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Abstract
Dissolved oxygen content prediction plays an important role in the intelligence management of aquaculture systems. Com-
pared with traditional point prediction, interval prediction can quantify the uncertainties effectively and more closes to 
the fact. Unfortunately, there is rarely study about it. In this paper, a novel interval prediction method based on a deep 
auto-regression recurrent neural network (DeepAR) is proposed to construct prediction intervals (PIs) directly. Besides, 
a variational mode decomposition (VMD) has been used to extract the frequency feature of the original data. Moreover, a 
multi-objective weighted optimization framework based on the sparrow swarm algorithm (SSA) was proposed to improve 
PIs accuracy. Finally, simulations with water quality datasets were conducted to show the effectiveness of the proposed 
model. The results demonstrated that the proposed model significantly improved PI quality and performance compared to 
the state-of-the-art method.
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1  Introduction

The level of dissolved oxygen (DO) is one of the primary 
indicators that can reflect the degree of water pollution. It 
is also one of the vital measures for ensuring the health and 
development of aquaculture fish (Hu et al. 2015; Rahman 
et al. 2020; Xiao et al. 2019). A sufficient amount of infor-
mation on the state of water quality is essential for effec-
tive management. Thus, appropriate modeling is required 
to forecast future events. As a result, while modeling, the 
uncertainty in water quality data should be carefully evalu-
ated to make more reliable decisions.

Recently, artificial neural network (ANN) based models 
have been successfully applied in the point prediction of 
water quality. These models can obtain correlations between 
input and output without comprehending their basic princi-
ples. Wu used a backpropagation neural network based on 
particle swarm optimization algorithm (PSO) to forecast the 
DO of regional groundwater in Xilin Gol League (Wu et al. 
2018). Li et al., (2021) compared the performance of the 
recurrent neural network (RNN), long-short time memory 
neural network (LSTM) and gated recurrent unit (GRU), 
determined that the GRU had higher performance and was 
more suited for dissolved oxygen prediction. Zhang et al., 
(2020) present a model to anticipate dissolved oxygen trends 
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based on a combination of kernel principal component anal-
ysis (KPCA) and Recurrent Neural Network (RNN).

In most cases, point prediction of ANN-based models 
would be considered firstly by lots of studies. However, they 
may suffer from low reliability when the uncertainty level 
presents in the DO time series. Because the point predic-
tion cannot capture the modeling uncertainty information, it 
could not explain the forecast accuracy (Huang et al. 2017). 
On the contrary, modeling for uncertainty information may 
be used to determine prediction error and the likelihood of 
correct forecasts, making decision-making easier.

Interval prediction (PI) is a powerful tool for estimation 
uncertainty to inform managers (Quan et al. 2015). As the 
confidence level has measured, PI offered a limit that cap-
tured the observed values. ((1-a) %) (Chatfield 1993; Ma 
et al. 2020; Voyant et al. 2020). Some methods to compute 
the PIs include the delta method, Bayesian method, boot-
strap and low upper bound estimation (LUBE). The delta 
approach involved using Taylor's series in an ANN non-lin-
ear regression model (Chryssolouris et al. 1996; Momotaz 
and Dohi 2016). This technique hypothesizes that the noise 
of original data is homogeneity and normal distribution, 
which is inconsistent with reality and the method question-
able. In the Bayesian approach that ANN's parameters have 
their own probability distribution instead of a single value. 
Therefore the output of the Bayesian neural network will 
likewise have distributions depending on the observed train-
ing set (MacKay 1992). The Bayesian method needs great 
calculation force to computer Hessian matrix to construct 
PIs Moreover, the accuracy of the model largely depends 
on prior knowledge. PIs are calculated using the bootstrap 
method, an easy and widely used way to calculate them 
(Efron and Tibshirani 1993; Lu et al. 2020). As a resample 
method, the bootstrap method needs to train several differ-
ent ANNs. This method is easy to realize and does no need 
any assumption about the distribution of data. The only dis-
advantage of the method is its high computational cost for 
large datasets, and the whole performance over depends on 
a single ANN. The LUBE method directly outputs the lower 
and upper bound of PIs via an ANN (Lian et al. 2020). This 
technique includes a heuristic search algorithm to construct 
the architecture and parameters of the ANN due to LUBE 
cannot be expressed as a supervised learning problem, which 
consumes great computational force. In conclusion, each 
method has own advantage and disadvantage, how to select 
the suitable technique to quantify the uncertainty of dissolve 
oxygen need to be further researched.

DeepAR, proposed recently by Salinas et al., (2020), is 
an autoregressive recurrent neural network with probabilistic 
forecasting ability. DeepAR applies RNN and autoregres-
sion technique to predicts scalar time series, which learns 
such a model from historical data. Compared with the meth-
ods mentioned above, DeepAR does not assume Gaussian 

noise but can incorporate many likelihood functions. As a 
supervised learning model, DeepAR can effectively train 
its parameters using the backpropagation algorithm and 
directly gives the lower and upper bound of PIs. Moreover, 
this method works with litter hyperparameter turning and 
is applied to small-size datasets. In recent years, DeepAR 
has achieved success in many research fields. For example 
(Dong et al. 2021), established a model based on DeepAR 
techniques for deformation trend prediction. Park et al., 
(2020) photovoltaic generation data captured at Hadong, 
Korea, to investigate the probabilistic prediction schemes 
of day-ahead photovoltaic generations with DeepAR. The 
simulation results show that DeepAR is helpful for efficient 
grid management. Although DeepAR has a solid ability 
to account for uncertainties, to the best of our knowledge, 
DeepAR has been rarely used in interval prediction for water 
quality in the existing literature.

In this paper, DeepAR is applied for water quality interval 
prediction. The data on water quality, on the other hand, 
was often subject to various sources of uncertainty, includ-
ing measurement mistakes and random occurrences (Nou-
rani et al. 2021). Extraction of crucial feature information, 
obtaining high-quality water quality data sets. Further, the 
Variational Mode Decomposition (VMD) technique and 
sparrow search algorithm (SSA) improved the model's per-
formance. A novel water quality interval prediction frame-
work VMD-DeepAR-SSA was proposed. VMD can decon-
struct a complicated original time series signal into a set 
of band-limited intrinsic mode functions (IMFs) to better 
analyze their actual distinctive application (Dragomiretskiy 
and Zosso 2014). SSA is an efficient multi-objective swarm 
intelligence optimization algorithm with high-performance 
global search capability, better stability and convergence 
accuracy, fewer setting parameters and easy implementa-
tion (Xue and Shen 2020). Several independent DeepAR 
models were structured to fit the IMFs obtained by VMD, 
then the value of the prediction interval is weighted, and 
SSA searches the best combination of the weights to obtain 
the ultimate prediction interval.

2 � Methodology

2.1 � Variational mode decomposition

VMD is a non-recursion and self-adaptive multiresolution 
variational mode decomposition method with advantages 
such as high decomposition accuracy, few decomposition 
layers, and control mode mixing. VMD decomposes a sig-
nal to several modes with limited bandwidth and estimates 
the central frequency of corresponding mode compositions 
(Dragomiretskiy and Zosso 2014).
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VMD process main includes variational model construction 
and variation model solution two parts. The variational model 
is to search k finite bandwidth mode function and minimize 
the sum of the estimated bandwidth of each mode function 
under the constraint. This constrained optimization problem 
can be expressed as:

where f is the original input signal, uk = (u1,u2,…,uk) is 
mode function, wk = (w1,w2,…,wk) is central frequency one-
side spectrum of each mode function calculated by Hilbert 
transform. To solution the constraint problem, introducing 
quadratic penalty parameter α and augmented Lagrangian 
function:

The saddle point of the above-mentioned is obtained using 
an alternating direction multiplier algorithm, which is the opti-
mal solution, to realize the adaptive decomposition of complex 
modulated signals and obtain K mode functions.

2.2 � DeepAR model

DeepAR is a probabilistic forecasting RNN architecture that 
generates Monte Carlo samples for probabilistic forecasting. 
This paper researches the application of DeepAR model in DO 
interval prediction. Denoting zt as the value of DO time series 
at time t, our target is to construct the conditional distribution 
P of future time series length T.
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(4)ht = h(ht−1, zt−1,Θ)

where � is likelihood function, � is a parameter of � , A 
multi-layer recurrent neural network with LSTM cells imple-
ments the function h, Θ are parameters of the model.

As show as the Fig. 1, in the training phase: the input to 
the network at ever time step t includes the preceding time 
step's target value zt−1 and the output of the preceding hid-
den layer ht−1 . The model parameter Θ constructed by RNN 
parameters h(∙) and �(∙) , by maximizing the log-likelihood:

In the prediction phase: a sample z̃t ∼ �(∙|�) is drawn by 
mento carlo simulation as the input to next time step until 
the end of prediction range t = t0 + T generating one sample 
trace. Repeating this prediction procedure produces a large 
number of traces reflecting the jointly predicted distribution. 
The quantile or expectation can be calculated via those traces.

The architecture of �(ht) only depend on likelihood function 
�(z|�) , in this paper gaussian likelihood for real-valued data 
is considered:

where w is denoted as the weight matrix, b is denoted as the 
bias matrix, � and � are standard deviation and mean value 
respectively.

2.3 � Sparrow search algorithm

The primary purpose of the sparrow search algorithm is 
to simulate the foraging process of a sparrow swarm. The 
SSA process is one of the producer-scrounger models with 
an early warning mechanism of investigation. Producers 

(5)L =
∑t0

t=1
ln�(zt|�(ht))

(6)�g(z��, �) = 1√
2��2

e
−(z−�)2

2�2

(7)�(ht) = wht + b

(8)�(ht) = lg(1 + exp(wht + b))

Fig. 1   Summary of DeepAR model training and prediction process
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generally have enormous energy reserves, whereas scroung-
ers are labeled as sparrows. In the meanwhile, certain spar-
rows are chosen to provide early notice of an inquiry. In the 
process of SSA, each sparrow owns a position stand for the 
position of food discovered by itself. There are three possible 
actions for a sparrow for a sparrow: as a producer to search 
food, like a scrounger to follow the producer and as an inves-
tigator to make an early warning. The position of each spar-
row in a D-dimensional solution space with N sparrows is:

And he fitness of the position:

In each generation, fitness top 20% sparrows are 
denoted as producers, the residue 80% sparrows are 
denoted as scroungers. The position of producer can be 
updated as follow:

where xt+1
i,d

 is the dth dimensional position of the ith spar-
row in the tth generation, α ∈ (0, 1] is a random number 
between, Q is random number which obeys normal distri-
bution. R2 (R2 ∈ [0, 1]) and ST (ST ∈ [0.5, 1.0]) are alarm 
value and the safety threshold respectively.

Following the producers, scroungers’ position can be 
written as follow:

where xw is the worst position of sparrows and xb is the best 
one in tth generation. Some of sparrows will make early 
warning as well as foraging, they will abandon current food 
and remove to a new position when sense the danger, which 
can be described as follow:

where β represents a random number for the normal distribu-
tion, K ∈ [− 1,1] is a Uniform random number, ε is a small 
number that prevents the denominator from being unique.
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3 � The hybrid dissolve oxygen interval 
prediction model

As shown in Fig. 2, this paper combinates VMD, DeepAR and 
SSA techniques to predict interval efficiency. For the proposed 
model, DO content data firstly be decomposed into several 
IMFs with different central frequencies by VMD. Then, each 
IMF is used as input of the DeepAR to construct the condi-
tional distribution respectively. Finally, weighting combination 
the outputs of those DeepAR models to construct prediction 
intervals. Significantly, the combination of the optimal weight 
is searched by SSA by minimizing coverage width-based cri-
terion (CWC). CWC can be calculated by prediction interval 
coverage probability (PICP) and prediction interval normal-
ized average width (PINAW) as follows:

where N is the number of test data samples, and ai is a binary 
value which can be calculated as follow:

where yi is the value of test sample i, yi,l and yi,u are the esti-
mated lower and upper bounds.

where W is the range of PIs width.

where γ is a binary value determined as:

In Eq. 18, γ and μ are two control parameters for CWC. 
μ reflects the coverage probability requirement of PIs, which 
can be calculated by the predefined confidence level (1-α). η 
and β is the penalty coefficient when the obtained PI dissatisfy 
the coverage probability requirement. In this paper, to gather 
high-quality PIs, penalty parameters (β, η, μ) of CWC are set 
to 1, 1 and 0.95 respectively.
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1

N
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4 � Results and discussions

4.1 � Simulation data

Simulation DO content data was collected from river crab 
culture farms in Yixing city, Jiangsu Province, China. Thirty 
daily data sets with 10 min intervals were chosen as exper-
iment data sets from the summer of 2019. Each data set 
includes 144 DO content points, and the first twenty-one 
days of data were as training data while the other nine data 
of data were used as testing data.4.2 VMD processing of 
dissolved oxygen content data.

To extract the characteristic hidden in the water quality 
data, the DO content data are decomposed by VMD into 5 
IMFs with different central frequencies. The decomposition 
results based on VMD are shown in Fig. 3.

(a)	 Orignal data
(b)	 IMF1
(c)	 IMF2
(d)	 IMF3

(e)	 IMF4
(f)	 IMF5

4.2 � Simulation results and discussion

After the data processing by VMD, obtaining five IMFs. 
Then, each IMF is trained by DeepAR. According to the 
advice from (Salinas et  al. 2020), to facilitate learning 
time-dependent patterns, such as peak valley during noon, 
DeepAR automatically creates feature time series based on 
the frequency of the DO content time series. So, this paper 
provides the detailed custom feature time series of DO con-
tent as far as possible. The following table (Table 1) lists the 
custom time frequencies features.

Five DeepAR models have been structured to learn the 
conditional distribution of the predicted target of five IMFs. 
The upper and lower bounds of those models are sum sim-
plify to establish the initial prediction intervals. As shown 
in Fig. 4, the initial PIs results present a good performance 
with high CICP (CICP = 0.9007), which means PIs can cover 
over 90% of the observed value. However, the results have 

Fig. 2   The implementation pro-
cess of the proposed model
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a high PINRW (PINRW = 0.1574) value and a cover rate 
of the lower bound (0.9165). In particular, information on 
the narrow interval width is valuable more than the wide 
one and the cover rate of the lower bound of the PIs should 
be more considered in DO interval prediction. To further 
improve the performance of PIs, the weighting method is 
used to reconstruct the PIs and SSA searches for the optimal 
weight combination..

For the SSA process, population size N = 80, the pro-
ducers account for 20% of the population size, the early 
warner account for 20% of the population size, and the 
number of iterations is 40. The trend of fitness value is 
shown in Fig. 5, which decreases with the number of itera-
tions and finally be stable. Figure 5 shows the changing 
trend of weights in the optimization process, which to sta-
ble after 15 iterations. This shows that the SSA can quickly 
converge to the optimal solution. Meanwhile, the weight 
of lower frequency IMFs is seen to be bigger than the 
higher one, which means that the lower frequency IMFs 
contain more time-series features and represent the origi-
nal DO content data instead of the higher frequency IMFs. 
After optimization and weighting reconstruction, the PIs 
result is shown in Fig. 6; compared with the initial PIs 
result, the proposed method improves not only the PICP 
(PICP = 0.9503) but also the critical index cover rate of the 
lower bound (0.9749) and decreases the PINRW (0.1324) 
effective.

Changing trend of fitness function.
Changing trend of IMF1’s weight.
Changing trend of IMF2’s weight.
Changing trend of IMF3’s weight.
Changing trend of IMF4’s weight.
Changing trend of IMF5’s weight.

Fig. 3   The IMFs from high frequency to low frequency using the VMD method

Table 1   The custom time frequencies feature of DO content time 
series

Frequency of the Time Series Derived Features

Minute Minute-of-hour
Hour Hour-of-day
Day Day-of-week, day-of-month

Fig. 4   The initial PIs of test sets
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Fig. 5   The graph of SSA process
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4.3 � Comparison with typical models

To verify the prediction effect of the proposed model, 
this section does the comparative analysis between the 
proposed model and the typical model used in interval 
prediction includes Bayesian, Bootstrap and LUBE. PICP, 
PINRW and CWC are the evaluating indicators, CWC is a 
comprehensive index for PICP and PINRW. To ensure the 
rigor of the paper, the same DO content training set and 
test set were used for experiments.

As shown in Table 2, it is evident that compared with 
Bootstrap, LUBE, and the proposed models, the PICP of the 
Bayesian model respectively 7.006%, 3.996%, and 3.504% 
beyond. However, the Bayesian method has the highest PICP 
but causes wider PIs and bigger PINRW. This may be caused 
by overestimating the variance of the outputs, which leads 
to a lower actual worth of PIs information. Moreover, the 
proposed model, LUBE and Bootstrap method have a close 
PINRW value, But the Bootstrap method has the lowest 
PICP value.

Considered that the PICP and PINRW are contradictory 
to each other indexes and the situation that models have 
similar PICP and PINRW values, the comprehensive index 
CWC is used to further assess the model’s performance. 
As shown in Table 2 and Fig. 7, the Bayesian method has 
the highest PICP and the Bootstrap method has the lowest 
PINRW, but the bad performance of their other index leads 
to a low CWC value. The LUBE and the proposed model 
have close PICP and PINRW, but the CWC value of LUBC 
is much less than the proposed model because punishment 
factors of CWC keep the balance between PICP and PINRW. 
Although the proposed model is not the best in PICP and 
PINRW, the proposed model still be the best method for DO 
content interval prediction through evaluating the compre-
hensive index.

Various methods of PIs are established with different 
levels of complexity, computation burden, reliability and 
required time. One cannot claim that a certain method is 
senior to the others, but each method has its advantages and 
disadvantages when constructing the PIs of DO content. 
Therefore, a brief comparison of each technique is showed 
in Table 3 based on the optimal value of each index from 
Table 2 and Fig. 7. The proposed method is the most supe-
rior method in this case. The Bootstrap method is a point 
prediction model with Monte Carlo simulation, which often 
cannot accurately reflect the output concept of the prob-
ability model. Moreover, the Bootstrap method requires 
several different neural networks and largely depends on a 
single neural network’s performance, making it a large com-
putational burden and less reliable. The Bayesian method 
needs a high calculation power and the scale of the training 
dataset to improve its accuracy. Putting aside those require-
ments, the Bayesian method may be acceptable in this case. 

Fig. 6   The PIs of test sets by the proposed model

Fig. 7   Results of normalization index

Table 2   Comparison of different methods with various indexes

Model PICP PINRW CWC​ Run time (s)

Bayesian 0.9836 0.3750 0.3750 36.7096
Bootstrap 0.9192 0.1505 0.3057 106.0359
LUBE 0.9459 0.1776 0.3559 25.0401
The proposed model 0.9503 0.1574 0.1574 32.7923

Table 3   The brief comparison 
of different models

Model Training time Number of required 
networks

Computational 
burden

Reliability

Bayesian Medium One High High
Bootstrap High More than one High Medium
LUBE High One Low High
The proposed model Medium One Low High
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Compared with other methods, LUBE is the most straight-
forward method to construct the PIs directly and requires a 
huge power to adjust the construction and parameters, which 
is a challenge to equipment.

5 � Conclusions

Forecasting DO content is essential for aquaculture water 
quality management because it offers decisions for water 
quality hybrid systems. This paper first propose adding an 
interval prediction module for hybrid water quality manage-
ment systems to improve water quality management ability. 
In addition, we conducted a detailed and comprehensive 
analysis, comparison, and summary of prior work about 
interval prediction, and put forward a novel PIs model devel-
oped for dissolved oxygen content prediction. The variance 
mode decomposition technique is used to extract periodic 
characteristics of the original water quality data. The SSA 
is used to calculate the weights of various DeepAR out-
puts. The results demonstrate that the proposed method has 
better forecasting performance than typical Bayesian, Boot-
strap, and LUBE methods as measured by PICP, PINRW 
and CWC. Furthermore, after weighing the benefits and 
drawbacks of various approaches, it is concluded that the 
suggested model adequately captures the uncertainty of DO 
content time series and is a reliable tool for the development 
of water quality PIs. Prediction is the most popular task of 
time series analysis Because of its importance in industrial, 
social, and scientific applications. The proposed approach 
is used to solute the PIs problem about time series. It can 
also be used in other domains such as sales volume forecast 
for commodity, weather like wind speed forecast, even the 
stock market forecast.

6 � Future directions

Time series prediction is a vital tool for DO content. This 
paper proposed a novel and complex frame to accurately 
obtain PIs of DO, which is a tedious trial and error process 
of manual neural architecture design. With the development 
of neural architecture search (NAS), artificial intelligence 
is expected to design a network structure(Ren et al. 2021), 
and we also hoped that it can design a more effective and 
simply neural architecture for interval prediction. In the 
meanwhile, in addition to the past values of DO content, 
they are many correlated factors such as the position of the 
farm without knowing in advance how they interact, may 
influence the trend of DO content. We need to explore more 
robust features by dimensionality reduction techniques like 

linear discriminant analysis (LDA) or a spectral clustering 
technique (Li et al. 2019, 2018a, b; Yan et al. 2021).
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