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Abstract
Among the advanced methods, differential privacy (DP), introducing independent Laplace noise, has become an influential 
privacy mechanism owing to its provable and rigorous privacy guarantee. Nonetheless, in practice, POI data to be protected 
is always correlated, while independent noise may cause undesirable information disclosure than expected. Recent researches 
attempt to optimize the sensitivity function of DP with consideration of the correlation strength between POI—but there 
is a drawback in a substantial growth of noise level. To remedy this problem, this paper exploits the degradation of DP in 
expected privacy levels for correlated POI data and proposes a solution to mitigate it. We propose a generalized Laplace 
mechanism to achieve privacy guarantees. Specifically, we design a practical iteration mechanism, including an update func-
tion, to conduct a generalized Laplace mechanism when facing large scale queries. Experimental evaluation on real-world 
datasets over multiple fields show that our solution consistently outperforms state-of-the-art mechanisms in data utility while 
providing the same privacy guarantee as other approaches for correlated POI data.

Keywords POI data · Correlated POI · Differential privacy · Privacy preserving

1 Introduction

A point of interest (POI) is either a tourist attraction or a 
landmark location that is used in an electronic map to indi-
cate interesting locations (Xi et al. 2020; Zhu et al. 2018; 
Pouke et al. 2016), such as tourist attractions (historical loca-
tions, natural landscapes, etc.), public conveniences (parks, 
public toilets etc.), and public service departments (offices 
and receptions, etc.). Information obtained from POI data 
can be used to support product recommendations, advertise-
ments, and navigation.

However, if users’ POI behavior privacy are not pro-
tected, their privacy could be compromised (Cai et al. 2021), 
including information about personal interests and geo-
graphic location. For example, the check-in data of scenic 

spots can directly represent user’s hobbies and behaviors. 
But, the problem of privacy leakage caused by POI correla-
tion has not been addressed well in the state-of-the-art work. 
Therefore, this study aims to provide a method to protect the 
user’s POI behavior privacy data and information.

Recently, differential privacy (DP) (Dwork et al. 2014; 
Dwork 2006) has become a mainstream privacy preserving 
method. DP realizes the transition from traditional passive 
privacy preserving which relies on the security of algorithm 
to an active preserving method based on probability and sta-
tistics. Due to its mathematical security and provability and 
better data availability, once proposed, it has been widely 
used in the fields of computer science, economics, bioinfor-
matics, medicine, etc. Plenty of researchers are trying to use 
differential privacy theory to solve the problem of privacy 
leakage in POI protection.

Existing differential privacy mechanisms add independent 
and identically distributed (IID) Laplacian noise to the out-
put count values of the POI. The output is randomly assigned 
to the third party analytic agencies, to prevent them from 
identifying the count value and to protect the interest pri-
vacy. However, owing to the correlation among the check-
in data, merely adding IID noise might leak user’s private 
information. A visitor who has visited one of two highly 
correlated POIs is likely to visit the other one. Here we give 
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an example to illustrate this issue, as shown in Table 1 and 
Example 1.

Example 1 Table 1 summarizes the check-in statistics of a 
few users in a tourist attraction. Visitor check-in frequency 
data from a POI (Table 1) is submitted to a third party ana-
lytic agency to gauge the number of visitors and their visit-
ing trends. Such information could be used to understand 
the popularity of the tourist attraction and tourists’ travel 
preferences, and to improve the facilities at the attractions. 
Although the third-party analytics agencies would not have 
access to the secure database of the POIs, the information of 
a specific visitor at the POI, can be obtained by statistically 
analyzing this data. For example, by analyzing the check-in 
information (Table 1) that the users 8–13 visited Spot_20 
two times, while users 8–14 visited three times, a third party 
analytics agency can calculate the difference and decipher 
that the user 14 is more interested in Spot_20.

The above example shows that protecting POI informa-
tion requires the study of differential privacy protection 
algorithms that are applicable to relevant POI data. While 
current differential privacy methods face the following two 
challenges:

• Existing differential privacy mechanisms prefer to protect 
data privacy by adding IID noise in POI data. However, 
this causes the privacy protection intensity to be lower 
than the setting value, which is also the key problem of 
DP when it is applied to protect correlated data.

• Some researchers consider increasing the scale of noise 
to offset the effect of destroying data availability. How-
ever, such an approach results in a significant reduction 
in the quality of recommendations.

In response to the first problem, this paper endeavor to 
avoid increasing the noise intensity. Therefore, this paper 
applies related noise, instead of IID noise, to protect POI’s 
privacy. To address the second problem, this paper needs 
to solve how to express noise correlation. This paper 
regards the connection and change between POIs as a 

Bayesian network, so that the correlation between POIs 
can be calculated by the transition probability between 
different scenic spots. Considering that POIs are typical 
tuple data, this paper uses an autocovariance matrix to 
express their correlation, and then generates noise with the 
same correlation as the POIs data. Since the correlation 
of noise is the same as that of POI tuple data, there is no 
need for more noise to achieve the same privacy degree 
as IID noise case.

In order to protect the privacy of correlated POI, this 
paper proposes a correlation calculation method, in which 
the related Laplacian random variables are generated by 
combining the exponential distribution and the Gauss-
ian distribution. Our contributions can be summarized as 
follows:

– We propose an idea that the protection requirements of 
DP can be met without increasing the noise scale by gen-
erating Laplacian noise whose correlation is consistent 
with POI. This provides a promising perspective for dif-
ferentially private correlated POI data protection.

– We propose a generalized mechanism in Wang and Wang 
(2021). In this paper, we design a specific Laplacian 
mechanism to generate noise variables consistent with 
the correlation of the POI. It can also support repeated 
POI release with high correlation by using iteration and 
update mechanisms to update the noise.

– In order to evaluate the performance of the proposed 
mechanism on POI protection, this paper analyzes pri-
vacy degree and the utility loss theoretically. We also 
carry out experiments on real-life datasets. Theoretical 
analysis and experimental evaluation demonstrates that 
our solution is better than existing algorithms, which 
verifies the effectiveness of our solution.

The organization of this paper is as follows. We first describe 
related work in Sect. 2. Then we introduce the related nota-
tions in our work and demonstrate the challenges of current 
schemes in Sect. 3. Section 4 describes our methodology. 
Finally, Sect. 5 evaluates the performance of our solution 
and Sect. 6 concludes our work.

Table 1  Check-in statistics of 
some POIs in a tourist attraction

User_ID Spot_8 Spot_13 Spot_5 Spot_7 Spot_20 Spot_39

8 1 0 1 1 0 1
9 1 1 1 0 0 1
10 0 1 1 0 1 1
11 1 1 1 1 0 1
12 0 1 1 1 0 1
13 0 1 1 1 1 1
14 0 0 0 0 1 1
Count 3 5 6 4 3 7
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2  Related work

When users upload their POIs, their geographical location, hob-
bies and other private information are revealed. A Space-Twist 
solution (STS) (Yiu et al. 2011) was proposed to protect user’s 
private information in POI applications. However, a trusted 
third-party platform needs to be introduced for the STS. Here, 
the location service request received from the service provider 
(SP), is transferred to a trusted third party by location service 
provider (LSP). But, LSP does not directly upload the user’s 
real location to the SP. In this way, the third-party analytics 
platform sends fake location information to the SP, to protect 
the privacy of user’s location. Moreover, the introduction of a 
private information retrieval (PIR) scheme (Yadav et al. 2020), 
within the LBS system, was proposed to increase its security. 
An anonymous interval algorithm based on an anonymous 
method was proposed to protect user’s privacy. This algorithm, 
based on quadtree structure, recursively divides the geographi-
cal area into four squares of equal area until the user’s minimum 
area requirement is satisfied. Upon a user’s location query, the 
point information in this area will be uploaded randomly at a 
certain time, thereby hiding the real location information of 
the user. Since most of POI data-based recommended systems 
(Lu et al. 2019) rely on sensitive information of the users, sev-
eral techniques to integrate privacy protection methods into the 
recommendation systems were proposed. Ren et al. (2021b) 
proposed a practical homomorphic encryption scheme that can 
effectively protect the privacy of key data. Xu et al. (2020) stud-
ied adversarial robustness through randomized perturbations. 
Gambs et al. (2007) employed secure multiparty computing to 
prevent sensitive data disclosure to untrusted recommendation 
systems, similar to other techniques. However, this was unable 
to prevent background knowledge attacks. Therefore, the dif-
ferential privacy has been used for efficient privacy protection 
against background knowledge attacks.

Eltarjaman et al. (2016) proposed the private top-k method 
to protect individual’s POI privacy. McSherry and Talwar 
(2007) indicated that several existing recommendation tech-
nologies can apply differential privacy technology, without a 
significant reduction in the quality of the recommendations. 
Our technique is based on POI behavior’s similarity; users 
receive recommendations from the other users having the 
same POI preferences. Although the method proposed by 
McSherry and Talwar (2007) provided conventional protec-
tion against background knowledge attacks, this paper consid-
ers that it is not suitable for POI discovery because it did not 
consider the relevance and streams publishing-characteristics 
of POI data. For example, a visitor who has visited one of 
the two highly correlated POIs is likely to visit another POI. 
However, the existing methods do not consider this. There-
fore, we focus on this lacuna in this paper.

3  Preliminaries

3.1  Autocovariance matrix

Since POI has a typical tuple data structure, its correlation 
can be represented by a correlation matrix, which can be 
constructed using either a covariance matrix or a Pearson 
correlation coefficient. The correlation in this paper refers to 
the correlations between tuple data. Correspondingly, either 
the covariance matrix or the Pearson coefficient refers to 
either the autocovariance matrix or the Pearson correlation 
coefficient of the tuple data, respectively. Here, the autoco-
variance matrix is used to represent the correlation of the 
tuple, which is defined as follows:

Definition 1 (Autocovariance matrix) The autocovariance 
C(xi, xj) of any of the two elements, xi and xj in the tuple 
dataset X is defined as:

The Matrix

represents the autocovariance matrix of the tuple dataset X, 
where xi, xj ∈ X , and � is the mean of the elements in X.

3.2  Differential privacy

DP is a state-of-the-art privacy preservation model which 
can guarantee the security of indistinguishability. Essen-
tially, it is a noisy perturbation privacy preserving mech-
anism. By adding perturbation to raw data or statistical 
results, DP can guarantee that changing a single record’s 
value has minimal effect on the output results. Thus, DP 
can preserve the privacy of data to be protected, while sup-
porting mining results well. Definition 1 is its formalized 
form.

Definition 1 (�-DP[5]) Considering two adjacent datasets, 
D and D′ , which have the same admeasurement but differ 
in one record to be protected. If the random perturbation 
mechanism M makes every set of results S satisfy the follow-
ing equation on D and D′ , then M satisfies �-DP.

(1)Cxi,xj
= E

[(
xi − �

)(
xj − �

)]
.

(2)� =

⎡
⎢⎢⎢⎢⎣

Cx1,x1
Cx1,x2

⋯ Cx1,xn

Cx2,x1
Cx2,x2

⋯ Cx2,xn

⋮ ⋮ ⋮ ⋮

Cxn,x1
Cxn,x2

⋯ Cxn,xn

⎤⎥⎥⎥⎥⎦

(3)Pr[M(D) ∈ S] ≤ e� × Pr[M(D
�

) ∈ S],
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where S ⊆ Range(M) , Range(M) is the value range of ran-
dom algorithm M. Pr[⋅] indicates probability density func-
tion (PDF) and � represents privacy budget parameter.

A smaller � is related with high-level privacy. Figure 1 
shows the probability density function of random algo-
rithm M on the statistical output of D and D′.

Privacy budget � is mainly limited by random algo-
rithm M. In fact, Laplace mechanism is usually used to 
realize M. The Laplace mechanism is defined as follows.

Definition 2 (Laplacian Mechanism (McSherry and Talwar 
2007; Schillings et al. 2020; Wang et al. 2018b)) Let f (⋅) be 
the statistical function of the output result. The noisy sam-
ples Z ∼ Lap(�) obeying Laplacian distribution can ensure 
the random perturbed result M(D) = f (D) + Z satisfy �-DP, 
where � is the scale of Laplacian distribution. The Laplacian 
distribution is formalized by the following formula

The scaling parameter � is decided by the sensitivity 
function Δf  and privacy protection intensity �:

where Δf  is the largest effect of a single record on the sta-
tistical results.

For example, consider a dataset whose sensitivity is 1. Based 
on the concept of DP, the noise (added to the real answer) 
distributed according to Lap(1∕�) is enough to guarantee �
-DP.

(4)�(z) =
1

2�
exp

(
−
|z|
�

)
.

(5)� =
Δf

�
,

(6)Δf = max
D

�
‖f (D) − f (D

�

)‖1.

4  Methodology

The correlation calculation method of related POI data is 
provided, followed by the design of the generalized Lapla-
cian mechanism that is applicable to the relevant POI data. 
Further, the noise required by the generalized Laplacian 
mechanism is generated through an iterative mechanism.

In this section, the paper proposes a method to generate 
Laplace noise with a specific correlation matrix, which is 
calculated by the POI data. Firstly, the correlation matrix 
of the POI data is calculated in Sect. 4.1. Secondly, the 
paper shows the form of the noise distribution and for-
malizes it as Definition 5 in Sect. 4.2. Thirdly, Sect. 4.3 is 
the designed practical noise generation mechanism, which 
generates the binary Laplace noise with a specific corre-
lation. Finally, Sect. 4.4 gives the practical algorithm to 
generate needed Laplace noise and Sect. 4.5 is the time 
complexity analysis.

4.1  POI correlation

Although the POI data is a tuple type, a correlated repre-
sentation of the POI data is required. Owing to the connec-
tions between different users when they visit neighboring 
attractions, the connections and changes between POIs are 
regarded as Bayesian networks. The correlation between 
the POIs can be calculated from the probability of transi-
tion between different attractions. The POI and POI check-
in datasets are formally defined as the following.

Definition 3 (POI) pi is a semantic geographic object of an 
abstract geographic location, such as schools, banks, restau-
rants, and other places of interest.

Definition 4 (Check-in POI dataset) Dataset of check-in 
information. An user Ui visited a POI pi , and checked in 
at pi . This is recorded either as 0 or 1, wherein 1 indicates 
user’s interest in this POI and 0, the opposite. The POI 
dataset for all the users constitutes a numerical sequence, 
denoted as X =

{
x1,… , xi,… , xn

}
 , where xi refers to the 

number of times that all users visited this POI pi.

In order to describe the relationship between different 
POIs, we use a graph model (Fig. 2). The nodes p1 , p2 , and 
p3 represent the three attractions. Assuming that there is only 
one path from p1 to p2 , the transition probability from to is 
denoted as Pr

(
p2|p1

)
 . Similarly, the transition probability 

from p1 to p3 is denoted as Pr
(
p3|p1

)
 , while the transition 

Fig. 1  Probability density function of random algorithm M on the sta-
tistical output of D and D′
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probability for p1 to p3 via p2 is denoted as Pr
(
p3|p1, p2

)
 . The 

transition probabilities represent the correlations between 
different POIs. For example, for Pr

(
p2|p1

)
 , the probability 

Pr
(
p1, p2

)
 of visiting both attractions, p1 and p2 , is calcu-

lated, followed by the probability of visiting only attrac-
tion p1 ( Pr

(
p1
)
 ). The transition probability from p1 to p2 is 

obtained using the equation, Pr
(
p2|p1

)
= Pr

(
p1, p2

)
∕Pr

(
p1
)
 . 

To apply the relevant tuple differential privacy protection 
algorithm, proposed in Sect. 4.4, the covariance between 
different POIs is calculated.

Extending the three nodes in Fig. 2 to n nodes and 
assuming that the joint probability distribution of n nodes 
is Pr

(
p1, p2,… , pn

)
 , the joint probability distribution can 

be written as a product of conditional probabilities, based 
on Bayesian criterion:

For a given n, the joint probability distribution can be rep-
resented as a directed graph with n nodes, with each node 
corresponding to a certain conditional probability distribu-
tion on the right side of the equation (7).

In this paper, we give the hypothesis that the numbers 
of visitors on different POIs obey Gaussian distribution 
according to the theorem of large numbers. There are pop-
ular and unpopular scenic spots. In the previous research, 
we investigate this phenomenon from the view of statisti-
cal theory and gathered statistics of the numbers of visi-
tors on different POIs. According to the theorem of large 
numbers, we find out that POI data should be a Gaussian 
distribution (Wang et al. 2018b).

Since the check-in POI dataset ( X =
{
x1,… , xi,… , xn

}
 ) 

approximates the Gaussian distribution, the node pi can be 
regarded as a random variable obeying the Gaussian distri-
bution. Considering the arbitrary directed acyclic graph, 
composed of n variables, the conditional probability of the 
node pi would be a linear combination of the states of its 
parent nodes pai:

(7)
Pr

(
p1, p2,… , pn

)
= Pr

(
pn|p1,… , pn−1

)
⋯Pr

(
p2|p1

)
⋅ Pr

(
p1
)
.

where, wij and bi are the parameters that control the mean 
and vi is the variance of the conditional probability. In the 
above representation of the linear combination, the natu-
ral logarithm of the joint probability distribution equals the 
natural logarithm of the product of the node of conditional 
distribution in the directed graph:

where � =
(
p1,… , pn

)� , B represents a constant term that 
is unrelated to � . Equation (9) can be treated as a quadratic 
function of � , and the joint probability distribution Pr(�) as 
a multivariate Gaussian distribution variable.

The mean and variance of the joint probability distribu-
tion can be obtained by a recursive method. Since the vari-
able pi is a conditional probability distribution of the state 
of the parent node, there is

where �i is a Gaussian random variable, E
[
�i

]
= 0 , 

E
[
�i�j

]
= Iij , and Iij is the i − th and j − th elements of 

the identity matrix. Therefore, equation (10) leads to the 
following:

Starting from a node with the lowest sequence number 
and recursively calculating along the graph, each element 
of E[�] =

(
E
[
p1
]
,… ,E

[
pn
])� can be obtained. Similarly, 

combining the equations (10) and (11), the i − th and j − th 
elements of the covariance matrix Pr(�) can be calculated 
by the recursive method:

(8)Pr
(
pi|pai

)
= N

(
pi|

∑
j∈pai

wijpj + bi, vi

)
.

(9)

lnPr(�) =

n∑
i=1

lnPr
(
pi|pai

)

= −

n∑
i=1

1

2vi

(
pi −

∑
j∈pai

wijpj − bi

)2

+ B.

(10)pi =
�
j∈pai

wijpj + bi +
√
vi�i,

(11)E
[
pi
]
=

∑
j∈pai

wijE
[
pj
]
+ bi,

(12)

�pi,pj
= E

��
pi − E

�
pi
���

pj − E
�
pj
���

= E

��
pi − E

�
pi
����

k∈pai

wjk

�
pk − E

�
pk
��

+
√
vj�j

��

=
�
k∈pai

wjk�pi,pk
+ Iijvj,

Fig. 2  Model diagram of probability of transitions between different 
attractions
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4.2  Generalized Laplace mechanism

Although there are methods to generate high-dimensional 
Laplacian noise, no one satisfies a specific correlation 
matrix. Therefore, we provide a noise mechanism to meet 
the DP definition, the generalized Laplacian mechanism, 
which is described in Definition 5 in this section.

Definition 5 (Generalized Laplacian mechanism (Wang 
and Wang 2021)) Let vector Y =

(
y1, y2,⋯ , yn

)� be the 
noise added in the query result. If the noise vector obeys the 
generalized Laplacian distribution, YG̃L(𝜆,��) , the privacy 
protection mechanism M can be guaranteed to satisfy �-DP. 
The probability density function of the generalized Lapla-
cian distribution is,

where

where Y ′ is the transposed matrix of the noise vector Y; �� 
is the correlation matrix of the query output, and Km(⋅) rep-
resents the second type of m-order-modified Bessel function.

Although the Definition 5 gives the probability density 
function of the generalized Laplacian mechanism, it is 
challenging to generate a noise sequence that follows the 
probability density function during continuous queries. An 
algorithm, which generates generalized Laplacian noise in 
Definition 5 with an iterative mechanism and is used for 
practical applications, is provided in the following section.

4.3  Noise iterative algorithm

This section designs an iterative mechanism to generate 
variables that obey the generalized Laplacian distribu-
tion with a particular correlation. A bivariate Laplace 
variable is generated followed by the production of the 
noise sequence with specific correlation, by applying the 
designed iterative mechanism and Gaussian distribution.

A Laplacian random variable can be generated by mul-
tiplying an exponential random variable and a Gaussian 
variable. Since Gaussian random variables with specific 
covariance matrices can be generated, the exponential dis-
tribution and Gaussian distribution are combined in this 
paper, as the mechanism to generate related Laplacian 
random variables.

(13)�(�,Y) =
1

(2�)(1∕2)
2

�

K−0.5

�√
2q(Y)∕�

�

�√
�q(Y)∕2

�−1∕2
,

(14)q(Y) = Y ��−1
�
Y ,

Lemma 1 Considering that �K,U is a pair of zero-mean 
bivariate Gaussian random variables, the covariance matrix 
equals the original data autocovariance matrix, �K,U and 
assuming that W is an exponentially distributed random vari-
able, a set of bivariate correlation Laplacian random varia-
ble,, with covariance matrix, YK,U , �K,U can be generated by:

where W and �K,U are generated independently. The prob-
ability density function is

Importantly, a Gaussian variable with a specific covari-
ance matrix is required to decompose the symmetric posi-
tive definite covariance matrix into two diagonal matrices 
and a positive definite matrix, by using eigenvalues, singular 
values and Cholesky decomposition. The sensitivity func-
tion corresponding to the uncorrelated probability density 
is known as the Euclidean distance, and the corresponding 
probability density, as discussed in this paper, is known as 
the covariance distance (or Mahalanobis distance).

Therefore, two practical considerations are: (1) Employ-
ing the Laplacian random variable pairs, which are pro-
vided in the previous section, to counter consecutive 
queries, and (2) Countering repeated queries initiated by 
third party agencies. We present an iterative mechanism 
to answer the continuous and repeated queries. Particu-
larly, when a given query is different from a previous one, 
the mechanism generates a new Laplacian noise based on 
the Gaussian distribution. Moreover, the variables gener-
ated by the exponential distribution are updated with a 
renewal function, to counter the repeated query. Further, 
the Gaussian distribution is used to solve the first problem.

The conditional distribution of a bivariate Gaussian var-
iable is a Gaussian distribution. We employed this property 
to generate the required noise to counter consecutive que-
ries. The conditional distribution of the bivariate Gaussian 
distribution is normalized, as described in the Theorem 1.

Theorem 1 The bivariate Gaussian distribution is denoted 
by �K,U ∼ Ñ(�,�K,U) . The scale parameters are:

The condi t ional  dist r ibut ion,  GU  ,  sa t isf ies 
GK|U ∼ Ñ(𝜇K⋅U,CK⋅U) , where �K⋅U = �K + CKUC

−1
UU
(GU − �U) 

and CK⋅U = CKK − CKUC
−1
UU
CUK.

Proof Let � =

(
1 CKUC

−1
UU

0 1

)
 , and

(15)YK,U =
√
W�

(1∕2)

K,U
�K,U,

(16)pW (w) =
1

�
exp

(
−
w

�

)
.

(17)

�K,U =

(
GK

GU

)
,� =

(
�K

�U

)
,�K,U =

(
CKK CKU

CUK CUU

)
.
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Therefore,

and 

Var(LK)

=
(
1,−CKUC

−1
UU

)(CKK CKU

CUK CUU

)(
1,−CUUC

−1
UK

)�

= CKK − CKUC
−1
UU
CUK

= CK⋅U

Therefore, LK ∼ Ñ(𝜇K − CKUC
−1
UU
𝜇U,CK⋅U) . Since LK and 

LU are independent,

M o r e o v e r ,  J(�K,U → �K,U) = |�−1| = |�|−1  a n d 
J(�K,U → �K,U) = |�−1| = |�|−1 . Thus,

Therefore,

Thus, the probability density function for given GU and GK|U 
is

Therefore, GK|U ∼ Ñ(𝜇K⋅U,CK⋅U).
The following inferences can be obtained from the Theo-

rem 1. If the initial Laplacian random variable, yU , is gener-
ated by a pair of independent exponentials and Gaussian 
random variables,

(18)

�K,U =

(
LK
LU

)
= ��K,U

=

(
1 − CKUC

−1
UU

0 1

)(
GK

GU

)

=

(
GK − CKUC

−1
UU
GU

GU

)
.

E(LK) = �K − CKUC
−1
UU
�U

�(�K,U) = �(LK) ⋅ �(LU)

J(�K,U → �K,U) = 1∕J(�K,U → �K,U) = 1

�(�K,U) =�(�K,U)|J(�K,U → �K,U)|
=�(�K,U)

=�(LK) ⋅ �(LU)

=�(LK) ⋅ �(GU)

p(GK|U) =
p(�K,U)

p(GU)
= p(LK)

= (2�)−1∕2|CK⋅U|−1∕2

⋅ exp[−
1

2
(LK − �K + CKUC

−1
UU
�U)

2C−1
K⋅U

]

= (2�)−1∕2|CK⋅U|−1∕2

⋅ exp[−
1

2
(GK − CKUC

−1
UU
GU − �K

+ CKUC
−1
UU
�U)

2C−1
K⋅U

]

= (2�)−1∕2|CK⋅U|−1∕2exp[−1

2
(GK

− �K⋅U)
2C−1

K⋅U
]

This method is used to independently generate another 
Laplacian random variable, yK , where GK ∼ Ñ(𝜇K⋅U,CK⋅U) , 
and the covariance of yK and yU is �K,U . Proof. The proof 
process is the inverse to Theorem 1.   ◻

Definition 6 (Repeated renewal function) Let Q1 , Q2 , … , 
Qn be the query sequence. If Qt+1 = Qt , the function U(⋅) 
is defined as a repeated renewal function. If U(⋅) satisfies 
yt+1 = U(yt),

where, Gt is the Gaussian random variable to generate 
Laplace noise for the previous query, and Wt+1 is the newly 
generated standard exponential variable.

Instead of generating Laplacian noise with greater sen-
sitivity, the iterative renewal process updates the exponen-
tial variable, to regenerate Laplacian random noise that 
counters the repeated queries.

4.4  Algorithm design

The statistical investigation demonstrates that the POI dis-
covery application is a counting query. When the differential 
privacy mechanism is applied to protect the investigation of 
the POI discovery, the maximum impact of a single record 
on the statistical result is 1, Δf = 1 . The statistical query data-
set initiated by the record is denoted as � =

{
Q1,… ,Qn

}
 , 

with a correlation between any two queries, such as Qi and 
Qj . According to the indistinguishable theory of related data 
proposed in this paper, the goal of the differential privacy for 
POI discovery is to generate Laplacian noise with the consist-
ency of the query results. We employ the covariance matrix 
to represent the correlation between the query results. Sec-
tion 4.1 presents the formula for calculating the covariance 
between any two POIs, such as pi and pj . The following sec-
tion calculates the covariance matrix �Qi,Qj

 between two ran-
dom queries, Qi and Qj , as described in Theorem 2.

If the attacker launches the same queries, that is, Qi+1 
= Qi , the privacy budget will increase in related work 
because the privacy degree may decrease along with the 
same queries. However, this problem does not exist in dif-
ferent queries. Considering this issue, the paper uses dif-
ferent noise according to whether Qi+1 repeats Qi.

Theorem 2 Given that covariance matrix between two POIs, 
pi and pj , is �pi,pj

 , Qi and Qj are two random count queries 
in the query dataset � , and the POIs datasets to be queried 
are, PK and PU , respectively, where, PK,PU ∈ � and the 
query results are f

(
PK

)
 and f

(
PU

)
 , respectively. The 

(19)yU =
√
W ⋅ GU.

(20)yt+1 =
√
Wt+1 ⋅ Gt,
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covariance matrix between the query results of Qi and Qj is, 
�Qi,Qj

=
∑

pi∈PK,pi∈PU

�pi,pj
.

Proof Upon expanding �Qi,Qj
 , we obtain

According to the operation of the covariance matrix,

(21)�Qi,Qj
= cov

[
f
(
PK

)
, f
(
PU

)]
= cov

[ ∑
pi∈PK

pi, f
(
PU

)]
.

(22)

�Qi,Qj
=cov

� �
pi∈PK

pi, f
�
PU

��

=
�
pi∈PK

cov
�
pi, f

�
PU

��

=
�
pi∈PK

cov

⎡
⎢⎢⎣
pi,

�
pj∈PU

pj

⎤
⎥⎥⎦

=
�

pi∈PK,pi∈PU

cov
�
pi, pj

�

=
�

pi∈PK,pi∈PU

�pi,pj
.

The correlation matrix of the query output, �� can be 
obtained. According to the generalized Laplace mechanism, 
proposed in Sect. 4.3, for countering continuous queries, 
an arbitrary Gaussian variable noise, GU , is generated fol-
lowed by conditional Gaussian variable noise, GK|U , based 
on covariance matrix. The covariance matrix of the bivariate 
Gaussian variable, �K,U =

(
GK|U,GU

)� is �K,U . Therefore, 
the Laplace noise yK =

√
W ⋅ GK�U and yU =

√
W ⋅ GU , gen-

erated from the bivariate Gaussian variable are the bivari-
ate Laplacian noise with the covariance matrix, �K,U . Algo-
rithm 1 denotes the implementation process for differential 
privacy protection for POI discovery.   ◻

Algorithm 1 Differential Privacy for POI Discovery
Require: ε, Q = {Q1, Q2, · · · , Qn}, S(f).

Ensure: Q′ = {Q′
1, Q

′
2, · · · , Q′

n}.

for each round i ← 1, · · · , n do

1. Launch query Qi;

2. Initialize yi ← Laplace(S(f)/ε), S(f) = 1;

3. Compute Q′
i = Qi + yi;

4. Launch new query Qi+1;

if Qi+1 = Qi then

5. Generate new normal Exponential variable Wi+1;

6. yi+1 ←
√
Wi+1 ·Gi;

else

7. Generate conditional Gaussian variable Gi+1|i according to Theorem

1;

8. Generate new Laplace variable Yi+1 according to Theorem 2;

end if

9. Compute perturbation Q′
i+1 = Qi+1 + yi+1;

end for

return Q′.
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In terms of Algorithm 1, it is an algorithm to gener-
ate Laplace noise variables with a specific correlation 
matrix, but the attacker always tries to analyze the results 
by sending repeated queries. In this case, we must gener-
ate another new noise to protect individual’s true value. 
So steps 5 and 6 are to generate another new Laplace vari-
able to answer repeated queries, while steps 7 and 8 are to 
generate a new Laplace variable to answer other queries. 
Even if they are different in noise generation methods, the 
generated noise can meet the required correlation matrix.

To generate the Laplace noise with a specific correla-
tion matrix, we utilize the property of Gaussian distribu-
tion. We have known that the conditional distribution of a 
Gaussian distribution also follows Gaussian, and Theorem 1 
gives the form of the conditional Gaussian distribution form 
if we want these variables to meet a required correlation 
variance. So we firstly initialize a Gaussian noise, then we 
generate another Gaussian variable according to the form 
of conditional Gaussian distribution in Theorem 1. These 
two Gaussian variables can meet the correlation calculated 
in Sect. 4.1.

To generate new Laplace variables to answer different 
queries, we firstly calculated the correlation of different 
queries. Then we generate conditional Gaussian variables 
which follow the correlation according to Theorem 2. 
Finally, we generate new Exponential distribution vari-
ables and get the new Laplace variable according to Eq. 
(20).

4.5  Complexity analysis

In this section, we analyze the time complexity of our solu-
tion over correlated POI data. Since running environments, 
programming languages and coding styles vary in different 
systems, generally, the computation complexity is evaluated 
by the notation “ O ”, which counts critical programming 
statements in iterations.

As shown in Algorithm 1, the practical procedure of our 
solution includes 9 steps. Among them, step 8 costs the most 
complexity, O(2n2) . While the complexity of the other steps, 
including steps 1, 2, 3, 4, 5, 6, 7 and 9, are O(n) , O(1) , O(n) , 
O(n) , O(n) , O(1) , O(n2) and O(n) respectively. Thus, the total 
computation complexity of our solution, T(n), is

Equation (23) indicates that our solution, which has a low 
computation complexity, can be conducted in polynomial 
time.

(23)
T(n) = O(n) +O(1) +O(n) +O(n) +O(n) +O(1)

+O(n2) +O(2n2) +O(n) = O(3n2 + 5n + 2) ≈ O(n2)

5  Experimental evaluation

We evaluate our correlated POI release solution from secu-
rity, utility and computational cost and compare it with cur-
rent representative schemes.

5.1  Experimental setup

We evaluate the performance of our solution on real-world 
datasets. The experiments are conducted on a Windows 10 
machine equipped with Intel Core 2 Quad 3.5 Hz and 16 
GB memory.

Three real-world datasets are tested in this paper, with 
each experiment running 1000 times. The dataset details 
are as follows:

Foursquare1: The geo-location-based service website, 
Foursquare.com, hosts the user’s check-in data from March 
2010 to December 2011, including 18,293 users, 43,186 
POIs and 1,903,909 check-ins.

Gowalla2: Similar to Foursquare, Gowalla is a mobile-
phone based application that provides geolocation-based 
services. Users can check in at the nearby POIs via local 
mobile apps or mobile websites. After pre-processing, the 
experimental dataset contains 18,995 POIs from 3,887 users.

Check-in3: This data set consists of check-in data gener-
ated by more than 49,000 users in New York and 31,000 
users in Los Angeles, and the users’ social structures. Each 
check-in record includes a POI ID, a POI category, a times-
tamp, and a user ID.

After the pre-data clean-up, integration and reduction of 
the three datasets, a check-in matrix is generated. The row 
and column vectors of the check-in matrix are the POI and 
the user ID, respectively. The matrix elements 1 and 0 indi-
cate the presence and absence of check-in information for 
that user at the POI. The statistical significance of the data 
is investigated.

Here, the impact of the prevalent POI discovery algorithm 
and the Top-k recommendation algorithm are evaluated in 
POI discovery applications, as an example. Our algorithm is 
compared with the Top-k recommendation algorithm (Base-
line) without privacy protection (Eltarjaman et al. 2016), 
Markov model-based DCHRG and algorithm proposed by 
Wang et al. (2018a). Here, the recall rate (Recall, R), preci-
sion (Precision, P) and F value are used to measure the accu-
racy of the recommendation. R is the ratio of the number of 
recommendations obtained for a POI by the recommended 
algorithms to that for the total number of POIs. P is the 
ratio of the number of recommendations obtained for the 

1 https:// fours quare. com/.
2 https:// masha ble. com/ categ ory/ gowal la/.
3 https:// sites. google. com/ site/ yangd ingqi/ home/ fours quare- datas et.

https://foursquare.com/
https://mashable.com/category/gowalla/
https://sites.google.com/site/yangdingqi/home/foursquare-dataset
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POIs by the recommendation algorithm to the number of 
all POIs returned by the recommendation algorithm. The F 
value is a comprehensive indicator for adjusting the average 
R and P. Assuming that A represents a set of all POIs, and 
B represents a set of POIs returned by the recommendation 
algorithm,

(24)R =
|A ∩ B|
|A| .

(25)P =
|A ∩ B|
|B| .

5.2  Experimental results and analysis

This section evaluates the performance of the differential 
privacy protection algorithm in POI discovery. The experi-
ment evaluates the algorithm from two aspects, a) includ-
ing privacy security assessment and b) data availability 
assessment. For privacy security assessment, the compari-
son of probability distributions of different methods, before 
and after the attack, are provided. For the data availability 
assessment, the errors in queries under different methods and 
the impact on the recommendation for performance of POI 
discovery are evaluated.

(26)F =
|R + P|
|R ⋅ P| .

Our solution

Pr

(a)

Pr

Our solution

(b)

Pr

Our solution

(c)

Fig. 3  Comparison of probability distributions of three methods under the indicated datasets
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5.2.1  Privacy assessment

Figure 3 depicts the probability distribution of the Top-
k recommendation, where Pr represents the abbreviation 
of probability. Figure 3 also compares algorithm on the 
three tested data sets before and after utilizing the pro-
posed method. While, the Top-k recommendation algo-
rithm (Eltarjaman et al. 2016) is set as a baseline without 
noise, DCHRG (Wang et al. 2018a; Ren et al. 2021a) and 
our algorithm are set with � = 1 . The probability distribu-
tion with our algorithm, in the three tested datasets, is 
closest to that of the Top-k recommendation algorithm, 
suggesting comparable statistical characteristics with the 
Top-k algorithm. Therefore, despite knowing the relevance 
of the query results, the attackers would be unable to filter 
out the noise that is following the relevant characteristics 
of the query results, and consequently unable to infer the 
private POI information.

5.2.2  Usability assessment

The experiment evaluated the usability of the algorithm by 
testing the MSE, R, P, and F values of different algorithms 
on three datasets.

5.2.3  MSE

Figure 4 and Table 2 depict the comparison of MSE on the 
three datasets for the employed methods. Since our algo-
rithm does not need to increase the noise to protect the pri-
vacy, similar to the original mechanism, the MSE of our 
algorithm is similar to that of the original differential pri-
vacy mechanism, while the algorithms proposed by DCHRG 
and Cheng et al. show deviance. Therefore, the methods pro-
posed by DCHRG and Cheng et al. would need to recalculate 
the added noise as the sensitivity measure and thus require 
increased noise for efficient privacy protection (Tables 3, 
4, 5).

(a) (b)

(c)

Fig. 4  Comparison of MSEs of three methods under the indicated datasets
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5.2.4  R, P, and F value

Figures 5, 6 and 7 depict R, P and F values for the differ-
ent methods employed for the three datasets. Most of the 
existing methods can maintain a R of more than 60% and 
the differences between recall performance of different 
methods is comparable (Fig. 5). However, compared to the 
existing methods, our algorithm can maintain a higher R, 
in most of the tested cases. Moreover, increase in privacy 
budget, � , has been demonstrated to decrease its protection 
strength and increase the R of all the algorithms, owing to 

reduction in the noise added to the POI data. Similar trend 
can be observed in Figs. 6 and 7. Comparison of compre-
hensive performance (Fig. 7) demonstrated that smaller � 
leads to lower differences in the performance of the exist-
ing methods, since with smaller � , larger noise is added 
to the POI data, which overshadows statistical outcome. 
Increasing � gradually reduces the noise added to the POI 
data. This feature strengthens the usability of the proposed 
algorithm. When � is increased to 0.9, the proposed algo-
rithm has better F value compared to the existing algo-
rithms, for all the three datasets tested, thereby verifying 
the effectiveness of this algorithm.

(a) (b)

(c)

Fig. 5  Comparison of the R of three methods under the indicated datasets
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6  Conclusions and future works

Although DP provides a better trade-offs between pri-
vacy preserving and data utility, there remains a limiting 
assumption in the standard DP that can severely serve for 
independent data. In this paper, we analyze the properties 
of current mechanisms for differentially private publica-
tion of correlated POI data and demonstrate that the model 
based or resizing sensitivity will lead to rigorous restric-
tion and introduce extra noise.

Consequently, instead of IID noise, we present an effi-
cient publishing approach by introducing a correlated 
Laplace mechanism. It renders the correlation of noise 
and POI indistinguishable to an adversary and guarantees 
unconditional security. Extensive experiments on real-
life datasets demonstrate that our solution outperforms 
the other approaches for a large volume of queries and 
maintains significantly high levels of data utility while 
preserving the privacy.

Although our solution is effective, there are still some 
aspects to be improved in the future. Future work includes 
expanding our solution to other scenarios, such as corre-
lated trajectory prediction, trajectory pattern mining, etc. 

(a) (b)

(c)

Fig. 6  Comparison of the P of three methods under the indicated datasets
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(a) (b)

(c)

Fig. 7  Comparison of the F values of three methods under the indicated datasets

Table 2  MSE of different methods under different datasets

Datasets � DCHRG Cheng[2015+] Baseline Our solution

Foursquare 0.1 46.515 79.648 11.369 12.536
0.3 23.957 27.673 13.698 11.156
0.5 16.102 16.085 6.592 4.165
0.7 8.201 17.809 5.698 5.245
0.9 9.653 9.411 3.387 3.651

Gowalla 0.1 64.548 89.156 21.167 22.678
0.3 32.486 47.846 19.396 18.359
0.5 26.496 36.185 16.415 14.365
0.7 18.516 27.155 15.615 15.379
0.9 11.165 19.491 13.353 13.145

Check-in 0.1 54.346 69.319 17.153 15.197
0.3 31.394 37.189 16.897 13.328
0.5 19.497 24.365 9.265 10.584
0.7 18.349 27.187 6.698 8.657
0.9 9.489 19.329 5.297 4.765

Table 3  R of different methods under different datasets

Datasets � DCHRG Cheng[2015+] Baseline Our solution

Foursquare 0.1 0.612 0.629 0.691 0.549
0.3 0.689 0.582 0.523 0.554
0.5 0.751 0.719 0.729 0.728
0.7 0.715 0.806 0.789 0.808
0.9 0.816 0.851 0.817 0.829

Gowalla 0.1 0.598 0.519 0.535 0.518
0.3 0.617 0.652 0.615 0.611
0.5 0.723 0.714 0.778 0.604
0.7 0.812 0.865 0.818 0.76
0.9 0.829 0.918 0.872 0.814

Check-in 0.1 0.549 0.439 0.52 0.415
0.3 0.614 0.765 0.618 0.618
0.5 0.674 0.617 0.591 0.578
0.7 0.728 0.861 0.726 0.637
0.9 0.729 0.711 0.611 0.648
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In addition, we will continue to study the applicability and 
universality of the method in this paper.
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