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Abstract
Many currently existing face anti-spoofing methods do not generalize well to new scenarios due to the changes of back-
ground, light, and other factors. To tackle this problem, a face anti-spoofing model based on conditional adversarial domain 
generalization is proposed in this paper. The model tries to alleviate the discrepancy between source and target domains 
through the adversarial training of a generator and a domain discriminator. The domain discriminator uses the joint variables 
generated by multilinear mapping of the features and the classifier predictions as input data. The multiplicative interaction of 
the input data can promote the domain adversarial model to align multiple domains at the feature and class level, and form 
a feature space shared by the multiple domains. Besides, the domain discriminator uses the entropy criterion to adjust the 
priority of samples to reduce the adverse effects of difficult-to-transfer samples with the inaccurate prediction on domain 
generalization. The generator of the adversarial network consists of attention-Unet and ResNet-18 architectures, where the 
Unet embedded with the attention mechanism can extract more richer multi-scale domain shared features. The following 
supervised auxiliary classifier further amplifies the distinguishing features between classes. During the training phase, the 
model introduces an asymmetric triplet loss in order to get a clearer classification boundary, and introduces a face depth loss 
to enhance scenario-invariant. Comparative experiments on four public datasets and a custom dataset verify the feasibility 
of our model. The code is available at https://​github.​com/​17863​205785/​CADG-​master.

Keywords  Face anti-spoofing · Conditional adversarial domain generalization · Multi-linear map · Entropy criterion · Face 
depth

1  Introduction

Face recognition has been widely used as a concerning 
problem in the field of biometrics (e.g., smartphone unlock, 
access control, and pay-with-face). However, face presenta-
tion attacks (e.g., print attack, video attack, and 3D mask 
attack) have posed great threats to the security of the face 

recognition system (Liu et al. 2016, 2018a). To tackle this 
problem, many face anti-spoofing methods have been pro-
posed and can be roughly divided into machine learning-
based methods and deep learning-based methods.

Methods based on traditional machine learning pay more 
attention to the design of texture features and the use of 
inherent attributes in images and videos. Most of these 
methods adopt multi-feature fusion as well as other biologi-
cal features as auxiliary information to improve the perfor-
mance, stability, and robustness of the algorithms.

With the success of deep learning, researchers begin to 
filter high-level semantic features by building a multi-layer 
convolutional neural network (Krizhevsky et al. 2017). The 
features learned by deep learning are more discriminative 
than those extracted by traditional machine learning. But 
neither machine learning-based methods nor deep learn-
ing-based methods can generalize well to new scenarios 
(Akhtar et al. 2015; Boulkenafet et al. 2017a). To illustrate 
this problem, a experiment of face anti-spoofing detection 
using ResNet-18 is done. The features before the output layer 
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are saved to illustrate the features distribution. The t-SNE 
(Van der Maaten and Hinton 2008) technology is used to 
reduce each feature to 2 dimensions, and then the features 
are displayed on a plane, where each point represents one 
sample. Fig. 1 shows two cases where the training set and 
the test set are same or different. Fig. 1a represents the fea-
tures distribution of intra-dataset testing, both the training 
set and testing set are CASIA. Figure 1b shows the inter-
datasets testing, the training set is CASIA, but the testing set 
is Replayattack. Figure 1 shows that the performance of the 
face anti-spoofing can not preserve well in the new applica-
tion scenarios although the performance of the intra-dataset 
testing is good. The main reason is that the image texture 
features, color distortion, and the diversity of attack types 
cause great differences in the distribution of the features in 
different domains. To solve this problem, some researchers 
use domain adaptive methods to align the feature distribu-
tion of the source and target domains, thereby improving the 
generalization performance of the model in the unknown 

target domain (Damodaran et al. 2018; Hu et al. 2018; Man-
cini et al. 2018; Pinheiro 2018; Volpi et al. 2018). But most 
of the target domains are unlabeled and difficult to collect, 
or there is no information available.

Therefore, researchers began to solve the problem of 
cross-scene face anti-spoofing from the idea of domain 
generalization, which trains the model through mul-
tiple source domains to make it generalized well to the 
unknown target domain in the test phase (Ghifary et al. 
2015). Enlightening from the Generative Adversarial Net-
works (GANs) (Goodfellow et al. 2014), the method of 
adversarial domain generalization is widely used to solve 
the generalization problem of face anti-spoofing. The 
domain discriminator is trained to distinguish multiple 
source domains, while the generator confuses the domain 
discriminator by learning domain shared features. How-
ever, most of the existing adversarial domain generaliza-
tion methods only align the feature distribution of multiple 
source domains and ignore the alignment of class level, or 

Fig. 1   The T-SNE visualization 
of the features when training on 
ResNet-18

(b)

(a)
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align the feature and class distribution separately (Shao 
et al. 2020; Jia et al. 2020). When the data reflects multi-
modal structures, it is difficult to align these multimodal 
structures by above methods, because the multimodal 
structure can only be fully captured by the cross-covar-
iance dependence between features and classes. In addi-
tion, when optimizing the model, the domain discriminator 
places different samples in the same position, however dif-
ficult-to-transfer samples with uncertain predictions may 
have adverse effects on domain generalization. Therefore, 
it is very necessary to reduce the impact of these difficult-
to-transfer samples.

Inspired by Conditional Generative Adversarial Networks 
(CGANs) (Mirza and Osindero 2014), we propose a face 
anti-spoofing model of conditional adversarial domain gen-
eralization, which uses the discriminable information trans-
ferred in classifier predictions to assist adversarial gener-
alization. We improve the domain discriminator module on 
the condition of domain-specific feature representation and 
classifier prediction. Through this conditional mechanism, 
domain invariance can be achieved at the feature and class 
level simultaneously. To further improve the generalization 
ability, we use the entropy criterion to measure the uncer-
tainty of classifier predictions, and adjust the sample weights 
of domain discriminator to alleviate the adverse effects of 
hard-to-transfer samples.

In addition, due to the clever means of spoof attack, it is 
difficult for the model to find a clear classification boundary; 
Also due to the diversity of attack types, a compact feature 
space for fake faces is difficult to be obtained. Therefore, 
it is necessary to use metric learning technology to obtain 
a clearer classification boundary. The contribution of this 
article mainly includes the following points:

–	 we propose a face anti-spoofing model based on condi-
tional adversarial domain generalization. Through con-
ditional constraints, the model aligns multiple source 
domains at the feature and class level simultaneously, 
and uses the entropy adjustment to alleviate the adverse 
effects of difficult-to-transfer samples.

–	 According to the fact that the fake faces in photos or 
videos have no 3D structure, the model uses the face 
depth as scenario-invariant auxiliary information to assist 
the classifier to improve the robustness of anti-spoofing 
detection.

–	 To enhance the discrimination of the deep embedding 
features, an asymmetric triplet loss is used to constrain 
model training to get a clearer classification boundary, 
which makes the distribution of positive samples from 
different domains more aggregated but the negative more 
dispersed.

–	 The effectiveness of the proposed model is verified by 
comparative experiments with existing state-of-the-art 
models on four public datasets and a custom dataset.

2 � Related works

2.1 � Face anti‑spoofing methods

The face anti-spoofing methods are mainly introduced from 
two aspects of machine learning and deep learning. Machine 
learning methods are more focused on the design of texture 
features and the use of inherent attributes in images and vid-
eos. (Smiatacz 2012) calculated the optical flow values gen-
erated by face rotation, trained and classified these optical 
flow values through SVM (Suykens and Vandewalle 1999). 
Zhang et al. (2012) proposed the method of color texture 
analysis to detect whether the image was a real face. On the 
other hand, the deep learning-based methods mainly extract 
more discriminative deep features by designing specific 
network structures and adding auxiliary supervision. Yang 
et al. (2014) first used a convolutional neural network for 
face anti-spoofing. Xu et al. (2015) adopted Long Shot-Term 
Memory and CNN to obtain spatial-temporal features for 
face anti-spoofing. Shao et al. (2017) proposed a 3D mask 
face anti-spoofing method to learn robust dynamic texture 
information from fine-grained deep convolution features. Yu 
et al. (2020) proposed a central differential convolution net-
work, which could extract the features of the pseudo image 
well and was not easily affected by the image illumination. 
Liu et al. (2018b) proposed using depth maps and rPPG 
signals as the supervision information for CNN learning 
to improve the generalization ability of the model. Wang 
et al. (2018) proposed time-series depth information that 
combineed time-series motion and single-frame face depth, 
and then used it for face live detection. Wang et al. (2020) 
proposed a new deep supervision architecture, which used 
Residual Spatial Gradient Block (RSGB) to capture discrim-
inative details and efficiently encoded spatiotemporal infor-
mation from a sequence of monocular frames through the 
Spatio-temporal Propagation Module (STPM). Pérez-Cabo 
et al. (2019) looked at the problem of face anti-spoofing 
from the perspective of anomaly detection. They designed a 
new loss called Triplet Focal Loss, which combined triplet 
loss and focal loss, and used metric-learning to make the 
features compact within the class, scatter between classes. 
Feng et al. (2020) adopted a multi-scale triplet metric learn-
ing module, and designed a novel regression loss which only 
performed the supervision on positive samples to learn more 
discriminative spoofing clue graphs. However, the perfor-
mances of these methods are prone to be degraded in the 
cross-datasets test. This is because the above methods are 
more inclined to extract the clues in the training datasets 



16502	 T. Cai et al.

1 3

that are biased towards specific attack materials or record-
ing environments. Therefore, this paper proposes to capture 
more generalized differentiation cues from the perspective 
of adversarial domain generalization.

2.2 � Domain generalization methods

Several domain generalization methods have been proposed. 
Li et al. (2017) designed a low-rank parameterized CNN 
model for end-to-end domain generalization learning. Shao 
et al. (2019) combined the learning of a generalized feature 
space shared by multiple discriminative source domains 
with dual-force triplet mining constraints to improve the 
discriminability of feature space. Shao et al. (2020) applied 
the existing meta-learning algorithm directly to the face anti-
spoofing task, and proposed a novel regularized fine-grained 
meta-learning framework. However, the above domain gen-
eralization methods have only feature alignment, and not 
class level alignment. The most related work in Jia et al. 
(2020) proposed a single-side adversarial domain generali-
zation face anti-spoofing model, and made the domain dis-
criminator only inseparable from the real face. But it did not 
take into account the adverse impact of difficult-to-transfer 
samples on domain generalization. Instead, in this work, we 
further add the uncertainty of classifier prediction as a con-
straint condition of the domain discriminator, giving priori-
ties to easy-to-transfer samples.

3 � Research methodologies

The architecture of the methodology of this research is 
shown in Fig. 2. The whole training network includes three 
sub networks: feature generator, domain discriminator and 
auxiliary classifier. The feature generator of the adversarial 
network is composed of Unet and ResNet-18 architectures. 
The Unet network embedded with attention mechanism can 
extract more richer multi-scale domain shared features. The 
output of the generator is weight-normalized and sent to a 
supervised auxiliary classifier, which can further amplify the 
distinguishing features. Motivated by CGANs, we introduce 
some constraint conditions into the discriminator to associ-
ate model training.

The testing network includes the feature generator and the 
auxiliary classifier. Finally, the results of the classifier are 
used for face anti-spoofing detection.

3.1 � Conditional adversarial domain generalization

Due to the changes of background, light, and other fac-
tors, the feature vectors describing the related multiple 
domains are likely related but potentially different; and 
as such, their covariates have shifted (Zhou et al. 2021). 
Domain generalization technique can alleviate the discrep-
ancy between source and target domains. Domain gener-
alization assumes that there exists a generalized feature 
space underlying the multiple source domains and the 
target domain, on which the learned model from the seen 
source domains can generalize well to the unseen target 

Fig. 2   The overall structure of the model
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domain. Suppose there are N source domains, denoted 
as D = {X1,X2, ...,XN} , the domain labels are defined as 
Y = {Y1, Y2, ..., YN} , x represents the input sample from 
X, y is the domain label of x. Each domain contains two 
categories of face images, the real face and the fake face. 
Therefore, for the discriminator, it is necessary to identify 
2N categories, that is, distinguish not only which source 
domain the sample comes from, but also which category 
the sample belongs to. The training of domain adversarial 
network is a minimax optimization problem as follows:

where f is the feature extracted by the feature extractor G, 
and g is the classifier prediction, h = (f , g) represents the 
joint variable of f and g, and is the input data of discrimi-
nator D. 1 is the indicator function. When n=y, that is, 
when the discriminator D judges which domain the sample 
belongs to correctly, the indicator function is 1, otherwise 
it is 0. LAda represents the loss of adversarial training. The 
generator G is trained for maximizing the adversarial loss, 
while domain discriminator D is optimized in the opposite 
direction. Through the adversarial training of the generator 
and the domain discriminator, the domain adversarial net-
work intends to alleviate the discrepancy between multiple 
domains in order to improve the generalization performance 
of the model.

Moreover, we add a gradient reversal layer (GRL) 
before the domain discriminator. It means that the gradient 
of the generator will be multiplied by −� in the backpropa-
gation process.  We set � =

2

1+exp(−10k)
− 1 ,  where 

k =
current_iters

total_iters
 , current_iters is the number of current itera-

tions, total_iters is the total number of iterations. In this 
way, we can optimize the feature generator as well as 
domain discriminator simultaneously, which can reduce 
the complexity of adversarial training.

3.1.1 � Multi‑linear mapping

Motivated by CGANs, we introduce some constraint 
conditions to discriminator to associate model training. 
Firstly, in order to make full use of the multimodal infor-
mation in the classifier prediction g and better represent 
the multiplicative interaction between the feature f and the 
classifier prediction g, we use multi-linear mapping (Zhao 
et al. 2021) to combine f and g. The multi-linear mapping 
is defined as the outer product of multiple random vec-
tors, T⊗(h) = f ⊗ g , where ⊗ represents the outer product. 

(1)f = G(x), h = (f , g)

(2)
min
D

max
G

LAda(G,D) =

−Ex,y∼X,Y

∑N

n=1
1[n=y] logD(h)

Let df  and dg denote the dimensions of vectors f and g, 
respectively. The multi-linear mapping has a dimension 
of df × dg , which is often too high, and it is likely to cause 
dimension explosion. In this work, we solve the dimen-
sion explosion by random sampling strategy proposed in 
Laparra et al. (2015), Kar and Karnick (2012). The idea 
is to approximate the outer -product T⊗(h) = f ⊗ g using 
the dot-product:

where ⊙ is the element-wise product. Rf ∈ Rd×df  and 
Rg ∈ Rd×dg are two random matrices sampled only once and 
fixed in the training phase. d is a hyperparameter that rep-
resents the dimension to be sampled, usually d ≪ df × dg , 
Rf f  and Rgg are randomly sampled vectors of f and g, which 
have the same dimension d. In this way, the data dimension 
after fusion will not be very large.

Through the adversarial training of the joint variables, the 
model can align multiple source domains at the feature and 
class levels simultaneously, which can fully align the data 
distribution of multiple source domains.

3.1.2 � Entropy adjustment

Generally, domain discriminator puts different samples on 
the same importance. However, because hard-to-transfer 
samples with uncertain predictions may adversely affect 
domain generalization, it is necessary to reduce their weights 
to weaken their impacts. In our model, we adopt the entropy 
criterion H(g) = −

∑C

c=1
gc log gc to quantify the uncertainty 

of the classifier prediction, where C is the number of catego-
ries, and gc is the probability of the sample belong to class 
c. Then each sample can obtain an entropy-aware weight 
�(H(g)) = 1 + e−H(g),which is used to re-weight the train-
ing sample. When the uncertainty of classifier prediction is 
larger, the � is smaller, thereby the bad impact of hard-to-
transfer samples on domain generalization will be weakened. 
After entropy adjustment, the objective function of the opti-
mization of the conditional adversarial is:

3.2 � Asymmetric triplet loss

Due to the clever means of spoof attack, it is difficult for 
the model to find a clear classification boundary. Moreover, 
due to the complex attack types, such as photo attack, video 
replay attack, 3D mask attack, etc., the feature distribution 
discrepancies of fake faces are large, and it is difficult to find 

(3)T⊙(f , g) =
1
√
d
(Rf f )⊙ (Rgg)

(4)
min
D

max
G

LAda(G,D) =

− Ex,y∼X,Y�(H(g))
∑N

n=1
1[n=y] logD(h)
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a compact feature space for fake faces. For this reason, we 
adopt an asymmetric triplet loss (Kertész 2021) constraint 
to make the distribution of fake faces in different domains 
dispersed, while the real faces in different domains compact. 
The optimization key of asymmetric triplet loss is mining 
approach of hard samples. Unlike triplet loss, asymmetric 
triplet loss mines hard samples from multiple domains, that 
is to say, one mini-batch contains the samples of multiple 
domains. As shown in Fig. 3, circles, squares, and triangles 
represent the attack samples from different domains, while 
crosses represent real faces in different domains; the samples 
marked with a black border represent the anchor samples. 
In order to make the real faces in different domains com-
pact, the anchor samples and the positive samples can be 
real faces from different domains; In order to make the real 
faces and fake faces in same domains dispersed, the anchor 
samples and the negative samples can be real faces and fake 
faces from same domains.

Assuming there are N source domains, the real and the 
fake faces are recombined into N + 1 categories. The fake 
faces that come from N source domains are considered as 
N distinct categories, but all the real faces are treated as 
one category. By minimizing the asymmetric triplet loss 
constraint, the real faces and the fake faces are separated, 
and N + 1-categories asymmetric triplet loss constraint is 
as follows:

Where f(x) represents the feature of sample x, xa, xp, xn are 
anchor sample, positive sample and negative sample respec-
tively. xa and xp are the same category, but xa and xn are 
different. � is the threshold, which controls the distance 
between positive samples and negative samples.

3.3 � Face depth auxiliary supervision

In order to further improve the generalization ability of the 
model, the face depth map is used as a scenario-invariant 
auxiliary supervision. Since the real face have certain depth 
among the nose, mouth, and forehead, in other words, there 
are 3D depth structure information in real faces. However, 
the fake faces in photos or videos have no 3D structure. For 
these reasons, we train a depth estimator in a supervised 
manner to improve the model. The training target values of 
depth maps of the fake faces are set to 0 since the fake faces 
are flat; while the 3D facial structures of the real faces are 
reconstructed from single 2D images (Feng et al. 2018) by 
a face alignment network named PRNet. These estimated 
3D depth values will be used as the training target values of 
the real faces. As shown in Fig. 4, there are some real faces 
and fake faces from four public datasets. The second line 

(5)
min
G

LTriplet(G) =∑
xaxpxn

(‖f (xa) − f (xp)‖2
2
− ‖f (xa) − f (xn)‖2

2
+ �)

Fig. 3   Mining hard negative 
samples in asymmetric triple 
loss

Fig. 4   Face depth map esti-
mated by PRNet in four public 
datasets
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is the corresponding depth map. By minimizing the depth 
loss constraint, real face and fake face can be further dis-
tinguished. Face depth auxiliary supervision is defined as:

Where E(x) is the output of attention-Unet, Dep(E(x)) repre-
sents the depth map estimator, and I(x) is the assumed truth 
map estimated by PRNet.

3.4 � Loss function

In our model, a supervised auxiliary classifier is used to 
amplify the distinguishing features. The features extracted 
by the generator are easily affected by the environmental fac-
tors (Ranjan et al. 2017), such as illumination, camera reso-
lution, etc., which make great differences in feature norms 
across scenes. Therefore, l2 normalization is performed on 
the output of the feature encoder and on the weights of the 
classification layer to restrict them to share the same Euclid-
ean norm.

The classifier uses cross entropy as the objective function. 
Therefore, based on the above research, the overall optimiza-
tion objective of the model is as follows:

where LCls is the cross-entropy loss of the classifier. LAda is 
the conditional adversarial loss. LDep is the regression loss 
of depth map. LTriplet is the asymmetric triplet loss. �1∼�4 are 
hyperparameters which can balance the influence of the four 

(6)LDep(X;Dep) = ‖Dep(E(x)) − I(x)‖2
2

(7)LDG = �1LCls + �2LAda + �3LDep + �4LTriplet

loss functions on the whole model. The hyperparameters 
are initialized according to (Shao et al. 2019) and (Jia et al. 
2020), etc., and fine tuned according to the contributions 
of the four loss functions in ablation experiments with the 
development sets. Through the adversarial training under 
the constraints of the four loss functions, we can generate a 
more generalized domain shared feature space, so that the 
model can better generalize to unseen domains.

4 � Experiments

4.1 � Experimental setting

Datasets. Four public FAS datasets are used to evaluate the 
performance of the proposed model: CASIA-MFSD (Zhang 
et al. 2012) (abbreviated as C), Oulu-NPU (Boulkenafet 
et al. 2017b) (abbreviated as O), Replay-Attack (Chingo-
vska et al. 2012) (abbreviated as I), MSU-MFSD (Wen et al. 
2015) (abbreviated as M). The CASIA includes three differ-
ent types of attacks: bending photo, cropping the photo and 
video attacks; the Oulu contains two types of attacks: photo 
and video replay attacks; Replayattack includes three types 
of attacks: print, mobile, and highdef attack; MSU mainly 
contains two different spoofing attacks: printed photo and 
video replay attack. During training, we randomly select 
three datasets from the four datasets as the source domain, 
and the remaining one is regarded as the unseen target 
domain for the test phase, and there are four scenarios for 

Table 1   The structure details of all modules of the proposed network

Feature generator Discriminator Feature embedder Depth estimator

Layer Chan./stri Out.size Layer Chan./stri Out.size Layer Chan./stri Out.size Layer Chan./stri Out.size

Input image Input fc3-1 Input conv1-4 Input conv1-4

Conv1/layer0 3/1 128 Fc2-1 512 Conv3-1 3/2 64 Conv4-1 3/2 64
Max-pool1-1 -/2 64 Fc2-2 3 Max-pool3-1 -/2 32 Conv4-2 128/2 32
Encoder-2 64/- 32 Layer2 64/- 16 Conv4-3 64/1 32
Encoder-3 256/- 16 Layer3 128/- 8
Encoder-4 512/- 8 Layer4 256/- 4
Encoder-5 1024/- 4 AdaptiveAvgpool 1
Center 2048/- 4 Fc3-1 512
Decoder-5 4096/- 8
Decoder-4 1024+32/- 16
Decoder-3 512+32/- 32
Decoder-2 256+32/- 64
Decoder-1 32/- 128
Conv1-2 160/1 128
Conv1-3 64/1 128
Conv1-4 32/1 128
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inter-datasets testing: I&C&Mto O, O&C&I to M, O&C&M 
to I, and O&M&I to C. Affected by the types of attack, the 
scenes of the four datasets are very different, which brings 
great challenges to cross-scene testing.

The structure of network. The specific structure of the 
network implemented by PyTorch is shown in Table 1. 
Attention-Unet is used as a feature generator to extract 
multi-scale features. The SE-ResNet-50 (Hu et al. 2020) is 
selected as the pre-training model and the layer0∼layer4 of 
SE-ResNet-50 is used as the encoder. In the decoder part, 
the spatial attention-mechanism is added into the upsam-
pling process to extract domain shared space features and 
face region features. The results of each upsampling are con-
verted to the same size through the bilinear interpolation, 
and concatenated as the input of the feature embedder. The 
layer2∼layer4 of ResNet-18 (He et al. 2016) are used as the 
network structure of feature embedder and then an adaptive 
average pooling layer and a fully connected layer (FC) with 
512 hidden nodes are designed later. The classifier contains 
two FC layers with 512 and 2 nodes. The domain discrimina-
tor takes the joint variables generated by multilinear map-
ping as input data. It contains two FC layers with 512 and 
3 nodes, respectively. The depth estimator contains three 
convolution layers, a batch normaliza-tion layer and a recti-
fied linear unit activation function(RELU). Its convolutional 
kernel size is set to 3 × 3.

Evaluation Metrics. The most common metrics are used 
in both intra and cross-testing experiments, including Area 
Under the Curve (AUC), Half Total Error Rate (HTER), and 
Accuracy (Acc). HTER is found out by calculating the aver-
age of FRR (ratio of incorrectly rejected bonafide score) and 
FAR (ratio of incorrectly accepted attacks). AUC represents 
the degree of separability between bonafide and spoofings. 
Acc is used to measure the correct proportion of sample 
classification.

Implementation Details. The face detection and align-
ment algorithm MTCNN is used (Zhang et al. 2016) for 
data pre-processing. All RGB face images are cropped 
into 256 × 256 × 3 , resized to 128 × 128 × 3,and then aug-
mented. Each video randomly selects a frame as the input 

of feature generator. The SGD is selected as the optimizer, 
with momentum set to 0.9, weight decay 5e-4, learning rate 
initialized to 0.001 and dropped to 0.1 times of the previous 
per 100 epochs.

During the training phase, we use an end-to-end approach 
to train the model. The batch-size of each domain is 20, so 
a total of 60 for the 3 domains. The hyper-parameters �1∼�4 
are set to 1.0, 0.5, 0.5, 1.0. During the testing phase, we 
randomly select two frames from each video in the target 
domain as input data. The anti-spoofing detection is deter-
mined according to the results of the classifier.

4.2 � Comparison with Baseline model

To verify the performance of our model, we first compare 
our model with some common face anti-spoofing models on 
four testing tasks (I&C&Mto O, O&C&I to M, O&C&M 
to I, and O&M&I to C). The comparison models include 
MS-LBP (Määttä et al. 2011); Binary CNN (Yang et al. 
2014); IDA (Wen et al. 2015); Color Texture (Boulkenafet 
et al. 2016); LBP-TOP (de Freitas Pereira et al. 2014); Aux-
iliary (Liu et al. 2018). The experimental results are shown 
in Table 2. The HTER of our model is the lowest, and the 
AUC of our model is the highest, which prove our model 
outperforms the above state-of-the-art models. Most state-
of-the-art models can perform well in intra-dataset testing, 
but the generalization ability degrades when testing in new 
scenarios. The main reason is that these models do not fully 
consider the internal correlation of the data distribution 
among multiple domains, and the extracted features are 
mostly domain-specific features.

Secondly, we compare our model with some state-of-the-
art domain generalization models in the face anti-spoofing 
task. The experiment results are shown in Table 3. It can 
be seen from the results that our model outperforms MMD-
AAE, MADDG (Shao et al. 2019), SSDG-M (Jia et al. 2020), 
and SSDG-R. The model of MADDG extracts domain shar-
ing features through the idea of multi-adversarial and dual-
force triplet mining constraints, but it only aligns features and 
ignores the alignment of class level. The SSDG model takes 

Table 2   Comparison of 
performance with common face 
anti-spoofing models on four 
testing sets

Model I&C&M to O O&C&I to M O&M&I to C O&C&M to I

HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

MS-LBP 50.3 49.3 29.8 78.5 54.3 45.0 50.3 51.6
Binary CNN 29.6 77.5 29.3 82.9 34.9 72.0 34.5 65.9
IDA 54.2 44.6 66.7 27.9 55.2 39.1 28.4 78.3
Color Texture 63.6 32.7 28.1 78.5 30.6 76.9 40.4 62.8
LBP-TOP 53.2 44.1 37.0 70.8 42.6 61.1 49.5 49.5
Auxiliary(Depth) 30.2 77.6 22.7 85.9 33.5 73.2 29.1 71.7
Auxiliary – – - - 28.4 – 27.6 –
Ours 13.5 92.1 1.3 99.9 10.7 95.7 11.1 95.8
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into account the diversity of the fake faces, so it proposes a sin-
gle-side adversarial framework and finds a domain-invariant 
feature space for the real faces. However, it does not require 
class level alignment, and ignores the adverse effect of hard-
to-transfer samples on domain generalization. Our conditional 
adversarial domain generalization model adds the multi-modal 
category information into adversarial training, which makes 
the multiple source domains align at the feature and class level 
simultaneously. The entropy adjustment effectively reduces the 
adverse effects of hard-to-transfer samples.

From the comparison experiment, we can see that our 
model can obtain the best accuracy metrics. However, the 
average test frequency of our network is about 26.4 fps, which 
is lower than 36.4 fps of MADDG algorithm. This running 
speed is not ideal, but it is within the acceptable range. The 
test network includes the attention-UNet, the Resnet-18 and 
the classifier, which is much simpler than the training network. 
However, it still needs to be optimized by pruning technology, 
etc., which is beyond the scope of this paper.

4.3 � Custom dataset experiment

To verify the performance of our model in ground truth envi-
ronment, we use ordinary mobile cameras to collect videos and 
generate the samples of photo attack and video replay attack 
to establish a custom dataset. Some real faces and fake faces 
are shown in the third and fourth lines of the Fig. 7. The cus-
tom dataset consists of short video with resolution (640 by 
480 pixels) recordings of 24 different identities, and adopts 
various video acquisition schemes: (1) the background of the 
scene is uniform or non-uniform; (2) the operator holds the 
attack device using their own hands or sets the attack devices 
on a fixed support; (3) the operator displays the videos using 
an iPhone screen or using an iPad screen.

Imitating the above comparison experiments, we use the 
custom dataset as the test set and design four scenarios for 

inter-datasets testing: I&M&C to U, O&C&I to U, O&I&M 
to U, O&C&M to U, where U represents the custom dataset. 
The results are shown in Table 4. From Table 4, we can see 
that the experimental results on the custom dataset are similar 
to those on public datasets. This shows that the experimental 
results of our model are reliable and stable.

4.4 � Discussion

4.4.1 � Ablation Study

We design the ablation experiments to verify the feasibility 
of the modules in our framework of conditional adversarial 
domain generalization. The corresponding modules are 
defined as ‘w/o attention’, ‘w/o triplet’, ‘w/o adversarial’, 
‘w/o multilinear & entropy’, ‘w/o norm’. The ‘w/o attention’ 
means removing the attention mechanism from the Unet fea-
ture extractor. The ‘w/o triplet’ means removing the asym-
metric triplet constraint. The ‘w/o adversarial’ means remov-
ing conditional adversarial domain discriminator. The ‘w/o 
multilinear & entropy’ means that the network contains the 
domain discriminator but does not add multilinear mapping 
and entropy criterion. The ‘w/o norm’ denotes that the pro-
posed network does not include feature and weight normali-
zation module. The ablation results of above modules under 
inter-datasets testing on CASIA, OULU, MSU, and Repalyst-
tack are shown in Table 5, and the corresponding ROC curves 
are shown in Fig. 5.

From Table 5, we can see that the performance of the 
proposed model degrades when any modules are excluded. 
This indicates that the six modules are beneficial to the 
whole model. Moreover, we find that conditional adversarial 
domain discriminator and asymmetric triplet constraint have 
a greater impact on the experiment results than other mod-
ules. For example, in the inter-datasets testing on CASIA and 
Replayattack, removing the conditional adversarial domain 

Table 3   Comparison of 
performance with domain 
generalization face anti-
spoofing models on four testing 
sets

Model I&C&M to O O&C&I to M O&M&I to C O&C&M to I

HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

MMD-AAE 40.9 63.1 27.1 83.2 44.6 58.3 31.6 75.2
MADDG 27.9 80.0 17.7 88.1 24.5 84.5 21.2 85.0
SSDG-M 25.5 80.8 2.4 99.8 24.8 80.8 15.8 90.7
SSDG-R 19.4 90.7 2.4 99.1 21.0 83.3 14.3 90.1
Ours 13.5 92.1 1.3 99.9 10.7 95.7 11.1 95.8

Table 4   Evaluation of our 
model on the custom dataset

evaluation metrics I&M&C to U O&C&I to U O&I&M to U O&C&M to U

Acc(%) 93.24 85.02 88.89 82.60
HTER(%) 7.63 7.27 5.82 14.92
AUC(%) 97.77 96.91 97.05 93.55



16508	 T. Cai et al.

1 3

discriminator will cause HTER to rise by 9.9% and 10.3%, 
respectively, removing the asymmetric triplet constraint from 
our model leads to 14.0% and 11.5% higher HTER. The main 

reason is that our model not only aligns the features of multiple 
source domains, but also aligns the predictions of the classi-
fier, thus forming a more generalized domain-invariant feature 

Table 5   Evaluation of the influence of each module in ablation experiments on four datasets

model I&C&M to O O&C&I to M O&M&I to C O&C&M to I

HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

w/o attention 17.5 87.1 2.9 97.2 18.7 89.0 17.2 89.9
w/o triplet 20.9 87.3 5.7 97.8 24.7 81.3 22.6 86.6
w/o adversarial 16.5 88.9 2.8 98.2 20.6 85.5 21.4 83.0
w/o norm 22.0 84.1 0.8 99.0 17.4 92.3 17.9 90.6
w/o depth 16.1 92.3 2.7 99.6 16.7 90.8 16.7 90.1
w/o multilinear&entropy 15.5 90.4 2.1 99.9 17.4 89.9 17.1 91.4
Ours 13.5 92.1 1.3 99.9 10.7 95.7 11.1 95.8

Fig. 5   ROC curves of ablation learning on four public datasets
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space. From Fig. 5, we can directly see the impact of each 
module on the evaluation metric of ROC. The curves of ‘w/o 
triplet’ anf ‘w/o adversarial’ are generally above other curves, 
which shows that they have a greater impact on the model.

Figure 6 is t-SNE visualization of the feature space when 
the target domain is Replayattack. Figure 6a removes the 
multi-linear map & entropy adjustment; Fig. 6(b) removes 
the conditional adversarial domain discriminator module; 
Fig. 6c removes the asymmetric triplet constraint; Fig. 6(d) 
contains all the modules. We can see that the classification 
boundary of Fig. 6d is the clearest among the figures. This 
means that all modules are helpful to improve the generaliza-
tion ability of the model in cross-scene face anti-spoofing, 
so it proves the feasibility of our model.

4.4.2 � Limited source domains

In this experiment, we verify the effect of the number of 
source domains on the generalization performance of the 
model. We limit the number of source domains to 2 datasets 
during training. Then its testing performance is compared 
with those of 3 datasets. Due to significant domain-variation 
features that exist in MSU and Replayattck, these two data-
sets are selected as source domains for training, and OULU 
as well as CASIA are selected as the target domains for 
testing. The experiment results are shown in Table 6. We 
can see that our model has better results than other models, 
such as MS-LBP, IDA, Color Texture, LBP-TOP, MADDG, 
SSDG-M. Comparing the data in Table 2, we can see that 
our model can learn more generalization clues when increas-
ing the number of source domains. However, the other mod-
els have little improvement when the number of training 
domains is increased.

4.5 � Visualizations of Proposed model

Class Activation Mapping (CAM) is usually used to visual-
ize deep learning features. It can locates key parts of the 
image through feature response, and provides a model for 
deep learning interpretability. CAM displays the strength 
information of the image’s local response in the form of a 
heat map. The local region with stronger response has better 
feature recognition abilities. We use the networks trained 
with O&I&M to generate feature maps and weights, and 
use the Grad-CAM(Selvaraju et al. 2017) to provide the 
class activation map (CAM) visualization of our model. The 
Grad-CAM are shown in Fig. 7, the first line and the second 
line are real faces and fake faces of CASIA respectively, the 
third line and the fourth line are real faces and fake faces 
of the custom dataset. Our conditional adversarial domain 
generalization model pays more attention to the features of 
the facial region (such as eyes and nose region) rather than 
the background, lighting, etc., of different domains.

In addition, in order to show the process of training, we 
use t-SNE to visualize the changes of the features distribu-
tion with iterative training of O&C&I to M task. As shown 
in Fig. 8, where domain1, domain2 and domain3 represent 
the three source domains CASIA, OULU, and Replyattack 

Fig. 6   The t-SNE visualization of feature space for ablation learning on O&C&M to I test task

Table 6   The comparison results of domain generalization face anti-
spoofing under limited source domains

Model M&I to C M&I to O

HTER AUC​ HTER AUC​

MS-LBP 51.16 52.09 43.63 58.07
IDA 45.16 58.80 54.52 42.17
Color Texture 55.17 46.89 53.31 45.16
LBP-TOP 45.27 54.88 47.26 50.21
MADDG 41.02 64.33 39.35 65.1
SSDG-M 31.89 71.29 36.01 66.88
Ours 27.33 78.90 30.44 75.58
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respectively. With the increase of epoch numbers, the posi-
tive samples of different domains are more compact, while 
the negative samples are more dispersed. The classification 
boundary is gradually clear. At the same time, the discrep-
ancy among multiple domains is gradually disappearing.

5 � Conclusion

In this study, we proposed a conditional adversarial 
domain generalization model to improve the generalization 
ability for face anti-spoofing. The feasibility of our model 
is verified by the experiments on four public anti-spoofing 
datasets and the custom dataset. The experiments confirm 
that adversarial training with joint variables can allevi-
ate the discrepancy between source and target domains, 

promoting the model to align multiple source domains at 
the feature and class level simultaneously. The entropy 
adjustment can reduce the adverse effects of the samples 
of inaccurate prediction. The experiments also confirm 
that the asymmetric triplet loss constraint can promote 
the fake face in different domains more separated while 
keeping the real ones aggregated, and face depth loss 
constraint can further improve the performance of face 
anti-spoofing detection of photo and video attack types. 
Although our model outperforms several state-of-the-art 
models on accuracy metrics, the test speed of the model 
is a little slower than that of MADDG model. This can 
be improved by using lightweight modules or pruning 
technology, which will be our later works. In addition, 
the mining of asymmetric triplet samples is limited to a 
single mini-batch. Current state-of-the-art technology of 

Fig. 7   Grad-CAM visualiza-
tion of the network trained with 
O&I&M

Fig. 8   The t-SNE visualization of the feature changes on C&O&I to M training task
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Cross-Batch Memory can break the limit. Later, we will 
work on these aspects to further improve our model.
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