested reader is referred to Gath and Geva (1989), Gustaf-
son and Kessel (1978), Nasibov and Ulutagay (2009) Then, we 
measure the quality of the resulting partitions through the use 
of the external quality indices: Rand Index (RI) and Adjusted 
Rand Index (ARI) (Hubert and Arabie 1985).

We consider two main scenarios. The first scenario consists 
of inspecting the anomaly recognition case, i.e., our only inter-
est is to check if an anomaly (regardless of its type) occurs. 
This is equivalent to a clustering run with two clusters C = 2 . 
The second scenario concerns the case in which the number 
of clusters corresponds to the actual health conditions of the 
workloads. Moreover, the algorithms are independently exe-
cuted 40 times given the same initial conditions (for each sce-
nario). The goodness of the obtained partitions was then sta-
tistically assessed by non-parametric Friedman and Wilcoxon 
signed-rank tests (Hubert and Arabie 1985). We contemplate 
a 95% confidence interval represented by a significance level 
� = 0.05 . In other words, if the p value < 0.05 , we can assume 
that there is a statistically significant difference between the 
investigated outcomes (rejection of the null hypothesis). 
Alternatively, no statistically significant difference among the 
results is reported.

By performing the proposed algorithm on the 8 selected 
features, two reasonable partitions with C = 2, 4 were dis-
covered. Then, We run the four algorithms (DBSCAN, GG, 
GK and the new algorithm) 40 times for two and four clusters 
regarding the same experimental setup. Then, the quality of the 
different structural alternatives generated by the algorithms is 
assessed by the External Quality RI and ARI, which were sta-
tistically evaluated. For data visualization, the classical Sam-
mon data dimensionality reduction method (Sammon 1969) 
is employed. Moreover, the hyper-parameters we adopted are 
outlined in Table 3. Without claiming the optimality of the 
hyper-parameters used (since there was no explicit approach to 
tuning the algorithms), FN-DBSCAN was the most daunting 
algorithm to configure.

6.1 � The anomaly detection case

The first and basic case is the anomaly detection check, in 
which we are interested in whether the system shows abnormal 
behavior, regardless of the workload being executed, the vir-
tual machine or the server used for execution. This case can be 
interpreted as having a number of clusters C = 2 . A Sammon 
projection of the 8-dimensional feature space is exhibited in 

Fig. 1. The anomalous patterns are represented by red dots (•).
.

From Fig. 1, we can distinguish small groups of red dots 
that appear in different regions of the projection space. This 
is explained by the fact that the proposed algorithm was able 
to detect anomalies. It interprets them as abnormal behaviors 
caused by the system or a system’s component (hardware or 
software). These anomalies are due either to an excessive 
use of resources or to hardware failures.

Our algorithm is compared with three other algorithms 
(the most similar unsupervised approaches) through external 
validation, where the distribution of RI and ARI values is 
illustrated in Fig. 2a and b, respectively. From the analy-
sis of the RI index (Fig.2a), it was found that for anomaly 
detection case, a pFriedman = 2981.8e−15 is obtained, which 
indicates that the algorithms’ respective results differ sta-
tistically in a significant way in this case. A more refined 
examination reveals that for a number of clusters C = 2 , the 
highest clustering quality is achieved by the Gath-Geva clus-
tering algorithm, and the lowest quality is obtained by the 
FN-DBSCAN approach. Our algorithm, on its part, provides 

Table 3   The hyper-parameters 
used to benchmark the four 
algorithms

N of clusters DBSCAN GG Ours GK

� v m �
i

m � m �
i

2 0.9855 10 2 1.0 2 0.4 2 1.0
4 0.991 10 2 1.0 2 0.4 2 1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 1   The optimal clustering results provided by our algorithm as 
assessed by the RI for the anomaly detection case ( C = 2)
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good partitioning. This confirms that the algorithm we pro-
pose is not only computationally lighter than the Gath-Geva 
method, but it also gives a clustering result almost equivalent 
to it Tables 4 and 5.

Moreover, the dispersion of the ARI index values (shown 
in Fig. 2b) corresponds to pFriedman = 1.47e−16 indicates the 
significant statistical difference between the algorithms com-
pared. In addition, the analysis of the resulting ARI index 
reveals that our algorithm provides a best performance in 
comparison with the other three clustering algorithms.

6.2 � The multi‑fault clustering case

A more detailed perspective is achieved by using the pro-
posed algorithm to determine the type of anomaly detected. 
The Sammon projection of the 8-dimensional feature space 
into the plan is exhibited in Fig. 3. From the analysis of this 
figure, it follows that the proposed algorithm allows defining 
four different clusters as the best partitioning alternative. 
The anomaly clusters defined in the case of identification of 
abnormal behavior have a more meaningful meaning with 
this representation. For example, the anomaly group associ-
ated with the blue cluster represents the type of anomaly cor-
responding to the leak program that consists of allocating a 
16 MB array and loading it with characters. The two-second 
periodic pause within an internal loop causes an eventual 

anomaly (memory leak) represented by the red dots shown 
on the top of the cluster.

Curiously enough, the subgroup of anomalies that lies 
between the green cluster (representing ddot) and the purple 
cluster ( representing dcopy, respectively) is misleading. It 
can refer to anomalies due to the execution of ddot, i. e., it 
is a degradation of CPU performance due to the interference 
between CPU and caches, whereas it can be understood as 
a low CPU interference due to the repetition of the matrices 
maps. Eventually, the interpretation of the results, in this 

Table 4   RI and ARI values achieved by the proposed algorithm over 
40 independent runs for 2 clusters

FN-DBSCAN GG Ours GK

RI 0.512 0.625 0.608 0.578
ARI 0.145 0.391 0.838 0.478

R
I

0.64

0.6

0.56

0.52

0.48

0
OursGG GKFN-DBSCAN

(a)

AR
I

1

0.8

0.6

0.4

0.2

0
OursGG GKFN-DBSCAN

(b)

Fig. 2   Boxplots indicating the scattered a RI and b ARI values achieved by the proposed algorithm over 40 independent runs for 2 clusters

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 3   The optimal clustering results provided by our algorithm as 
assessed by the RI for the multi-fault classification case ( C = 4)
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case, returns to the domain expert who is entrusted with the 
analysis of the clusters.

For further analysis, again, the algorithm proposed in 
this work is benchmarked against three other algorithms 
of its type using external validation, and the observed dis-
persions of the RI and ARI values are reported in Fig. 4. 
From the analysis of Fig. 4a, it follows that we obtain a 
pFriedman = 1.24e−17 , which implies that a statistically sig-
nificant difference does exist among the results of the algo-
rithms. In terms of partitioning quality, we can see that 
our algorithm provides the best distribution; however, FN-
DBSCAN is the worst.

Likewise, a pFriedman = 1.85e−12 is reached in Fig. 4b, 
which confirms the existing difference given by the RI. 
Compared to the ground truth, the partition provided by our 
clustering algorithm has an RI ≃ 0.97 . Typically, RI > 0.7 
reflects an appropriate clustering alternative since such 
values may not be consistent with random cross-partition 
agreements.

Eventually, it may be assumed that the distance computa-
tion technique on which our algorithm is based has a signifi-
cant impact in multivariate feature spaces, as our benchmark 
that needs more complicated approaches to understand the 
data extracted from a computational cluster and identify the 
potential abnormal behaviors of workloads that run over dif-
ferent computational nodes.

7 � Conclusion

In this paper, we focused on anomaly detection problems 
in computing clusters in a datacenter, aiming to enable 
solutions that improve monitoring and control with a new 
automated method that identifies abnormal behavior of 
computing nodes while running both known and unknown 
workloads.

Previous proposals to address this problem exploited clas-
sification, which is supervised learning. While this approach 
is viable for identifying anomalies with high accuracy, it 
requires prior knowledge of anomalous behavior in the 
form of labelled data; thus, it is difficult to apply in data-
center infrastructures where physical hosts are shared by 
many users and simultaneously run hundreds or thousands 
of applications per hour. This limitation motivates our pro-
posal of a new unsupervised learning technique that adopts 
the recently introduced distance measure object-to-group of 
a particular uncertain object with a set of uncertain objects.

The proposed clustering algorithm in this paper has been 
designed to overcome the limitation imposed by clustering 
algorithms based on the centroid scheme, but it maintains 
the simplicity of the partition extraction process of these 
algorithms.

To provide the most realistic operating conditions possi-
ble, we evaluate our algorithm using exclusively real-world 
data from a benchmark dataset of computational nodes 
extracted and cleaned by our research team, where both 
faults interference and diverse workload requirements can 
be explored.

The performance evaluation has accounted for the qual-
ity of the resulting partitions, as measured by the external 
validation indices RI and ARI. Statistical hypothesis tests 
have shown that, for our setup, where eight features were 

Table 5   RI and ARI values achieved by the proposed algorithm over 
40 independent runs for 4 clusters

FN-DBSCAN GG Ours GK

RI 0.857 0.898 0.973 0.905
ARI 0.462 0.465 0.901 0.757

R
I

0.98

0.94

0.9

0.86

0.82

0
OursGG GKFN-DBSCAN

(a)

AR
I

1

0.8

0.6

0.4

0.2

0
OursGG GKFN-DBSCAN

(b)

Fig. 4   Boxplots indicating the scattered a RI and b ARI values achieved by the proposed algorithm over 40 independent runs for 4 clusters
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selected as the most relevant to characterize the state of 
the nodes, our algorithm and the GG algorithm showed 
the highest performance in the detection case (2 clusters) 
and for the multi-fault identification case (4 clusters), 
respectively.

This paper is a follow-up work in a developing line of 
research that focuses on applying clustering techniques 
to anomaly detection problems in computational clusters. 
Future research will be centred on further investigation of 
the suggested models, with supplementary vulnerability 
analyses of the model settings, the proposal of additional 
unsupervised models, and the application of new distance 
metrics to improve the quality of partitioning in cases where 
the data are multi-variate or uncertain.

Appendix: p‑Friedman test

The Friedman test is an extension of the Wilcoxon Signed 
Rank Test and the non-parametric equivalent of the 1-factor 
analysis of variance with repeated measures (Hubert and 
Arabie 1985). The Friedman test assumes the null hypothe-
sis that k dependent variables belong to the same population. 
For the position parameter of a sample i by Mi , we denote 
the null hypothesis by H0 and the alternative hypothesis by 
Ha by the following:

Given the Friedman null hypothesis, the expected summed 
ranks of each group are equal to n(k+1)

2
 . The Friedman test 

statistic is expressed as follows:

where Ri is the sum of the ranks for the sample i.
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