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Abstract
Triangulation uncertainty is the uncertainty associated when we try to locate an unknown target with the help of three anchor 
nodes resulting in formation of a triangulated region. Efficient triangulation leads to superior accuracy and lower rate of 
errors in sensor networks. Although sufficient work has been done to compute localization uncertainties, there is dearth of 
work pertaining to triangulation uncertainty. The existing problems are: first, localization incurs large computation cost, 
necessitating some hierarchy or clustering techniques. Second, linear, non-linear and optimization-based solvers invariably 
simplify the occurrence of errors during estimation of localization. To solve these problems, the present work proposes a 
range free assistive approach in detecting symmetric triangulations. This approach combined with semidefinite programming 
of the cost function is shown to exhibit improved localization performance. Numerical results show that the RMS errors is 
reduced by using triangulation assisted node deployment. The results are compared with the standard weighted least square 
method for different number of anchor nodes.

Keywords Semidefinite programming · Convex relaxation · Localization · Node triangulation · Estimation · CRLB

Abbreviations
APIT  Approximate point in triangulation
DV  Distance vector
SLAM  Simultaneous Localization and 

mapping
NLOS  Non-Line of Sight
GMM  Gaussian Mixture Model
SDP  Semidefinite programming
T-LOC  Triangulation Localization
WLS  Weighted least squares
MLE  Maximum Likelihood Estimator
R-O  Radio obstructed link
nR-O  Unobstructed link
U  Triangulation Uncertainty
GMD  Gaussian Mixture distribution
RMSE  Root mean square error
RSSr  Received Signal Strength range

CDF  Cumulative Distribution function
CRLB  Cramer Rao Lower Bound
Na, Nna, N  Number of anchor nodes, non-anchor 

nodes, total number of nodes
�i, �j  Position of anchor nodes and non-

anchor nodes, respectively
�, �  Pool of anchor nodes, pool of non-

anchor nodes
�ii′  Range measurement between ith and i′ 

pair of nodes
wii  Additive white Gaussian noise
�2
ii′

  Variance of ith and i′ pair of nodes
�ii′  Range skew between node i and i′
∠sitgsi�  Internal angle of the target vertex node 

tg
RSSr

(
s, tg

)
  Received signal strength range 

between sensor node s and target node 
tg

U
(
si, si′ , tg

)
  Node triangulation uncertainty

�n  Spatial uncertainty Cluster for nth 
target node

nth  Number of target node considered
i, i�, k ∈ �  Anchor nodes
�U  Positive value
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Ni,k,n  Number ( N ) of anchor nodes (sub-
script i and k ) responsible for the 
triangulation of the nth target node 
(subscript n)

Η  Number of links
� =

[
xr yr

]T  Common reflection point in case of 
range obstruction

(t − 1)  Time instance during which measure-
ments are taken

�A  Maximum Likelihood Estimator
�  Constraint on uncertainty matrix
�  Matrix containing two sets �� for 

anchor nodes and �� for non-anchor 
nodes

Djm  Upper limit of the uncertainty skew
Δ�ii�m  Upper limit on the absolute difference 

of uncertainty skew
�jm and gjm  Slack variables
M

(t)

jj
  Mobility constraint for jth node 

between time instances (t − 1) and t
djm  l2-Norm between node j and node m
f𝜂=0

(
𝛾jm;d̂jm,H1

)
  Likelihood ratio of no obstruction

f𝜂>0
(
𝛾jm;ĝjm,H0

)
  Likelihood ratio of single or multiple 

obstructions
evalmax  Maximum number of evaluations
Thjm  Detection threshold
a  Kurtosis factor for skew estimates
� =

[
�T �T

]T  Unknown parameter to be estimated
Δ�̃  Measured location vector of target by 

non-anchor nodes
�  Measured location vector of target by 

anchor nodes
��  Fisher Information matrix (FIM) of 

unknown parameter �
�1, �2, �3  FIM component for anchor-anchor 

node link, sensor-anchor node link, 
and sensor-sensor node link

� =
[
xT
1
xT
2
… xT

Na

]
  Location vector of anchor nodes

�  Transformation matrix for triangula-
tion uncertainty skew constraint

1 Introduction

Sensor nodes are meant to be deployed in groups so as to 
cover a large surface area. Marine environment data col-
lection (Geetha et al. 2011) by the Argo floats system is a 
practical example of sensor network. Applications of sen-
sor networks in the field of firetower placements in forests 
(Tekdas and Isler 2010), militarized/ security monitoring 
and educational setups require gathering intelligence for 
resource planning (Biswas et al. 2006). Localization is a 

crucial aspect of sensor node networks, which ensures that 
the nodes be aware of their physical location during the 
entire process of sensing, processing and communication of 
data. Localization may be possible through range-based or 
range-free methods. The advent of efficient compute nodes 
has enabled use of intelligent algorithms to combine both 
these techniques to give rise to several hybrid techniques. 
Triangulation (Yang et al. 2019) is a popular method of 
localization and ranging which helps to locate sensors and/
or unknown targets in remote deployment scenarios.

1.1  Related work

Localization is being vigorously pursued by researchers so 
that the sensors adapt to various anomalies and ravages of 
nature. Some recent works which focus on the range free 
localization with triangulation uncertainty and employing 
some form of convex optimization such as semidefinite 
programming would be the closest to the current proposed 
work. The expected area of uncertainty of position per sen-
sor has been explored using three range-free localization 
schemes (Stupp and Sidi 2004). Although the expected 
uncertainty was achieved using half the resources, yet there 
is a scope for improvement of approximation if convex opti-
mization is used too. To address convex and non-convex 
scenarios in addition to range-free localization, (Kubo et al. 
2012) propose a grid based transformation and mapping 
approach to locate the target. Even though their method 
improves upon both the positioning accuracy as well as 
coverage area, it misses out on the concept of triangulation 
uncertainty to account for the ambiguity of sensor location. 
An in-depth analysis about true triangulation is taken up by 
(Yang et al. 2019) for a 3 dimensional architecture. It could 
be applied to range-free localization techniques, but it falls 
short of the issues faced by wireless sensor networks such 
as the loss of anchor node and perturbations. It is triumphed 
by (An et al. 2020) in which larger regions are compacted 
into smaller triangulations. This results in a tighter control 
over localization as well as path planning, however, it lacks 
analysis of any range-free or convex optimized localization 
schemes. Convex triangulation is discussed in (Prateek and 
Arya 2021a) wherein a convex weighted approach has been 
applied to mathematically analyse the uncertainty behaviour. 
Although symmetry of triangulation has been discussed in 
detail, but it does not discuss how to implement semidefinite 
relaxation to a WSN case. The three works which closely 
explain the implementation of Semidefinite relaxation are, 
first, the twin works of Q. Shi et. al. in (Shi and He 2008; 
Shi et al. 2010), and third, (Salari et al. 2013). The first two 
attempts reveal greedy algorithm and a range free algorithm 
for semidefinite relaxation of the constraints to the localiza-
tion cost function. While they are range-free algorithms, the 
third work describes range-based localization that is usually 
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considered more resource intensive than the range free meth-
ods. Range-free is also not present in the wireless localiza-
tion scheme proposed by (Zhang et al. 2016), but it discusses 
square of positioning uncertainty which is important if the 
sensor nodes or the target are in relative motion. Though it 
does not present a semidefinite programming approach for 
solving the node locations, but a geometric programming 
approach has been derived in detail as a proof of mathemati-
cal justification. Concept of uncertainty is extended towards 
the concept of estimative rectangle in (Chen et al. 2014) 
which decides the success or failure of localization based on 
overlapping regions of node communication ranges. Since 
rectangular region requires higher number of sensor node 
vertices than triangulation region, therefore, the issue of 
triangulation uncertainty remains wide open. This void is 
fulfilled partially by (Ma and Yang 2007) where they com-
prehensively try to achieve triangulation that is as close to 
equilateral triangle as possible, so that symmetry between 
triangulation pattern is maximized. They have named it the 
adaptive triangular deployment algorithm. Although it ena-
bles them to sectorize the sensing region into six parts, there 
is no mention of range-free mechanism that could reduce the 
resource requirement. Such a resource-frugal arrangement 
that does not require the information of reference sensor is 
presented with the help of the range-difference of measure-
ments followed by numerical method, that is, source locali-
zation using majorization minimization technique (Jyothi 
and Babu 2020). Their work lacks triangulation methods 
and anchor node uncertainties, therefore, a robust triangula-
tion method is shown to achieve accurate localization even 
in presence of node mobility (Hsieh and Wang 2006). It, 
however, lacks any form of convex triangulation, just like 
(Sortais et al. 2008) which incorporate range-free localiza-
tion and location uncertainty without exploring the effect 
of convex relaxation or semidefinite optimization. Instead, 
they have opted for iterative evaluation that achieves accu-
racy at the cost of computational complexity. In particu-
lar, they have investigated the stochastic geometry of the 
node topology and Monte-Carlo scaling, but have refrained 
from using any form of convex combination for precision 
improvement. Convex approach is also avoided in (Sahin 
et al. 2015), wherein, the estimated location is derived with 
the help of Cramer Rao lower bound of the received sig-
nal strength of the sensor transmissions. A similar outcome 
in the form of localized homogenous optical wireless net-
works is presented by (Seguel et al. 2018), but their domain 
deviates significantly from the present context, into the 
domain of lightwave signals, therefore, the contribution by 
(Gopikrishnan et al. 2016) comes into the picture as they 
have considered convex modelling to hasten up the com-
putation of range-free localization error identification. Fur-
ther, cooperative localization has been considered to enable 
localization despite the random node placement and radio 

obstructions. However, their approach does not consider 
triangulation technique even though it describes a range 
free mode of operation. Another cooperative localization 
approach by (Chen et al. 2009) makes use of relay nodes to 
localize mobile anchor nodes and static sensor nodes. To 
observe both the range free and the triangulation operation 
working together, a cosine approach by (Zeng et al. 2012) 
is presented albeit with pretty scarce mathematical back-
ground. Their method claims to improve upon the traditional 
Approximate Point in Triangulation (APIT) but it fails to 
provide sufficient mathematical justification as to how it 
can address node perturbations. A thorough investigation 
is performed by (Lee et al. 2013) with the purpose of prov-
ing how to avoid multilateration, yet achieve comparable 
range-free localization performance. They have resorted to 
multidimensional support vector regression and eventually 
tipped towards convex optimization to train a the wireless 
sensor network in either isotropic or anisotropic scenario for 
robust performance. A new concept of “bounding boxes” 
is combined with convex optimized node cooperation for 
localized estimation in (Darakeh et al. 2017) while it misses 
out on triangulation uncertainty. Table lists the abbreviation 
used in this paper.

1.2  Major contributions

In this paper, we present an investigation into sensor network 
localization problem in terms of triangulation uncertainty. 
The scenario in which target node is affected by obstructing 
conditions is considered here. In an energy-limited scenario, 
one of the major constraints, i.e., internodal communication 
range is taken as a fraction of the total deployment area. 
Thus, location accuracy is analyzed keeping in mind that the 
target node is challenged both in terms of communication 
range as well as the unavailability of line-of-sight signal 
from the anchor nodes. To alleviate these issues, we develop 
a signal model and a range skew model to incorporate the 
concept of triangulation uncertainty prior to the position 
estimation. We prove mathematically these models by intro-
ducing a new term: “triangulation uncertainty skew” to relax 
the constraints of the Maximum likelihood estimation cost 
function into a convex semidefinite programming formula-
tion. We take the help of parameters, namely, RMS errors 
and CDF plots to comment upon the accuracy aspect of the 
formulation. We present a convex optimization problem to 
localize sensor nodes by taking help of triangulation uncer-
tainties due to limited communication range of sensor nodes. 
Some of the highlights of the present work are as follows:

• The present work not only considers the perturbations 
of the target, but also considers the perturbations of 
the sensor network. Therefore, two terms, namely, tri-
angulation uncertainty and uncertainty skew have been 
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introduced to model perturbation of the target and that 
of the sensor network, respectively.

• The novel concept of collective triangulation is pro-
posed here, wherein, all the triplets of nodes (which 
could be anchor nodes or sensor nodes or a mixture of 
both) which have comparable triangulation uncertainty 
and enclose the target within their region, are defined 
as a spatial uncertainty cluster. The positioning infor-
mation of the target is considered by selecting triangu-
lating nodes from this spatial uncertainty cluster for a 
more precise localization.

• The concept of Apex node is defined as the node which 
is used to simulate the behavior of target node move-
ment close to one of the vertex node of the triangula-
tion concerned, to overcome the issue of edge-errors 
which is common in triangulation based conventional 
localization.

• A triangulation assisted localization (abbreviated as 
T-LOC) is presented here that is range-free (therefore 
less resource intensive), convex relaxed (thereby being 
applicable to even non-convex regions such as realistic 
terrains), semidefinite programmed (rendering the Fisher 
matrix solvable for accurate CRLB analysis).

  The main contributions of this paper are as follows:
• We present a scheme to attain optimal localization 

under radio-obstructed (R-O) and range-limited geom-
etry. Through the introduction of skewed range, it can be 
shown that triangulation sensor node assisted localization 
achieves higher accuracy than conventional localization 
methods without the assistance of nodes capable of tri-
angulation.

• We formulate an iterative method of localization aided by 
sensor triangulation information (T-LOC). The proposed 
technique can cooperatively localize unobstructed (nR-
O) target nodes by taking the help of radio-obstructed 
(R-O) triangulation skew parameter, to improve upon the 
localization accuracy.

• We compare the performance of the proposed T-LOC 
maximum likelihood estimator (MLE) with uncer-
tainty skew constraints and semidefinite-programming, 
to Weighted least squares (WLS) localization method 
(Wang et al. 2012; Shi et al. 2020) for different threshold 
sensor communication ranges.

The paper organisation is as follows: Sect. 2 proposes a 
signal model and a range skew model for node deployment 
with unobstructed (nR-O) and radio-obstructed (R-O) links, 
as illustrated in Fig. 1(a–d). Section 3 presents a rigorous 
analysis of the geometric aspect of uncertainty node skew 
on both spatial as well as temporal cases. Section 4 shows 
the numerical results and findings based on the localiza-
tion uncertainty computations using the proposed methods. 
Finally, the conclusions are mentioned in Sect. 5.

2  Problem formulation

2.1  Signal model:

In a 2D deployment scenario, suppose Na be the number 
of anchor nodes and Nna be the number of non-anchor 
nodes. Then, Na + Nna = N  , where N  is the total num-
ber of nodes deployed. The positions of anchor nodes are 
known to be �i , where i ∈ � =

{
1, 2, … Na

}
 . the positions 

of non-anchor nodes are unknown, denoted by �j , where 
j ∈ � =

{
Na + 1,Na + 2, … N

}
 . Here, � and � are two sets 

representing the indices of the non-anchor and anchor nodes, 
respectively.

Triangulation is possible when three nodes are in proxim-
ity of each other’s communication range. The nodes which 
are involved in triangulation, and are anchors as well, will 
have knowledge of their node position. The nodes involved 
in triangulation which are non-anchor nodes do not know 
their exact location and may depend on the designation of 
neighbour nodes to determine their position. We define the 
term “Apex Node” and “Target Vertex Node” that shall be 
used throughout the manuscript.

Definition 1 (Apex Node) Apex Node is defined as the 
anchor node closest to the target when the target is enclosed 
by at least one triangulation.

(a) (b)

(c) (d)

Fig. 1  Illustration of the problem definition for different R-O and 
nR-O scenario
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Definition 2 (Target Vertex Node) Target Vertex Node 
is defined as that Apex Node which is substituted for the 
target node as the target node approaches the edge of a 
triangulation.

By using the concept of Target Vertex Node, the issue of 
edge errors due to range-free triangulation is reduced greatly. 
In illustration of target vertex node is shown in Fig. 2c. An 
unobstructed (nR-O) condition is simple, where two nodes 
can communicate directly within the triangulation. A radio-
obstructed (R-O) condition can arise when there is no direct 
link in at least one pair of nodes within triangulation. This 
can happen in three ways:

There is obstruction of a single link of a triangulation.
Two of the three total links of a triangulation are 

obstructed.
All three links of a triangulation are obstructed.
The first two cases are considered here, and the third case 

is ignored, assuming that triangulation would not be pos-
sible in the first place if none of the node pairs have unob-
structed links at all. The range measurement �ii′ in case of 

unobstructed and radio-obstructed links between pairs of 
nodes can be expressed as:

for i, i� ∈ �; i ≠ i
�.

The l2-norm between node i and i′ is denoted by 
dii� ≜ ‖‖�� − ���

‖‖2 and wii
′ is the additive white Gaussian noise 

with zero mean and variance �2
ii′

 . �ii′ denotes the range skew 
between node i and i′ . This range skew is not known so we 
keep it as unknown constant parameter. Equation (2) com-
putes the node triangulation uncertainty U

(
si, si′ , tg

)
 from 

the known prior information of received signal strength 
range (RSSr) RSSr

(
s, tg

)
 of the triangulations and an appro-

priate function fn(⋅) of internal angle of the target vertex 
node ∠sitgsi� in between them.

Triangulation uncertainty of equation (2) is related to 
location coordinates of the target through the Fisher Infor-
mation Matrix (FIM) of the log likelihood function, which 
decides the Cramer Rao Lower Bound (CRLB). CRLB is 
the direct relation to the positioning error, which, in turn, 
relates to the location coordinates of the target. Further 
details regarding the relation of triangulation uncertainty to 
location coordinates of the target is mentioned in the method 
defined in Sect. 3.1 and Sect. 4 of (Prateek and Arya 2021a).

2.2  Range skew model:

Node environment significantly affects the extent of range 
skewness between radio-obstructed (R-O) links. A suitable 
channel model that considers close-valued range skewness 
due to R-O conditions between links of triangulation is dis-
cussed here. To introduce R-O range skew model, we define 
the notion of Spatial Uncertainty Cluster. For this definition, 
it is assumed that the target is triangulated by anchor nodes 
only, since anchor nodes store up-to date information about 
self-location.

Definition 3 (Spatial Uncertainty Cluster): A Spatial uncer-
tainty Cluster �n for nth target node is defined by the set of 
three anchor nodes ( i, i�, k ∈ � ) in a small part of the node 
deployment region, such that they form the same triangula-
tion and the uncertainty associated with each apex node is 
comparable, i.e.,

(1)�ii� =

{
dii� + wii

� , nR − O scenario

dii� + �ii� + wii
� , R − O scenario

(2)
U
(
si, si� , tg

)
= RSSr

(
si, tg

)
× RSSr

(
si� , tg

)
×
|||fn(∠si, tg, si� )

|||

(3)
𝜈n ≜ {

Ni,k,n ∈ 𝛼 |max{|Ui,k,n − Ui�,k,n|
}
< 𝜀U , i, i

�

, k ∈ 𝛼}

(a) (b)

(c)

Fig. 2  Illustration of the triangulation assistance for R-O scenario 
with (a) η = 1, (b) η = 2, and (c) Target vertex node
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where, �U is a positive value, Ni,k,n represents the number 
( N ) of anchor nodes (subscript i and k ) responsible for the 
triangulation of the nth target node (subscript n ), and Ui,k,n  
denotes triangulation uncertainty of nth target node by ith and 
kth anchor nodes.

Remark: The notation Ni means ith anchor node, whereas 
Ni,k,n means set of ith anchor node and kth anchor node used 
to triangulate nth target node.

To derive the geometric constraint of R-O range skews 
in a cluster, we consider the case of obstruction blocking η 
number of links, η ∈ {1,2}. As illustrated in Fig. 2(a, b), the 
common reflection point � =

[
xr yr

]T represents the point 
through which signal from a node (which faces obstruction) 
of a cluster bounces off to its node pair during R-O mode of 
communication. The range skew when η = 1 is obtained as:

The range skew when η = 2 is given by

or,

where, i ∈
{
i, i

�

, i
��} denotes that i , i' and i'', all belong to 

anchor nodes � set. An illustration of target vertex node 
and the geometry for the internal angle is shown in Fig. 2c, 
where, the internal angle may be created either by a pair of 
sensor node, or a pair of anchor nodes, or by one anchor 
and one sensor node. Suitable node is chosen based on the 
received signal strength values.

3  Spatial and temporal geometry 
of triangulation uncertainty

In this section, a localization agenda is presented that ascer-
tains the significance of space and time variations in aiding 
localization through triangulation uncertainty. The assump-
tion taken during the conversion process from triangulation 
uncertainty to target coordinates is as follows:

• The proposed T-LOC model does not consider energy 
expenditure on any other aspect besides triangulation 
measurement and the formation of spatial and temporal 
geometry.

• The target is triangulated by anchor nodes only, since 
anchor nodes store up-to date information about self-
location

(4)
�
(
�ir, � = 1

)
= ‖‖xi� − r‖‖ + ‖‖r − xi

‖‖ − ‖‖xi� − xi
‖‖,

for i ∈
{
i, i

�}

(5)�
(
��� , � = 2

)
= �(�,��)� + �(���,��)�

(6)
�
(
�ir, � = 2

)
= ‖‖xi� − r‖‖ + ‖‖r − xi��

‖‖ + 2‖‖r − xi
‖‖

−‖‖xi� − xi
‖‖ − ‖‖xi − xi��

‖‖ , for i ∈
{
i, i�, i��

}

Intra triangular measurement, inter triangulation 
measurement:

Triangulation may be formed by three participating 
nodes, which may be anchor or may know some prior 
location information. A triangulation uncertainty U

i′
 is 

superior to that of U
i
 if U

i′
< U

i
 . In such a setup, an intra-

triangulation measurement would be:

where, U(t)
�ii

 is the measured uncertainty of ith triangulation 
between time (t − 1) and t . U(t)

dii
 is the actual uncertainty of ith 

triangulation between time (t − 1) and t . w(t)

ii
 is the additive 

white gaussian noise with zero mean and �2
ii
 variance. The 

actual triangulation uncertainty measurement of ith triangu-
lation between time (t − 1) and t shall be given by:

The inter-triangulation uncertainty measurement 
between ith and mth triangulation at time ‘t’ in nR-O and 
R-O condition are given by:

where, the actual triangulation uncertainty measurement 
between ith and mth triangulation is denoted by

w
(t)

im
 denotes additive white gaussian noise with zero 

mean and �(t)2

im
 variance. U(t)

�
im

 denotes the R-O triangulation 
uncertainty skew between ith and mth triangulation which 
is modelled as an unknown constant parameter.

3.1  Spatial geometry:

If all triangulations are afflicted with type-I (η = 1) or type-
II (η = 2) obstructions, there would be some kind of R-O 
component in every link. We formulate Maximum Likeli-
hood Estimator for 

{
Uj, U�jm

∶ j ∈ �,m ∈ � ∪ �

}

Subject to

(7)U(t)
�ii

= U
(t)

dii
+ w

(t)

ii
, ∀ i ∈ � , t ∈ �

(8)U
(t)

dii
≜ |||U

(t−1)

dii
− U

(t)

dii

|||

(9)

U(t)
�im

=

⎧⎪⎨⎪⎩

U
(t)

dim
+ w

(t)

im
, nR - O

U
(t)

dim
+ U

(t)

�im
+ w

(t)

im
, R - O

, for i ∈ �, m ∈ � ∪ �, i ≠ m, t ∈ �

(10)U
(t)

dim
≜ |||U

(t)

di
− U

(t)

dm

|||

(11)�A ∶ minimize
Uj,Udjm

,U
�jm

∑
j∈�,m∈�∪�

(
U�jm

− Udjm
− U

�jm

)2

�2
jm



7069T‑LOC: RSSI‑based, range‑free, triangulation assisted localization for convex relaxation…

1 3

where, j ∈ � refers to those sensor nodes which can never be 
anchor nodes. m ∈ � ∪ � refers to those nodes which could 
either be anchor nodes from the very beginning, or they 
could be sensor nodes with the capability to be promoted 
to the level of anchor nodes. As shown in Fig. 2, the sensor 
nodes have been denoted by �j , whereas the anchor nodes by 
�i . Since we are dealing with spatial geometry, t1 associated 
with every node denotes that time instance does not change 
when the measurements are taken, even though the shape of 
the geometry (triangulation) may vary. This notation shall 
contrast with the temporal geometry scenario (explained in 
Sect. 3.3) whereupon some nodes shall be associated with 
t1 whereas some of the other nodes may be t2 , meaning that 
measurements were taken at different instances of time. In 
order to make above formulation into a relaxed convex form 
and more realistic, we need to introduce further constraints 
pertaining to uncertainty skew into �A.

3.2  Convex relaxation:

We take the Uncertainty measurement equation under R-O 
condition and square both sides as shown in (13):

After dropping the second order noise term, we have sim-
plified uncertainty measurement equation (14)

The cost function is then modified as shown in (15)

The cost function in (15) needs a revised constraint to 
work with the uncertainty matrix such that � = ��� , where 
� =

[
�� ��

]
 , �� =

[
U1 …UNa

]
 , �� =

[
UNa+1

…UN

]
 and the 

actual uncertainty of triangulation pairs can be expressed 
by equation (16)

We also need to relax the measured uncertainty con-
straint, since U2

�jm
≥ U2

djm
 may not always be true if the R-O 

skews and noise are of closely-matched magnitudes. Thus, 
we have equation (17) as

(12)
Udjm

=
|||Uj − Um

|||, ∀j ∈ �, m ∈ � ∪ �

U
�jm

≥ 0, ∀j ∈ �, m ∈ � ∪ �

(13)
(
U�jm

− U�jm

)2

=

(
Udjm

+ wjm

)2

, ∀j ∈ �, m ∈ � ∪ �

(14)U2
�jm

− U2
djm

+ U2
�jm

− 2U�jm
U�

jm
= 2Udjm

wjm

(15)

�A ∶ minimize
Uj,Udjm

,U�jm

∑
j∈�,m∈�∪�

(
U2

�jm
− U2

djm
+ U2

�jm
− 2U�jm

U�
jm

)2

4U2
djm
�2
jm

(16)U2
djm

=
[
�
]
j,j
+
[
�
]
m,m

− 2
[
�
]
j,m

= �jm

3.2.1  Uncertainty skew constraints:

The cost function proposed in (15) needs additional con-
straints to prevent excessive slack variables from misleading 
the optimization results. There are two parameters: the 
actual uncertainty Udjm

 and the uncertainty skew U�jm
 , which 

need to be determined separately from the MLE cost func-
tion. With the help of Geometric arrangement of nodes as 
argued in (Prateek et al. 2021), we can contain the upper 
limit ( Djm ) of the uncertainty skew as 0 ≤ U�jm

≤ Djm . In 
existing literature, uncertainty estimation has been linked to 
localization of the target through methods such as quadratic 
programming (Zhang et al. 2019), autonomous underwater 
vehicle (AUV) aided localization (Gong et al. 2018), optical 
wireless underwater networks (Saeed et al. 2020) etc. The 
issue faced in such approaches are the need for synchroniza-
tion, assistance from AUV for range-based purposes, and the 
lack of clarity regarding the joint effect of anchor nodes and 
sensor nodes on the target’s whereabouts. The present work 
shall dwell upon uncertainties arising in a range-free trian-
gulation scenario to determine the Fisher Information matrix 
that relates uncertainty to target’s coordinates in a manner 
similar to that of (Prateek and Arya 2021a).

The absolute difference of uncertainty skew can be con-
fined to |||U�jm

− U�j�m

||| ≤ Δ�jj�m , j, j� ∈ �m . Δ�ii�m should be 
the minimum acceptable non-outlier value in the Gaussian 
curve. Since the non-outliers are counted according to 
(� ± 3�) rule for Gaussian distributions, therefore to dimin-
ish the Gaussian noise, the delta value is shifted to the posi-
tive side by 3σ, to obtain

Above is the Uncertainty skew constraint for uncertainties 
in a triangulation. The resulting semidefinite programming 
problem may be stated as

Subject to

(17)U2
�jm

+ 4U
�jm
�jm ≥ [

�
]
j,j
+
[
�
]
m,m

− 2
[
�
]
j,m

(18)Δ�jj�m = min
{
2U�jj�

+ 3�jj� ,
|||U�jm

− U�j�m

||| + 3�jm

}

(19)

�S1 - SDP ∶ minimize
�

j∈�,
m∈�∪�

⎧⎪⎨⎪⎩

�
U2

�jm
− �jm + gjm − 2U�jm

U�jm

�2

�
4U2

�jm
�2
jm

�−1

⎫⎪⎬⎪⎭

(20)�jm =
[
�
]
j,j
+
[
�
]
m,m

− 2
[
�
]
j,m
,∀j ∈ �, m ∈ � ∪ �

(21)U2
�jm

+ 4U
�jm
�jm ≥ �jm ,∀j ∈ �, m ∈ � ∪ �
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where, �jm = U2
d
jm

 and gjm = U2
�
jm

 are two slack variables. The 
linear matrix inequality form enables us to further relax the 
constraints  �jm = U2

d
jm

 , gjm = U2
�
jm

 and � = ��� as shown in 
equations (22, 23). To prevent misleading results, further 
generalization is assumed, wherein uncertainties of a com-
mon triangulation are assumed to have equal uncertainty 
skews, such that

3.2.2  Temporal geometry:

Since deployed nodes could change their topology with 
time, this could be used as a location enhancement fea-
ture. Analysis involving anchor node uncertainties has 
been dealt using time of arrival estimates (Mekonnen 
and Wittneben 2014) and time difference of arrival 
approaches (Chen et al. 2020). However, in the present 
work, the prior location information may be used in con-
junction with current location information to increase the 
likelihood of estimation. A proposed MLE for temporal 
node uncertainty is given by

Subject to U(t)

djj
=
|||U

(t−1)

j
− U

(t)

j

|||, ∀ j ∈ � , t ∈ �

In order to make above formulation more feasible, we 
need to into transcend equation (26) into a relaxed convex 
form and introduce temporal uncertainty skew constraint 
into �B . Temporal skew term is the extent of deviation of 
deployed nodes with time. By introducing temporal skew 
term, we are able to compensate for the movement of 
deployed nodes in addition to the usual movement of the 
target node. As a result, localization accuracy is expected 
to improve, as shall be witnessed in the upcoming subsec-
tions. One interpretation of such a temporal skew term 
could be “noisy prior location information” versus “less 
noisy current location information”.

(22)
(

� �

�� �

)
≥ 0

(23)

(
1 Udjm

Udjm
�jm

)
≥ 0,

(
1 U�jm

U�jm
gjm

)
≥ 0, ∀j ∈ �, m ∈ � ∪ �

(24)
0 ≤ U�jm

≤ Djm,
|||U�jm

− U�j�m

||| ≤ Δ�jj�m , ∀m ∈ � ∪ �,j, j� ∈ �m

(25)U�jm
= U�j�m

= U�m
, m ∈ � ∪ � , j, j� ∈ �m

(26)�B ∶ minimize
U

(t)

j
,U

(t)

djj

∑
j∈�,t∈�

(
U(t)

�jj
− U

(t)

djj

)2

�
−2 (t)

jj

3.2.3  Convex relaxation:

We take the uncertainty measurement and square both 
sides as

or,

where, equation (28) represents the formulation of cost func-
tion �B . The above cost function needs a revised set of con-
straints to work with the uncertainty matrix such that 
�
(�∶�)

�
=

(
�
(�∶�)

�

)�

�
(�∶�)

�
 , where �(�∶�)

�
=

[
U

(1)

�
U

(2)

�
… U

(�)

�

]
 . 

The square of actual uncertainty of jth triangulation at adja-
cent time steps can be expressed by

i.e.,�(n)
jj

=

[
�
(1∶t)

j

]
(t−1),(t−1)

+

[
�
(1∶�)

j

]
t,t
− 2

[
�
(1∶�)

j

]
(t−1),t

,∀j ∈ �

3.2.4  Uncertainty skew constraint:

Definition 4 (Temporal Uncertainty Skew) Temporal uncer-
tainty skew is the extent of deviation of deployed nodes with 
time. It is denoted by U(t)

�
jj

 , where � subscript denotes skew in 
the temporal uncertainty U(t).

The cost function proposed in (26) needs additional tem-
poral constraints. There are two parameters: the actual 
uncertainty of jth triangulation at adjacent time steps (t − 1) 
and (t) , denoted by �(t)

jj
 , and the temporal uncertainty skew 

U
(t)

�
jj

 , which are interrelated with respect to intra triangulation 
uncertainty perspective, i.e.,

where, the symbol U(t−1)

j
 stands for triangulation uncertainty 

at time (t − 1) for jth sensor node, and the symbol U(t)

j
 denotes 

triangulation uncertainty at time (t) for the jth sensor node. 
These two parameters need to be determined separately from 
the MLE cost function. The linear matrix inequality forms 
of �(t)

jj
 and �(1∶�)

j
 form constraints to the cost function in (26). 

A mobility constraint M(t)

jj
 should be introduced, whose 

upper and lower bound would constrain the extent of varia-
tion of U(t)

�
jj

 . M(t)

jj
 can be applied to temporal skew term, as 

shown in (31)

(27)

(
U

�jj
− Udjj

)2

= w2
jj

⇒ w2
jj
=

(
U2

�jj
+ U2

djj
− 2U�jj

Udjj

)

(28)�B ∶ minimize
∑

�−2
jj

(
U2

�jj
+ U2

djj
− 2U

�jj
U

djj

)

(29)U2
djj

= �
(t)

jj
(let)

(30)
√

�
(t)

jj
=
|||U

(t−1)

j
− U

(t)

j

||| = U
(t)

�
jj
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The resulting semidefinite programming problem may be 
stated as

Subject to

A working example of temporal geometry may be 
explained through a special version of Fig. 2(a, b), where-
upon the major difference would be: 

{
j, t1

}
 , 
{
m, t1

}
 versus {

j, t2
}
 , 
{
m, t2

}
 which would indicate that some measure-

ments were taken at time instance t1 , while other meas-
urements were carried out at a different time instance t2 . 
Target’s coordinates are found when uncertainty term is 
integrated into the calculation of Fisher Information matrix, 
which points towards the CRLB, which points towards the 
error in positioning information (Prateek and Arya 2021a). 
This positioning error becomes the probable radius around 
the estimated position of target within which actual location 
exists (using range free method).

3.3  Performance analysis of T‑LOC method:

In this section, first a suitable detection threshold under 
nR-O condition and under R-O condition under presence 
of triangulation skew constraint condition is determined. 
Then, the CRLB is derived to highlight the improvement 
of localization accuracy from the triangulation uncertainty 
skew constraint.

3.3.1  Detection performance analysis

We wish to determine whether a given node is capable of get-
ting triangulated suitably or not. To decide on this suitability, 
we need to compute threshold to categorize nodes as being 

(31)M
(t)

jj
≤ |||U

(t−1)

j
− U

(t)

j

||| ≤ M
(t)

jj

(32)

�T−SDP ∶ minimise
�
(1∶�)

j
,�

(1∶�)

j
,�

(t)

jj
,U

(t)

jj

∑
j∈�,t∈�

(
�
(t)

jj

)−2
((

U(t)
�jj

)2

+ �
(t)

jj
− 2U(t)

�jj
U

(t)

djj

)

(33)

�
(t)

jj
=

[
�
(1∶�)

j

]
(t−1),(t−1)

+

[
�
(1∶�)

j

]
t,t
− 2

[
�
(1∶�)

j

]
(t−1),t

, ∀j ∈ �, t ∈ �

(34)tr
{
�
(1∶�)

j

}
=
∑[

�(t)
]
j,j
,∀j ∈ �, t ∈ �

(35)

⎡⎢⎢⎣
�
(1∶�)

j
�
(1∶�)

j�
�
(1∶�)

j

�T

�

⎤⎥⎥⎦
≥ 0,

�
1 U

(t)

jj

U
(t)

jj
�
(t)

jj

�
≤ 0, ∀ j ∈ �,t ∈ �

(36)M
(t)

jj
≤ U

(t)

�
jj

≤ M
(t)

jj
, ∀ j ∈ �,t ∈ �

eligible for triangulation or not. The two decision errors during 
triangulation may be stated as:

Missed Detection: Nodes which were suitable for trian-
gulation, are dismissed.

False Alarm: Nodes which are not suitable for triangula-
tion, are counted in for triangulation.

For the first kind of error, we lose vital information about 
nodes which assist in triangulation, so localization perfor-
mance is neither benefitted nor harmed. However, in the 
second kind of error, when an unsuitable node is counted 
in for triangulation, it degrades localization by providing 
wrong information about the target location estimate. The 
following derivation details on these aspects. The hypoth-
eses  H1 and  H0 for each node suitability for triangulation 
may be stated as:

H1 ∶ �jm = djm + wjm, no obstruction (� = 0)

Likelihood Ratio is written as

where, ĝjm is the estimate for djm +
∑

�=1,2

�jm(�).

f𝜂=0
(
𝛾jm;d̂jm,H1

)
 and f𝜂>0

(
𝛾jm;ĝjm,H0

)
 are likelihood of no 

obstruction and single or multiple obstructions, respectively, 
their pdfs are given by ‘ evalmax ’ number of evaluations:

Thus, equation (38) becomes

where, �2
�=0

 and 𝜎2
𝜂>0

 are the noise variances corresponding 
to the no obstructions and some obstruction cases. Upon 
taking ln both sides, we have

(37)
H0 ∶ �jm = djm +

∑
�=1,2

�jm(�)+wjm, single or dual

radio obstruction (� = {1, 2})

(38)𝛾jm =
f𝜂=0

(
𝛾jm;d̂jm,H1

)

f𝜂>0
(
𝛾jm;ĝjm,H0

) > Thjm

(39)

f𝜂=0
�
𝛾jm;d̂jm,H1

�
∝

evalmax�
eval=1

1�
2𝜋𝜎2

𝜂=0

exp

⎡
⎢⎢⎢⎣
−

�
(eval)𝛾

jm
− d̂jm

�2

2𝜎2
𝜂=0

⎤⎥⎥⎥⎦

f𝜂>0
�
𝛾jm;ĝjm,H0

�
∝

evalmax�
eval=1

1�
2𝜋𝜎2

𝜂>0

exp

⎡
⎢⎢⎢⎣
−

�
(eval)𝛾

jm
− ĝjm

�2

2𝜎2
𝜂>0

⎤⎥⎥⎥⎦

(40)

L.R
�
𝛾jm

�
=

𝜎
−evalmax

𝜂=0
exp

�
−

evalmax∑
eval=1

0.5𝜎−2
𝜂=0

�
(eval)𝛾

jm
− d̂jm

�2

�

𝜎
−evalmax

𝜂>0
exp

�
−

evalmax∑
eval=1

0.5𝜎−2
𝜂>0

�
(eval)𝛾

jm
− ĝjm

�2

� > Thjm
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Next, we set a tolerance limit for  PFA, such as 0.01 or 
0.001 etc. By following a known distribution for R-O trian-
gulations, we can determine the threshold Th′

jm
 . This distri-

bution can be computed when we iteratively find out the 
skew estimate 𝛿(t)

jm
 between measured value � (t)

jm
 and actual 

value d(t)
jm

 . Let 𝛿(t)
jm

= 𝜎−2 (t)
(
𝛾
(t)

jm
− d̂

(t)

jm

)2

 . Those iterations 
which yield small 𝛿(t)

jm
 values consistently we assign such jm 

link pair as forming nR-O triangulations. Similarly, those 
iterations which consistently yield large 𝛿(t)

jm
 values, we assign 

such jm  link pair as forming �-obstructed triangulations. It 
is observed that 𝛿(t)

jm
 closely approximates squared distribu-

tion with kurtosis factor ‘ a ’. Using its statistic table, we may 
write

Upon fixing PFA , we shall get the value of kurtosis factor 
‘ a ’, which shall yield the threshold Th′

jm
 . The conditional 

threshold for �-obstructed triangulations shall be denoted by {
Th′

jm
;U�jm

≠ 0
}

 , whereas the conditional threshold for 
unobstructed tr iangulations shall be denoted by {
Th�

jm
;U�jm

= 0
}

 , where  Th′
jm

 is threshold. The probability 
of detecting unobstructed triangulations is given by

(41)

⎧
⎪⎪⎨⎪⎪⎩

−evalmax ln 𝜎𝜂=0 −

evalmax�
eval=1

0.5𝜎−2

𝜂=0

�
(evalmax)𝛾jm − d̂jm

�2

−
�
−evalmax ln 𝜎𝜂>0

�
−

�
−

evalmax�
eval=1

0.5𝜎−2

𝜂>0

�
(evalmax)𝛾jm − ĝjm

�2

�

⎫
⎪⎪⎬⎪⎪⎭

> ln(Thjm)

or,

⎧
⎪⎪⎨⎪⎪⎩

evalmax�
eval=1

𝜎2

𝜂=0

�
(eval)𝛾jm − ĝjm

�2
−

evalmax�
eval=1

𝜎2

𝜂>0

�
(eval)𝛾jm − d̂jm

�2

⎫
⎪⎪⎬⎪⎪⎭

> Th�
jm

(42)PFA =

+∞

∫
Th�

jm

N2(a)da

(43)

PD = P
{
𝛿jm < Th�

jm
;U𝛿jm

= 0
}

or,

PD =

Th�
jm

∫
−∞

f𝜂=0

(
U𝛾jm

)
dU𝛾jm

3.3.2  Verification of estimation improvement

Two unknowns are: location of the target, and the uncer-
tainty skew associated with �-obstructed triangulations. Let 
the unknowns in the localization model be represented 
together by the vector � =

[
�T �T

]T , where location vector 
� =

[
�T
1
�T
2
… �T

N

]T  ,  u n c e r t a i n t y  s k e w  v e c t o r 
� =

[
�T

�1
�T

�2
… �T

�Na

]T
 a n d 

�
�h
=

[
U

�h1
… U

�h(h−1)
U

�h(h+1)
…U

�hN

]T
 . The measured loca-

tion vector of target is denoted by � and Δ�̃ . Where,

and, Δ�̃ =

[
Δ�̃T

1
Δ�̃T

2
… Δ�̃T

(N−Na)

]
 .

Let �̂ be the unbiased estimate of � , and the mean squared 

error be defined by E
{(

� − �̂
)(

� − �̂
)T

}
≥ inv

(
�𝜃
)
 , 

where ‘inv’ denotes inverse of a vector, and �� is the Fisher 
Information matrix (FIM) of � . �� may be written as

The log likelihood function ln f (�,Δ�̃;�) may be written 
as

where

� =

[
�T
1
�T
2
… �T

Na

]T
�h =

[
�h1 … �h(h−1) �h(h+1) … �hN

]T

(44)J𝜃 = −E𝛾 ,Δ𝜏

{
𝜕2 ln f (𝛾 ,Δ𝜏;𝜃)

𝜕𝜃𝜕𝜃T

}

(45)ln f (𝛾 ,Δ𝜏;𝜃) ∝

⎧
⎪⎪⎨⎪⎪⎩

�
j∈𝛽

�
m∈𝛼∪𝛽

0.5𝜎−2
jm

�
𝛾jm − d̃jm

�2

+
�

m∈𝛼∪𝛽

0.5𝜎−2
m
��Δ𝜏m − Δ𝜏m

��

⎫⎪⎪⎬⎪⎪⎭

(46)d̃jm =

{
djm for unobstructed triangulation

d̃jm + 𝛿jm for 𝜂 - obstructed triangulation
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The fisher information matrix for target and anchor loca-
tions is given by

w h e r e  � ∈ �N  ,  �1 ∈ �Na×Na  ,  �2 ∈ �Na×(N−Na)  , 
�3 ∈ �(N−Na)×(N−Na) ,  wi th  

(
N − Na

)
< N  ,  then the 

equivalent Fisher Information Matrix for � is given by 
�e(�) ≜ �1 − �2�

−1
3
�T
2
 , which is the direct implementation 

of Schur’s complement (Shen et al. 2010; Li et al. 2020) of 
a matrix �3 , and

The unconstrained CRLB(�) =
[
�1 − �2�

−1
3
�T
2

]−1 , where 
� =

[
xT
1
xT
2
… xT

Na

]
 . The triangulation-assisted CRLB shall be 

given by

where, � is a transformation matrix for triangulation uncer-
t a i n t y  s k e w  c o n s t r a i n t ,  d e r i v e d  b y 
U�jm

− U�j�m�
= 0, j, j� ∈ �, m,m� ∈ � ∪ � . Thus, the benefit 

of assistance from triangulation in the form of lowering of 
CRLB as compared to conventional localization without tri-
angulation skew constraints is successfully derived. A pseu-
docode for computing the Fisher Information Matrix is given 
in Appendix A for ease of understanding. A detailed descrip-
tion of triangulation-based localization in a sparsely 
deployed network has been discussed in (Prateek and Arya 
2021b).

(47)��(�) =

[
�1 �2

�T
2
�3

]

(48)

L1, L2, L3 =

⎧
⎪⎨⎪⎩

f
�
�−2
jm

�
, for unobstructed triangulations

0, for � − obstructed triangulations

(49)
CRLB

�

(�) = �−1
�

− �−1
�
�T

(
��−1

�
�T

)−1
��−1

�

≤ �−1
�

= CRLB(�)

4  Numerical results

Simulations were performed by taking node communication 
ranges with upper bound of 10.6 m and 21.15 m, separately. 
Table 3 outlines the parameters used in the localization 
model. To observe the influence of the number of anchor 
nodes on the localization performance, a square deployment 
region of 100 × 100  m2 is considered for simulation. A total 
of 100 sensors are uniformly deployed, and a set of 4, 8, 12, 
16, 20 anchor nodes are deployed in separate trials. Out of 
the 100 sensor nodes, the nodes which form triangulations, 
are identified using  l2-norm computations for three differ-
ent tolerance of triangulation uncertainties. The coordinates 
of these nodes are taken to have lower noise variance than 
those nodes which are deployed but not involved in triangu-
lation. For triangulated nodes, a two-mode Gaussian mixture 
distribution (GMD) is set, one mode for the unobstructed 
scenario, while the other mode for radio obstructed scenario. 
For 100 Monte Carlo simulation trials, each set-up is run to 
compute the RMS errors and CDF of node position estima-
tion errors.

Table 1  Parameters implemented in the localization model

Sl. No Description Value

1 Number of sensor nodes 100
2 Triangulated nodes 28,42,46 for range 10.6 m; 

58,86,96 for range 
21.15 m

3 Network area 100 × 100  m2

4 Node deployment pattern 2D-Uniform Point Process
5 Gaussian Mixture Distribution Two-mode GMD
6 Mean 1.5 (η = 0), 1.73 (η = 1,2)
7 Variance 5.22 (η = 0), 4.09 (η = 1,2)
8 Maximum diagonal length  dmax 144.1 m
9 Threshold range 10.6 m, 21.15 m
10 Number of anchor nodes 4,8,12,16,20

10.6 14.1 17.67 21.15 24.75 28.2
U<200 46 69 90 96 98 98
U<100 42 64 83 86 87 87
U<50 28 44 55 58 59 59
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Fig. 3  Identification of sensor nodes participating in triangulation for 
different tolerances of triangulation uncertainty
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To generate temporal data, a 2D uniform-point process is 
taken as the node deployment pattern, and the time duration 
for one complete cycle of uncertainty-based triangulation is 
for all the 100 sensor nodes to be scanned once. The normal-
ized mean square temporal error is then calculated by the 
ratio of error due to estimated location ( 𝛽j ) at two consecu-
tive time intervals ( t1, t2 ) and the error due to actual location 
( �j ) at two consecutive time intervals ( t1, t2).

The square root of equation (50) gives us the required 
RMS error for temporally generated data pertaining to 
triangulation uncertainty. A similar approach is taken to 
compute the normalized mean square spatial error and 
the overall triangulation uncertainty is determined by the 
combined effect of both the temporal geometry as well 
as spatial geometry as stated in equation (32). In the fol-
lowing paragraphs, we shall be seeing the effect of such 
parameters on target localization.

Figure 3. denotes the outcome of simulation carried 
out to compute the number of sensor nodes which can be 

(50)error =

((
𝛽j, t1

)
−
(
𝛽j, t2

))2
((
𝛽j, t1

)
−
(
𝛽j, t2

))2

triangulated based on the tolerance value of triangulation 
uncertainty U. Nodes which fall within the uncertainty 
value (U < 200  m2, U < 100  m2, U < 50  m2), are counted 
in to be used for cooperating the anchor nodes in locating 
the target. The communication range is varied from 10.6 m 
till 28.2 m in steps of 2.5% of the maximum length of the 
node deployment area, i.e., 141.4 m to simulate different 
levels of energy available in nodes.

Figure 4(a) depicts the RMS errors for upper threshold 
node range of 10.6 m. These are computed for Semidefinite 
programmed Gaussian Mixture Distribution (denoted by solid, 
dashed and dotted blue lines as “T-LOC (SDP GMD)”) and 
compared with weighted least squares (Wang et al. 2012; Shi 
et al. 2020) modified with Gaussian Mixture Distribution for 
both the obstructed and unobstructed cases (solid black line, 
as “WLS (GMD)”) and Cramer Rao-Lower Bound (CRLB) 
(solid red line, as “CRLB”) for the three sets of sensor nodes 
having different levels of triangulation uncertainty U less than 
200  m2, 100  m2 and 50  m2. The GM Model appears to consist-
ently approach values close to CRLB, while the performance 
of WLS Model improves with higher number of anchor node 
counts. To achieve a triangulation uncertainty of U < 50  m2 
is quite a stringent requirement, as compared to U < 100  m2 
U < 200  m2. The worse behaviour of U < 50  m2 in Fig. 4a is 
explained in two ways: in terms of detection ability, and in 
terms of estimation accuracy. The rate of success in detecting 
true triangulation depends highly upon the symmetry of such 
triangulations. Upon restricting the triangulation uncertainty 
U to be less than  50m2, the chances of left-hand inequality of 
(41) crossing the threshold is low. In terms of estimation rate 
of targets, a sparse Fisher Information matrix of equation (47) 
would indicate fewer non-zero data points of matrix. With 
U < 50  m2, the requirement is such that the resulting lower 
bound on localization error variance rises, causing poor error 
performance. In Fig. 4(a), this poor performance is seen for 
U < 50  m2 when the number of anchor nodes are too few (for 
example: 4 or 6) or too many (for example: 18 to 20). Said 
simply, U < 50  m2 offers fewer exploration options by being 
extremely selective of the number of triangulations being 
processed.

Figure 4(b) depicts the cumulative distribution func-
tion (CDF) of different localization errors for triangulation 
uncertainty values of less than 200, 100 and 50  m2. The 
Convex optimization-based GM model (denoted by “T-LOC 
(SDP GMD)”, blue coloured solid, dashed and dotted lines 
in the figure) once again exhibits consistently lower locali-
zation error values due to superior exploitation of optimum 
MLE estimates. In fact, with a tighter control on the trian-
gulation uncertainty, both the T-LOC and the WLS (denoted 
by “WLS”, red coloured solid, dashed, dotted lines in the 
figure) models demonstrate lower localization errors for, say 
U < 50 than U < 200. This agrees with our theoretical deri-
vation, according to which sensor nodes which participate 
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Fig. 4  (a) RMS error of localized node estimates for a maximum 
non-anchor communication range of 10.6 m. (b) CDF of estimation 
errors vs. anchor-sensor distance for inter-sensor communication 
range up to 10.6 m
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in triangulations having smaller area and comparable inner 
angles (neither too obtuse, nor too acute) of the apex node, 
have higher accuracy of localization.

A similar pattern is observed for Fig. 5(a) wherein the 
only change is the increase of upper threshold of node com-
munication range from 10.6 m in Fig. 4(a) to 21.15 m in 
Fig. 5(a). The effect observed is that the RMS errors are 
higher for the proposed T-LOC model with range 21.15 m 
as compared to the proposed T-LOC model with range 
10.6 m. In this graph, we observe that once again the best 
performance in terms of node localization errors is found 
for U < 50, which agrees with the theoretical computations.

Figure 5(b) depicts the cumulative performance of locali-
zation algorithms for node range of 21.15 m. The proposed 
semidefinite programmed model consistently demonstrates 
lower localization errors than WLS technique. Moreover, the 
U <  50m2 constraint has the least cumulative error, which is 
expected, given superior node symmetry.

Figure 6 represents a realistic scenario under which numer-
ical data has been generated by equipping the campus of 
National Institute of Technology Patna with anchor nodes and 
target nodes at various strategic positions. To interpret the phys-
ical meaning of the scenario, a satellite image of the map of the 

designated region has been marked with green stars denoting 
anchor nodes and red circles denoting target nodes. The strate-
gic locations of the target nodes have been denoted by points A, 
B, C and D, respectively. To localize these targets, the anchor 
nodes are located at six places, as shown in Fig. 6(a). To sim-
plify the scenario, we pick the GPS-coordinates of the sensor 
and anchor nodes as the actual-measurement, while the T-LOC 
method shall compute the estimated locations of the targets 
with the help from the anchor nodes for an area of 1500 × 850 
 m2. The actual location of the anchor nodes is taken as node 1 
(505, 677), node 2 (59, 423), node 3 (451, 155), node 4 (1421, 
23), node 5 (1435, 807) and node 6 (827, 765).

For evaluation purpose of the proposed method, one target 
node is taken at a time. Based on the communication range 
of the triangulating nodes, the number of feasible triangula-
tions are computed using the range skew model of equation 
(4, 6). Then, the triangulation uncertainty determined by 
intra-triangulation measurement eq (7) and inter-triangula-
tion measurement equation (9) help to ascertain which two 
anchor nodes are the most suitable to triangulate the target at 
a time, the localization error is then worked out through the 
Fisher’s Information matrix for three configurations of the 
upper limit of triangulation uncertainty U . The case U < 50 
 m2 considers either very short ranged triangulations (ones 
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with short sides). The case may be extended to U < 100 
 m2 and U < 200  m2 in a similar fashion. In every case, the 
localization performance heavily depends upon triangulation 
geometry, which is evident from Fig. 6(b). For reference, 
the results have been compared with WLS for three sets of 
Gaussian Mixture Distributions (Wang et al. 2012; Shi et al. 
2020), representing unobstructed Radio link as well as Radio 
obstructed paths to varying degrees due to measurements 
being taken at different times of the day.

5  Conclusion

A convex optimization-based localization approach was pro-
posed in this paper. The uniqueness of this approach lay in 
intelligently identifying the nodes which triangulate a target 
better than the other sensor nodes. Once the semidefinite 
model was relaxed into a convex optimization model using 

triangulation uncertainty skew parameter, it exhibited a gain 
in localization accuracy compared to conventional methods.

Further conclusions could be made regarding the node 
communication ranges, which played a critical role in iden-
tifying triangulation uncertainties: the longer the range, the 
higher the chance of formation of larger triangulation area, the 
higher the chance of error in localization of the sensor nodes. 
At the same time, localization error could also be worsened by 
formation of triangulations with highly obtuse or acute inter-
nal angles, especially the apex node. A qualitative summariza-
tion can be made in Table 1. Future directions shall include 
analysis of errors introduced during the conversion of actual 
uncertainty and uncertainty skew to target’s coordinates.

Appendix A

See Table 3.

Table 2  Summary of proposed model

Sl. No Description Expected Localization performance using proposed method

1 High node communication range Sub-optimal
2 Restricted communication range Optimal
3 Symmetric triangulation with comparable internal angles and 

comparable side lengths
Optimal

4 Obtuse/Acute triangulation Poor
5 Large triangulation area Sub-optimal
6 Advantage of proposed method over non-convex methods Requires a smaller number of anchor nodes to achieve 

comparable accuracy
7 Computational cost for Uncertainty Skew determination Nominal
8 R-O Scenario Optimal

Table 3  Pseudocode of fisher 
information matrix Inputs:

TargetIndex: target ID and target coordinates
AnchorIndex: ID and coordinates of the anchor nodes
Monte Carlo Integration (MCI)
Output:
Fisher Information Matrix (I): Elements of I as the negative expectation of the second order derivative of 

the log likelihood function with respect to the unknown parameter
Initialize I as empty
For first dimension
For second dimension
 Term1 = First dimensional distance between TargetIndex and AnchorIndex
 Term2 = Second dimensional distance between TargetIndex and AnchorIndex

Numerator = Product of Term1 and Term2
 Term3 = sum of squares of distance between all targets and anchor node
 Denominator = square of Term3

Fill up elements of I:
 Term4 = sum of all (Numerator/Denominator) values
  Ielement = product of (MCI) and Term4

End
End
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