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Abstract
The solar photovoltaic (PV) parameter estimation/identification is a complicated optimization process that directly affects 
the performance of PV systems if the internal parameters of PV cells are not estimated accurately. Finding the precise and 
accurate parameters of PV models is the primary gateway to the PV system design to mimic their actual behavior. Numerous 
optimization algorithms are used to find the cell/module parameters, however, most of these algorithms suffer from the high 
computational burden, local optima trap, and frequent parameter tuning to get the best results. A metaheuristic algorithm 
called gradient-based optimization algorithm (GOA) is recently introduced to solve numerical optimization and engineering 
design problems. Nevertheless, the GOA appears to be trapped in sub-optimal locations, increasing computational time to get 
the best results. Thus, this paper recommends an enhanced GOA by employing an opposition-based learning mechanism to 
generate more precise solutions. Therefore, this paper proposes an enhanced variant, called opposition-based GOA (OBGOA), 
to identify the electrical parameters of various PV models, such as the single-diode model (SDM) and double-diode model 
(DDM). Numerous experimental data profiles are considered to classify the parameters of the SDM and DDM. The obtained 
results show that the OBGOA can estimate accurate and precise parameters than the other algorithms. In addition, statistical 
data analysis of various algorithms is presented for all the PV models. The results demonstrated that the proposed OBGOA 
could find circuit parameters of the cell and the modules accurately and effectively. This study is backed up by additional 
online guidance and support at https:// premk umarm anoha ran. wixsi te. com/ mysite.

Keywords Gradient-based optimization algorithm (GOA) · Opposition-based learning · Opposition-based gradient-based 
optimization algorithm (OBGOA) · Parameter estimation · PV models

List of symbols
Ip  Photocurrent in A
Id  Diode current in A
Ish  Current through the shunt resistor in A

I  Output current of the cell/module in A
V  Output voltage of the cell/module in V
Isd,  Isd1, and Isd2  Reverse saturation current of the diodes 

in A
Rp  and  Rs  Ohmic resistance of the cell in Ω
n,  n1, and  n2  Ideality factor of diodes
D  Problem dimension
X1t

n
  Updated position of the population

xbest and xworst  Best and worst solutions, respectively
r1,r2,r3, and r4  Random integers between [0, D]
Pr  Probability rate
q  Electron charge in C
k  Boltzmann constant in J/K
T  Absolute temperature in K
Ns  and  Nsh  Series- and parallel-connected cells, 

respectively
X  Number of data samples
Y  Number of decision variables

 * M. Premkumar 
 mprem.me@gmail.com

1 Department of Electrical and Electronics Engineering, 
Dayananda Sagar College of Engineering, Bengaluru, 
Karnataka 560078, India

2 Rajasthan Rajya Vidyut Prasaran Nigam Ltd., Sikar, 
Rajasthan 332025, India

3 Department of Electrical and Electronics Engineering, 
Thiagarajar College of Engineering, Madurai, 
Tamil Nadu 625015, India

4 Department of Electrical and Electronics Engineering, 
National Institute of Technology, Tiruchirappalli, 
Tamil Nadu 620015, India

http://orcid.org/0000-0003-1032-4634
https://premkumarmanoharan.wixsite.com/mysite
http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-021-03564-4&domain=pdf


7110 M. Premkumar et al.

1 3

Np  Population size
ITmax  Maximum number of iterations
Xub  and Xlb  Upper and lower boundary limit
xt
p
  Randomly selected solution

X  Random opposite solution
Iexp  Experimental current sample in A
Iest  Estimated current in A

Abbreviations
PV  Photovoltaic
GOA  Gradient-based optimization algorithm
OBL  Opposition-based learning
OBGOA  Opposition-based GOA
SDM  Single-diode model
DDM  Double-diode model
RES  Renewable energy systems
STC  Standard test condition
TDM  Three-diode model
IJAYA   Improved Jaya algorithm
TLBO  Teaching–learning-based optimization
PSO  Particle swarm optimization
FPA  Flower pollination algorithm
ALO  Ant lion optimization
MFO  Moth-flame optimization
BFA  Bacterial foraging algorithm
SFLA  Shuffled frog leaping algorithm
FFO  Firefly optimization
GWO  Grey wolf optimization
WOA  Whale optimization algorithm
SCA  Sine–cosine algorithm
SSA  Salp-swarm algorithm
COA  Coyote optimization algorithm
HHO  Harris Hawks optimizer
SMA  Slime mould algorithm
EO  Equilibrium optimizer
DE  Differential evolution
ABC  Artificial Bee Colony
MPA  Marine-predator algorithm
RMSE  Root mean square error
GSR  Gradient search rule
DM  Direction of movement
LEO  Local escaping operator
NFL  No-free-lunch
RE  Relative error
IAE  Integral absolute error

1 Introduction

Renewable energy systems (RES) are growing global interest 
as fossil fuel resources are depleted, electricity demand is 
increasing in developing countries, and costs of the photo-
voltaic (PV) modules have been reduced. Solar energy is the 

most popular source of energy that includes several appli-
cations such as irrigation, solar farming, street light, water 
heating, and is another most popular RES. The significant 
advantage of the PV system is that it can convert solar energy 
directly to a direct current. PV systems, including standalone, 
grid-tied, and hybrid systems, have a broad range of options 
(Premkumar et al. 2020c, d). Using an exact model with 
respect to the experimental I–V data, the most significant 
task is to improve the PV system performance throughout 
the operation. The cell manufacturers verify the I–V curve 
against standard test conditions (STC). The performance of 
the PV system can be severely impacted by ambient pres-
sure, temperature, and irradiance changes in the environment 
(Premkumar et al. 2020b). Therefore, several PV models are 
proposed, such as the single-diode model (SDM), double-
diode model (DDM), and three-diode model (TDM), to ana-
lyze the behavior of the PV cell/module. Such models differ 
in precision or complexity, with the most frequently accepted 
models being the SDM and DDM. In general, the precision of 
the PV system is dependent upon the model parameters, so it 
is necessary to estimate such parameters in order to maximize 
the effectiveness (Chin et al. 2015).

Using different optimization methods that can be clas-
sified as analytical, deterministic, and metaheuristic meth-
ods, investigators have attempted to improve the operation 
of the PV system. In order to define the value of unknown 
variables, the analytical methods use several mathematical 
formulas (Navabi et al. 2015; Batzelis and Papathanassiou 
2016). Although the ease of processing and rate of getting 
the results, the analytical techniques could be unreliable 
and, depending on certain assumptions planned in advance 
within STC (Wolf and Benda 2013), lead to a significant gap 
between the measured and simulated output of the real PV 
model. The methods, such as the Newton–Raphson, Lam-
bert W-functions, etc., are few examples of deterministic 
approaches that include limitations on the design, including 
convexity and differentiability. Identifying the PV model 
parameters is multi-modal and non-linear, which causes the 
deterministic approaches to fall towards premature conver-
gence and can lead to low output if the initial parameters 
are far from the global solutions (Ishaque et al. 2012; Liang 
et al. 2020).

To overcome the deficiency in existing techniques, 
metaheuristic techniques are considered to obtain the most 
promising solution to the PV parameter identification opti-
mization problem. Consequently, to prevent stagnation in the 
local minimum, they must balance both the exploitation and 
exploration phases (Li et al. 2020). The various real-world 
applications were motivated by the exceptional advancement 
of metaheuristic techniques and the significance of solar power 
and its variety of real-world applications to devise a new meta-
heuristic optimization to identify the PV model parameters 
(Wong and Ming 2019). Different optimization techniques 
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have been successfully used to characterize the photovoltaic 
system with such PV parameters, including differential evolu-
tion (DE) algorithm (Xiong et al. 2018b), genetic algorithm 
(GA) (Kumari and Geethanjali 2017), Jaya algorithm (Ven-
kata Rao 2016), improved Jaya algorithm (IJAYA) (Yu et al. 
2017b; Premkumar et al. 2021b), Rao algorithm (Premkumar 
et al. 2020a), teaching–learning-based optimization (TLBO) 
algorithm (Liao et al. 2020), particle swarm optimization 
(PSO) algorithm (Khanna et al. 2015), gravitational search 
algorithm (Mosavi et al. 2019), stochastic fractal search algo-
rithm (Khishe et al. 2018), autonomous PSO (Mosavi and 
Khishe 2017), Artificial Bee Colony (ABC) (Jamadi et al. 
2016), biogeography-based optimization (Kaveh et al. 2019; 
Mosavi et al. 2017), moth-flame optimization (MFO) algo-
rithm (Sheng et al. 2019), bacterial foraging algorithm (BFA) 
(Krishnakumar et al. 2013), shuffled frog leaping algorithm 
(SFLA) (Hasanien 2015), cuckoo search (CS) (Yang and Deb 
2010), firefly optimization (FFO) (Louzazni et al. 2017), grey 
wolf optimization (GWO) algorithm (Long et al. 2020), whale 
optimization algorithm (WOA) (Oliva et al. 2017; Khishe and 
Mosavi 2019; Qiao et al. 2021), sine–cosine algorithm (SCA) 
(Montoya et al. 2020), salp-swarm algorithm (SSA) (Abbassi 
et al. 2019; Khishe and Mohammadi 2019), coyote optimiza-
tion algorithm (COA) (Diab et al. 2020), dragonfly optimiza-
tion (Khishe and Safari 2019), Harris Hawks optimizer (HHO) 
(Jiao et al. 2020), marine-predator algorithm (MPA) (Soliman 
and Hasanien 2020), slime mould algorithm (SMA) (Kumar 
et al. 2020), equilibrium optimizer (Abdel-basset et al. 2020), 
and chimps optimization (Khishe and Mosavi 2020a, b). A 
detailed review of all the algorithms for the solar parameter 
estimation problem is provided as a supplementary file.

Ishaque and Salam (2011) introduced the DE to calculate 
the model parameters at various irradiances and tempera-
tures for several types of photovoltaic cells. Ishaque et al. 
(2012) introduced a penalty-based DE algorithm to deter-
mine the variables of the module using artificial data. The 
authors of Biswas et al. (2019) suggested that the L-SHADE 
method adjusts its variables based on the performance his-
tory of such variables in past iterations. Yu et al. (2017a) 
presented a self-adaptive TLBO technique that accurately 
assesses the PV model parameters. The findings found that 
compared to other comparative approaches, the suggested 
technique demonstrates sharpness and high precision. 
Besides, the BFA (Rajasekar et al. 2013) has been imple-
mented with new objective functions to determine maxi-
mum power and open-circuit voltage that help to estimate 
characteristics of the solar PV cell/module correctly. The 
SCA technique is integrated with the Nelder-Mead simplex 
method and the learning system based on the opposition to 
improve the solution accuracy (Chen et al. 2019). Xiong 
et al. (2018a) suggested a different extraction approach 
based on using enhanced WOA to obtain the parameters of 
different PV models selectively. The traditional WOA has 

good local search exposure, but it struggles from prema-
ture convergence when dealing with numerous multi-modal 
issues. Allam et al. (2016) introduced an optimized method 
of parameter optimization using the MFO algorithm. The 
suggested technique has been applied to estimate the three 
models (i.e., SDM, DDM, and TDM) based on data meas-
ured in the research laboratory.

Metaheuristics are not optimal, with a few of these having 
many problems affecting the accuracy and efficiency. The 
opposition-based learning (OBL) mechanism was already 
implemented to prevent these conditions and the OBL con-
siders the solution of the individual candidate and produces 
the opposite position in the search space (Tizhoosh 2005). 
The OBL validates whether the candidate solution or the 
opposite function has the best value of the objective function 
through a single rule. This method might be implemented at 
initialization or when the population changes a pair of possi-
ble results based on the procedure. The OBL has shown that 
effectiveness enhances many metaheuristic algorithms. For 
numerical solution space, the firefly algorithm has also been 
updated using OBL (Verma et al. 2016). The opposition-
based rule was also used to determine the parameters using 
the SFLA in industrial automation (Ahandani and Alavi-Rad 
2015). Many of these experiments demonstrate that OBL is 
an exciting process for optimization problems to produce 
better performance.

The gradient-based optimization algorithm (GOA) is a 
recently reported metaheuristic algorithm (Ahmadianfar 
et al. 2020). And it has been developed for a numerical opti-
mization problem. However, when GOA is applied to real-
world engineering problems, including solar parameter esti-
mation problems, the GOA suffers due to the local optima 
trap. To avoid this trapping and to improve the convergence 
rate of the basic GOA, the OBL scheme is integrated with 
the GOA to formulate a new algorithm called opposition-
based gradient-based optimization algorithm (OBGOA). 
The no-free lunch (NFL) theory states that no optimization 
algorithm can outperform another on any measure across all 
problems (Wolpert and Macready 1997). However, OBGOA 
can quickly distinguish between the exploration and exploi-
tation phases and converges on more accurate results. This 
study proposes the use of OBGOA to extract the electrical 
parameters of the PV cell and module with high accuracy 
and in real-time, based on the arguments stated in the NFL 
theory OBGOA’s capacity to regulate the exploitation and 
exploration phases. The  key contributions of this paper are 
as follows.

• The usage of OBL, in conjunction with GOA, greatly 
increases the accuracy and efficiency of the traditional 
GOA. However, such enhancement meets the limitations 
of the GOA, retaining the excellent potential for optimi-
zation.
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• To prove that the proposed OBGOA can solve real-time 
applications, the proposed algorithm is validated over the 
solar PV parameter estimation problem.

• Comparisons with several other existing techniques 
revealed that in terms of effectiveness and accuracy, the 
OBGOA could produce positive performance.

• Various metrics and statistical validations support the 
experiments and comparisons.

The rest of the paper is structured as follows. Section 2 
presents a mathematical model of the single-diode and dou-
ble-diode model of the photovoltaic cell/module, in addi-
tion to the objective function formulation for the above-said 
problem. Section 3 briefly explains the basic concepts of 
the traditional GOA and describes the development process 
of the proposed OBGOA. Section 4 discusses the experi-
mental results and the performance comparison with other 
metaheuristic techniques. Finally, the findings are provided 
in Sect. 5 with concluding remarks.

2  Mathematical model of the photovoltaic 
cell/module and problem formulation

Several PV models have defined the I–V characteristics of 
the solar cell and panel. SDM and DDM are the most widely 
used models in practical applications. This section presents 
the photovoltaic cell and module’s equivalent circuit for 
both SDM and DDM, along with the objective functions 
(Mohamed et al. 2013; Drouiche et al. 2018).

2.1  Single‑diode model (SDM) of the PV cell

The single-diode model has been widely utilized in numer-
ous applications, particularly when defining the characteris-
tics of the PV cell. The equivalent circuit of the single diode 
model is illustrated in Fig. 1, including photocurrent Ip, the 
current through the diode Id, and shunt resistor current Ish. 
Furthermore, in Eq. (1), the output current (I) is described.

As per the Shockley equation, the diode current Id is 
given in Eq. (2), in which the reverse saturation current of 
the diode is denoted as Isd, the ohmic resistance of the PV 
cell is represented as Rp and Rs, the output voltage of the PV 
cell is V, the output current is I, and the diode ideality factor 
is denoted n. In addition, the expression for Ish is presented 
in Eq. (3).

where the electron charge q is equal to 1.602*10−19 C, the 
Boltzmann constant k equals 1.3806*10−23 J/K, and the 
absolute temperature is denoted as T in Kelvin. Therefore, 
Eq. (1) is rewritten as follows.

(1)I = Ip − Id − Ish

(2)Id = Isd

[

exp

(
q(V + IRs)

nkT

)

− 1

]

(3)Ish =
V + IRs

Rp

(4)I = Ip − Isd

[

exp

(
q(V + IRs)

nkT

)

− 1

]

−
V + IRs

Rp

Fig. 1  Single-diode photovoltaic cell model
Fig. 2  Double-diode photovoltaic cell model
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The five unknown parameters of the SDM of the PV cell 
is observed from Eq. (4) and is presented as Ip, Isd, n,Rs and 
Rp.

2.2  Double‑diode model (DDM) of the PV cell

The DDM is established considering the impact of the 
recombination losses in the depletion region. In the double-
diode model, the controlled current source has two diodes 
connected in parallel and parallel resistance. The circuit 
structure of the DDM is shown in Fig. 2. The total photo-
voltaic cell current is given as follows.

The series-connected PV cells are referred to as Ns, the 
parallel-connected PV cells are referred to as Nsh, the total 
voltage of the module is referred to as V, and the total cur-
rent of the module is referred to as I.

2.4  Objective function formulation

To optimize the model parameters from the estimated cur-
rent and the variation between experimental current, iden-
tifying the PV cell parameters for various models is prob-
ably converted into an optimization problem. During the 
optimization procedure, the current of the PV cell/module is 
obtained by optimizing the design variables. First, identify 
the optimal values of unknown parameters, as previously 
discussed, such that the error between the estimated cur-
rent and the experimental current is as minimal as possible. 
Equation (8) introduces the fitness function of the optimiza-
tion problem, which would also be considered the root mean 
square error (RMSE) (Jordehi 2016). Owing to its non-linear 
transcendental nature, the fitness function is challenging to 
solve. This study’s key objective is to check for a vector Y 
that allows the RMSE(Y) value to achieve the lowest value.

(8)RMSE
(
Yi
)
=

√√√
√ 1

X

X∑

k=1

fk
(
V , I, Yi

)2

Fig. 3  Equivalent circuit of the solar PV module

The number of samples is referred to as X, and the deci-
sion/optimization/design variables are referred to as Y.

3  Improved gradient‑based optimization 
algorithm

This section of the paper briefly introduces the concept of 
the GOA and extend the discussions to the formulation of 
the OBGOA.

The reverse saturation current and the diffusion current 
are denoted as Isd1 and Isd2, and the diffusion and recombina-
tion diode ideality factors are denoted as n1 and n2. The seven 
unknown parameters of the DDM of the PV cell is observed 
from Eq. (5) and is presented as Ip, n1, n2, Isd1, Isd2,Rs, and 
Rp.

2.3  Mathematical models of the solar photovoltaic 
module

The PV module contains multiple series or parallel cells whose 
arrangement is shown in Fig. 3. The PV module focused on 
SDM and DDM can be defined by Eqs. (6) as well as (7).

(5)I = Ip − Id − Ish = I
p
− Isd1

[

exp

(
q
(
V + IRs

)

n1kT

)

− 1

]

− Isd2

[

exp

(
q(V + IRs)

n2kT

)

− 1

]

−
V + IRs

Rp

(6)I = IpNsh − IsdNsh

[

exp

(
q(V + IRs

(
Ns∕Nsh

)
)

NsnkT

)

− 1

]

−
V + IRs

(
Ns∕Nsh

)

Rp

(
Ns∕Nsh

)

(7)I = IpNsh − Isd1Nsh

[

exp

(
q(V + IRs

(
Ns∕Nsh

)
)

Nsn1kT

)

− 1

]

− Isd2Nsh

[

exp

(
q(V + IRs

(
Ns∕Nsh

)
)

Nsn2kT

)

− 1

]

−
V + IRs

(
Ns∕Nsh

)

Rp

(
Ns∕Nsh

)
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3.1  Gradient‑based optimization algorithm (GOA)

In the traditional GOA that incorporates the gradient and 
population-based methods, Newton’s approach for explor-
ing the search domain using a set of variables and two 
major operators, such as local escaping operators and gra-
dient search rule, define the search path (Ahmadianfar et al. 
2020). The initialization phase of the GOA is similar to other 
metaheuristics algorithms. Therefore, the initialization phase 
is not discussed in this paper.

3.1.1  Gradient search rule (GSR)

The migration of vectors is supervised in the gradient search 
rule (GSR) to improve search in the possible area and obtain 
good positions. The GSR allows the GOA to adjust for the 
random actions during the optimization procedure, support-
ing exploration and avoiding premature convergence. The 
convergence rate of the GOA technique is facilitated using 
the direction of movement (DM) to establish an acceptable 
local search propensity. Therefore, the current vector posi-
tion is updated using Eq. (11).

The current vector xt
n
 is updated using Eq. (9), and the 

newly updated vector is denoted as X1t
n
 . The term �1 is the 

critical control parameter to balance the exploitation and 
exploration phases. The best solution and the worst solutions 
during the optimization are represented as xbest and xworst , 
respectively. The value of � is inside the range of [0, 0.1]

where the current iteration is denoted as t, the values of �max 
and �min are equal to 1.2 and 0.2, respectively, and randn 

(9)X1t
n
= xt

n
− GSR + DM

(10)GSR = randn × �1 ×
2Δx × xt

n(
xworst − xbest + �

)

(11)DM = rand × �2 ×
(
xbest − xt

n

)

(12)�1 = 2 × rand × � − �

(13)� =
|||
|
� × sin

(
3�

2
+ sin

(
� ×

3�

2

))|||
|

(14)� = �min +
(
�max − �min

)
×

(

1 −

(
t

ITmax

)3
)2

is a uniformly distributed random number. The difference 
between the randomly selected position and the current best 
solution is represented as Δx . The variable � has been pre-
sented to verify that the Δx is changed during each iteration.

where rand is a random number with D-dimensions, the inte-
gers, such as r1,r2,r3, and r4(r1 ≠ r2 ≠ r3 ≠ r4 ≠ n ) are ran-
domly selected between [1, D]. Another random parameter 
that supports the exploration phase of the GOA is referred 
to as �2 and it helps each vector in the population to have 
various step sizes. The expression for �2 as follows.

After introducing Newton’s method to improve the explo-
ration and diversity and generate a strong population-based 
search process, Eq. (9) can be rewritten as follows.

Replace the best vector position with the current vector 
position in Eq. (17). Therefore, a new vector ( X2t

n
 ) is gener-

ated, and it is expressed as follows.

The search process as represented in Eq. (18) is useful for 
local search but is restricted to global search, while Eq. (17) 
implemented the search process that is perfect for global 
search, but local search is restricted. Therefore, to improve 
both the exploration and exploitation ability of the algo-
rithm, both search strategies are utilized in GOA. Based on 
Eqs. (17) and (18), along with the current vector position, 
the updated solution during the next iteration xt+1

n
 is written 

as follows.

(15)� = 2 × rand ×
|
|
|
|
|

xt
r1
+ xt

r2
+ xt

r3
+ xt

r4

4
− xt

n

|
|
|
|
|

(16)�2 = 2 × rand × � − �

(17)

X1t
n
= xt

n
− randn × �1 ×

2Δx × xt
n(

ypt
n
− yqt

n
+ �

) + rand × �2 ×
(
xbest − xt

n

)

(18)

X2t
n
= xbest − randn × �1 ×

2Δx × xt
n(

ypt
n
− yqt

n
+ �

) + rand × �2 ×
(
xt
r1
− xt

r2

)

(19)ypn = rand ×

([
zn+1+xn

]

2
+ rand × Δx

)

(20)yqn = rand ×

([
zn+1+xn

]

2
− rand × Δx

)

(21)
xt+1
n

= ra ×
(
rb × X1t

n
+
(
1 − rb

)
× X2t

n

)
+
(
1 − ra

)
×X3t

n
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3.1.2  Local escaping operator (LEO)

The LEO is applied to facilitate the validity of the GOA in 
solving difficult problems. By exploiting numerous prob-
able solutions, the LEO produces a superior solution Xt

LEO
 

including random solutions, such as xt
r1

 and xt
r2

 , the position 
of the best solution xbest , updated random solution xt

k
 , and 

the solutions X1t
n
 and X2t

n
.

The value of a is a uniform random number in the range 
of [− 1, 1], the value of b is a normal distributed random 
number with a standard deviation (SD) of 1 and a mean of 
0, Pr is the probability rate, and the random numbers, such 
as u1 , u2 , and u3 are written as follows.

The value of �1 is varies between [0, 1] and rand is a ran-
dom number between [0, 1]. Equations (24–26) are rewritten 
as follows.

(22)X3t
n
= Xt

n
− �1 ×

(
X2t

n
− X1t

n

)

(23)

�� rand < Pr

�� rand < 0.5

Xt
LEO

= Xt+1
n

+ a ×
(
u1 × xbest − u2 × xt

k

)
+ b × 𝜌1 ×

(
u3 ×

(
X2t

n
− X1t

n

)
+ u2 ×

(
xt
r1
− xt

r2

))/
2

Xt+1
n

= Xt
LEO

����

Xt
LEO

= xbest + a ×
(
u1 × xbest − u2 × xt

k

)
+ b × 𝜌1 ×

(
u3 ×

(
X2t

n
− X1t

n

)
+ u2 ×

(
xt
r1
− xt

r2

))/
2

Xt+1
n

= Xt
LEO

���

���

(24)u1 =

{
2 × rand, if𝜇1 < 0.5

1, otherwise

(25)u2 =

{
rand, if𝜇1 < 0.5

1, otherwise

(26)u3 =

{
rand, if𝜇1 < 0.5

1, otherwise

(27)u1 = L1 × 2 × rand +
(
1 − L1

)

(28)u2 = L1 × rand +
(
1 − L1

)

(29)u3 = L1 × rand +
(
1 − L1

)

The value of L1 is 0 when the value of �1 is larger than or 
equal to 0.5; otherwise, the value is 1. The following update 
scheme is used in Eq. (23) to find the solution xt

k
.

where �2 is a random number between [0, 1], the randomly 
selected population solution is xrand , and the new solution is 

xt
p
 . Therefore, Eq. (30) is rewritten as follows.

As similar to L1 , L2 is also a binary parameter. The value 
of L2 is 0 when the value of �2 is larger than or equal to 0.5; 
otherwise, the value is 1. The pseudocode of the basic ver-
sion of the GOA is shown in the Algorithm.

Algorithm: Pseudocode of the GOA

Step 1: Initialization Stage
Assign values for parameters Pr, ε, and ITmax
Evaluate the objective function value, ( ), =1, 2, …, 
Specify the worst and best solutions, and 

Step 2: Main Loop
While (t< ITmax)

for n = 1:Np
Select randomly 1 ≠ 2 ≠ 3 ≠ 4 ≠ in the range of [1, Np]
Find the position ,

+1 using Eq. 29
end for
if < [Local Escaping Operator (LEO)]

Find the position using Eq. 31
+1 =

end if
Update the worst and best solutions, and 

end for
end while

Return the best solution

3.2  Opposition‑based learning (OBL)

The opposition-based learning concept has been adopted to 
enhance the integration of heuristic approaches to explore 
a global optimization solution. Generally, the metaheuris-
tic approaches generate the initial population and random 

(30)xt
k
=

{
xrand, if𝜇2 < 0.5

xt
p
, otherwise

(31)xrand = Xlb + rand × (Xub − Xlb)

(32)xt
k
= L2 × xt

p
+
(
1 − L2

)
× xrand
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solutions to discover the optimal solution. However, the ini-
tial solutions are randomly generated or based on previous 
information, including specifying domain search or other 
parameters. In the lack of such information, these methods 
can neither converge to a global optimal because their func-
tion is randomly in the solution space. Such methods are 
often laborious since they rely on the difference between 
current and best solutions. The OBL proposes a technique 
to try for a solution oppositely to the current solution to 
overcome these problems, so the solution gets nearer to 
the desired solution, and the convergence gets smoother 
(Cuevas et al. 2012). The opposite value of the real number 
x ∈ [lb, ub] is denoted as x and is given in Eq. (33).

For the multi-dimensional search space, Eq.  (33) is 
rewritten as follows.

The opposite point xi is replaced with the respective solu-
tion x depending on the fitness function value. If f (x) is 
greater than f (x) , then x does not alter, else x = x ; thus, 
population solutions are changed based on the better value 
of x and x.

3.3  Proposed opposition‑based gradient‑based 
optimization algorithm (OBGOA)

A few limitations of the conventional GOA are being trapped 
in the optimal local solution, high computational complex-
ity, and poor convergence and such restrictions are attribut-
able to the fact that specific solutions are modified to the 

(33)x = ub + lb − x

(34)xi = ubi + lbi − xi, i = 1, 2,… ,D

optimal solution though few solutions are removed from this 
solution. However, when taking the opposite solution into 
account, the OBGOA removes these disadvantages. Besides, 
the OBGOA integrates the basic GOA’s search functionality 
with the OBL to improve solution space exploration. Thus, 
the proposed technique has fewer parameters to be adjusted 
relative to similar techniques, and the introduction of OBL 
doesn’t impact the GOA specification, while on the other 
hand, the reliability of the optimum solution is improved. 
In this context, the size of the initial population owing to 
enhancing convergence can be reduced to the best solution, 
as OBGOA can discover the search space widely.

Nevertheless, the OBGOA population setting may also 
influence the call functions provided in the optimization 
problem. An assessment of the objective function requires 
more computation time, relying on the execution. This real-
ity explicitly correlates to the NFL statement, stating that an 
algorithm cannot be enhanced without losing any benefit. 
This is the primary reason to create OBGOA. The suggested 
methodology enhances the GOA over two phases: primarily, 
the OBL has been utilized to increase the rate of converge 
in the population initialization and stop trapped in local 
optimal by looking for solutions in the entire search space. 
Second, the OBL has been used in updating the population 
approach to test whether the change in the opposite track is 
higher than the current improvement. The suggested strategy 
randomly generates the population X with size Np, in which 
the solution xj = [xj1, xj2, …, xjD], j = 1, 2, …, Np. Therefore, 
each opposite solution is determined by OBL, and afterward, 
the opposite population X is developed. The optimal Np solu-
tion is chosen based on the X and X populations.

Phase I: initialization phase

Fig. 4  Flowchart of the pro-
posed OBGOA
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 i. Initialize the random population solutions X.
 ii. Determine the opposite population X as follows.

 iii. Choose the best population solutions from X ∪ X to 
generate a new population.

Phase II: updated phase—After deciding the proper 
population solutions that have created a new population, the 
OBGOA decides the optimal population solution. Using the 
GOA, the population solution X is revised, and the objective 
functions are measured, and the opposite population X is 
calculated based on the OBL, and the objective function is 
assessed for each x . Focused on the objective function, the 
next stage in the OBGOA is to choose the best population 
solutions from X ∪ X . The processes are repeated till the 
stopping conditions, as shown in Fig. 4.

xn,i = ubn,i + lbn,i − xn,i, i = 1, 2,… ,D, n = 1, 2,… ,Np

4  Experimental results and discussions

This section shows the effectiveness of the proposed 
OBGOA, and the experimental findings were presented. The 
OBGOA is mainly implemented in three different models: 
SDM, DDM, and PV models, to estimate uncertain param-
eters. The description of the datasets used is discussed as 
follows. The experimental data samples of RTC France Si 
solar cell, PhotoWatt-PWP201, KC200GT, and SM55 are 
considered to examine the effectiveness of the proposed 
algorithm. The first set from which includes 26 samples of 
voltage and current are obtained from an RTC France Si 
solar cell at an irradiance of 1000 W/m2 and temperature of 
33 °C (Premkumar et al. 2021a), and the second set is the 
data obtained from a PhotoWatt-PWP201 module (Premku-
mar et al. 2021a). Two commercial versions are also being 
evaluated: monocrystalline SM55 (Chaibi et al. 2019) and 

Table 1  Upper and lower 
bounds for PV models

Parameters RTC Si solar cell PhotoWatt-PWP201 SM55, KC200GT

ub lb ub lb ub lb

Ip (A) 1 0 2 0 2Isc 0
Isd, Isd1, Isd2 (A) 1e − 06 0 50e − 06 0 100e − 06 0
n, n1, n2 1 2 1 50 1 5
Rp (Ω) 100 0 2000 0 5000 0
Rs (Ω) 0.5 0 2 0 2 0

Table 2  Uncertain parameters 
estimated by various algorithms 
for SDM of the cell (RTC 
France Si solar cell)

Algorithm Ip (A) Isd (μA) Rs (Ω) Rp (Ω) n RMSE sig

SSA 0.7658 9.98E − 07 0.0301 29.06 1.6059 2.093E − 03 +
COA 0.7605 3.56E − 07 0.0362 63.40 1.4909 1.1022E − 03 +
SMA 0.7602 1.97E − 07 0.0384 54.31 1.4326 1.3823E − 03 +
EO 0.7610 4.31E − 07 0.0351 57.84 1.5108 1.0510E − 03 +
HHO 0.7609 1.46E − 07 0.0394 40.75 1.4053 8.7964E − 03 +
MPA 0.7612 4.12E − 07 0.0353 52.84 1.5062 1.5219E − 03 +
GOA 0.7606 3.79E − 07 0.0358 60.78 1.4975 9.9239E − 04 +
Proposed 0.7608 3.23E − 07 0.0364 53.72 1.4812 9.8602E − 04

Table 3  Uncertain parameters estimated by various algorithms for DDM of the cell (RTC France Si solar cell)

Algorithm Ip (A) Isd1 (μA) Rs (Ω) Rp (Ω) n1 Isd2 (μA) n2 RSME sig

SSA 0.7610 2.6520E − 07 0.0367 50.695 1.46393 3.09E − 07 1.980584 3.1102E − 04 +
COA 0.7601 2.6714E − 07 0.0365 70.556 1.467289 2.57E − 07 1.818639 2.3421E − 03 +
SMA 0.7598 2.0263E − 08 0.0345 99.802 1.955814 5.30E − 07 1.532801 3.1367E − 03 +
EO 0.7598 3.0068E − 07 0.0360 81.602 1.478448 5.23E − 07 1.952979 3.0240E − 03 +
HHO 0.7593 1.4142E − 07 0.0361 99.618 1.523704 2.65E − 07 1.495437 3.7640E − 03 +
MPA 0.7608 3.7511E − 08 0.0344 70.873 1.773231 5.13E − 07 1.530335 2.1920E − 03 +
GOA 0.7608 1.2550E − 07 0.0364 53.762 1.51139 2.02E − 07 1.468685 9.8602E − 04 +
Proposed 0.7608 2.2021E − 07 0.0368 55.8326 1.4489 8.02E − 07 2.0000 9.8258E − 04
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multi-crystalline KC200GT (Ma 2014), from the manufac-
turer’s datasheet to show the robustness and accuracy of 
the OBGOA at various temperature and irradiance levels. 
The findings of which would be contrasted to those of other 
successful and very recent algorithms, such as EO, GOA, 
MPA, SMA, COA, SSA, and HHO. The OBGOA and other 
algorithms are executed using MATLAB software installed 
on a laptop with a 2.44 GHz clock frequency and 8 GB of 
memory. Each method performs 30 times on each problem 
independently, with ITmax is equal to 1000 and a search agent 
of 50. The control parameters of all algorithms are listed 
in Appendix B. In Table 1, the range of design variables 
for each model is listed. Each algorithm’s efficiency is con-
trasted based on the RMSE values, convergence curve, and 
statistical data analysis.

4.1  Results of the PV cell and the PV module

This section discusses comprehensive experimental findings 
of the RTC France Si solar cell and PhotoWatt-PWP201 
for both SDM and DDM. The lower the RMSE, the nearer 
the estimated value towards the experimental data, which 
indicates that the selected algorithm holds high efficiency 
in estimating unknown cell/module parameters. Thus, the 
error value tends to be reduced as low as possible. In the 
meantime, relative error (RE) and integral absolute error 
 (IAEi) are used to emphasize the value of the error between 
the experimental data and estimated data at each set value 
of the voltage, as described below.

where Iexp signifies the experimental current sample and Iest 
denotes the estimated current.

4.1.1  Results of the RTC France Si solar cell

By comparison, the reliability of the OBGOA has been 
dramatically increased relative to the standard GOA. Com-
pared to several other techniques comprising COA, SSA, 
SMA, EO, HHO, MPA, GOA, as seen in Tables 2 and 
3, the OBGOA obtained the best RSME with a result of 
9.8602E − 04 for SDM and 9.8258E − 04 for DDM, suggest-
ing that OBGOA is a robust tool for solving the problem of 
identification of uncertain parameters of the PV cell. The 
‘+’ sign in all tables indicates that the results obtained by 

(35)RE =

|||
Iexp − Iest

|||
Iexp

(36)IAEi =
||
|
Iexp − Iest

||
|

Fig. 5  Convergence curves of all algorithms (RTC France Si cell); a 
SDM, b DDM

Fig. 6  I–V characteristics obtained by OBGOA (RTC France Si cell); 
a SDM, b DDM
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OBGOA are better than other algorithms. Figure 5 illustrates 
OBGOA’s convergence curve and other selected algorithms, 
implying the value of mean RMSE after 30 individual runs 
of each algorithm for both SDM and DDM of the PV cell. 
Compared to other algorithms, OBGOA’s convergence 
speed is excellent, i.e., early convergence to global minima. 
It is more straightforward to see that the convergence curve 
of the OBGOA has a better performance and is higher than 
other competitive algorithms. The OBGOA extracts the I–V 
characteristic of the SDM and DDM of the PV cell accu-
rately, and it can be observed in Fig. 6. From Fig. 6, it is 
seen that the estimated data values and experimental data 
values are significantly suited over the experimental voltage 
points, which shows the reliability of the OBGOA and also, 
OBGOA’s performance is significantly observed, and the 
current and power values are estimated from the experiment 
data. The RE and IAE between the experimental and simu-
lated current at each voltage sample point are low enough 
to confirm that the OBGOA can reliably indicate solar cells’ 
real characteristics. The value of IAE with respect to the 
current and power is calculated and listed in Tables 13 and 
14 (refer Appendix A), respectively, for SDM and DDM, in 
addition to the value of RE at each experimental point. The 
boldface in all tables indicates the best values. 

From Table 13, it is observed that the value of IAE is 
less than 1.627E − 03, and the value of RE is less than 
5.908E − 03. The average values of IAE with respect to 
the power and current are 8.781E − 05 and 7.225E − 04, 

respectively, and the average value of RE is 4.507E − 03, 
which indicates OBGOA can able to realize the real char-
acteristics of the SDM. Table 14 displays explicitly that 

Table 4  Parameters estimated 
by various algorithms for SDM 
of the PV module (PhotoWatt-
PWP201)

Algorithm Ip (A) Isd (μA) Rs (Ω) Rp (Ω) n RMSE sig

SSA 1.0303 3.8454E − 06 1.1897 1048.174 49.02721 2.4440E − 03 +
COA 1.0299 3.7314E − 06 1.1945 1096.053 48.90762 2.4338E − 03 +
SMA 1.0302 4.4740E − 06 1.1723 1146.077 49.6259 5.5485E − 03 +
EO 1.0286 4.1362E − 06 1.1826 1343.376 49.30651 2.5106E − 03 +
HHO 1.0315 5.2039E − 07 1.3897 530.815 42.28063 7.3349E − 03 +
MPA 1.0276 4.9237E − 06 1.1672 1999.998 49.99995 2.5294E − 03 +
GOA 1.0305 3.4823E − 06 1.2013 981.982 48.64284 2.4251E − 03 +
Proposed 1.0305 3.4769E − 06 1.2014 980.5942 48.6369 2.4115E − 03

Table 5  Parameters estimated by various algorithms for DDM of the PV module (PhotoWatt-PWP201)

Algorithm Ip (A) Isd1 (μA) Rs (Ω) Rp (Ω) n1 Isd2 (μA) n2 RSME sig

SSA 1.0297 6.2455E − 10 1.1940 1126.068 1.064965 3.7641E − 06 48.9408 2.6473E − 03 +
COA 1.0290 6.7825E − 10 1.1668 1490.589 47.62896 4.9127E − 06 50.0000 4.2447E − 03 +
SMA 1.0270 5.9259E − 07 1.1886 1980.039 47.36756 3.7133E − 06 49.9561 2.7059E − 03 +
EO 1.0320 3.0165E − 07 1.1743 889.969 47.93478 3.9363E − 06 49.5645 2.4465E − 03 +
HHO 1.0320 3.4382E − 07 1.1779 898.776 47.458 3.7143E − 06 49.2565 9.1295E − 02 +
MPA 1.0313 4.9011E − 06 1.1593 1052.676 50 2.41E − 11 36.35096 2.6362E − 03 +
GOA 1.0305 7.6813E − 09 1.2016 983.195 47.90858 3.4675E − 06 48.6367 2.4251E − 03 +
Proposed 1.0305 1.7557e − 07 1.2010 982.0040 48.8085 3.3163e − 06 48.6454 2.4018E − 03

Fig. 7  Convergence curves of all algorithms (PhotoWatt-PWP201 PV 
module); a SDM, b DDM
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the IAE (with respect to current and power) and RE val-
ues are smaller than 1.604E − 03 (with respect to current), 
8.051E − 04 (with respect to current), and 6.957E − 03, 
respectively. The average values of IAE with respect to the 
power and current are 4.197E − 04 and 7.175E − 04, respec-
tively, and the average value of RE is 7.536E − 05, which 
indicates OBGOA can able to realize the real characteristics 

of the DDM. Based on above-all discussions, it is claimed 
that OBGOA helps analyze both SDM and DDM model’s 
unknown parameters.

4.1.2  Results of the PhotoWatt‑PWP201 PV module

As in SDM/DDM of the PV cell, in SDM/DDM PV mod-
ule model also the reliability of the OBGOA has been 
dramatically increased relative to the basic GOA version. 
Furthermore, compared to several other techniques, as seen 
in Tables 4 and 5, the proposed OBGOA obtained the best 
RSME with 2.4115E − 03 for SDM and 2.4018E − 03 for 
DDM, suggesting that OBGOA is a robust tool for solving 
the problem of identification of uncertain parameters of the 
PV model.

Figure 7 illustrates convergence curves, implying the 
value of mean RMSE after 30 individual runs of each algo-
rithm for both SDM and DDM of the PhotoWatt-PWP201 
PV module.

Compared to other techniques, OBGOA’s convergence 
speed is excellent, i.e., early convergence to global minima. 
The proposed OBGOA extracts the I–V characteristic of the 
SDM and DDM of the PV module accurately, and it can be 
observed in Fig. 8. From Fig. 8, it is seen that the estimated 
data values and experimental data values are significantly 
suited over the experimental voltage points, which shows the 
reliability of the proposed OBGOA. The RE and IAE values 
are low enough to confirm that the OBGOA can reliably 
indicate the solar module’s real characteristics. The value of 
IAE with respect to the current and power is calculated and 
listed in Tables 15 and 16 (refer Appendix A), respectively 
for SDM and DDM, in addition to the value of RE at each 
experimental point. From Table 15, it is observed that the 
value of IAE is less than 5.000E − 03, and the value of RE 
is less than 6.553E − 03. The average values of IAE with 
respect to the power and current are 5.599E − 03, and 0.0020, 
respectively, and the average value of RE is 1.0007E − 03, 
which indicates OBGOA can realize the real characteristics 
of the SDM. Table 16 displays explicitly that the IAE (with 

Fig. 8  I–V characteristics obtained by OBGOA (PhotoWatt-PWP201 
module); a SDM, b DDM

Table 6  Average CPU time of 
various algorithms

Algorithm RTC France Si cell PhotoWatt-PWP201

SDM DDM SDM DDM

SSA 2.6644E + 03 2.1536E + 03 2.2779E + 03 2.0654E + 03
COA 1.5842E + 03 1.3815E + 03 1.3110E + 03 1.3967E + 03
SMA 1.3895E + 03 1.3172E + 03 1.3165E + 03 1.3385E + 03
EO 2.5376E + 03 1.9629E + 03 1.8243E + 03 1.9226E + 03
HHO 1.6396E + 03 1.6234E + 03 1.3712E + 03 1.4196E + 03
MPA 2.2663E + 03 1.7908E + 03 1.7811E + 03 2.0042E + 03
GOA 6.9845E + 02 6.0931E + 02 6.5623E + 02 6.3444E + 02
Proposed 7.7547E + 02 6.3550E + 02 8.0140E + 02 6.6045E + 02
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respect to current and power) and RE values are smaller 
than 4.415E − 03 (with respect to current), 5.321E − 02 (with 
respect to power), and 4.021E − 02, respectively. The aver-
age values of IAE with respect to the power and current are 
1.992E − 02, and 0.0019, respectively, and the average value 
of RE is 5.534E − 03, which indicates that OBGOA can real-
ize the real characteristics of the DDM. Based on above-all 
discussions, it is claimed that OBGOA helps analyze both 
SDM and DDM model’s unknown parameters. The above 
discussions show minimal IAE and RE between the esti-
mated data and experimental data and are enough to show 
OBGOA reliability and solution accuracy.

4.1.3  Average run time

The computation cost is indeed a significant metric for 
assessing the efficiency of the algorithm. The average CPU 
computation time of all algorithms is reported in Table 6. 
From Fig. 9, it can be noticed that the time required by each 
method to address the problem on various models is differ-
ent. The HHO has the highest total CPU time, no matter 
which model and the basic variant of GOA needs the short-
est time. Even though OBGOA is not the fastest compared 
to GOA (better than other peers), other techniques are rela-
tively similar to the OBGOA. Thus, it is declared that a more 
successful method is OBGOA.

4.2  Results of commercial PV modules

The authors wanted to investigate the feasibility of the 
OBGOA by defining SDM variables for two commercial PV 
modules, namely KC200GT and SM55. The KC200GT is a 
high-performance multi-crystalline module, and the SM55 is 
a monocrystalline module intended for industrial applications. 
The short-circuit current Isc of the PV module finds the initial 
range of the Ip, the temperature coefficient of the short-circuit 
current is denoted as α, and the value is taken from the specifi-
cation sheet. The value of Isc is calculated using the datasheet 
at STC, and the expression to calculate Isc is given as follows.

where G and T denote the actual solar irradiance and tem-
perature, GSTC and TSTC denote the solar irradiance and tem-
perature at STC, and Isc-STC refers to the short-circuit current 
at STC.

The approximate findings of the five parameters for SDM 
of those two PV modules are listed in Tables 7, 8, 9 and 
10. For such models, the OBGOA determines the optimal 
parameters at various irradiation levels (200 W/m2, 400 W/
m2, 600 W/m2, 800 W/m2, and 1000 W/m2) with a tempera-
ture of 25 °C. Similarly, the values of the parameters are 

(37)Isc(T ,G) = Isc−STC ×
G

GSTC

+ �
(
T − TSTC

)
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extracted for KC200GT at temperatures of 25 °C, 50 °C, and 
75 °C, and SM55 at temperatures of 25 °C, 40 °C, and 60 °C 
with the solar irradiance of 1000 W/m2. Figures 10, 11, 12 
and 13 demonstrates the high degree of fitting under differ-
ent operating conditions between the experimental value and 
estimated value of the two PV modules, presenting conclu-
sive proof even further to demonstrate the effectiveness of 
the OBGOA.

4.2.1  Different solar irradiation conditions

Tables 7 and 8 lists the estimated parameters by OBGOA 
on different irradiation conditions for all two commercial 
PV modules. In Table 7, the estimated parameters for SDM 
of the KC200GT PV module by the proposed algorithm for 

different irradiation conditions. The I–V characteristics of 
KC200GT are shown in Fig. 10.

Table 8 shows the estimated parameters of the SM55 PV 
module by the OBGOA for different irradiation conditions. 
The I–V characteristics of SM55 are depicted in Fig. 11.

4.2.2  Different temperature conditions

Tables 9 and 10 lists the estimated parameters by OBGOA 
on different temperature conditions for all two commercial 
modules, similar to previous discussions. In Table 9, the 
estimated parameters of the KC200GT PV module by the 
proposed algorithm for different temperature conditions. The 
I–V characteristics of KC200GT for different temperatures 
are depicted in Fig. 12.

Table 10 shows the estimated parameters of the SM55 PV 
module by the proposed algorithm for different temperature 
conditions. The I–V characteristics of SM55 for different 
temperatures are depicted in Fig. 13.

The estimated value and experimental sample collected 
under different temperatures and different irradiation condi-
tions fit well with all two PV modules. Therefore, the pro-
posed OBGOA can achieve a low RMSE value on such test 
data sets. In addition, the I–V curves prove OBGOA’s accu-
racy as the irradiance values, and temperature values differ. 
PV models encounter multiple environmental problems in 
actual situations, mainly as soon as the outdoor temperature 
is not appropriate or the solar irradiation is inadequate. Nev-
ertheless, it can be seen in the findings that the OBGOA can 

Fig. 9  Mean CPU time for different PV models

Table 8  Optimized variables by 
OBGOA for SM55 PV module 
at a temperature of 25 ℃

G (W/m2) Ip (A) Isd (A) Rs (Ω) Rp (Ω) n RMSE

1000 3.451 1.69E − 07 0.329 482.36 1.395 0.0011
800 2.761 1.43E − 07 0.337 459.85 1.381 6.68E − 04
600 2.071 1.55E − 07 0.330 450.86 1.387 8.23E − 04
400 1.383 1.00E − 07 0.396 427.46 1.352 7.05E − 04
200 0.692 1.30E − 07 0.312 438.08 1.371 5.20E − 04

Table 9  Optimized parameters 
by OBGOA for KC200GT PV 
module at G = 1000 W/m2

T (°C) Ip (A) Isd (A) Rs (Ω) Rp (Ω) n RMSE

25  8.213 3.51E − 09 0.336 992.47 1.099 0.0014
50 8.296 1.24E − 07 0.336 908.03 1.117 0.0028
75  8.378 1.63E − 06 0.343 790.35 1.106 0.0043

Table 10  Optimized parameters 
by OBGOA for SM55 PV 
module at G = 1000 W/m2

T (°C) Ip (A) Isd (A) Rs (Ω) Rp (Ω) n RMSE

25 3.447 3.63E − 07 0.304 729.41 1.461 0.0012
40 3.469 1.22E − 06 0.311 551.64 1.424 0.0036
60 3.495 6.92E − 06 0.319 484.93 1.406 0.0037
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still achieve low RSME under low temperature and irradi-
ance. In summary, it can reasonably be demonstrated that the 
OBGOA is an accurate and appropriate tool for obtaining 
unknown parameters under different irradiance and tempera-
ture conditions.

4.3  Performance comparisons

Numerous comparisons and statistical measures with other 
existing techniques were performed to demonstrate the effec-
tiveness of the OBGOA. Besides, the selection of these algo-
rithms depends on choosing the most recent and efficient 
techniques that have been established to solve the problem of 
parameter identification in PV systems. The algorithms are 
SSA, COA, SMA, EO, HHO, MPA, and GOA, as discussed 
earlier. The statistical analysis has been carried out only for 
SDM/DDM of the PV cell, SDM/DDM of the PV module, 
and SDM of three commercial PV modules under different 
irradiation conditions as a sample analysis. The performance 
indicators, namely Min, Mean, Max, and SD values attained 
by different methods, are mentioned in Table 11 for the SDM 
and DDM. To rate the algorithms according to each evalua-
tion metric, the rank (R) has been used. Considering the Min 
RMSE, it is evident that OBGOA finds the optimal RMSE 
with a value of 9.8602E − 4 for SDM and 9.8258E − 04 for 
DDM. Other methods have lower RMSE values, and with 
8.796E − 3 for SDM and 3.7764E − 04, HHO is the worst 
method among various other methods. Besides, OBGOA 
reports a tremendous outperformance for the Mean and Max; 
in addition, the value of SD is also minimal compared to 
other algorithms. Few algorithms, such as HHO and SSA, 
display poor performance by examining the RMSE values. 
On the other hand, a few algorithms, such as MPA, SMA, 
COA, and EO, have demonstrated satisfactory results. The 
basic GOA also achieves the minimum RSME value, i.e., 
9.929E − 04 for SDM and 9.8602E − 04 for DDM, but the 
OBGOA outperforms GOA in terms of Min, Mean, Max, 
and SD values and the remaining algorithms. Therefore, it 
is concluded that the OBGOA stands first for parameter esti-
mation of the PV cell.

As similar to the statistical analysis of the RTC France 
Si cell, the PhotoWatt-PWP201 is also analyzed. The per-
formance indicators attained by different methods are 

Fig. 10  I–V curves of KC200GT at various irradiations

Fig. 11  I–V curves of SM55 at various irradiations

Fig. 13  I–V curves of SM55 at various temperatures

Fig. 12  I–V curves of KC200GT at various temperatures
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mentioned in Table 12 for the SDM and DDM. Consider-
ing the Min RMSE, it is obvious that OBGOA finds the 
optimal RMSE with a value of 2.4018E − 03 for SDM and 
2.4115E − 03 for DDM. On the other hand, other methods 
have lower RMSE values, and with 7.335E − 03 for SDM 
and 9.339E − 02, HHO is the worst method among various 
other methods. Besides, OBGOA reports a tremendous out-
performance for the Mean and Max; in addition, the value of 
SD is also minimal compared to other algorithms.

In Tables 11 and 12, a ranking of all the algorithms is pro-
vided. R provides the order of each method, considering the 
order of that algorithm relative to the other methods in all 
other parameters. As seen, OBGOA has the lowest R-value 
(1) and noticed that GOA performs second best, preceded 
by EO, SSA, COA, MPA, and SMA. As per the Min RMSE, 
in almost all situations, it is observed that the performance 
of OBGOA exceeds the other techniques, while OBGOA 
deservingly succeeds throughout all situations based on 
Mean RMSE.

The suggested algorithm is superior to all others in 
extracting the best parameters for the SDM, DDM, and PV 
module models with the help of the earlier observations and 
the statistical analysis of such outcomes, and the comparison 

with several other techniques. The proposed OBGOA 
can extract the variables of two commercial PV modules 
obtained from the supplier for practical application. It relies 
on many performance measures to estimate the effectiveness 
of OBGOA, including Min, Mean, Max, SD, computation 
time, and R. Especially compared to all algorithms except 
GOA, OBGOA is effective in terms of computation time. 
Besides, in terms of RMSE and R, OBGOA outperforms all 
existing algorithms. In addition to using an opposition-based 
learning scheme, the excellent results of OBGOA benefit 
from the strong exploration and exploitation abilities.

4.4  Discussions

This paper provides a robust approach for estimating the 
PV cell or PV module parameters to maximize its perfor-
mance in solar photovoltaic systems. Considering the pro-
posed method’s findings, the proposed OBGOA estimates 
the value of the unknown variables promptly relative to 
the other techniques for the various PV models. The new 
algorithm significantly reduces the current and power losses 
relative to the experimental current and power. Furthermore, 
it is seen how the results indicate that the estimated values 

Table 11  Statistical results of various algorithms for SDM/DDM of the RTC France Si cell

Model Parameters SSA COA SMA EO HHO MPA GOA OBGOA

SDM Min 2.093E − 03 1.102E − 03 1.382E − 03 1.051E − 03 8.796E − 03 1.522E − 03 9.929E − 04 9.8602E − 04
Mean 3.487E − 03 5.748E − 03 3.732E − 03 2.374E − 03 2.545E − 03 6.454E − 03 2.045E − 03 9.987E − 04
Max 1.489E − 02 1.675E − 02 9.851E − 03 4.786E − 03 8.388E − 02 8.577E − 03 1.155E − 03 9.993E − 04
SD 3.874E − 03 4.55E − 03 3.993E − 03 3.514E − 03 1.045E − 03 8.57E − 04 5.577E − 04 6.489E − 07
R 7 4 5 3 8 6 2 1

DDM Min 3.1102E − 03 2.342E − 03 3.136E − 03 3.024E − 03 3.764E − 03 2.192E − 03 9.8602E − 04 9.8258E − 04
Mean 3.824E − 03 6.65E − 03 4.48E − 02 4.56E − 03 2.245E − 02 3.13E − 03 4.24E − 03 1.0254E − 03
Max 9.254E − 03 6.145E − 02 1.778E − 01 3.145E − 02 9.214E − 02 1.49E − 02 1.458E − 02 1.214E − 03
SD 9.325E − 04 4.587E − 03 5.14E − 02 5.14E − 04 1.354E − 02 2.245E − 03 3.411E − 03 5.689E − 05
R 6 4 7 5 8 3 2 1

Table 12  Statistical results of various selected algorithms for SDM/DDM of the PhotoWatt-PWP201

Model Parameters SSA COA SMA EO HHO MPA GOA OBGOA

SDM Min 2.444E − 03 2.433E − 03 5.548E − 03 2.511E − 03 7.335E − 03 2.529E − 03 2.425E − 03 2.4115E − 03
Mean 4.697E − 03 3.987E − 03 2.625E − 03 2.145E − 03 3.858E − 02 3.458E − 03 2.887E − 03 2.425E − 03
Max 2.98E − 01 2.457E − 02 3.147E − 02 4.871E − 02 2.741E − 01 3.114E − 02 3.921E − 03 2.524E − 03
SD 1.478E − 04 1.025E − 04 3.47E − 04 2.325E − 03 9.877E − 03 1.998E − 04 1.145E − 04 9.245E − 05
R 4 3 7 5 8 6 2 1

DDM Min 2.647E − 03 4.244E − 03 2.706E − 03 2.446E − 03 9.339E − 02 2.636E − 03 2.425E − 03 2.4018E − 03
Mean 3.745E − 03 6.285E − 03 4.984E − 03 1.143E − 02 3.114E − 02 3.698E − 03 2.701E − 03 2.488E − 03
Max 9.692E − 03 1.447E − 02 8.557E − 03 2.476E − 02 3.694E − 01 1.452E − 02 3.742E − 03 2.645E − 03
SD 2.14E − 04 1.65E − 04 2.474E − 04 3.21E − 03 8.87E − 03 1.74E − 04 1.698E − 04 8.458E − 05
R 5 7 6 3 8 4 2 1



7125Opposition decided gradient‑based optimizer with balance analysis and diversity maintenance…

1 3

are very well adapted to the experimental values as the irra-
diance and the temperature levels are changed, and this is 
proof of the effectiveness of the proposed OBGOA. Besides, 
for real-time systems, OBGOA output is checked using com-
mercial information retrieved from the datasheet provided 
by the manufacturers, such as the KC200GT and SM55. The 
proposed OBGOA is thus a conveniently applied and realis-
tic solution, and it is an excellent alternative to identify the 
optimum parameters of the PV system. The average values 
of RMSE, SD, IAE, RE, and RT obtained by the proposed 
OBGOA have percentage decrease of 1.152%, 175%, 1.25%, 
1.35%, and − 5%, respectively, with respect to the basic ver-
sion of GOA. The average values of RMSE, SD, IAE, RE, 
and RT obtained by the proposed OBGOA have percentage 
decrease of 18%, 200%, 1.3%, 1.5%, and 50%, respectively, 
with respect to the other selected algorithms. It is worth 
stating that the proposed OBGOA finds exact parameters 
at various operating conditions, which is expressive for the 
maximum power point tracking of a photovoltaic system, 
since few modules in photovoltaic systems are subject to 
critical conditions, such as static shading, dynamic shading, 
and partial shading (Premkumar et al. 2021c; Manoharan 
et al. 2021). Besides, the obtained results can be utilized 
while modeling the maximum power point tracking system 
to track the maximum output power, as varying irradiation 
and temperature in real-time applications. The limitations of 
the proposed OBGOA are as follows. The computing efforts 
of OBGOA are greater than those for standard algorithms 
since more iterations are required, which might become 
computationally expensive if the simulation tool takes a 
long time to evaluate a single objective. Furthermore, the 
final solutions generated by OBGOA could be reproduced 
exactly; therefore, numerous runs must be performed to 
assure reliability and some relevant statistical analysis.

To summarize, the OBGOA has the highest SDM/DDM 
of PV cell and module convergence speeds. The enhanced 
capabilities in escaping local optima are because the OBL 
allows GOA to search optimal solutions faster than other 
widely used algorithms. As a result, the populations are less 
likely to become stuck in local optimal, achieving global 
optima more quickly than traditional approaches.

5  Conclusions

Identifying unknown parameters is a great challenge in 
photovoltaic systems to improve the accuracy of the power 
and current. This paper suggests an enhanced variant of the 
basic GOA to correctly predict the best parameters of the 
various models, such as SDM, DDM, and PV modules. In 
recent times, the OBL has gained further attention, which 
is used to enhance the effectiveness of heuristic methods. It 
has a significant characteristic that uses the basic variant of 
GOA to search in the solution space in the opposite direc-
tion to the current solution. The authors demonstrated the 
effect of OBL in this paper to enhance the accuracy of the 
GOA to solve the parameter estimation optimization prob-
lem. Numerous investigations were carried to allow con-
trasts with other state-of-the-art algorithms to evaluate the 
effectiveness of OBGOA. The findings and the statistical 
measures illustrate OBGOA’s superior performance for all 
the various PV models in terms of RMSE, computation time, 
SD, RE, IAE, and R. Furthermore, the graphical illustra-
tion of the I–V curves shows that the estimated value is in 
good agreement with the experimental value. In addition, 
the effectiveness of OBGOA has been evaluated at various 
temperature and irradiance levels using data from the manu-
facturer’s datasheet, and the OBGOA can be an alternative 
tool for parameter estimation of PV models.

The proposed method is expected to be extended in the 
future to many other energy sectors, such as PV array fault 
detection, PV array reconfiguration, maximum power point 
tracking, and energy scheduling in PV systems. Further-
more, the development of more successful strategies for 
the proposed method to be capable of solving several other 
optimization problems is also an ultimate goal, particularly 
for multi-objective and constrained problems. Additionally, 
the extension of the OBGOA to many other important topics, 
including image segmentation, feature selection problems, 
underwater targets classification, underwater acoustical 
dataset classification, multi-layer perceptron neural net-
work trainer, and feed-forward neural network trainer, will 
be explored in the future.
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Appendix A

See Tables 13, 14, 15 and 16. IAEP denotes the integral absolute error with respect to the estimated power (Pest) and experi-
mental power (Pexp) values.

Appendix B: control parameters of various algorithms

S. No. Algorithm Control parameters Value

1 SSA Number of search agents (Np) 30 (SDM), 50 (DDM and others)
Maximum number of iterations (ITmax) 1000
b 1

2 COA Number of search agents (Np) 10 packs with 30 coyotes for all problems
Maximum number of iterations (ITmax) 1000

3 SMA Number of search agents (Np) 30 (SDM), 50 (DDM and others)
Maximum number of iterations (ITmax) 1000
Vb − 1 to 1

4 EO Number of search agents (Np) 30 (SDM), 50 (DDM and others)
Maximum number of iterations (ITmax) 1000
a1, a2, and RP 2, 1, and 0.5, respectively

5 HHO Number of search agents (Np) 30 (SDM), 50 (DDM and others)
Maximum number of iterations (ITmax) 1000
β, F, and Q 1.5, 6, and 5, respectively

6 MPA Number of search agents (Np) 30 (SDM), 50 (DDM and others)
Maximum number of iterations (ITmax) 1000
FADs, mutation probability, and p 0.5

7 GOA Number of search agents (Np) 30 (SDM), 50 (DDM and others)
Maximum number of iterations (ITmax) 1000
Pr 0.5

8 OBGOA Number of search agents (Np) 30 (SDM), 50 (DDM and others)
Maximum number of iterations (ITmax) 1000
Pr 0.5

Table 13  IAE and RE of OBGOA on SDM of the RTC France Si PV cell

Sample No. Experimental values Estimated current values Estimated power values

Vexp (V) Iexp (A) Pexp(W) Iest (A) IAEi (A) REi (A) Pest (W) IAEP (W)

1 − 0.2057 0.764 − 0.1571548 0.7641 1.118E − 04 1.463E − 04 − 0.157178 2.299E − 05
2 − 0.1291 0.762 − 0.0983742 0.7627 6.868E − 04 9.013E − 04 − 0.098463 8.866E − 05
3 − 0.0588 0.7605 − 0.0447174 0.7614 8.789E − 04 1.156E − 03 − 0.044769 5.168E − 05
4 0.0057 0.7605 0.0043349 0.7602 3.216E − 04 4.229E − 04 0.004333 1.833E − 06
5 0.0646 0.76 0.049096 0.7591 9.200E − 04 1.211E − 03 0.049037 5.943E − 05
6 0.1185 0.759 0.0899415 0.7580 9.329E − 04 1.229E − 03 0.089831 1.105E − 04
7 0.1678 0.757 0.1270246 0.7571 1.157E − 04 1.529E − 04 0.127044 1.942E − 05
8 0.2132 0.757 0.1613924 0.7561 8.338E − 04 1.101E − 03 0.161215 1.778E − 04
9 0.2545 0.7555 0.1922748 0.7551 3.885E − 04 5.142E − 04 0.192176 9.887E − 05
10 0.2924 0.754 0.2204696 0.7537 3.111E − 04 4.126E − 04 0.220379 9.098E − 05
11 0.3269 0.7505 0.2453385 0.7514 9.130E − 04 1.217E − 03 0.245637 2.985E − 04
12 0.3585 0.7465 0.2676203 0.7474 8.748E − 04 1.172E − 03 0.267934 3.136E − 04
13 0.3873 0.7385 0.2860211 0.7401 1.627E − 03 2.203E − 03 0.286651 6.300E − 04
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Sample No. Experimental values Estimated current values Estimated power values

Vexp (V) Iexp (A) Pexp(W) Iest (A) IAEi (A) REi (A) Pest (W) IAEP (W)

14 0.4137 0.728 0.3011736 0.7274 5.666E − 04 7.783E − 04 0.300939 2.344E − 04
15 0.4373 0.7065 0.3089525 0.7070 5.021E − 04 7.107E − 04 0.309172 2.196E − 04
16 0.459 0.6755 0.3100545 0.6753 1.358E − 04 2.010E − 04 0.309992 6.232E − 05
17 0.4784 0.632 0.3023488 0.6308 1.016E − 03 1.607E − 03 0.301863 4.860E − 04
18 0.496 0.573 0.284208 0.5719 7.763E − 04 1.355E − 03 0.283823 3.850E − 04
19 0.5119 0.499 0.2554381 0.4996 6.863E − 04 1.375E − 03 0.255789 3.513E − 04
20 0.5265 0.413 0.2174445 0.4136 7.518E − 04 1.820E − 03 0.217840 3.958E − 04
21 0.5398 0.3165 0.1708467 0.3175 1.049E − 03 3.315E − 03 0.171413 5.664E − 04
22 0.5521 0.212 0.1170452 0.2122 5.109E − 04 2.410E − 03 0.117327 2.821E − 04
23 0.5633 0.1035 0.0583016 0.1023 2.901E − 04 2.803E − 03 0.058138 1.634E − 04
24 0.5736 − 0.01 − 0.005736 − 0.0087 1.322E − 03 1.322E − 01 − 0.004978 7.582E − 04
25 0.5833 − 0.123 − 0.0717459 − 0.1255 7.267E − 04 5.908E − 03 − 0.072170 4.239E − 04
26 0.59 − 0.21 − 0.1239 0.7641 1.535E − 03 7.311E − 03 − 0.122994 9.058E − 04
Sum of IAE – – – – 7.225E − 04 4.507E − 03 – 8.781E − 05

Table 13  continued

Table 14  IAE and RE of OBGOA on DDM of the RTC France Si PV cell

Sample No. Experimental values Estimated current values Estimated power values

Vexp (V) Iexp (A) Pexp(W) Iest (A) IAEi (A) REi (A) Pest (W) IAEP (W)

1 − 0.2057 0.764 − 0.1572 0.7640 8.466E − 05 1.108E − 04 − 0.1572 1.742E − 05
2 − 0.1291 0.762 − 0.0984 0.7626 6.608E − 04 8.672E − 04 − 0.0985 8.531E − 05
3 − 0.0588 0.7605 − 0.0447 0.7613 8.539E − 04 1.123E − 03 − 0.0448 5.021E − 05
4 0.0057 0.7605 0.0043 0.7602 3.456E − 04 4.544E − 04 0.0043 1.970E − 06
5 0.0646 0.76 0.0491 0.7591 9.431E − 04 1.241E − 03 0.0490 6.093E − 05
6 0.1185 0.759 0.0899 0.7581 9.552E − 04 1.259E − 03 0.0898 1.132E − 04
7 0.1678 0.757 0.1270 0.7572 9.393E − 05 1.241E − 04 0.1270 1.576E − 05
8 0.2132 0.757 0.1614 0.7563 8.552E − 04 1.130E − 03 0.1612 1.823E − 04
9 0.2545 0.7555 0.1923 0.7552 4.099E − 04 5.426E − 04 0.1922 1.043E − 04
10 0.2924 0.754 0.2205 0.7537 3.330E − 04 4.416E − 04 0.2204 9.736E − 05
11 0.3269 0.7505 0.2453 0.7514 8.906E − 04 1.187E − 03 0.2456 2.911E − 04
12 0.3585 0.7465 0.2676 0.7473 8.519E − 04 1.141E − 03 0.2679 3.054E − 04
13 0.3873 0.7385 0.2860 0.7400 1.604E − 03 2.172E − 03 0.2866 6.213E − 04
14 0.4137 0.728 0.3012 0.7273 5.865E − 04 8.057E − 04 0.3009 2.426E − 04
15 0.4373 0.7065 0.3090 0.7069 4.875E − 04 6.900E − 04 0.3092 2.132E − 04
16 0.459 0.6755 0.3101 0.6752 1.424E − 04 2.108E − 04 0.3100 6.536E − 05
17 0.4784 0.632 0.3023 0.6308 1.014E − 03 1.604E − 03 0.3019 4.849E − 04
18 0.496 0.573 0.2842 0.5720 7.671E − 04 1.339E − 03 0.2838 3.805E − 04
19 0.5119 0.499 0.2554 0.4997 6.974E − 04 1.398E − 03 0.2558 3.570E − 04
20 0.5265 0.413 0.2174 0.4137 7.575E − 04 1.834E − 03 0.2178 3.988E − 04
21 0.5398 0.3165 0.1708 0.3175 1.041E − 03 3.290E − 03 0.1714 5.621E − 04
22 0.5521 0.212 0.1170 0.2121 4.811E − 04 2.270E − 03 0.1173 2.656E − 04
23 0.5633 0.1035 0.0583 0.1022 3.482E − 04 3.364E − 03 0.0581 1.961E − 04
24 0.5736 − 0.01 − 0.0057 − 0.0088 1.230E − 03 4.230E − 03 − 0.0050 7.058E − 04
25 0.5833 − 0.123 − 0.0717 − 0.1255 8.558E − 04 6.957E − 03 − 0.0722 4.992E − 04
26 0.59 − 0.21 − 0.1239 − 0.2084 1.365E − 03 6.498E − 03 − 0.1231 8.051E − 04
Sum of IAE – – – – 7.175E − 04 4.197E − 04 – 7.536E − 05
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Table 15  IAE and RE of OBGOA on SDM of the PhotoWatt-PWP201 PV module

Sample No. Experimental values Estimated current values Estimated power values

Vexp (V) Iexp (A) Pexp(W) Iest (A) IAEi (A) REi (A) Pest (W) IAEP (W)

1 0.1248 1.0315 0.12873 1.0291 2.392E − 03 2.319E − 03 0.1284 2.985E − 04
2 1.8093 1.03 1.86358 1.0274 2.630E − 03 2.553E − 03 1.8588 4.758E − 03
3 3.3511 1.026 3.43823 1.0257 2.721E − 04 2.653E − 04 3.4373 9.120E − 04
4 4.7622 1.022 4.86697 1.0241 2.090E − 03 2.045E − 03 4.8769 9.952E − 03
5 6.0538 1.018 6.16277 1.0223 4.269E − 03 4.194E − 03 6.1886 2.585E − 02
6 7.2364 1.0155 7.34856 1.0199 4.404E − 03 4.337E − 03 7.3804 3.187E − 02
7 8.3189 1.014 8.43536 1.0164 2.339E − 03 2.306E − 03 8.4548 1.946E − 02
8 9.3097 1.01 9.40280 1.0105 4.822E − 04 4.775E − 04 9.4073 4.490E − 03
9 10.2163 1.0035 10.25206 1.0006 2.825E − 03 2.815E − 03 10.2232 2.886E − 02
10 11.0449 0.988 10.91236 0.9845 3.340E − 03 3.380E − 03 10.8755 3.689E − 02
11 11.8018 0.963 11.36513 0.9595 3.279E − 03 3.405E − 03 11.3264 3.870E − 02
12 12.4929 0.9255 11.56218 0.9228 2.403E − 03 2.596E − 03 11.5322 3.002E − 02
13 13.1231 0.8725 11.44990 0.8726 1.702E − 04 1.950E − 04 11.4521 2.233E − 03
14 13.6983 0.8075 11.06138 0.8073 6.626E − 05 8.205E − 05 11.0605 9.076E − 04
15 14.2221 0.7265 10.33236 0.7283 1.629E − 03 2.242E − 03 10.3295 2.844E − 03
16 14.6995 0.6345 9.32683 0.6371 2.187E − 03 3.447E − 03 9.3224 4.410E − 03
17 15.1346 0.5345 8.08944 0.5362 1.467E − 03 2.745E − 03 8.0879 1.513E − 03
18 15.5311 0.4275 6.63955 0.4295 1.635E − 03 3.826E − 03 6.6349 4.659E − 03
19 15.8929 0.3185 5.06189 0.3188 5.329E − 04 1.673E − 03 5.0603 1.589E − 03
20 16.2229 0.2085 3.38247 0.2074 2.376E − 04 1.140E − 03 3.3786 3.855E − 03
21 16.5241 0.101 1.66893 0.0962 2.203E − 03 2.182E − 02 1.6325 3.641E − 02
22 16.7987 − 0.008 − 0.13439 − 0.0083 5.242E − 04 6.553E − 03 − 0.1377 3.360E − 03
23 17.0499 − 0.111 − 1.89254 − 0.1109 3.000E − 03 3.750E − 03 − 1.9437 5.115E − 02
24 17.2793 − 0.209 − 3.61137 − 0.2092 5.000E − 03 4.453E − 04 − 3.6978 8.640E − 02
25 17.4885 − 0.303 − 5.29902 − 0.3009 4.545E − 04 2.389E − 03 − 5.3070 7.949E − 03
Sum of IAE – – – – 0.0020 5.599E − 03 – 1.0007E − 03

Table 16  IAE and RE of OBGOA on DDM of the PhotoWatt-PWP201 PV module

Sample No. Experimental values Estimated current values Estimated power values

Vexp (V) Iexp (A) Pexp(W) Iest (A) IAEi (A) REi (A) Pest (W) IAEP (W)

1 0.1248 1.0315 0.1287312 1.0291 2.391E − 03 2.318E − 03 0.128433 2.984E − 04
2 1.8093 1.03 1.863579 1.0274 2.627E − 03 2.550E − 03 1.858826 4.753E − 03
3 3.3511 1.026 3.4382286 1.0258 2.670E − 04 2.603E − 04 3.437334 8.948E − 04
4 4.7622 1.022 4.8669684 1.0241 2.097E − 03 2.052E − 03 4.876954 9.986E − 03
5 6.0538 1.018 6.1627684 1.0223 4.279E − 03 4.203E − 03 6.18867 2.590E − 02
6 7.2364 1.0155 7.3485642 1.0199 4.415E − 03 4.348E − 03 7.380516 3.195E − 02
7 8.3189 1.014 8.4353646 1.0164 2.353E − 03 2.321E − 03 8.454939 1.957E − 02
8 9.3097 1.01 9.402797 1.0105 5.000E − 04 4.950E − 04 9.407452 4.655E − 03
9 10.2163 1.0035 10.252057 1.0006 2.803E − 03 2.793E − 03 10.22342 2.863E − 02
10 11.0449 0.988 10.912361 0.9845 3.313E − 03 3.354E − 03 10.87577 3.660E − 02
11 11.8018 0.963 11.365133 0.9595 3.248E − 03 3.373E − 03 11.3268 3.833E − 02
12 12.4929 0.9255 11.562179 0.9228 2.368E − 03 2.559E − 03 11.53259 2.959E − 02
13 13.1231 0.8725 11.449905 0.8726 2.061E − 04 2.362E − 04 11.45261 2.704E − 03
14 13.6983 0.8075 11.061377 0.8073 3.119E − 05 3.862E − 05 11.06095 4.272E − 04
15 14.2221 0.7265 10.332356 0.7283 1.661E − 03 2.286E − 03 10.35598 2.362E − 02
16 14.6995 0.6345 9.3268328 0.6371 2.215E − 03 3.491E − 03 9.359393 3.256E − 02
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Sample No. Experimental values Estimated current values Estimated power values

Vexp (V) Iexp (A) Pexp(W) Iest (A) IAEi (A) REi (A) Pest (W) IAEP (W)

17 15.1346 0.5345 8.0894437 0.5362 1.491E − 03 2.789E − 03 8.112003 2.256E − 02
18 15.5311 0.4275 6.6395453 0.4295 1.655E − 03 3.871E − 03 6.665246 2.570E − 02
19 15.8929 0.3185 5.0618887 0.3188 5.493E − 04 1.725E − 03 5.070619 8.730E − 03
20 16.2229 0.2085 3.3824747 0.2074 2.228E − 04 1.069E − 03 3.37886 3.614E − 03
21 16.5241 0.101 1.6689341 0.0962 2.189E − 03 2.167E − 02 1.632765 3.617E − 02
22 16.7987 − 0.008 − 0.1343896 − 0.0083 3.217E − 04 4.021E − 02 − 0.12899 5.404E − 03
23 17.0499 − 0.111 − 1.8925389 − 0.1109 1.000E − 03 9.009E − 03 − 1.87549 1.705E − 02
24 17.2793 − 0.209 − 3.6113737 − 0.2093 3.079E − 03 1.473E − 02 − 3.55816 5.321E − 02
25 17.4885 − 0.303 − 5.2990155 − 0.3009 2.000E − 03 6.601E − 03 − 5.26404 3.498E − 02
Sum of IAE – – – – 0.0019 5.534E − 03 – 1.992E − 02

Table 16  continued

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12652- 021- 03564-4.
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