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Abstract
In the study of electrocardiogram signal monitoring systems, signal compression techniques for effective signal transmission 
and abnormal beat detection for arrhythmia diagnosis are paramount areas. The general abnormal beat detection has a problem 
of unsuitability for low-power and low-capacity embedded devices because it requires reconstructing a compressed signal 
to generate an auxiliary signal for fiducial point (FP) detection. In this study, we propose a method to compress signals into 
a small number of vertices, including the FP, using an optimized dynamic programming-based linear approximation. Then, 
we detect the FP from the vertices and classify the abnormal beat. The proposed method minimizes the amount of memory 
usage and computation by detecting the FP using the vertex’s feature value without reconstructing the compressed signal. 
The signal compression performance of the proposed method showed an average compression ratio of 7.05:1 and a root-
mean-square difference of 0.78% for 48 records of the MIT-BIH arrhythmia database. In addition, the premature ventricular 
contraction abnormal beat detection performance using only QR interval feature showed 84.07% sensitivity and 93.70% 
accuracy; when R-peak’s amplitude and RR interval features were added, the sensitivity and accuracy increased to 96.65% 
and 93.76%, respectively. Therefore, we confirmed that the proposed method could effectively compress electrocardiogram 
signals based on linear approximation and detect abnormal beats without signal reconstruction.

Keywords  ECG · Signal compression · Linear approximation · Signal reconstruction · QRS interval · Premature ventricular 
contraction

1  Introduction

Biosignal monitoring acquires and transmits signals, detects 
abnormal signals, and checks the user’s health in real time 
(Meng et al. 2019; Lee et al. 2019a). The electrocardiogram 
(ECG) signal is a representative biosignal used for the early 
diagnosis of heart disease, and biosignal monitoring studies 
on the ECG signal are being actively conducted as the mor-
tality rate due to heart disease increases (Arshad et al. 2016). 
In addition, it is used for smart home elderly care, security, 
human activity, and so on (Rhim et al. 2018; Teraoka 2012).

The abnormal beat used for an arrhythmia diagnosis of 
the ECG signal requires a long-time measurement because 
its frequency of occurrence is low. In addition, feature 
values, such as amplitudes, intervals, and segments, are 
acquired based on the detection of fiducial points (FPs), such 
as the onset (start of waveform) and offset (end of wave-
form) of each waveform, and the abnormal beat is classified 
based on these feature values (Lee and Park 2021b; Lee et al. 
2017; Yazdani and Vesin 2016; Lin et al. 2014; Martinez 
et al. 2010; Illanes-Manriquez and Zhang 2008; Madeiro 
et al. 2012; Laguna et al. 1994). Therefore, a high sampling 
frequency is required for accurate FP detection.

To store and transmit a signal acquired for a long time 
at a high sampling frequency, an effective signal compres-
sion technique is required. Signal compression is classified 
into frequency- and time-domain compression; wavelet-
based signal compression (Bera et al. 2020) is a representa-
tive frequency-domain compression method. The linear 
approximation method is a time-domain signal compression 
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technique in which a small number of vertices represent a 
signal (Lee and Park 2021a; Lee et al. 2019b). In particular, 
linear approximation includes FPs as vertices and enables 
effective detection by emphasizing the feature values of the 
FPs. In addition, as FPs can be detected by analyzing the 
vertices’ feature values obtained through linear approxima-
tion, it has the advantage of not having to detect FPs after 
reconstructing the compressed signal.

In this article, a method that enables the compression of 
ECG signals effectively based on the characteristics of lin-
ear approximation and detection of abnormal beats without 
signal reconstruction from an approximated signal is pro-
posed. ECG signals are periodically sampled, so they consist 
of a large amount of amplitude information. The amplitude 
information is the same as that of the input signal, but addi-
tional time information is required because the vertices of 
an approximated signal are aperiodic. The time information 
on the vertices of an approximated signal requires a large 
amount of data because the ECG signal is measured for a 
long time, which significantly reduces the compression rate 
(Lee and Park 2020). In this article, we improve signal com-
pression rate by storing the time difference from the previous 
vertex instead of the time information of the vertex based 
on the constraint of the time difference between the vertices 
used in the linear approximation.

Further, we acquire the width of the QRS complex using 
the FPs of the QRS complex, which are obtained from the 
approximated vertices. By confirming that the proposed 
method enables the detection of abnormal beats, including 
premature ventricular contractions (PVCs), which increase 
the width of the QRS complex, we confirmed that the pro-
posed method enables FP detection and abnormal beat detec-
tion without signal reconstruction from the approximated 
signal. Figure 1 shows the flowchart of the proposed method.

The rest of this article is organized as follows. Section 2 
introduces the composition of ECG signals and charac-
teristics of abnormal beats. Section 3 introduces the pro-
cess of linear approximation and FP detection in detail. 
Section 4 introduces the proposed signal compression 
method, followed by the abnormal beat detection method. 
In Sect. 5, we assess the performance of the proposed 
method experimentally. Finally, we conclude this study 
in Sect. 6.

2 � ECG signal

2.1 � Composition of ECG signal

During depolarization and repolarization of the atrium 
and ventricle, the P-wave, QRS complex, and T-wave are 
measured in the ECG signal (Huszar 2007). The feature 
values of each waveform are obtained using the intervals, 
segments, and amplitude difference between FPs.

Figure 2 shows the composition of the FPs and feature 
values of an ECG signal.

Among FPs, the R-peak has the highest amplitude 
value. Therefore, R-peak detection is relatively easy and 
can be accomplished accurately through postprocessing 
correction (Pan and Tompkins 1985; James 2015). Based 
on these characteristics, the R-peak becomes a criterion 
for classifying beats and is used for detecting other FPs.

Each beat is classified through the R-peak; two meth-
ods are generally used for separating the beats. The first 
method divides the beats into the region of 275 ms before 
and 375 ms after the R-peak (Li et al. 2010). This R-peak 
centered region includes the P-wave, QRS complex, and 
T-wave, which are mainly used for ECG signal analyses. 
However, some data samples are missing. The second 
method divides the beats using the RR interval, thereby 
minimizing the approximation error by approximating all 
data. Figure 3 shows the two methods of beat separation.

In this article, the beats are separated according to the 
RR interval (Fig. 3b).

Fig. 1   Flowchart of the proposed method Fig. 2   Composition of FPs and feature values of ECG signal
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2.2 � Characteristics of abnormal beat

Abnormal beats due to arrhythmia appear as a change in the 
shape or period of a waveform in an ECG signal. Figure 4 
depicts an example of a typical abnormal beat: PVC.

As shown in Fig. 4, PVC (V) has a short RR interval and 
deformed QRS complex compared with a normal beat (N). 
The variation of the RR interval can be determined through 
the R-peak detection. To detect a deformed QRS complex, 
various features, such as the amplitude and kurtosis of the 
R-peak and the width of the QRS complex, are used, or the 
abnormal beats are classified by learning the normal beat’s 
shape (Ou et al. 2020). In addition, a deep learning method 
using convolutional neural network architecture has been 
used for abnormal detection (Ozdemir et al. 2020).

In this study, we employed the width of the QRS complex 
to use the information on the FP for the onset and offset of 
the QRS complex acquired via linear approximation.

2.3 � FP detection

Abnormal beat classification is divided into shape- and 
feature-based classifications. Feature-based classification 
requires each waveform’s FPs (Fig. 2). As mentioned above, 

among the FPs, the R-peak has the largest amplitude value in 
the beat, so it is easy to detect, and the detection is reliable. 
A representative R-peak detection method is Pan’s method. 
The R-peak detection results are used to classify beats, and 
the amplitude and RR interval of the R-peak are used for 
abnormal beat detection.

Based on the R-peak detection results, various FP detec-
tion methods, such as the onset and offset of the QRS 
complex and P-wave are being studied. However, unlike 
the R-peak, the onset and offset of the QRS complex and 
P-wave are non-local extremum points, so they are ambigu-
ous and difficult to detect. To detect FPs, an auxiliary signal 
is acquired using a method, such as differentiation (Laguna 
et al. 1994) or Hilbert transformation (Manriquez and Zhang 
2007). Thus, it is necessary to reconstruct the compressed 
signal because the existing FP detection methods require an 
auxiliary signal. In addition, there is a problem of having a 
different FP detection result from that of the input signal due 
to the reconstruction error.

To mitigate the abovementioned issues, we propose an 
efficient signal compression method using linear approxi-
mation. In addition, we confirm that abnormal beats can be 
detected by detecting FPs and acquiring the feature values 
without signal reconstruction based on the characteristics 
of the FP detection using only the approximated vertices.

An embedded device acquires an ECG signal, com-
presses the preprocessed signal through linear approxima-
tion, and transmits the signal. The preprocessing consists 
of noise suppression to detect a stable beat (Mohd Apandi 
et al. 2020), R-peak detection to separate the beats, and beat 
separation according to the RR interval (Fig. 2b). The analy-
sis device detects FPs and acquires feature values without 
signal reconstruction from the approximated signal as well 
as analyzes feature values to detect abnormal beats. In this 
article, we confirm that abnormal beats can be detected from 
an approximated signal using the width of the QRS complex 
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obtained from the detection of the onset and offset of the 
QRS complex.

3 � Linear approximation

An approximation is a representative signal compression 
method in the time domain; linear approximation and 
B-spline are typical methods. Approximations effectively 
express a signal using a small number of vertices. B-spline 
is widely used because it guarantees signal continuity and 
has a low reconstruction error; however, the amount of com-
putation and storage usage significantly increase, making 
it difficult to implement in embedded devices. In addition, 
B-spline requires FP detection after signal reconstruction 
because the location of knots does not coincide with FPs. 
By contrast, the linear approximation method is simple to 
implement in an embedded device but also represents the FP 
that is the boundary between the baseline and the waveform 
as a vertex.

Figure 5 shows the concept of the linear approximation 
method.

As shown in Fig. 5a, the detection of FPs, such as the 
onset or offset, is difficult because the FPs do not have a 

maximum or minimum amplitude. In addition, it is ambig-
uous to determine an FP because the samples around FPs 
have similar feature values.

However, linear approximation has the advantage 
of representing the FP corresponding to the boundary 
between the waveform region with large amplitude change 
and the baseline region with small amplitude change as a 
vertex (Fig. 5b) because it represents a signal with a small 
number of vertices. In addition, it is possible to emphasize 
the feature values of vertices by representing them as a 
few vertices.

The input signal is divided into RR intervals based on 
R-peak detection, and an independent linear approxima-
tion is performed for each beat. The linear approximation 
proposed by Lee et al. (2018) proceeds in three stages—
initial vertex selection, additional vertex selection, and 
error optimization. In addition, Lee et al. (2019c) and Lee 
and Park (2020) improved dynamic programming used 
in the optimization step according to the ECG signal’s 
characteristics.

3.1 � Initial vertex selection

First, a point with a large curvature is obtained as an ini-
tial vertex using a curvature-based linear approximation 
(Mokhtarian and Suomela 1998). The curvature is the 
amount by which a curve deviates from being a straight 
line, and it is calculated as (1) using the included angle 
between three points:

Figure 6 shows the concept of the curvature calculation 
process and an example of the approximated signal.

(1)𝛿(Y;X, Z) =
�⃗a × �⃗c

|| �⃗a||
=

(
x1 − z1

)(
x2 − y2

)
−
(
x2 − z2

)(
x1 − y1

)

√(
x1 − z1

)
+
(
x2 − z2

)2
, x1 > y1 > z1.
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Fig. 6   Curvature-based linear 
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3.2 � Additional vertex selection

Curvature-based linear approximation well-expresses an FP 
as an initial vertex because it is a point with a large curva-
ture. However, if the waveform’s amplitude change is low, 
it might not be acquired as the initial vertex, as shown in 
QRS-onset and P-offset in Fig. 6b. To correct this, additional 
vertices are obtained using a sequential linear approximation 
for the inside of each initial vertex (O’Connell 1997).

Figure  7 shows the concept of the sequential linear 
approximation process and an example of the approximated 
signal of Fig. 6b.

As shown in Fig. 7a, a vertex is added when the error 
exceeds the threshold Dmax , and the signal was effectively 
approximated (Fig. 7b).

3.3 � Error optimization

Global error optimization calculates the costs for all cases 
and detects the minimum case as an optimization result. 
Therefore, the problem of optimizing the position of N ver-
tices for L samples generally has a complexity of O

(
LN

)
 . 

Dynamic programming (Bellman and Dreyfus 2015) is a 
global optimization technique in which the optimal path 
between two points is optimized based on Bellman’s opti-
mal principle as the globally optimal path between any two 
points on the global path. The recursive approach simplifies 
and optimizes the problem, especially using memoization 
to remember the computational results, which eliminates 
redundant operations. Dynamic programming enables high-
speed global optimization but requires additional memory 
for memoization, which consists of cost and base matrices. 
In this case, the size of the cost and base matrices required 
for memoization is O

(
L2N

)
.

Figure  8 shows the cost and base matrices used for 
memoization of dynamic programming.

For a signal with length L , the optimization of the partial 
signal from i to j , including the k vertices, is recursively 
calculated as follows:

where vk denotes the position of the kth vertex; when k = 0, 
C0(i, j) is calculated as an error between the input signal and 
the line connecting the ith and jth samples.

Figure 9 shows the results of optimization using the 
dynamic programming shown in Fig. 7b).

As shown in Fig. 9, the signal is well represented with 
a small number of vertices, and dynamic programming 
reduces the reconstruction error.

3.4 � Optimization of dynamic programming

Lee et al. (2019c) optimized the calculation of the cost and 
base matrices based on ECG signal characteristics, thereby 

(2)Ck(i, j) = ���
vk∈[1,⋯,�]

(
Ck−1

(
i, vk

)
+ C0

(
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,
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improving the performance and enabling real-time operation 
even in embedded devices.

3.5 � Improvement based on characteristics of ECG 
signals

The first and last vertices are fixed as initial vertices cor-
responding to both ends of the input signal. Therefore, in 
Ck(i, j) of (2), i always becomes 1, and the existing cost 
matrix Ck(i, j) can be expressed as C(k, j) , as follows:

By expressing Ck(1, j) as C(k, j) , the cost matrix of the size 
of O(L2N) is reduced to the size of O(NL) . Thus, C(N, L) is 
an optimized error value when N additional vertices exist 
between the first and Lth last samples, which represents the 
result of dynamic programming. In addition, the existing 
dynamic programming method optimizes by a recursive, 
top-down calculation method. However, improving the cost 
matrix fixes the area required for the calculation. Thus, the 
optimization can be done through a bottom-up operation 
without a recursive approach.

3.6 � Adding limit of time difference 
between vertices

The amount of information is minimized by representing the 
vertex information as a time difference from the previous 
vertex. The maximum interval between the vertices is lim-
ited by the number of bits ( NBit = 25 in this study) to indicate 
the time difference between the vertices. The cost matrix 

(3)C(k, j) = 𝑚𝑖𝑛
1<vk<𝑗

(
C
(
k − 1, vk

)
+ C0

(
vk, j

))

C(k, j) is calculated only when the interval between the kth 
and (k + 1)th vertices does not exceed NBit , as follows:

The computation for the base matrix is reduced because 
the time difference between the two vertices is limited by NBit.

3.7 � Row‑wise operation

The base matrix is sequentially called column by column when 
each component of the cost matrix is calculated in a column-
wise operation, i.e., the jth column of the base matrix is used 
only in the calculation of the cost matrix’s jth column. Thus, 
the base matrix C0

(
vk, j

)
 in (4) can be expressed as follows:

As shown in (5), the memory usage of the base matrix Cj

0
 

can be overwritten by Cj+1

0
 . Accordingly, the size of the base 

matrix can be minimized from O(L2) to O(NBit) in a column 
unit vector.

3.8 � Auxiliary signal

Without signal reconstruction, FPs are detected using the 
feature values of the approximated vertices. In this study, we 
detect the onset and offset of the QRS complex. The QRS 
interval is acquired from FPs, and abnormal beats are detected 
using this feature.

Various shapes of the QRS complex, such as downward 
waveform and the presence or absence of the Q-and S-peaks, 
make it difficult to detect FPs. To reduce the difficulty of 
extracting features from the QRS complex’s ambiguous shape, 
robust FP detection methods using various auxiliary signals, 
such as differentiating the signal, average filtering, and Hilbert 
transformation, have been proposed (Illanes-Manriquez and 
Zhang 2008; Pan and Tompkins 1985). Lee et al. (2018) used 
the cumulative signal of an approximated signal to preserve 
the morphological features of the vertices that represent FPs.

First, we obtain the amplitude difference ( VD ), as follows:

By accumulating the absolute value of the amplitude dif-
ference in (6), we generate the cumulative signal, as follows:

(4)C(k, j) = 𝑚𝑖𝑛
vk+1−N𝐵𝑖𝑡≤vk<vk+1

(
C
(
k − 1, vk

)
+ C0

(
vk, j

))
.

(5)
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The cumulative signal monotonically increases, even if 
the QRS complex appears as a downward wave or includes 
Q- and S-peaks that appear as downward or upward waves 
(Fig. 10).

3.9 � FP detection

The onset and offset are the boundaries between the wave-
form and baseline. The amplitude is low in the baseline 
region, and the amplitude change rapidly occurs in the 
waveform region. Thus, the FP in vertices has the following 
features shown in Fig. 11.

After obtaining the feature values of each vertex, ampli-
tude difference ( Ai ), time difference ( Ti ), and angles with 
neighboring vertices ( �iL and �iR ) (Fig. 11), the vertex with 
the highest probability of being an FP is determined as 
follows:

Similarly, we can obtain the S-offset of the QRS com-
plex. However, compared with the Q-onset, the distri-
bution of the S-offset is unclear due to the influence of 

(8)
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irregular T-wave, making it difficult to apply the proposed 
method. Therefore, in this study, based on the Q-onset 
detection result, the QR interval, which is the distance 
from the R-peak to Q-onset, is used instead of the QRS 
interval to detect abnormal beats.

4 � Proposed method

The proposed method consists of three steps. First, to min-
imize the number of bits of vertices’ time information, a 
method of storing the time difference with the previous ver-
tex is introduced. Then, after detecting the FP using (8), we 
analyze the distribution of the feature values of the normal 
and abnormal beats. Since the normal beats are more and 
form a normal distribution and the abnormal beats are out of 
the distribution of normal beat, we determined the threshold 
values for each feature and detected the abnormal beats.

4.1 � Signal compression

Linear approximation of the ECG signal can effectively rep-
resent a signal with a small number of vertices. Each vertex 
of an approximated signal consists of the time and ampli-
tude information. The amplitude is the same as the input 
signal because the vertex is determined among the existing 
samples. However, compared with the periodic input sig-
nal, the approximated signal comprises aperiodic vertices. 
Therefore, the approximated signal requires additional stor-
age for time information of the vertex. In addition, the time 
information requires more storage as the sampling frequency 
and measurement time increase. Accordingly, if there is no 
postprocessing for additional time information, there is a 
problem that the amount of the compressed signal is further 
increased due to the storage for the added time information.

In this study, to minimize the amount of time information 
of the vertices, the constraint on the time difference between 
vertices in Sect. 3.4 is used. We express the time information 
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of the ith vertex ( Ti ) by accumulating the time difference 
from the previous vertex ( Ti′ ) as follows:

The compression ratio ( CR ) of an approximated signal 
is calculated by the ratio between the total bits of the input 
signal’s amplitude and that of the approximated vertices’ 
amplitude and time difference as follows:

(9)
Ti =

i∑

k=1

T �

i
,

where T
�

1
= T1 and T

�

i
= Ti − Ti−1.

4.2 � Feature extraction

From the approximated signal, we obtain the onset and offset 
of the QRS complex. Generally, the distribution of feature 

(10)

CR =

(

1 −
Total bits of vertices

Total bits of signal

)

× 100%

=

(

1 −
VN ×

(
BitA + BitT

)

L × BitA

)

× 100% .

Table 1   Signal compression 
ratio of linear approximation

Raw signal Sample × amplitude 648,964 × 12 = 7,787,568 bit

Linear approximation
 Approximation of beats Vertices × (vertex interval + vertex amplitude)

65,008 × (5 + 12) = Total 1,105,136 bit
 Compression ratio 100% × (1–1,235,216/9,085,496) = 85.81% 7.05: 1

Fig. 13   Distribution of experi-
mental results for MIT-BIH 
ADB records: a compression 
ratio, b PRD, and c processing 
time

(a)

(b)

(c)
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values of normal beats is similar to the normal distribution, 
and the distribution of abnormal beats deviates from the 
center of the normal beat distribution. Figure 12 shows the 
distribution of feature values for Datum 119, where PVC 
abnormal beats occurred.

The distribution of the feature values of the normal beat 
is similar to the normal distribution, and the distribution of 
the characteristic values of the abnormal beats deviates from 
the normal beat distribution (Fig. 12).

4.3 � Abnormal beat detection

In this study, we detect PVC, which is a typical abnormal 
beat. As shown in Fig. 12, we can detect PVCs using vari-
ous representative features—RR interval ( RR ), amplitude 
( A ) of R-peak, and QR interval ( QR ). For PVCs, the RR 
interval is shorter than the normal beats, the amplitude is 
larger than the normal beats, and the QR interval is longer 
than the normal beats.

In the abnormal beat detection, the ith beat is determined 
to be an abnormal beat if it satisfies any of the following 
conditions:

where � , � , and k are the average, standard deviation, and 
weight of the feature values, respectively.

5 � Experiment

We experimented using the Massachusetts Institute of 
Technology-Beth Israel Hospital Arrhythmia Database 
(MIT-BIH ADB) that Physionet provided (Moddy and 
Mark 1990). The MIT-BIH ADB comprised 48 records, 
including various types of abnormal beats. Each record 
was 30 min long with a 360-Hz sampling frequency. We 
confirmed the performance of the signal compression 
and then confirmed the performance of abnormal beat 
detection. The experiments were conducted on Window 
10 64-bit, Intel i5-10400, 2.90-GHz CPU, 32-GB DDR4 
RAM, and MATLAB R2021a.

5.1 � Signal compression

Each record of MIT-BIH ADB comprised approximately 
650,000 samples, and each sample contains amplitude 
information (12 bits). In addition, each vertex contained 

(11)

RRi ≤ RR� − RR� ∗ RRk
|
||
Ai − A�

|
||
≥ +A� ∗ Ak

QRi ≥ QR� + QR� ∗ QRk,

amplitude information (12 bits) and the time difference from 
the previous vertex (5 bits).

Table 1 shows an example of a detailed signal compres-
sion ratio of Datum 119.

The approximation error for the input signal (X) and the 
approximated signal (Y) with signal length (L) were calcu-
lated using percentage root-mean-square difference (PRD), 
as follows:

Figure 13 shows the distribution of compression ratio, 
PRD, and execution time of linear approximation for MIT-
BIH ADB’s records.

The mean of the compression ratio was 87.19% (7.05:1), 
which confirmed excellent performance. Generally, the qual-
ity of PRD is rated as 0–2%: very good and 2–9%: good 
(Zigel et al. 2000). Datum 222, the 41st datum in Fig. 13, 
had the worst PRD (1.82%) but was classified as very good. 
The average processing time of the linear approximation was 
approximately 13.24 s. Considering that the input signal was 
acquired at approximately 30 min in length with 2300 beats, 
real-time processing was possible with an execution time of 
approximately 5.8 ms/beat.

5.2 � Abnormal beat detection

We detected the onset of the QRS complex from the linear 
approximated signal using (8). Then, we obtained the QR 
interval from the Q-onset to R-peak.

Figure 14 provides an example of the results of the pro-
posed method.

To confirm the performance of FP detection from the 
linear approximated signal, we confirmed the PVC detec-
tion performance using (11). First, we confirmed the detec-
tion result using only the QR interval feature. Then, we 
compared the result using the R-peak’s amplitude and 
RR interval features with the result when the QR interval 
feature was additionally used. Considering that the QR 
interval was used, we experimented on records, which 
contained the abnormal beat that had a wider QR interval 
than the normal beat.

We evaluated classification performance by measuring 
sensitivity ( Se ) and specificity ( Sp ) according to true posi-
tive ( TP ), true negative ( TN ), false positive ( FP ), and false 
negative ( FN  ). TP and TN  were the correct classification 
results of abnormal and normal beats, respectively. Mean-
while, FP and FN  were the misclassification results for 
normal and abnormal beats, respectively. Se , Sp , and accu-
racy ( Ac ) measure the nondetection, overdetection, and 
correct total beat detection rates, respectively, as follows:

(12)PRD(X, Y) = 100% ×

���
�

∑L

i=1
(X(i) − Y(i))2

∑L

i=1
X2(i)

.
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(13)

Se =
TP

TP + FN
, Sp =

TN

TN + FP
,Ac =

TP + TN

TP + TN + FP + FN
.

Table 2 shows the abnormal beat detection result using 
the QRS interval.

Fig. 14   Example of results of 
the proposed method for Datum 
119

Table 2   Abnormal beat 
detection result using the QR 
interval

Record Total beat PVC beat TP TN FP FN Se (%) Sp (%) Ac (%)

106 2023 519 398 1413 91 121 76.69 93.95 89.52
119 1984 443 413 1539 1 30 93.23 99.94 98.44
200 2565 825 629 1634 106 196 76.24 93.91 88.23
208 2575 991 788 1555 29 203 79.52 98.17 90.99
221 2423 396 388 2025 2 8 97.98 99.90 99.59
233 3057 830 750 2173 54 80 90.36 97.58 95.62
Total 14,627 4004 3366 10,339 283 638 84.07 97.34 93.70

Table 3   Abnormal beat 
detection result using R-peak’s 
amplitude and RR interval

Record Total beat PVC beat TP TN FP FN Se (%) Sp (%) Ac (%)

106 2023 519 519 1474 30 0 100.00 98.01 98.52
119 1984 443 443 1533 7 0 100.00 99.55 99.65
200 2565 825 803 1733 7 22 97.33 99.60 98.87
208 2575 991 394 1353 231 597 39.76 85.42 67.84
221 2423 396 389 1800 227 7 98.23 88.80 90.34
233 3057 830 678 2226 1 152 81.69 99.96 95.00
Total 14,627 4004 3226 10,119 503 778 80.57 95.26 91.24

Table 4   Abnormal beat 
detection result using R-peak’s 
amplitude, RR interval, and QR 
interval

Record Total beat PVC beat TP TN FP FN Se (%) Sp (%) Ac (%)

106 2023 519 519 1383 121 0 100.00 91.95 94.02
119 1984 443 443 1532 8 0 100.00 99.48 99.60
200 2565 825 822 1627 113 3 99.64 93.51 95.48
208 2575 991 874 1332 252 117 88.19 84.09 85.67
221 2423 396 396 1798 229 0 100.00 88.70 90.55
233 3057 830 816 2172 55 14 98.31 97.53 97.74
Total 14,627 4004 3870 9844 778 134 96.65 92.68 93.76
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As shown in Table 2, we can detect many PVCs from 
the approximated signals using only the QR interval 
feature.

Table 3 shows the abnormal beat detection performance 
for the records in Table 2 when the R-peak’s amplitude and 
RR interval are used instead of the QR interval.

Table 4 shows the abnormal beat detection performance 
when the QR interval is additionally used.

Comparing the results of Tables 3 and 4, we confirmed 
that the overall detection result was improved. In particu-
lar, the non-detection that affected false diagnosis was 
significantly reduced.

Non-detected and over-detected beats occur due to ambig-
uous feature distribution between normal and abnormal. In 
addition, in some beats, error in feature values occurs due 
to erroneous detection of FPs. These misdetections occur 
when the FP does not appear well as a vertex because the 
number of vertices used for approximation is insufficient, 
or, conversely, when the number of vertices is excessive and 
neighboring vertices are not acquired correct feature values.

Therefore, in future research, it is necessary to research 
about reliable determination of the number of vertices suit-
able for detecting the FP, and to further improve the method 
for determining neighboring vertices to minimize distortion 
caused by noise or baseline movements.

6 � Conclusion

In this article, we demonstrated effective signal compression 
and abnormal beat detection based on a linear approximation. 
Using the constraint of the time difference between vertices 
used in the existing linear approximation method, we improved 
the signal compression rate. Experimentally, we confirmed 
the excellent performance of the compression rate, PRD, and 
execution time of the proposed signal compression. In addi-
tion, by analyzing the vertex of the approximated signal to 
detect the FP of the QRS complex and detecting PVC abnor-
mal beats using the width of the QR interval, we confirmed 
that the proposed method enabled the abnormal beat detection 
without signal reconstruction. Therefore, we expect the pro-
posed method to be effective in signal analysis in low-memory 
embedded devices due to the characteristic of detecting abnor-
mal beats without compressed signal reconstruction.

In future studies, by additionally detecting the FPs of the 
P- and T-wave from approximated signals, we will extend 
the types of abnormal beat that can be detected from the 
linear approximated signal. Further, we will modify the 
proposed method for determining the number of vertices, 
which is determined regardless of the compression ratio 
or reconstruction error, to improve the efficiency of signal 

compression and emphasize FP features rather than the sur-
rounding vertices.
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