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Abstract
Human fall detection plays a vital role in monitoring senior citizens safely while being alone. In recent works, vision-based 
techniques provide favorable and effective results. In this paper, a combined two-channel fall detection approach is proposed 
using Support Vector Machine (SVM) and K-Nearest Neighbors (K-NN) classification models based on the displacement 
of significant spatial features of the foreground image. Initially, training of both fall and daily activity scenarios is done 
using a standard fall detection dataset. Keyframes consisting of significant body shape features are then obtained from 
the surveillance video subjected to the two-channel classification model. We consider the classification results if both the 
channels generate similar outputs, failing which, additional intelligence is used to classify the fall and daily activity event. 
The keyframe selection is based on the displacement in height-to-width ratio and displacement in horizontal and vertical 
centroid movement of the object having a threshold higher than a preset value. The proposed fall detection system achieves 
a peak accuracy of 98.6% and sensitivity of 100% in detecting falls. The proposed model achieves satisfactory performance 
in comparison to existing state-of-the-art techniques.

Keywords  Fall detection · Human shape · Daily life activity · Keyframe selection · Classification

1  Introduction

Fall incidents constitute a significant risk factor for older 
people and senior citizens living alone. As per the United 
Nations (2017) report, the world population is overgrowing, 
and also the number of senior citizens of age 60 years and 
above due to improved healthcare facilities. It is forecasted 
that the population growth of senior citizens will be exceed-
ingly fast, surpassing 1000 million by 2030 and 2000 million 
by 2050. In a recent study, Vollset et al. (2020) funded by 
the Bill and Melinda Gates Foundation, the population of 
senior citizens above 80 years of age is predicted to touch 
866 million by the end of the century from around 141 mil-
lion at 2017. As most elderly citizens remain indoors and 

most of the time lonely, a fall incident can eventually result 
in a severe injury. It could be fatal if not taken care of in 
time. Subsequently, various fall detection methodologies 
have been evolving and gaining significance in recent times 
(Ramachandran and Karuppiah 2020; Wang et al. 2020). 
These systems can detect a fall incident and proactively 
send notifications so that necessary measures can be taken 
to save precious lives. The usage of surveillance devices for 
different applications has increased over the years with the 
advancement in technology. Surveillance data is stored and 
fetched based on the requirement. Tracking surveillance data 
manually in real-time is a time-consuming job Sulman et al. 
(2008). To address this issue, detecting abnormal human 
activity like falls automatically without any human interven-
tion is the solution (Li et al. 2018; Shu and Shu 2021; Chelli 
and Patzold 2019; Han et al. 2020; Kalinga et al. 2020). This 
paper underlines one such method, i.e., automatic detection 
of human fall concerning normal daily living activities.

Generally, fall detection methods are divided into two 
groups. The first group is device-based, automatically 
detecting possible falling activities from normal daily liv-
ing activities using electronic devices. This group is fur-
ther subdivided into wearable device-based systems and 
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non-wearable device-based systems. Wearable devices (Xi 
et al. 2020; Makhlouf et al. 2018; Hussain et al. 2019) gather 
information from electronic instruments like accelerometers, 
gyroscopes, magnetometers, etc., to recognize a fall event. 
Even though these instruments are cost-effective, they need 
to be worn at all-time, which is a significant disadvantage. 
This may result in difficulty for elderly persons, and they 
might also forget to wear them every time. Also, using the 
help button Directalert (2021) is of no use if the person 
becomes immobilized or remains unconscious after the 
fall. Moreover, rechargeable batteries are needed for these 
devices, which require to be recharged regularly for effective 
functioning. Non-wearable devices are mostly antenna-based 
equipment that is generally installed in indoor conditions. 
They use built-in sensors to measure parameters such as the 
floor vibration, the pressure exerted on the floor to recognize 
a falling behavior successfully, mapping the amplitude of a 
wireless signal to human motion (Sadreazami et al. 2019; 
Huang et al. 2019). However, these systems have the dis-
advantage of experiencing a high false alarm rate. A minor 
fluctuation in the indoor situation can give rise to a pressure 
difference or introduce noise that may not be through human 
beings.

The second group belongs to the vision-based methods, 
which became very popular in recent years. It has a benefit 
that does not require wearing any instrument all the time as 
it requires only video surveillance cameras to be installed 
for detecting a fall event in real-time.

The proposed method in this paper is based on the 
assumption that the body shape of a person varies during 
any activity. The change in shape is significant during a fall 
incident in comparison to any other daily life activity. Falls 
generally occur accidentally, due to some kind of weak-
ness (Rubenstein 2006; WHO 2018), or epileptic seizures 
(Rubenstein 2006; Russell-Jones and Shorvon 1989; Krum-
holz and Hopp 2008; WHO 2018), etc. Activities of daily 
living (ADL) are like sitting down, bend to pick up some-
thing, or lie down, etc. This variation in the body shape of 
the individual helps to identify a fall from a daily living 
activity. The primary contributions of the proposed work 
are summarized as follows:

•	 This paper achieves novelty through the extraction of 
keyframes represented by significant shape-change fea-
tures. Instead of selecting frames randomly for classifica-
tion, keyframes representing different fall and fall-like 
activity events are chosen. The keyframe selection helps 
distinguish a stable or stationary phase from an activity 
phase and further restricts the start and end of a fall or 
daily activity event in a video sequence. Selecting key-
frames for classification also helps achieve better time 
complexity as it filters the redundant frames for training 
the system (Makandar et al. 2015; Luo et al. 2018).

•	 For reducing the huge processing time, foreground move-
ment features from the input video sequence are esti-
mated at intervals of five frames instead of all frames. 
This strategy helps reduce the computation time without 
affecting the keyframes for classification.

•	 A combination of machine learning-based and thresh-
old-based approaches is used to design the fall detection 
model to make the system more robust. The proposed 
method outperforms state-of-the-art models on detecting 
both falling and daily activity instances.

•	 A low-cost system is designed based on RGB frames as 
input. A simple and economical RGB surveillance cam-
era is sufficient for the video acquisition of the proposed 
approach.

The remainder of the paper is organized as follows: 
Sect. 2 presents a detailed survey of existing approaches 
related to human fall and daily living activity detection. Sec-
tion 3 presents the proposed fall detection methodology. Sec-
tion 4 shows the experimental results and the performance 
evaluation of the proposed system, followed by a comparison 
with existing methods. Section 5 concludes the paper along 
with the scope for future enhancements.

2 � Related work

In this section, the literature survey of fall detection methods 
is discussed. This survey is focused on fall detection using 
wearable devices, non-wearable devices, and vision-based 
approaches.

Zitouni et al. (2019) designed an innovative sole embed-
ded with a fall detection algorithm based on a single tri-axis 
accelerometer. Thresholds depending on acceleration, posi-
tion, and duration parameters are used by the algorithm to 
detect a fall concerning activities of daily living. Although 
the authors claim the system to be unobtrusive and the sole 
is comfortable to wear, the footwear fitted with the smart 
sole needs to be worn around the clock, which does not seem 
convenient for the elderly. Sabatini et al. (2016) discussed 
a fall detection approach based on a barometric altimeter. 
This system differentiates among various kinds of falls and 
daily activities. The technique is devised based on a bi-fold 
decision mechanism. In the first stage, significant high-
impact falls are detected by estimating the vertical velocity. 
The second stage uses impact features, posture, and height 
change features, alone or combining, for post-impact fall 
detection or soft fall detection. The technique has a low sen-
sitivity of 80% for significant high-impact fall detection and 
100% sensitivity for soft-fall detection. Kerdjidj et al. (2020) 
implemented an automatic fall and daily activity detection 
system. This system used a lightweight and easy-to-wear 
platform. An accelerometer, magnetometer, gyroscope, and 
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electrocardiogram (ECG) are used to provide a large amount 
of data. However, frequent battery charging is needed to 
keep it in operating condition.

The literature related to fall detection discussed above is 
based on sensors and devices attached to the body. These 
methods give good results but have few drawbacks in real-
time scenarios like frequent recharge is needed, the extra 
burden to wear, especially for old aged personals. The use 
of non-wearable and surveillance-based devices overcomes 
the limitations of wearable devices. Some of the existing 
works based on non-wearable device-based approaches are 
mentioned below.

Wang et al. (2017) presented a real-time, contactless, 
low-cost indoor fall detection technique. This technique 
relies on the fine-grained channel state information (CSI) 
phase and amplitude found in commodity Wi-Fi devices. 
The CSI phase difference is used here to observe fall and 
fall-like typical actions. Simultaneously, the sharp power 
profile decline pattern in the time–frequency domain is used 
to attain accurate recognition. The approach gives good per-
formance with indoor light intensity changes. But its per-
formance degrades while moving into a new environment 
with an old setting. Junior and Adami (2018) presented a 
hybrid fall detection method based on analysis of thresh-
olds, analysis of the device’s orientation, and decision trees 
algorithm to detect falls from normal daily life activities. 
The data in this study was collected using a smartphone 
through its tri-axis accelerometer. A different approach is 
presented by Huang et al. (2019). The authors propose a fall 
detection system based on geophones that receive the floor 
vibration signals. It analyzes the vibration signals to extract 
time-dependent features to detect a potential fall concerning 
daily life activities using the Hidden Markov Model (HMM). 
The system works effectively for a single individual resid-
ing at home. However, it struggles to detect falls of multiple 
persons as it lacks significantly in processing multiple floor 
vibration signals.

Though non-wearable techniques are better in comparing 
with wearable based approaches, it also has few limitations. 
Environmental noise can alter the wireless signals used by 
the non-wearable process, which is one of the main limita-
tions. These drawbacks of non-wearable systems are over-
come using vision or surveillance-based methods and gained 
popularity in real-life fall detection systems.

Peng et al. (2019) proposed a vision-based fall detection 
approach based on the human point cloud. Depth data is 
input to the system using Kinect. The method further maps 
the depth information into a point cloud image which rep-
resents humans using color spectrum. The height change 
acceleration feature is used to identify fall behavior. The 
system can recognize potential falls and activities such as 
sitting, squatting, walking, and bending. However, it lacks 
significantly in distinguishing between falls and controlled 

lying, such as sleeping or lying on the floor or any surface. 
Htun et al. (2020) proposed a vision-based surveillance 
system based on image processing techniques. A hidden 
Markov model is used for detecting falls and daily living 
activities. Human shape-based features such as Silhouette 
surface area, centroid height, and bounding box aspect ratio 
are used to analyze the person in the frame. The system 
shows a recall of 98.37% using experiment videos contain-
ing both regular and non-abnormal events, including falls. 
Ample scope is present for incorporating multiple persons 
fall detection in a frame as the scope of the work is limited to 
a single person. Geertsema et al. (2019) presented a vision-
based fall and daily activity detection system using vertical 
speed and acceleration obtained from optical flow vectors. It 
also uses sound amplitude as a feature to enhance specificity. 
A specificity of 92% and 99.7% is achieved by the algorithm 
using a public dataset and real-life data sequences, respec-
tively. The system accurately detects high-impact falls but 
lags significantly in the case of low-impact falls.

Kepski and Kwolek (2015) designed a low-cost fall detec-
tion system. Authors use motion information from acceler-
ometer data and depth images acquired using Kinect sen-
sors. Spatial features extracted from the depth images are 
analyzed only when the person’s movement is above a pre-
defined threshold. This strategy helps reduce the computa-
tion cost. It also reduces the false alarms by combining both 
motion features and spatial features of the depth images. 
Even though the system achieves 95.71% accuracy and 100% 
sensitivity for detecting falls, it retains the limitations of 
wearing a body-worn device to assist in the fall detection 
process. Merrouche and Baha (2017) proposed a vision-
based fall detection system using a depth camera based on 
the combination of human shape analysis, head, and centroid 
tracking to detect falls and normal daily life activities. The 
system aims to upgrade itself to address more complicated 
movements such as backward fall and fall from chair using 
an appropriate dataset. A vision-based fall detection system 
is designed by Wang et al. (2019) using Convolutional Neu-
ral Networks (CNN). The authors implement the transfer 
learning concept to train the VGG-16 network to identify 
a fall movement in a frame. The frames are pre-processed 
using background subtraction and morphological operations. 
Although the algorithm performs well in normal lighting 
conditions, it lacks significantly in low-light environments.

In this paper, a new approach for detecting human fall 
is proposed based on significant foreground features of the 
surveillance video using a combination of classic machine 
learning-based and threshold-based techniques. Video 
frames with the moving person are selected for a two-chan-
nel classification depending upon the feature displacement 
concerning a predefined threshold. The classification results 
help identify a fall from a regular daily life activity. Sec-
tion 3 presents the detailed methodology.
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3 � Methodology

The proposed approach comprises the following steps: video 
acquisition and frame extraction, moving object/human 
detection through foreground segmentation, morphological 
noise reduction, model design based on training samples, 
keyframes selection, and a keyframe-based two-channel 
classification. Figure 1 shows the schema of the proposed 
method. Figure 2 illustrates the flowchart of the proposed 
fall detection methodology.

3.1 � Video acquisition and frame extraction

Video acquisition refers to obtaining a video sequence in 
real-time. The first step is to process a particular frame to 
detect a falling activity by interpreting the motion sequence. 
In this method, the University of Rzeszow Fall Detection 
Dataset (URFD Dataset) consisting of 30 falls and 40 daily 
activity video sequences are used Kepski and Kwolek 
(2014). It is a standard publicly available dataset. It is rarely 
possible to gather real-time fall sequences of elderly persons. 
Thus, they used simulated fall and daily life activity video 
sequences of young volunteers for processing. Each video 
sequence has a frame rate of 30 frames/second and a frame 
resolution of 640 × 240 pixels.

We observed that an individual's body shape does not 
alter much in every adjacent frame of a video sequence. 
Instead, it changes at an interval of few frames based on 
the type of activity. Hence, it becomes necessary to filter 
the redundant frames representing similar body shapes for 
a set of frames. This approach will significantly improve 
the overall processing time of the algorithm. A threshold 
interval of five frames is chosen based on logical reason-
ing and through evaluation and observation of the dataset 
sequences. The spatial information obtained from the first 
frame is used to recover at least the next five frames, which 
helps reduce the time complexity of processing the frames 
with similar body shapes. We choose a threshold of five 
frames as the maximum filtering threshold, and anything 
above it may compromise the valuable information required. 
It helps retain the effective posture change frames and filters 
the redundant frames with similar postures.

Fig. 1   Schema of the proposed methodology

Fig. 2   Flowchart of the proposed fall detection system
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3.2 � Moving object detection

The frames extracted from the input video stream are subject 
to detection of the moving object in the frame. Locating the 
moving region in the frame is the initial work in distinguish-
ing the motion behavior of the object. We use an adaptive 
background mixture model (Stauffer and Grimson 1999; 
Paul et al. 2013) to isolate the moving object in real-time 
from the video stream. It is quite robust against various light-
ing conditions. The algorithm models every pixel as a mix-
ture of Gaussian and accordingly updates the background 
information using an approximation. This update technique 
helps the system in adapting itself to changes in illumination 
and objects that stopped moving. It tracks the transformation 
of the corresponding pixel's state from one frame to another. 
The pixels experiencing no state change are assigned with 
weight-0 (black), i.e., background pixels, and those changing 
states are given weight-1 (white), i.e., foreground pixels. The 
background pixels mostly do not change state. Hence, the 
foreground pixels represent the moving object in the video 
frame.

3.3 � Morphological noise reduction

The foreground image contains the motion region of inter-
est (RoI). It denotes the location of the moving object from 
the rest of the image frame. It is separated using both binary 
statistical morphological operations, i.e., erosion and dilata-
tion Jamil et al. (2008). Binary statistical erosion is used to 
remove the noise from the image by eliminating the isolated 
noisy pixels. Dilatation recovers the loss caused by erosion 
by filling holes to retrieve the effective pixels removed dur-
ing erosion. It unites the areas split during the binarization 
of the image frame. Finally, the obtained ROI is brought 
together into a moving object region through a connected 

component criterion, customarily called a blob. It helps clus-
ter multiple moving areas considered part of a single moving 
object or other moving regions into a single moving object. 
Hence, it plays an essential role in detecting moving humans 
in a frame and during the target object’s occlusion.

3.4 � Training fall and daily activity postures

In this section, the fall detection model based on spatial 
components is designed by training the posture samples of 
these two data classes. As discussed earlier, it is consid-
ered that a fall and daily activity movement possess differ-
ent body stances. In this study, the URFD Fall Detection 
dataset Kepski and Kwolek (2014) is used for training pur-
poses. This dataset consists of 30 fall events and 40 daily 
activity video sequences (such as bending to pick, sitting 
on the chair, sitting on knees, crouching, lying, etc.) respec-
tively. We have designed the training model using the fron-
tal URFD video sequences. Figures 3 and 4 show example 
training samples of fall and ADL. Representatives for both 
fall and daily activities are obtained from selected surveil-
lance sequences. These samples are then trained to generate 
a spatial model using support vector machine (SVM) and 
K-nearest neighbors (K-NN) classifiers.

3.5 � Keyframe selection

Random selection of frames for classification may not result 
in optimum classification results. Thus, frames with the 
displacement of the significant foreground features above 
a certain threshold are a suitable choice. It leads to effec-
tive classification and, simultaneously helps in achieving an 
improved time complexity.

Here the selection of keyframes is based on the obser-
vation that the horizontal or vertical or both the person’s 

Fig. 3   Training samples of falling events

Fig. 4   Training samples of daily life activities
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displacement is significantly higher during a fall and fall-like 
daily activity than during a non-falling or inactivity. Hence, 
based on this concept, we analyze the frames by measur-
ing three most significant geometric shape-based features: 
blob height-to-width ratio, horizontal centroid displacement, 
and vertical centroid displacement. These parameters are 
described as follows.

Blob height-to-width ratio is the aspect ratio of the 
detected foreground object and can be calculated as shown 
in Eq. (1):

where hwr(t) denotes the height-to-width ratio of the object 
derived by dividing the value of the height ( h) by that of the 
width (w) for the object at time t.

To define the centroid of the foreground object, we con-
sider p to be a position at time t on the detected foreground 
object. Then, the centroid C(t) is defined in Eq. (2) as:

Here, p(t) = (x(t), y(t)) and xCh represents the horizontal 
centroid component as shown in Eq. (3):

where N is the number of foreground pixels. Similarly, yCv 
represents the vertical centroid component as shown in 
Eq. (4):

The parameters are illustrated diagrammatically in Fig. 5.
These spatial features are chosen because we use the 

frontal URFD sequences where the person in the frame 
is facing the camera. The frontal sequences are repre-
sented by the cam0 feed of the URFD dataset contain-
ing both fall and ADL sequences. Therefore, a person 

(1)hwr(t) = h(t)∕w(t),

(2)C(t) = (xCh(t), yCv(t))

(3)xCh =

N
∑

i=1

(

xi∕N
)

,

(4)yCv =

N
∑

i=1

(yi∕N)

falling parallelly to the camera optical axis experiences 
a significant change in height-to-width ratio and vertical 
centroid movement. Whereas, if he falls perpendicularly 
to the camera optical axis, the centroid in the horizontal 
direction moves significantly. Hence, the displacement of 
these parameters in the horizontal or vertical direction or 
both is observed to be significantly higher during a fall 
while compared to any other regular life activity. The 
absolute difference in the displacement of these param-
eters is measured. For example, the absolute difference 
in the displacement of height-to-width ratio can be rep-
resented as hwrframe(n) − hwrframe(n−1) where, hwrframe(n) and 
hwrframe(n−1) represents the height-to-width ratio of the 
foreground object in the current frame and previous frame 
respectively. Figure 6 shows the absolute difference in the 
displacement of the height-to-width ratio and the person’s 
centroid in both horizontal and vertical directions during 
a fall and daily activity sequences.

As multiple features are analyzed, the variation in these 
features’ displacement differs between a steady phase and 
an activity phase. A steady phase represents body activi-
ties like walking, standing, lying, or any steady or inac-
tive/stationary posture. Thus, separate feature thresholds 
are required to segregate the activity phase and the sta-
tionary phase. The thresholds are set depending on the 
displacement variance of these features. The variance in 
the displacement of the height-width ratio is calculated 
as follows.

In Eq. (5), HWR(t) and μhwr(t) denotes the displacement 
in height-width ratio and its mean value at time t, respec-
tively. While, μhwr (t − 1) denotes the mean value at a time 
(t – 1). Value α represents the updated parameter.  σhwr(t) 
represents the variance at time t as shown in Eq. (6). Simi-
larly, displacement variance of centroid in the horizontal 
and vertical direction is calculated.

In Eq. (7), (CH or CV)(t) and μ(Ch or Cv)(t) denotes the 
centroid displacement in the horizontal or vertical direc-
tion and its mean value at time t, respectively. While, 
μ(Ch or Cv)(t − 1) denotes the mean value at a time (t − 1). 
Value α represents the updated parameter.  σ(Ch or Cv)(t) rep-
resents the variance at time t as shown in Eq. (8).

The variance remains low when there is a minor change 
in the person’s shape, such as in a steady or inactive phase. 

(5)�hwr(t) = (1 − �)�hwr(t − 1) + �HWR(t)

(6)�hwr(t) = HWR(t) − �hwr(t − 1)

(7)
�(Ch or Cv)(t) = (1 − �)�(Ch or Cv)(t − 1) + �(CH or CV)(t)

(8)�(Ch or Cv)(t) = (CH or CV)(t) − �(Ch or Cv)(t − 1)

Fig. 5   a Height-width ratio (hwr) of the foreground object and b Cen-
troid (C) of the foreground object (horizontal centroid component 
( xCh ) and vertical centroid component ( yCv)
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It is higher for a change in shape during a falling move-
ment or a daily life activity such as sitting, bending, 
crouching, or any other fall-like activity. When the vari-
ance exceeds a threshold, it can detect a posture change 
from a stable phase to an activity phase which is then 
subjected to an SVM and K-NN classification. Figure 7 
illustrates the keyframe selection process.

Here, the threshold for the displacement in height-width 
ratio Thwr, horizontal centroid displacement TCh, and verti-
cal centroid displacement TCv are set to 0.18, 2.5, and 2.9, 
respectively. These thresholds are selected by evaluating the 

training sequences based on the displacement of the corre-
sponding spatial features. Accordingly, we can detect a fall 
or daily activity in the middle of a video sequence based on 
these threshold values. However, if it is set too high, fall and 
fall-like activities may not get detected, and when it is set 
too low, the false alarm rate goes up. Hence, we consider the 
frames covering the activity phase as the keyframes.

3.6 � Keyframe‑based classification

After the keyframes are extracted depending on the dis-
placement of the shape-based features, they are classified 
for activity recognition under two classes, namely, fall and 
daily living activity.

Although multiple classification models are available, 
we choose to use two classic machine learning models, a 
linear SVM, and K-NN, to classify the keyframes. As the 
number of keyframes extracted is limited from the train-
ing video sequences, SVM is a better choice because linear 
SVM can be modeled with limited training samples, and 
its competency is higher for a two-class linear classifica-
tion scenario (Cortes and Vapnik 1995; Boateng et al. 2020) 
Also, the number of independent variables or features in 
our approach is limited as most significant foreground fea-
tures are chosen. Hence, we use the K-NN classification to 

Fig. 6   Absolute difference in the displacement of a horizontal cen-
troid movement, b vertical centroid movement and c height-to-width 
ratio (HWR) for fall and ADL sequences

Fig. 7   Flowchart illustrating the keyframe selection process
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enhance the system's accuracy for the limited number of 
features compared to the training data Boateng et al. (2020). 
The two-channel classification using both SVM and K-NN 
can result in a classification disparity for a particular key-
frame, like delivering different outputs. Hence, to resolve 
this issue, we use additional information to present the final 
decision. Here, we choose the elliptical orientation of the 
foreground object for this purpose. Because we use the fron-
tal URFD sequences to design the classification model, dis-
placement in the person’s orientation concerning the floor 
is selected as a significant foreground feature of the moving 
object. It is the threshold to distinguish between a fall and 
an ADL. We can observe from the training samples that 
the orientation displacement tends to be large enough dur-
ing a fall sequence when compared to any other activity of 
daily living. The displacement happens in the horizontal or 
vertical direction or both. After that, we can combine both 
SVM and K-NN results based on the decision obtained from 
the elliptical orientation displacement for a keyframe. As a 
result, we can resolve any classification disparity between 
the two channels. Figure 8 shows the absolute difference in 
the displacement of the elliptical orientation during fall and 
ADL sequences.

4 � Experiment and results

This section evaluates the efficacy of the proposed fall detec-
tion system. Experiments are carried out upon the fall and 
ADL video sequences of the UR Fall Detection (URFD) data-
set Kepski and Kwolek (2014) to evaluate the performance 
of the approach. It is a publicly available dataset. The data-
set consists of thirty video sequences with falls, thirty video 
sequences with typical daily life activities such as sitting down, 
bending to pick up something from the floor, crouching down 
to look for something beneath, and ten video sequences with 
fall resembling daily activity as lying on the floor and lying 
on the couch or bed. Two types of falls were simulated by 

five volunteers: from standing posture and sitting posture. The 
video sequences are represented using depth maps and corre-
sponding RGB images acquired by a static Kinect sensor. The 
Kinect was placed at the height of 1 m from the floor which 
captured the frontal URFD sequences. The frontal sequences 
referring to the Cam0 feed is evaluated because it represents 
both fall and daily activity video sequences. All the fall and 
activity sequences were recorded at a 30 Hz frame rate with a 
frame resolution of 640 × 240 pixels. We considered the RGB 
image frames as it is a vision-based technique and, simultane-
ously any low-cost RGB surveillance camera can be used for 
the video acquisition of the proposed approach.

Experiments are conducted using MATLAB on a system 
having a configuration of Intel(R) Core (TM) i5-1135G7 @ 
2.42 GHz processor with 8 GB of RAM and 256 GB SSD. The 
classification result of SVM and K-NN are combined with the 
help of the orientation decision based on which the final out-
put is recognized to be a success or failure. Table 1 shows the 
recognition result for a few sample keyframes. It depicts the 
two-channel combined result of SVM and K-NN classification 
based on the orientation output. Here, the first five keyframes 
represent fall sequences and the remaining represent ADL 
sequences. Figure 9 shows the example keyframes (1, 6–10) 
presented in Table 1 with their corresponding motion RoI or 
blob. An example of a stable movement frame is shown in 
Fig. 10. Here, the person walks and hence displays no huge 
change in body shape. HWR displacement is (hwr = 0.16), 
Centroid horizontal and vertical displacement are (Ch = 2.09 
and Cv = 1.23). The displacement of these parameters is below 
the threshold to distinguish between a steady and an activity 
phase. Hence, this frame is not considered as a keyframe and 
the algorithm stops at this step and fetches the next frame for 
processing.

4.1 � Performance evaluation

We use a few widely used performance metrics in fall detec-
tion methods to evaluate the performance of the proposed 
approach, as shown in Eqs. (9)–(12).

(9)Sensitivity∕recall(%) =
TP

TP + FN

(10)Specificity(%) =
TN

TN + FP

(11)Precision(%) =
TP

TP + FP

(12)Accuracy(%) =
TP + TN

TP + TN + FP + FN

Fig. 8   Absolute difference in the displacement of elliptical orienta-
tion for fall and ADL sequences



11415Fall detection approach based on combined two‑channel body activity classification for…

1 3

True positive (TP) refers to an object experiencing a fall 
activity, and the system detects it correctly. However, a sys-
tem that fails to catch a falling entity is represented by the 
parameter false negative (FN). True negative (TN) refers to 
an entity carrying out a regular daily activity, and the system 
can detect it accurately. An event in which an object per-
forms a daily action, but the system determines as a falling 
movement is represented by false positive (FP). These four 
parameters TP, FN, TN, and FP determine the performance 
metrics such as sensitivity/recall, specificity, precision, and 
accuracy.

Sensitivity/Recall evaluates the capacity of the technique 
to detect fall activity. Specificity evaluates the ability of the 
method to see daily life activities. Precision represents a 
positive predictive value and accuracy represents the overall 
recognition rate of the system.

A two-channel classification model is designed for the 
proposed fall detection approach using SVM and K-NN. 
Both depend upon the selected spatial features based on 
which the training for each keyframe is carried out. The 
UR fall detection dataset consists of 70 video sequences (30 
falls + 40 daily activities), of which 50 video sequences com-
prising of 20 falls (i.e., 66.66% of the fall sequences) and 
30 daily activities (i.e., 75% of the daily activity sequences) 
are used as the training set. Both the models are evaluated 
based on the keyframes that are subject to classification. 
Table 2 reports the cumulative confusion matrix represent-
ing the quantitative performance of the proposed fall detec-
tion method based on video sequence classification of fall 
and ADL sequences.

We evaluate the performance of the system in terms of 
sensitivity, specificity, precision, and accuracy. The clas-
sification models considered are SVM, K-NN, orientation 
threshold-based, and SVM-K-NN combination based on 

Table 1   Recognition result of sample keyframes

Key frame Event hwr Ch Cv SVM decision K-NN decision Orientation 
decision

Combined result Recognition

1 Fall 0.47 19.36 20.12 Fall Fall Fall Fall Success
2 Fall 0.54 17.21 18.22 Fall Fall Fall Fall Success
3 Fall 0.39 13.62 17.4 ADL ADL Fall Fall Success
4 Fall 0.31 12.7 11.7 ADL ADL ADL ADL Failure
5 Fall 0.4 15.4 18.1 ADL Fall Fall Fall Success
6 ADL 0.34 11.31 9.98 ADL ADL ADL ADL Success
7 ADL 0.29 10.67 11.03 ADL ADL ADL ADL Success
8 ADL 0.38 14.78 13.9 Fall ADL Fall Fall Failure
9 ADL 0.37 13.43 12.89 ADL ADL ADL ADL Success
10 ADL 0.27 8.98 9.87 ADL ADL ADL ADL Success

Fig. 9   Sample keyframes (1, 6–10) presented in Table 1 with their corresponding motion RoI (clockwise-direction)

Fig. 10   Example of stable movement frame (hwr = 0.16, Ch = 2.09 
and Cv = 1.23)
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orientation. Table 3 shows the comparison between the 
existing and the proposed approach. It is done consider-
ing the classification approaches and the features used for 
classification. All the methods are compared based on their 
performance on the frontal URFD sequences. Kepski and 
Kwolek (2015) use both SVM and K-NN classifiers to evalu-
ate the system’s performance based on spatial features such 
as blob height-to-width ratio, blob-height- to-physical-height 
ratio, and the centroid distance to the floor. They achieved 
100% recall in detecting falls. However, the proposed fall 
detection model too achieves a 100% sensitivity in detecting 
fall movements and simultaneously outperforms Kepski and 
Kwolek (2015) in terms of specificity, precision, and accu-
racy. In Merrouche and Baha (2017), the features evaluated 
are the threshold to distinguish between a fall and daily life 
activity. Here, spatial features like height and centroid track-
ing are used to assess the fall detection system. The proposed 
approach clearly outperforms Merrouche and Baha (2017) 
concerning all the evaluated performance measures. Wang 
et al. (2019) use a CNN-based deep learning approach to 
classify the events. Background subtracted frames are input 
to the CNN network. The proposed method outperforms the 
CNN-based approach concerning the fall detection capacity 
with a recall of 100%. Although CNN is a state-of-the-art 

classification model, CNN learns features effectively and 
delivers optimum performance when the dataset used for 
training the network is large enough with more labeled sam-
ples. The URFD dataset used in this method consists of lim-
ited training samples. However, Wang et al. (2019) display a 
better precision of 99.64% than the proposed fall detection 
system. Although, a higher precision deals with the signifi-
cant cost of false-positive affecting the performance of the 
system, a fall detection system rather benefit from a higher 
recall. When the performance cost associated with false 
negatives is high, a better recall should be achieved. Such 
as, a fallen person (true positive) is predicted as an ADL 
(false negative), the consequences will be severe and result 
in a significant loss in performance. The comparison is made 
using performance measures, namely sensitivity, specificity, 
precision, and accuracy. It is to be noted, ‘–’ symbol indi-
cates the data is not available. Based on these performance 
measures, the proposed method using the two-channel com-
bined approach outperforms the existing techniques.

Overall, using all the classification strategies, the pro-
posed fall detection model delivers a very satisfactory per-
formance. It achieves an accuracy of 92.85% and 95.71% 
using SVM and K-NN, respectively. 97.14% accuracy is 
achieved based on the orientation threshold. Although 

Table 2   Cumulative confusion matrix

Classification model Event Fall detected ADL detected Recall (%) Specificity (%) Precision (%) Accuracy (%)

SVM Fall 28 02 93.33 92.5 90.32 92.85
ADL 03 37

K-NN Fall 29 01 96.66 95 93.54 95.71
ADL 02 38

Orientation threshold Fall 29  01 96.66 97.5 96.66 97.14
ADL 01 39

Combined approach Fall 30 00 100 97.5 96.77 98.6
ADL 01 39

Table 3   Performance comparison of our approach with existing techniques based on the frontal URFD sequences

Rec: Recall/Sensitivity, Sp: Specificity, Prec: Precision, Acc: Accuracy

Approach Features used Classification Input signal Recall (%) Sp (%) Prec (%) Acc (%)

Kepski and Kwolek (2015) HWR,
Blob-height to physical height 

ratio,
Centroid distance to the floor

SVM Depth, 
accelerom-
eter data

100 90 88.24 94.28
K-NN 100 92.5 90.90 95.71

Merrouche and Baha (2017) Height,
Centroid tracking

Feature threshold Depth 76.92 80 – 78.68

Wang et al. (2019) Background subtracted frames CNN RGB 94.86 – 99.64 –
Proposed method HWR displacement,

Horizontal centroid displacement,
Vertical centroid displacement,
Orientation displacement

SVM RGB 93.33 92.5 90.32 92.85
K-NN 96.66 95 93.54 95.71
Orientation threshold 96.66 97.5 96.66 97.14
Combined approach 100 97.5 96.77 98.6
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combining both SVM-KNN classification output based 
on the elliptical orientation output, the proposed method 
achieves an enhanced accuracy of 98.6%, which is signifi-
cantly better than the classification performance of the SVM 
and K-NN model individually. The proposed algorithm takes 
RGB images as input. RGB images increase the scope for 
feature extraction in an economical way relating to the cam-
era used. It can be captured using any simple RGB surveil-
lance camera, which can eventually reduce the implementa-
tion cost of the fall detection system.

The proposed method reports the total processing time of 
a keyframe in a few milliseconds. Table 4 reports the run-
ning time of the example keyframes presented in Table 1 
in milliseconds and corresponding frame rate (FPS). The 
resolution of each keyframe is 640 × 240 pixels.

5 � Conclusion and future directions

In this paper, we design a human fall detection system by 
analyzing significant spatial features of the moving object. 
Keyframes represented by these features are extracted. Key-
frames help detect activity in the middle of a video sequence 
by filtering stationary or steady movement frames, leading 
to reduced processing time. These frames are then classi-
fied using two-channel machine learning techniques: SVM 
and K-NN. The orientation threshold is used to remove any 
classification disparity between the two channels in allocat-
ing a label to a keyframe as a fall or daily activity. Finally, 
the two-channel classification output is combined based on 
the orientation decision to label the body as a potential fall 
or ADL. The proposed approach achieves 92.85% accuracy 
using SVM classification, 95.71% accuracy using K-NN 
classification, 97.14% accuracy using orientation thresh-
old, and a combined accuracy of 98.6%. The proposed fall 

detection system results in robust performance using limited 
training samples compared to existing state-of-the-art tech-
niques. The analysis of the proposed approach is based on 
artificial lighting conditions, and its evaluation under natu-
ral light needs to be done in the future. The public dataset 
used in this method contains one actor per video sequence. 
Hence, executing multiple persons' fall detection in an image 
frame can also be considered as future work. Also, we expect 
applying modern deep learning techniques can improve our 
proposed method in the future.
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