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Abstract
Embedding sustainability in a distribution system solves major concerns appearing during wielding a distribution process. 
Therefore, this study explores a novel integrated model by developing sustainability in a multi-objective multi-item multi-
choice step fixed-charge solid transportation problem under an intuitionistic fuzzy environment by considering economic, 
customers’ satisfaction and social aspects. Uncertainty in the parameters of the proposed model is handled by treating those 
as triangular intuitionistic fuzzy numbers. A new ranking concept with the help of total integral values is developed to 
defuzzify the above mentioned uncertainty. Apart from fixed-charge, an extra charge is calculated conjointly when the load 
is bigger than a particular quantity of product during shipping the commodities by different transportation modes. Herein, 
two different equivalent models are presented from the intuitionistic fuzzy model by utilizing the ranking concept and the 
possibility measure, respectively, thereafter these models are further transformed into fully deterministic models by con-
verting the multi-choice parameter into a single choice using binary variables. A new method namely, intuitionistic fuzzy 
game-theoretic method is originated to solve the deterministic models, and then we compare the solutions with another 
extended method namely, augmented Tchebycheff method for showing the superiority of the new method. The competency 
of our findings is clarified with an industrial-based application example. Finally, a comparison study is drawn among the 
other existing techniques. Lastly, managerial implications, conclusions and future scopes are depicted.

Keywords Sustainability · Step fixed-charge transportation problem · Intuitionistic fuzzy set and possibility measure · 
Multi-choice programming · Intuitionistic fuzzy game theory · Augmented Tchebycheff method

List of symbols
Z̃T
�
  Objective function with multi-choice and intuition-

istic fuzzy parameters (� = 1, 2, 3),
Z

′

�
  Objective function with multi-choice and crisp 

parameters (� = 1, 2, 3),
Z�  Fully deterministic objective function (� = 1, 2, 3),
M  Number of sources or plants, i is the index of 

sources,
N  Number of destinations or demand centers, j is the 

index of destinations,

V  Number of conveyances (transportation modes), k 
is the index of conveyances,

P  Number of products or items need to be sent, p is 
the index of products,

Decision variables
x
p

ijk
  Amount of pth product to be shipped from ith 

source to jth destination by kth conveyance,
y
p

ijk
  Binary variable that assumes the value ‘1’ if the ith 

source is engaged else ‘0’,
�
p

ijk
  Binary variable that grabs the value ‘1’ if ith source 

is embarked and amount of transporting commodi-
ties are larger than a fixed amount otherwise ‘0’,

wtij  Labour available for transporting products from ith 
source to jth destination,

wli  Labour available for loading products at ith source,
wuj  Labour available for unloading products at jth 

destination,
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Parameters
c̃
(p)T

ijk
  Intuitionistic fuzzy and multi-choice transportation 

costs for sending unit quantity of pth product from 
ith source to jth destination by kth conveyance,

c
(p)

ijk
  Transportation cost in crisp and single choice 

environments for sending unit quantity of pth 
product from ith source to jth destination by kth 
conveyance,

l̃t
T

ij
  Intuitionistic fuzzy labour cost for transporting 

products from ith source to jth destination,
l̃l
T

i
  Intuitionistic fuzzy labour cost at ith source,

l̃u
T

j
  Intuitionistic fuzzy labour cost at jth destination,

m̃c
T

k
  Intuitionistic fuzzy maintenance cost of kth convey-

ance for per unit distance,
õl

T

i
  Intuitionistic fuzzy operational cost at ith source for 

per unit product,
õu

T

j
  Intuitionistic fuzzy operational cost at jth destina-

tion for per unit product,
dij  Distance between ith source and jth destination,
m̃t

T

ij
  Intuitionistic fuzzy manpower needed for trans-

porting one unit product from ith source to jth 
destination,

m̃l
T

i
  Intuitionistic fuzzy manpower needed for loading 

one unit product at ith source,
m̃u

T

j
  Intuitionistic fuzzy manpower needed for unloading 

one unit product at jth destination,
f̃
(p)T

ijk
  Intuitionistic fuzzy fixed-cost associated with pth 

product, ith source, jth destination, and kth 
conveyance,

g̃
(p)T

ijk
  Intuitionistic fuzzy step fixed-cost associated with 

pth product, ith source, jth destination, and kth 
conveyance,

t̃
(p)T

ijk
  Intuitionistic fuzzy time taken by kth conveyance 

for transporting products from ith source to jth 
destination,

l̃T
i
  Intuitionistic fuzzy loading time for per unit of 

products at ith source,
ũl

T

i
  Intuitionistic fuzzy unloading time for per unit of 

products at jth destination,
s̃t
T

ij
  New job(s) created for shipping products from ith 

source to jth destination,
s̃l
T

i
  New job(s) created for loading products at ith 

source,
s̃u

T

j
  New job(s) created for unloading products at jth 

destination,
ã
(p)T

i
  Intuitionistic fuzzy supply of pth product at source 

i,
b̃
(p)T

j
  Intuitionistic fuzzy demand of pth product at 

destination j,
ek  Crisp capacity of kth conveyance,
A  Fixed amount of load in conveyances.

1 Introduction

Today, it is not hidden how the efficiency of a supply 
chain can affect the reputation of a company, also due 
to the increment of social and environmental regula-
tions/issues, only considering economic aspects are not 
enough to answer the questions arise in real-world indus-
trial loopholes. Consequently, network design becomes 
more complex than previous. However, for resolving the 
environmental issues, the green network or green supply 
chain becomes a warm topic of research trends nowadays 
(Das and Roy 2019; Midya et al. 2021). Exempting from 
the customary research trends, we explore this study by 
including social aspects in the transportation problem 
(TP), which is a well-known and important network design 
problem and can be solved as a linear programming prob-
lem. There is a few kinds of researches, in which social 
aspects are placed in a TP. Among these, Mehlawat et al. 
(2019) planned a three-stage fixed-charge multi-objective 
TP (MOTP) with economical, environmental, and social 
aspects. Gupta et al. (2018) formulated AHP-DEA in a 
multi-objective sustainable TP in the mining industry. Ini-
tially from the time of the introduction of TP by Hitchcock 
(1941), it had been expressed as a two-dimensional prob-
lem i.e., it has two sets, a set of sources and a set of desti-
nations until it was extended to solid transportation prob-
lem (STP) by Shell (1955) by attaching a new set, set of 
conveyances. Then it turns into three-dimensional TP and 
gets more closer to real-world applications. After that, sev-
eral research works were made on different types of STP. 
Chen et al. (2019) presented an STP with entropy function 
in uncertain environment. Again Chen et al. (2017) solved 
an STP under interval and fuzzy atmosphere.

Fixed-charge transportation problem (FTP) is another 
conventional notable variation of TP which is created by 
Hirsch and Dantzig (1968), in which, except variable trans-
portation cost an extra cost namely, fixed-cost (can be 
occurred as toll tax, rail-way tax, landing tax, fuel cost, etc.) 
is considered. Again in the time of transportation through a 
specific route, often another cost apart from fixed-charge has 
to be paid due to overload of any conveyance (larger than a 
destined amount). As a result, an extended version of TP is 
revealed and FTP became step fixed-charge transportation 
problem (SFTP) (Kowalski and Lev 2008), which promotes 
the cost function of FTP into a higher stair and gets STP 
more closer to the real-world applications. Due to the pres-
ence of very few researches on SFTP in the literature, and its 
practical and realistic nature, we take into account step-fixed 
charge along with fixed-charge in the STP model. Then the 
problem turns into step fixed-charge STP (SFSTP).

In real-life situations, generally, two or multiple prod-
ucts are produced for getting more profit at the plants of 
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a company, and those products are shipped to different 
destinations through various transportation modes. Due to 
this reason, we incur multiple items in the SFSTP, and that 
extends SFSTP into a multi-item SFSTP (MSFSTP). Sev-
eral researchers studied TP with multiple items such as Liu 
et al. (2018) presented a single objective multi-item fixed-
charge STP with uncertain parameters. Majumder et al. 
(2019) studied a multi-objective solid FTP in an uncertain 
environment with multiple items and budget constraints. 
Moreover, in practical problems, two- or multi-criteria are 
more preferable than a single criterion to handle different 
conflicting situations. To accommodate these criteria, mul-
tiple objective functions are treated simultaneously in an 
SFTP. Nowadays, the bulk of TP is constructed with mul-
tiple objectives instead of a single objective (Biswas et al. 
2019; Sifaoui and Aïder 2019; Singh and Yadav 2018). 
Hence, to tackle such types of objective functions in indus-
trial transporting systems, we further modify MSFSTP to 
multi-objective MSFSTP (M2SFSTP) by considering three 
objective functions.

Because of market competition, prices up-down, multiple 
routes of transportation, etc. such situations arise when tak-
ing transportation cost as multi-choice varieties would be 
a better option than a single choice. Therefore, to adequate 
multi-choice criteria of the parameters in transporting sys-
tems, we extend M 2SFSTP to multi-objective multi-item 
multi-choice SFSTP (M3SFSTP), in which multi-choice 
parameter is converted into single choice parameter with 
the help of binary variables (Maity and Roy 2016).

In the recent decades, a rapid advancement has been 
made due to handle uncertainty in the network design. 
Some of those can be categorized as uncertain (Chen 
et al. 2019), intuitionistic fuzzy (Ghosh et al. 2021), neu-
trosophic (Rizk-Allah et al. 2018), interval (Biswas et al. 
2019), uncertain-interval (Sifaoui and Aïder 2019), etc. 
During the period of information assortment, the rely-
ing components of M 3SFSTP framework contain a lot 
of ambiguities or vagueness due to several uncontrolla-
ble factors such as incompleteness or lack of evidence, 
statistical analysis, data inference, etc., also, treating 
the parameters as the precise or wrong estimation may 
lead to higher losses or may even fail the whole opera-
tion. Hence, to tackle such situations, many researchers 
included fuzzy set (FS) in TP (El-Washed and Lee 2006), 
which was invented by Zadeh (1965). But FS only deals 
with the satisfaction case of fuzziness, and the dissatisfac-
tion case is out of control for FS. Regarding this concern, 
Atanassov (1986) originated an advanced version of FS, 
Intuitionistic fuzzy set (IFS), which is symbolized by the 
membership as well as non-membership degree in such a 
manner that the sum of both values lies between zero and 
one, and can tackle the aforementioned uncertainty suit-
ably. Some of the previous researchers placed IFS in their 

formulated TP such as Ebrahimnejad and Verdegay (2018), 
Midya et al. (2021), Roy and Midya (2019). Again, Singh 
and Yadav (2018) solved multi-objective programming 
problems in intuitionistic fuzzy environment by optimis-
tic, pessimistic and mixed approaches. Among the various 
form of intuitionistic fuzzy numbers (IFNs), triangular or 
trapezoidal IFN is commonly used to handle vagueness. 
However, in the view of the previous researches, we have 
come to know that triangular IFN (TIFN) is very simple 
and flexible to provide adequate information. Based on 
these, TIFN is involved to overcome the ill-knowingness 
of M 3SFSTP model suitably. Although we cannot solve 
the intuitionistic fuzzy M 3SFSTP model directly, and to 
solve we have to convert it into an equivalent deterministic 
one. For this purpose, the bulk of the researchers utilized 
ranking or expected value, and a few of them used dif-
ferent chance measures such as possibility, necessity and 
credibility measures of IFN. Several procedures which are 
available in the literature can be followed to extract the 
crisp value of IFN such as using the ratio of value and 
ambiguity indices (Li 2010a), using (�, �)-cut (Nayagam 
et al. 2016), using centroid value (Roy and Midya 2019). 
Again, Midya et al. (2021) incorporated the expected value 
of IFN to form the deterministic STP. In contrast, we pre-
sent two equivalent deterministic models corresponding 
to the intuitionistic fuzzy M 3SFSTP model, out of those, 
one is obtained by applying a new ranking concept and 
another one is obtained by utilizing the possibility meas-
ure of TIFN. Moreover, the ranking concept is introduced 
with the help of integral values, and it is based on DM’s 
optimistic and pessimistic viewpoints Liou and Wang 
(1992). The left and right integral values of the member-
ship function reflect the pessimistic and optimistic view-
point respectively, and for the non-membership function is 
the opposite one. The total integral values can be obtained 
by taking a convex combination of left and right integrals 
by indexes of optimisms. We define the convex combina-
tion of the total integral values of membership and non-
membership function through another index of optimism 
as the ranking index.

The main target of this study is to reduce logistic costs 
and transportation time, and to increase employments. For 
this purpose, we examine a lot of related previous researches 
and locate the actual research gaps from there. Thenceforth, 
an extensive comparison of several features between the pro-
posed study and preceding related studies in this direction 
is exhibited in Table 1. The following gaps of the previous 
research works are traced through this research: 

(1)  Considering the existing works on sustainability, most 
of the previous studies took into account either only 
economical (Biswas et al. 2019; Roy and Midya 2019) 
or economical and environmental aspects (Midya et al. 
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2021), however, this study extends the literature by 
involving social aspects along with economical and 
customers’ satisfaction aspects in the transportation 
network.

(2)  Comparing with extent studies on optimization prob-
lem with IFN, many researchers (Ebrahimnejad and 
Verdegay 2018; Singh and Yadav 2016) generally for-
mulated optimization problems with a single objective, 
which are unable to define the real-world conflicting 
state; also by ignoring other components such as mul-
tiple items, fixed or step fixed-charge, their models 
brought more dissatisfaction. On the other side, the 
proposed study is presented with multiple objectives 
regarding the above-mentioned components.

(3)  Contrasting with the available literature on the eco-
nomical objective function, a good number of previ-
ous researches are built either without incorporating 
any extra charges except transportation cost (Chen 
et al. 2019) or only incorporating fixed-charge (Liu 
et al. 2018; Sifaoui and Aïder 2019). Notwithstanding, 
our proposed study is a composition of both fixed and 
step-fixed, and labour cost. Furthermore, to the best of 
our knowledge, a large number of previous researchers 
included the labour cost in fixed-charge, however, due 
to fluctuation of the workload with the market condi-
tions, the number of requisite labours in any organiza-
tion is variable. So, we treat the total labour cost as a 
variable in our study.

(4)  Collating with previous studies on handling uncer-
tainty in the network design, researchers like Liu et al. 
(2018), Majumder et al. (2019) used uncertain parame-
ters in FTP, however, uncertain parameters are suitable 
only when undesirable incidents occurred such as natu-
ral disaster, which is inconvenient in daily life trans-
porting systems. Also, Kowalski and Lev (2008) and 
Mehlawat et al. (2019) considered precise parameters 
which are inconvenient as well. Again, for stochastic 
parameters in MOTP, a priori predictable periodicity 
or posterior frequency distribution is required. Hence-
forth, we overcome these drawbacks by placing TIFN 
in our proposed model.

(5)  Choosing the subsisting researches on the number 
of transportation modes, many researchers (Das and 
Roy 2019; Gupta et al. 2018) addressed only one kind 
of conveyance. However, due to the magnificent geo-
graphical dissemination, considering heterogeneous 
conveyances are another elementary and vital charac-
teristic of TP as it resists late delivery, and reduces 
time and extra expenses.

(6)  Comparing with subsisting researches on solving pro-
cedures, intuitionistic fuzzy programming (IFP) was 
used by Roy and Midya (2019) and global criterion 
method (GCM) was used by Majumder et al. (2019) to 

solve a multi-objective optimization problem (MOOP), 
however, our proposed methods deliver better efficient 
solutions than two mentioned methods in fewer CPU 
times (according to Tables 11 and 12). Again, Mehla-
wat et al. (2019) used the �-constraint method which is 
more laborious and time-consuming than our proposed 
methods. Furthermore, Chen et al. (2017) applied goal 
programming (GP) for solving MOTP, but, in GP it is 
difficult to find a suitable efficient solution by setting 
proper goals, and if the goals are not set properly, it 
generates a worse solution. On contrary, such difficul-
ties need not appear in our proposed methods.

 
To fill in the gaps in a concrete way, a novel non-linear 

multi-objective mixed integer programming (MOMIP) model 
describing a sustainable M 3SFSTP is offered under a two-
fold (multi-choice and TIFN) uncertainty. The main goals 
of the network managers usually are gaining more profit 
by reducing various expenses (economical aspects), hold-
ing a good image to the customers (customers’ satisfaction 
aspects), maintaining greenness during distribution (envi-
ronmental effects), maintaining a nice public image (social 
impacts) etc. Out of these, economic aspects gain more 
attention of the managers, indeed, any company with an 
economically inefficient network cannot survive very long, 
and also cannot reflect other aspects of the network. Again, 
customers’ satisfaction (in time or early delivery, good qual-
ity of products, discounts, etc.) helps the company to keep 
the customers and to maintain good relation with customers 
for long-term. On the other hand, social impacts help the 
company to achieve competitive advantages in the global 
market by obtaining a nice public image. Based on this con-
sideration, we design the M 3SFSTP model with economi-
cal, customers’ satisfaction, and social objective functions. 
Moreover, to acquire efficient solutions by solving the deter-
ministic models, we propose two solving methods, intuition-
istic fuzzy game-theoretic method (IFGTM) and augmented 
Tchebycheff method (ATM). Out of which, IFGTM is origi-
nated for the first time in research, and ATM is an extension 
of the weighted Tchebycheff method. The framework of the 
proposed research work is depicted in Fig. 1. Hence, the 
main findings, which pronounce the novelties of the paper, 
are briefed as follows: 

(i)  A unique non-linear MOMIP model is formulated, 
which describes an intuitionistic fuzzy M 3SFSTP in 
which transportation cost is taken as multi-choice 
TIFN and other parameters are chosen as TIFN.

(ii)  The formulation delivers the pieces of information 
regarding the required labours and newly created jobs, 
also it treats the labour cost as a variable, which is a 
novel achievement in this field.
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(iii)  The overall distribution cost including fixed, step-
fixed, and labour cost (economical), transportation 
together with loading and unloading time (customers’ 
satisfaction), and newly created jobs during transpor-
tation, loading and unloading (social) are considered 
simultaneously.

(iv)  A new ranking concept and possibility measure of 
TIFN are utilized to offer two equivalent crisp but 
multi-choice models, and then the fully deterministic 
models are put forward through turning the multi-
choice parameter into a single choice with the help of 
binary variables.

(v)  Two solving methods namely IFGTM and ATM, are 
described to deliver the best efficient solution of M 3
SFSTP by presenting an industrial practical problem.

(vi)  A comparative study is discussed among the proposed 
and existing solving techniques by calculating the 
degrees of closeness.

 The paper is further demonstrated in the following way. The 
motivation for this investigation is described in Sect. 2. The 
basic ideas and the defuzzification technique of TIFN are 
discussed in Sect. 3. The description of the problem together 
with the related model and its deterministic versions are 

Fig. 1  The framework of the 
proposed research work
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addressed in Sect. 4. A detailed discussion of the solving 
techniques is established in Sect. 5. Computational experi-
ence with a practical industrial example is shared in Sect. 6 
to assess the efficiency of the proposed construction and 
solving techniques. Thereafter, a comparative study for some 
particular cases is explored in Sect. 7. Important managerial 
implications are described in Sect. 8. Finally, the paper is 
ended with Sect. 9 by describing conclusions and several 
future scopes of this study.

2  Motivation for this investigation

With the increment of population, the unemployment 
rate has been increased in the recent decade, which raises 
immense issues in front of developing countries like India, 
Pakistan etc. As a result, governments as well as organi-
zations around the world have been undergoing pressure 
concerning this fact. To resolve this issue, it is essential 
to change the traditional logistic management and to bring 
forward the social impacts in the transportation system, as 
TP is one of the widest connecting networks in the world. 
Based on this fact, exempting from conventional research 
tendencies, we introduce a transportation network with 
social impacts by maximizing employments.

In practical industrial applications, DMs usually feel 
hesitant due to the absence of previous experiences or some 
unpredictable incidents to take precise decisions during 
allotting the components of an industrial distribution frame-
work. Therefore, DMs choose the values of the parameters 
of a logistic problem depending on some professional or 
experts’ opinions which are generally interval value, linguis-
tic term, uncertain, stochastic, and others. Thus indetermi-
nacy occurs in the decision making process. For this reason, 

TIFN is considered here to tackle the uncertainty as well 
as the hesitancy obtained by the data. But, why we involve 
TIFN in the network system? To answer this question, we 
discuss the following linguistic examples.

Example 2.1 The unit shipping cost along a certain road is 
Rupees 10.

Example 2.2 The unit shipping cost along a certain road is 
around Rupees 10.

Example 2.3 The unit shipping cost along a certain road is 
nearly Rupees 10 and lies between Rupees 7 and Rupees 
12. Also, it is not usually less than Rupees 7, if less, it 
is never less than Rupees 6, and not usually greater than 
Rupees 12, if increases, it is never greater than Rupees 14.

In Example 2.1, the mentioned unit transportation cost 
along a certain road is exactly Rupees 10, and it never 
changes whatever the situation arises. So, this is the deter-
ministic value of the mentioned parameter. However, in a 
practical situation, transportation cost depends on several 
factors such as fuel consumption, nature and friction of the 
road, fuel cost, previous experiences, statistical data, etc., 
which are unstable and fluctuate depending on natural and 
unnatural causes. Therefore, it is inconvenient to always con-
sider the mentioned parameter is exactly Rupees 10.

Example 2.2 describes that the unit transportation cost 
along a certain road is not exactly Rupees 10, it is more or 
less Rupees 10. Thus, uncertainty arises in the parameter, 
and so it can be handled by treating it as a fuzzy number 
defining a membership function for an interval containing 
10. But, the other information, i.e., the inadmissible values 
are still unknown from this example.

Table 1  Some noticeable research works about miscellaneous kind of TP

Ec. economical, En. environmental, Cs. customers’ satisfaction, Sc. social

References Man-power STP FTP SFTP Item Choice Objective Sustainability Uncertainty

 Biswas et al. (2019) –
√ √

– Single Single Multi Ec., Cs. Crisp and Interval
 Chen et al. (2017) –

√
– – Single Single Bi Ec., Cs. Uncertain

 Das and Roy (2019) – –
√

– Single Single Multi Ec., En., Cs. Neutrosophic
 Ebrahimnejad and Verdegay (2018) – – – – Single Single Single Ec. Intuitionistic fuzzy
 Ghosh et al. (2021) –

√ √
– Single Single Multi Ec., Cs. Intuitionistic fuzzy

 Liu et al. (2018) –
√ √

– Multi Single Single Ec. Uncertain
 Majumder et al. (2019) –

√ √
– Multi Single Multi Ec., Cs. Uncertain

 Mehlawat et al. (2019) –
√ √

– Single Single Multi Ec., En., Sc. Crisp
 Midya et al. (2021) –

√ √
– Single Single Multi Ec., En., Cs. Intuitionistic fuzzy

 Sifaoui and Aïder (2019) –
√ √

– Multi Single Multi Ec., Cs. Uncertain-Interval
Proposed model

√ √ √ √
Multi Multi Multi Ec., Cs., Sc. Intuitionistic Fuzzy
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On the other hand, Example 2.3 delivers more information 
about the value of the unit transportation cost along a definite 
road. From those information, one can express the mentioned 
parameter suitably by defining it as a TIFN using any value 
between 7 and 12 by taking different grades of membership 
function and any value between 6 and 14 by taking different 
grades of non-membership function. Thus, the unit transporta-
tion cost along a certain road can be delineated as a TIFN, 
c̃
p

ijk
= (7, 10, 12;6, 10, 14). Based on this, other parameters 

(except capacity of conveyance) are also treated as TIFNs.
Furthermore, when transportation takes place through dif-

ferent routes instead of one particular route, multiple choices 
of unit transportation cost may be available due to different 
road conditions, traffic, accident, road blockage, etc., rather 
than a single choice to choose the best option. Then, the unit 
transportation cost for delivering products from sources to des-
tinations becomes multi-choice TIFNs, {c̃(p)(1)

ijk
, c̃

(p)(2)

ijk
,… , c̃

(p)(r)

ijk
}. 

For this motivation, we take into consideration the unit trans-
portation cost as multi-choice TIFN and the remaining param-
eters (except capacity of conveyance) as TIFN.

3  Preliminaries

In this section, we present some basic definitions, remarks and 
theorems on intuitionistic fuzzy sets and intuitionistic fuzzy 
numbers.

Definition 3.1 (Atanassov 1986) An intuitionistic fuzzy 
set Ã in a universal discourse X is a set of ordered tri-
plet, Ã = {⟨x,𝜇Ã(x), 𝜈ÃI (x)⟩ ∶ x ∈ X} , where the func-
tions 𝜇Ã(x) ∶ X → [0, 1] and 𝜈Ã(x) ∶ X → [0, 1] repre-
sent the membership and non-membership degrees of 
x in Ã respectively, and are referred to as membership 
and non-membership grades of Ã respectively such that 
0 ⩽ 𝜇ÃI (x) + 𝜈Ã(x) ⩽ 1 , ∀ x in X. For every intuitionistic 
fuzzy set Ã = {⟨x,𝜇ÃI (x), 𝜈Ã(x)⟩ ∶ x ∈ X} in X, the value 
𝜋ÃI (x) = 1 − (𝜇Ã(x) + 𝜈Ã(x)) is called the degree of hesitancy 
or degree of uncertainty or degree of indeterminacy of x 
in Ã . If for all x ∈ X,𝜇Ã(x) + 𝜈Ã(x) = 1 , then Ã reduces to 
fuzzy set Ã in X.

Definition 3.2 (Roy and Midya 2019) A TIFN is a special 
kind of IFN, represented as ÃT = (a1, a2, a3;a

�
1
, a2, a

�
3
) , where 

a′
1
≤ a1 ≤ a2 ≤ a3 ≤ a′

3
 (see Fig. 2), whose membership and 

non-membership functions are defined respectively as follows:

If a1 = a2 = a3 = a�
1
= a�

3
= a then ̃AT = (a1, a2, a3;a

�
1
, a2, a

�
3
) 

represents a real number a.

Definition 3.3 Let ÃT = (a1, a2, a3;a
�

1
, a2, a

�

3
) be TIFN with 

membership and non-membership functions defined in Eq. 
(1), then the possibility measure for membership and non-
membership function are defined in Eq. (2).

Note: Pos(�AT ≥ x) = 1 − Pos(�AT < x).

A r i t h m e t i c  o p e r a t i o n  o f  T I F N s :  L e t 
ÃT = (a1, a2, a3;a

�
1
, a2, a

�
3
) and B̃T = (b1, b2, b3;b

�
1
, b2, b

�
3
) 

are two TIFNs then the arithmetic operations between them 
are given below: 

(i)  �AT ⊕ �BT = (a1 + b1, a2 + b2, a3 + b3;a
�
1

+b�
1
, a2 + b2, a

�

3
+ b

�

3
).

(1)

�
ÃT (x) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

f L
�
ÃT
(x) =

x − a1

a2 − a1
, a1 ≤ x ≤ a2,

1, x = a2,

f R
ÃT
(x) =

a3 − x

a3 − a2
, a2 ≤ x ≤ a3,

0, otherwise .

�
ÃT (x) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

gL
�
ÃT
(x) =

a2 − x

a2 − a�
1

, a�
1
≤ x ≤ a2,

0, x = a2,

gR
�
ÃT
(x) =

x − a2

a�
3
− a2

, a2 ≤ x ≤ a�
3
,

1, otherwise .

(2)

Pos�(Ã
T ≤ x) =

⎧
⎪
⎨
⎪⎩

1, x ≥ a2,
x − a1

a2 − a1
, a1 ≤ x ≤ a2,

0, x ≤ a1.

Pos�(Ã
T ≤ x) =

⎧
⎪
⎨
⎪⎩

0, x ≥ a2,
a2 − x

a2 − a
�

1

, a
�

1
≤ x ≤ a2,

1, x ≤ a
�

1
.

Fig. 2  Triangular intuitionistic fuzzy number
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(ii)  �AT ⊖ �BT = (a1 − b3, a2 − b2, a3 − b1;

a
�
1
− b

�
3
, a2 − b2, a

�

3
− b

�

1
)

.

(iii)  Let p is a real number then,

  If p > 0 , pÃT = (pa1, pa2, pa3;pa
�

3
, pa2, pa

�

1
),

  If p < 0 , pÃT = (pa3, pa2, pa1;pa
�

3
, pa2, pa

�

1
).

(iv)  �AT ⊗ �BT = (𝜌1, 𝜌2, 𝜌3;𝜌
�

1
, 𝜌2, 𝜌

�

3
) , where,

  �1 = min{a1b1, a1b3, a3b1, a3b3}, �
�

1
= min{a

�

1
b

�

1
,

a
�

1
b

�

3
, a

�

3
b

�

1
, a

�

3
b

�

3
}, �2 = a2b2.

  �3 = max{a1b1, a1b3, a3b1, a3b3}, �
�

3

= max{a
�

1
b

�

1
, a

�

1
b

�

3
, a

�

3
b

�

1
, a

�

3
b

�

3
}.

 Here ⊕ , ⊖ and ⊗ are intuitionistic fuzzy addition, subtrac-
tion and multiplication respectively.

3.1  Defuzzification of TIFN

Literature survey reveals that there exist several methods 
for defuzzification of TIFN. However, in this subsection, we 
introduce a new methodology for defuzzification of TIFN 
by its total integral values, which is described as follows:

Methodology: Let ÃT = (a1, a2, a3;a
�
1
, a2, a

�
3
) be a TIFN 

then its left and right membership and non-membership 
functions are given respectively in Eq. (1). The inverse func-
tions are given by, hL

�
ÃT
(y) = a1 + (a2 − a1)y and hR

�
ÃT
(y)

= a3 − (a3 − a2)y respectively (for membership function) 
and kL

�
ÃT
(y) = a2 − (a2 − a

�

1
)y and kR

�
ÃT
(y) = a2 + (a

�

3
− a2)y 

respectively (for non-membership function) (see Fig. 3). 
Then left and right integrals of membership function are 

given by, IL
�
= ∫

1

0

hL
�
ÃT
(y)dy =

a1 + a2

2
 and IR

�
= ∫

1

0

hR
�
ÃT
(y)dy

=
a2 + a3

2
 respectively. Then the total integral value of mem-

bership function is given by, I� = �

(
a1 + a2

2

)
+ (1 − �)

(
a2 + a3

2

)
 , (0 ≤ � ≤ 1). Similarly left, right and total inte-

gral values of non-membership function are given by, 

IL
�
=

a
�

1
+ a2

2
 , IR

�
=

a2 + a
�

3

2
 and I� = �

(
a

�

1
+ a2

2

)
+ (1 − �)

(
a2 + a

�

3

2

)
 , (0 ≤ � ≤ 1) respectively.

Now rank ing  index  o f  ÃT  i s  g iven  by, 
ℜ(ÃT ) = �I� + (1 − �)I� , (0 ≤ �, �, � ≤ 1), where �, � and � 
are the degrees of optimism of DM. When �, � and � all are 

equal to 1
2

 , then ℜ(ÃT ) =
a1 + a3 + 4a2 + a

�

1
+ a

�

3

8
.

Theorem 3.1 Ranking index of TIFN, (i.e., ℜ(ÃT )) is linear.

Proof Let ÃT = (a1, a2, a3;a
�
1
, a2, a

�
3
) and B̃T = (b1, b2, b3;

b
�
1
, b2, b

�
3
) are two TIFNs then we have to show that 

ℜ(cÃT + dB̃T ) = cℜ(ÃT ) + dℜ(B̃T ) , where c and d are two 
positive real numbers (say). Now, by arithmetic operations 
of TIFN we have,

cÃ
T = (ca1, ca2, ca3;ca

�

1
, ca2, ca

�

3
) , dB̃T = (db1, db2, db3; 

db
�

1
, db2, db

�

3
) and cÃT + dB̃

T = (ca1 + db1, ca2 + db2, ca3

+db3;ca
�

1
+ db

�

1
, ca2 + db2, ca

�

3
+ db

�

3
).

Now,

Hence ℜ is linear.   ◻

ℜ(cÃT + dB̃T )

= �

[
�

(
ca1 + db1 + ca2 + db2

2

)

+(1 − �)

(
ca2 + db2 + ca3 + db3

2

)]

+ (1 − �)

[
�

(
ca

�

1
+ db

�

1
+ ca2 + db2

2

)

+(1 − �)

(
ca2 + db2 + ca

�

3
+ db

�

3

2

)]
.

= c

[
�

{
�

(
a1 + a2

2

)
+ (1 − �)

(
a2 + a3

2

)}

+(1 − �)

{
�

(
a

�

1
+ a2

2

)
+ (1 − �)

(
a2 + a

�

3

2

)}]

+ d

[
�

{
�

(
b1 + b2

2

)
+ (1 − �)

(
b2 + b3

2

)}

+(1 − �)

{
�

(
b

�

1
+ b2

2

)
+ (1 − �)

(
b2 + b

�

3

2

)}]
.

= cℜ(ÃT ) + dℜ(B̃T ).

Fig. 3  Inverse functions of TIFN
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Proposition 3.1 If ÃT and B̃T be two TIFNs, then 

4.1.1 ÃT ⪰ B̃T
⇔ ℜ(ÃT ) ≥ ℜ(B̃T ).

4.1.2 ÃT ⪯ B̃T
⇔ ℜ(ÃT ) ≤ ℜ(B̃T ).

4.1.3 ÃT ≈ B̃T
⇔ ℜ(ÃT ) = ℜ(B̃T ).

3.2  Advantages of proposed ranking concept

• The proposed concept gives a suitable defuzzified value 
of TIFN in its simpler form in lesser time than other 
existing methods, which is flexible to apply in decision-
making problems.

• The proposed concept takes into account numerical val-
ues as well as membership and non-membership values 
of TIFNs.

• From Table 2, it can be seen that the proposed ranking 
concept is logical regardless of Li (2010a), and Roy and 
Midya (2019), as their methods give equal values in 
Examples 3.1, 3.2, 3.3, and Examples 3.1, 3.6 respec-
tively. Therefore, their concepts failed to rank TIFNs 
mentioned in the above-mentioned examples.

• The proposed ranking concept requires easy computation 
on integral values, and it also considers DM’s degrees of 
optimism.

4  Problem description

In this section, we formulate a novel MOMIP model that 
describes an M 3SFSTP with single and multi-choice TIFN 
parameters from an economical, customers’ satisfaction, 
and social frame of reference. The formulation consists of 
multiple suppliers/sources (plants, factories) from which 
multiple products are transferred to multiple destinations/
demand centers (retailers, customers) via multiple modes of 
transportation (trucks, trains, aeroplanes). The premier tar-
gets are: (T1) to alleviate the overall transportation cost and 
time, and to enhance new employments, and (T2) to find the 
optimal quantity of shipped products and the optimal num-
ber of labours required for shipping, loading and unload-
ing, besides, the followings affiliations are also taken into 
consideration: (A1) the labour cost at origins, destinations, 
and during transportation, (A2) toll charge, service taxes, 
maintenance charge of the conveyances, safety expenses, 
etc., entitled as fixed-cost, (A3) an extra charge, designated 
as step fixed-cost, which occurs due to overload of convey-
ances by a particular amount, (A4) the loading and unload-
ing time of products, which increase the validity level of 
the allotment time. The main goal of this construction is to 
find the optimal quantities of the delivered product and the 
optimal number of requisite labours such that the require-
ments of all products at the demand points are satisfied by 
optimizing the aggregate logistic cost (economical), overall 
logistic time (customers’ satisfaction), and new jobs (social). 
The graphical network of the proposed problem can be found 
in Fig. 4. In order to develop the M 3SFSTP, the following 
assumptions are enlisted as follows:

Table 2  Relative comparison of the proposed ranking concept with some existing concepts

Examples Jianqiang and Zhong 
(2009)

Li (2010a) Nayagam et al. 
(2016)

Roy and Midya 
(2019)

Proposed concept

3.1. ÃT = ⟨(−9, 1.5, 3);.6, .2⟩ �AT ≻ �BT ÃT ≈ B̃T �AT ≺ �BT ÃT ≈ B̃T �AT ≻ �BT

 B̃T = ⟨(−9, 1.5, 3);.7, .3⟩
3.2. ÃT = ⟨(0, .25, .3);1, 0⟩ �AT ≺ �BT ÃT ≈ B̃T �AT ≻ �BT �AT ≺ �BT �AT ≺ �BT

 B̃T = ⟨(.1, .2, .4);1, 0⟩
3.3. ÃT = ⟨2, 4, 6;1, 4, 7⟩ �AT ≺ �BT ÃT ≈ B̃T �AT ≺ �BT �AT ≺ �BT �AT ≺ �BT

 B̃T = ⟨3, 5, 7;2, 5, 8⟩
3.4. ÃT = ⟨2, 4, 6;1, 4, 7⟩ �AT ≺ �BT �AT ≻ �BT �AT ≻ �BT �AT ≺ �BT �AT ≺ �BT

 B̃T = ⟨3, 5, 7;2, 5, 8⟩
3.5. ÃT = ⟨−1, 0, 2; − 2, 0, 4⟩ �AT ≺ �BT �AT ≻ �BT �AT ≺ �BT �AT ≺ �BT �AT ≺ �BT

 B̃T = ⟨−1.5, 0, 3; − 3, 0, 5⟩
3.6. ÃT = ⟨7.7, 8.9, 11;5.5, 8.9, 13⟩ �AT ≺ �BT �AT ≺ �BT �AT ≻ �BT ÃT ≈ B̃T �AT ≺ �BT

 B̃T = ⟨7.7, 10.2, 11;5.5, 10.2, 13⟩
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• The shipping cost is directly proportional to the amount 
of delivered commodities, and homogeneous type of 
products are distributed via heterogeneous transporta-
tion fleet.

• Conveyances, and supply and demand centers have lim-
ited and known capacities, and in distribution centers, 
after receiving products, distributors deliver the products 
as soon as possible, so, storage cost is not considered at 
destinations.

• Only the unit transportation cost is treated as multi-
choice TIFN and all other remaining parameters are 
taken as TIFN except conveyances’ capacities which are 
taken as crisp.

• Only variable jobs are considered instead of fixed jobs 
(managerial post).

4.1  Model identification

Herein, an unprecedented MOMIP model is introduced 
which is consisted of three objective functions and the 
essential constraints, to recount the M 3SFSTP model under 
intuitionistic fuzzy ambience. The construction seeks out 
the delivered amount of different products, requisite num-
ber of labours and new employments at the same time. A 
brief idea of the proposed research work is illustrated in 

Fig. 5. The mathematical model together with the neces-
sary constraints are narrated as follows:

Model 1

(3)

minimize Z̃T
1
=

M∑

i=1

N∑

j=1

V∑

k=1

P∑

p=1{
c̃
(p)(1)T

ijk
or c̃

(p)(2)T

ijk
or … or c̃

(p)(r)T

ijk

}
x
p

ijk

+

M∑

i=1

N∑

j=1

[
V∑

k=1

P∑

p=1

{
f̃
(p)T

ijk
y
p

ijk
+ g̃

(p)T

ijk
�
p

ijk

}

+l̃t
T

ij
wtij + l̃l

T

i
wli + l̃u

T

j
wuj

]

+

M∑

i=1

N∑

j=1

V∑

k=1

P∑

p=1

[(
õl

T

i
+ õu

T

j

)
x
p

ijk

+m̃c
T

k
y
p

ijk
dij

]

(4)minimize Z̃T
2
=

M∑

i=1

N∑

j=1

V∑

k=1

P∑

p=1

[
t̃
(p)T

ijk
y
p

ijk
+

(
l̃T
i
+ ũl

T

j

)
x
p

ijk

]

(5)

maximize Z̃T
3
=

M∑

i=1

N∑

j=1

V∑

k=1

P∑

p=1

[
s̃t
T

ij

(
x
p

ijk
∕ek

)

+s̃l
T

i

(
x
p

ijk
∕ã

(p)T

i

)
+ s̃u

T

j

(
x
p

ijk
∕b̃

(p)T

j

)]

Fig. 4  Graphical network of the proposed TP
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(6)
subject to

N∑

j=1

V∑

k=1

x
p

ijk
≤ ã

(p)T

i
,

(i = 1, 2,… ,M;p = 1, 2,… ,P)

(7)

M∑

i=1

V∑

k=1

x
p

ijk
≥ b̃

(p)T

j
,

(j = 1, 2,… ,N;p = 1, 2,… ,P)

(8)
M∑

i=1

N∑

j=1

P∑

p=1

x
p

ijk
≤ ek, (k = 1, 2,… ,V)

(9)

V∑

k=1

P∑

p=1

m̃t
T

ij
x
p

ijk
≤ wtij,

(i = 1, 2,…M;j = 1, 2,…N)

(10)

N∑

j=1

V∑

k=1

P∑

p=1

m̃l
T

i
x
p

ijk
≤ wli,

(i = 1, 2,…M;j = 1, 2,…N)

(11)

M∑

i=1

V∑

k=1

P∑

p=1

m̃u
T

j
x
p

ijk
≤ wuj,

(i = 1, 2,…M;j = 1, 2,…N)

(12)y
p

ijk
=

{
1, if x

p

ijk
> 0,

0, if x
p

ijk
= 0.

In Model 1, {c̃I(p)(1)T
ijk

or c̃
I(p)(2)T

ijk
or … or c̃

I(p)(r)T

ijk
} is the 

multi-choice cost of transportation for transporting per unit 
pth product from ith source to jth destination center via kth 
conveyance in intuitionistic fuzzy form with r choices. Equa-
tion (3) is the economical objective function, which aims to 
minimize variable transportation cost (first part), fixed and 
step-fixed cost (second part), labour cost for shipping and 
loading-unloading of products (third part), operational cost 
in sources and destinations (fourth part), and maintenance 
cost of vehicles (last part). Equation (4) is the satisfactory 
objective function which is included to maximize customers’ 
satisfaction by minimizing transportation and loading-
unloading time. Equation (5) is the social objective function 
which maximizes new jobs created during shipping and 
loading-unloading of products. Constraints (6) state that the 
distributed quantity from each source must be less than or 
equal to its availability. Constraints (7) enunciate that the 
overall shipped quantity to each destination must fulfil its 
demand. Constraints (8) demonstrate that the overall load in 
each conveyance cannot go beyond its capacity. Constraints 
(9), (10) and (11) impose that required worker cannot sur-
pass the available labour during transportation, in sources 
and in destinations respectively. Also, those constraints are 
included to determine the number of workers that are 
required for shipping, loading and unloading of products 
respectively. Constraints (12)–(14) define the nature of the 
variables of Model 1.

(13)𝜂
p

ijk
=

{
1, if x

p

ijk
> A (fixed amount),

0, otherwise .

(14)x
p

ijk
≥0,wtij,wli,wuj are integers.

Fig. 5  A notional diagram of 
the offered research work
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4.2  Deterministic equivalence of the model

In order to solve optimization problems with uncertainty either 
we have to convert it into its deterministic form or to develop 
stochastic model. As the encountered problem is with two-fold 
uncertainty (intuitionistic fuzzy and multi-choice), and only 
one scenario is taken into consideration, we propose two sim-
ple steps to reduce the uncertainty of the model by avoiding 
any complexity. Therefore, we solve Model 1 in three steps: 
Step 1, we deal with intuitionistic fuzzy parameters through 
two manners by presenting two equivalent models i.e., Models 
2.1 and 2.2; Step 2, then by reducing multi-choice parameter 
into a single choice by binary variables, we get fully determin-
istic equivalent models i.e., Models 3.1 and 3.2; Step 3, finally, 
deterministic multi-objective models are resolved by multi-
objective optimization technique(s). All models are described 
in the following way.

Step 1.1 Dealing with IF parameters by ranking concept, 
In the first part of Step 1, we turn the intuitionistic fuzzy 
M 3SFSTP model (Model 1) into an equivalent crisp model 
(Model 2.1) by applying the proposed ranking concept (see 
Sect. 3.1), and using Theorem 3.1 and Proposition 3.1, which 
is stated as follows:

Model 2.1
The objective functions with multi-choice and crisp 

(defuzzified) parameters are given in Eqs. (15)–(17).

(15)

minimize Z
�

1
=

M∑

i=1

N∑

j=1

V∑

k=1

P∑

p=1

{
ℜ

(
c̃
(p)(1)T

ijk

)
or

ℜ

(
c̃
(p)(2)T

ijk

)
or ⋯ or ℜ

(
c̃
(p)(r)T

ijk

)}
x
p

ijk

+

M∑

i=1

N∑

j=1

V∑

k=1

P∑

p=1

{
ℜ

(
f̃
(p)T

ijk

)
y
p

ijk
+ℜ

(
g̃
(p)T

ijk

)
�
p

ijk

}

+

M∑

i=1

N∑

j=1

{
ℜ

(
l̃t
T

ij

)
wtij +ℜ

(
l̃l
T

i

)
wli

+ℜ
(
l̃u

T

j

)
wuj

}

+

M∑

i=1

N∑

j=1

V∑

k=1

P∑

p=1

[(
ℜ

(
õl

T

i

)
+ℜ

(
õu

T

j

))
x
p

ijk

+ℜ
(
m̃c

T

k

)
y
p

ijk
dij

]

(16)

minimize Z
�

2
=

M∑

i=1

N∑

j=1

V∑

k=1

P∑

p=1

[
ℜ

(
t̃
(p)T

ijk

)
y
p

ijk

+
(
ℜ

(
l̃T
i

)
+ℜ

(
ũl

T

j

))
x
p

ijk

]

The respective defuzzified constraints are given as follows:

Step 1.2 Dealing with IF parameters by possibility meas-
ure, In the second part of Step 1, possibility measure of 
TIFN (using Definition 3.3) along with the ranking concept 
(see Sect. 3.1) and Theorem 3.1 are employed to convert 
the intuitionistic fuzzy M 3SFSTP model (Model 1) into 
another equivalent deterministic model (Model 2.2), which 
is described as follows:

Model 2.2
The objective functions with multi-choice and crisp 

(defuzzified) parameters are given in Eqs. (23)–(25).

(17)

maximize Z
�

3
=

M�

i=1

N�

j=1

V�

k=1

P�

p=1

�
ℜ

�
s̃t
T

ij

��x
p

ijk

ek

�

+ℜ
�
s̃l
T

i

�⎛⎜
⎜
⎜⎝

x
p

ijk

ℜ

�
ã
(p)T

i

�
⎞
⎟
⎟
⎟⎠

⎤
⎥
⎥
⎥⎦

+

M�

i=1

N�

j=1

V�

k=1

P�

p=1

ℜ

�
s̃u

T

j

�⎛⎜
⎜
⎜⎝

x
p

ijk

ℜ

�
b̃
(p)T

j

�
⎞
⎟
⎟
⎟⎠

(18)
subject to

N∑

j=1

V∑

k=1

x
p

ijk
≤ ℜ

(
ã
(p)T

i

)
,

(i = 1, 2,… ,M;p = 1, 2,… ,P)

(19)

M∑

i=1

V∑

k=1

x
p

ijk
≥ ℜ

(
b̃
(p)T

j

)
, (j = 1, 2,… ,N;p = 1, 2,… ,P)

(20)

V∑

k=1

P∑

p=1

ℜ

(
m̃t

T

ij

)
x
p

ijk
≤ wtij, (i = 1, 2,…M;j = 1, 2,…N)

(21)

N∑

j=1

V∑

k=1

P∑

p=1

ℜ

(
m̃l

T

i

)
x
p

ijk
≤ wli, (i = 1, 2,…M;j = 1, 2,…N)

(22)

M∑

i=1

V∑

k=1

P∑

p=1

ℜ

(
m̃u

T

j

)
x
p

ijk
≤ wuj, (i = 1, 2,…M;j = 1, 2,…N)

the constraints (4.8),

the constraints (4.12)−(4.14).
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The respective defuzzified constraints are given as follows:

(23)

minimize Z
�

1
=

M∑

i=1

N∑

j=1

V∑

k=1

P∑

p=1

{
ℜ

(
c̃
(p)(1)T

ijk

)
or

ℜ

(
c̃
(p)(2)T

ijk

)
or … or ℜ

(
c̃
(p)(r)T

ijk

)}
x
p

ijk

+

M∑

i=1

N∑

j=1

V∑

k=1

P∑

p=1{
ℜ

(
f̃
(p)T

ijk

)
y
p

ijk
+ℜ

(
g̃
(p)T

ijk

)
�
p

ijk

}

+

M∑

i=1

N∑

j=1

{
ℜ

(
l̃t
T

ij

)
wtij

+ℜ
(
l̃l
T

i

)
wli +ℜ

(
l̃u

T

j

)
wuj

}

+

M∑

i=1

N∑

j=1

V∑

k=1

P∑

p=1

[(
ℜ

(
õl

T

i

)

+ℜ
(
õu

T

j

))
x
p

ijk
+ℜ

(
m̃c

T

k

)
y
p

ijk
dij

]

(24)

minimize Z
�

2
=

M∑

i=1

N∑

j=1

V∑

k=1

P∑

p=1[
ℜ

(
t̃
(p)T

ijk

)
y
p

ijk
+
(
ℜ

(
l̃T
i

)
+ℜ

(
ũl

T

j

))
x
p

ijk

]

(25)

maximize Z
�

3
=

M�

i=1

N�

j=1

V�

k=1

P�

p=1

⎡
⎢
⎢
⎢⎣

ℜ

�
s̃t
T

ij

��x
p

ijk

ek

�
+ℜ

�
s̃l
T

i

�⎛⎜
⎜
⎜⎝

x
p

ijk

ℜ

�
ã
(p)T

i

�
⎞
⎟
⎟
⎟⎠

⎤
⎥
⎥
⎥⎦

+

M�

i=1

N�

j=1

V�

k=1

P�

p=1

ℜ

�
s̃u

T

j

�⎛⎜
⎜
⎜⎝

x
p

ijk

ℜ

�
b̃
(p)T

j

�
⎞
⎟
⎟
⎟⎠

(26)
subject to

N∑

j=1

V∑

k=1

Pos�(x
p

ijk
≤ ã

(p)T

i
) ≥ �,

(i = 1, 2,… ,M;p = 1, 2,… ,P)

(27)

N∑

j=1

V∑

k=1

Pos�(x
p

ijk
≤ ã

(p)T

i
) ≤ �,

(i = 1, 2,… ,M;p = 1, 2,… ,P)

the constraints (8),

the constraints (12)−(14).

Here, � and � are the predefined confidence levels satisfying 

0 ≤ � + � ≤ 1.

In Models 2.1 and 2.2, 
{
ℜ

(
c̃
(p)(1)T

ijk

)
or ℜ

(
c̃
(p)(2)T

ijk

)
or ⋯ or ℜ

(
c̃
(p)(r)T

ijk

)}
 

is the multi-choice cost of transportation for transporting per 
unit pth product from ith source to jth destination center via 
kth conveyance in crisp form with r choices.

Step 2 Transformation of multi-choice parameter, In Step 
2, binary variables (Maity and Roy 2016) are utilized for 
reduction of multi-choice parameter 

(
c̃
(p)(r)T

ijk

)
 of Models 2.1 

and 2.2 into a single choice. Thus, Models 2.1 and 2.2 are 
further transformed to Models 3.1 and 3.2 respectively as 
follows:

Model 3.1 (for Model 2.1)
The fully crisp objective functions, i.e., objective func-

tions with single-choice and crisp (defuzzified) parameters 
are given in Eqs. (36)–(38).

(28)

M∑

i=1

V∑

k=1

Pos�(x
p

ijk
≥ b̃

(p)T

j
) ≥ �, (j = 1, 2,… ,N;p = 1, 2,… ,P)

(29)

M∑

i=1

V∑

k=1

Pos�(x
p

ijk
≥ b̃

(p)T

j
) ≤ �, (j = 1, 2,… ,N;p = 1, 2,… ,P)

(30)

V∑

k=1

P∑

p=1

Pos�(m̃t
T

ij
x
p

ijk
≤ wtij) ≥ �, (i = 1, 2,…M;j = 1, 2,…N)

(31)

V∑

k=1

P∑

p=1

Pos�(m̃t
T

ij
x
p

ijk
≤ wtij) ≤ �, (i = 1, 2,…M;j = 1, 2,…N)

(32)

N∑

j=1

V∑

k=1

P∑

p=1

Pos�(m̃l
T

i
x
p

ijk
≤ wli) ≥ �, (i = 1, 2,…M;j = 1, 2,…N)

(33)

N∑

j=1

V∑

k=1

P∑

p=1

Pos�(m̃l
T

i
x
p

ijk
≤ wli) ≤ �, (i = 1, 2,…M;j = 1, 2,…N)

(34)

M∑

i=1

V∑

k=1

P∑

p=1

Pos�(m̃u
T

j
x
p

ijk
≤ wuj) ≥ �, (i = 1, 2,…M;j = 1, 2,…N)

(35)

M∑

i=1

V∑

k=1

P∑

p=1

Pos�(m̃u
T

j
x
p

ijk
≤ wuj) ≤ �, (i = 1, 2,…M;j = 1, 2,…N)

the constraints (4.8),

the constraints (4.12)−(4.14).
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subject to the constraints (8),

the constraints (12)−(14),

the constraints (18)−(22).

Model 3.2 (for Model 2.2)
The fully crisp objective functions, i.e., objective func-

tions with single-choice and crisp (defuzzified) parameters 
are given in Eqs. (39)–(41).

(36)

minimize Z1 =

M∑

i=1

N∑

j=1

V∑

k=1

P∑

p=1

[
c
(p)

ijk
x
p

ijk
+ℜ

(
f̃
(p)T

ijk

)
y
p

ijk
+ℜ

(
g̃
(p)T

ijk

)
�
p

ijk

]

+

M∑

i=1

N∑

j=1

{
ℜ

(
l̃t
T

ij

)
wtij

+ℜ

(
l̃l
T

i

)
wli +ℜ

(
l̃u

T

j

)
wuj

}

+

M∑

i=1

N∑

j=1

V∑

k=1

P∑

p=1

[(
ℜ

(
õl

T

i

)

+ℜ

(
õu

T

j

))
x
p

ijk
+ℜ

(
m̃c

T

k

)
y
p

ijk
dij

]

(37)
minimize Z2 =

M∑

i=1

N∑

j=1

V∑

k=1

P∑

p=1

[
ℜ

(
t̃
(p)T

ijk

)
y
p

ijk

+
(
ℜ

(
l̃T
i

)
+ℜ

(
ũl

T

j

))
x
p

ijk

]

(38)

maximize Z3 =

M�

i=1

N�

j=1

V�

k=1

P�

p=1

⎡
⎢
⎢
⎢⎣

ℜ

�
s̃t
T

ij

��x
p

ijk

ek

�
+ℜ

�
s̃l
T

i

�⎛⎜
⎜
⎜⎝

x
p

ijk

ℜ

�
ã
(p)T

i

�
⎞
⎟
⎟
⎟⎠

⎤
⎥
⎥
⎥⎦

+

M�

i=1

N�

j=1

V�

k=1

P�

p=1

ℜ

�
s̃u

T

j

�⎛⎜
⎜
⎜⎝

x
p

ijk

ℜ

�
b̃
(p)T

j

�
⎞
⎟
⎟
⎟⎠

(39)

minimize Z1 =

M∑

i=1

N∑

j=1

V∑

k=1

P∑

p=1

[
c
(p)

ijk
x
p

ijk
+ℜ

(
f̃
(p)T

ijk

)
y
p

ijk
+ℜ

(
g̃
(p)T

ijk

)
�
p

ijk

]

+

M∑

i=1

N∑

j=1

{
ℜ

(
l̃t
T

ij

)
wtij

+ℜ

(
l̃l
T

i

)
wli +ℜ

(
l̃u

T

j

)
wuj

}

+

M∑

i=1

N∑

j=1

V∑

k=1

P∑

p=1

[(
ℜ

(
õl

T

i

)

+ℜ

(
õu

T

j

))
x
p

ijk
+ℜ

(
m̃c

T

k

)
y
p

ijk
dij

]

subject to the constraints (8),

the constraints (12)−(14),

the constraints (26)−(35).
Definition 4.1 Feasible solutions x1∗ and x2∗ = (x1

p∗

ijk
and

x2
p∗

ijk
∶ i = 1, 2,… ,M;j = 1, 2,… ,N;k = 1, 2,… ,V;p = 1, 2,… , T) 

of Models 3.1 and 3.2 respectively are said to be efficient 
solutions of Models 3.1 and 3.2 respectively if there do not 
exist any other feasible solutions x1 and x2 = (x1

p

ijk
and

x2
p

ijk
∶ i = 1, 2,… ,M;j = 1, 2,… ,N;k = 1, 2,… ,V;p = 1,

2,… , T) of Models 3.1 and 3.2 respectively such  
that Z�(x1)

(
Z�(x2)

) ≤ Z�(x
∗
1
)
(
Z�(x

∗
2
)
)
 for � = 1, 2, and 

Z3(x1)
(
Z3(x2)

) ≥ Z3(x
∗
1
)
(
Z3(x

∗
2
)
)
, and  Z𝜅(x1)

(
Z𝜅(x2)

)
<

Z�(x
∗
1
)
(
Z�(x

∗
2
)
)
 for at least one � = 1, 2, and Z3(x1)

(
Z3(x2)

)

> Z3(x
∗
1
)
(
Z3(x

∗
2
)
)
.

5  Solution procedure

In MOOP, there are multiple conflicting objective functions 
which tend to achieve optimum values. For this reason, it is 
difficult to select an optimal solution for which all objective 
functions are optimized. Therefore, we have to incorporate 
an efficient solution. There exist several methods in the liter-
ature such as fuzzy programming (FP) (Zimmermann 1978), 
intuitionistic fuzzy programming (IFP) (Angelov 1997), 
TOPSIS (Li 2010b), global criterion method (GCM) (Miet-
tinen 2012), goal programming (GP) (Charnes and Cooper 
1957), �-constraint method (Chankong and Haimes 2008), 
etc., which can be utilized to solve the presented deter-
ministic models (i.e., Models 3.1 and 3.2). However, due 
to some drawbacks of these methods (some are mentioned 
previously), we implement two methods namely, IFGTM 
and ATM to obtain an efficient solution. The operating steps 

(40)

minimize Z2 =

M∑

i=1

N∑

j=1

V∑

k=1

P∑

p=1[
ℜ

(
t̃
(p)T

ijk

)
y
p

ijk
+
(
ℜ

(
l̃T
i

)
+ℜ

(
ũl

T

j

))
x
p

ijk

]

(41)

maximize Z3 =

M�

i=1

N�

j=1

V�

k=1

P�

p=1

⎡
⎢
⎢
⎢⎣

ℜ

�
s̃t
T

ij

��x
p

ijk

ek

�
+ℜ

�
s̃l
T

i

�⎛⎜
⎜
⎜⎝

x
p

ijk

ℜ

�
ã
(p)T

i

�
⎞
⎟
⎟
⎟⎠

⎤
⎥
⎥
⎥⎦

+

M�

i=1

N�

j=1

V�

k=1

P�

p=1

ℜ

�
s̃u

T

j

�⎛⎜
⎜
⎜⎝

x
p

ijk

ℜ

�
b̃
(p)T

j

�
⎞
⎟
⎟
⎟⎠
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of IFGTM and ATM are briefly discussed in the following 
subsections.

5.1  IFGTM

Game-theoretic method (GTM) was proposed by Rao and Freiheit 
(1991) to solve multi-objective decision making problems, which 
was performed by minimizing a utility function consisting of a 
bargaining and a super criterion function (one can see Rao and 
Freiheit 1991). Inspiring from the traditional GTM, we introduce 
here IFGTM by the intersection of intuitionistic fuzzy and game-
theoretic concept, which operates through the following steps: 

(S1)  First, the best and the worst values, and the opti-
mum point of each objective function are obtained 
by solving Model 3.1 and Model 3.2 respectively 
as single objective models by taking one objective 
function at a time with subject to the constraints 
defined in Model 3.1 and Model 3.2 respectively 
a s ,  Z∗

�
= min Z� , � = 1, 2;Z∗

3
= max Z3,  a n d 

Ẑ� = max�� =1,2,3 Z�(X�
� ), � = 1, 2;Ẑ3 = min�� =1,2,3 Z3(X�

� ) . 
Here, Z∗

�
, Ẑ� and X� are the best value, the worst value 

and the optimum point of Z� (� = 1, 2, 3) respec-
tively. If all the optimum solutions X� , � = 1, 2, 3 are 
same, then we get the efficient solution, otherwise we 
have to go the following steps.

(S2)  Then, the membership (�Z�
(x)) and non-membership 

(�Z�
(x)) functions for Z�(x) are constructed, which are 

given in Eqs. (42) and (43) and displayed in Fig. 6. 

 for � = 1, 2.

(S3)  Thenceforth, the intuitionistic fuzzy game-theoretic 
models (i,e., Model 4.1 and Model 4.2) are displayed 
below.

Model 4.1 (for Model 3.1)
In order to obtain the efficient solution, the bargaining 

function has to be minimized and the super criterion func-
tion has to be maximized, therefore the intuitionistic fuzzy 
game theoretic objective function to obtain the efficient solu-
tion of Model 3.1 is defined in Eq. (44).

The bargaining (B) and the super criterion (S) functions of 
the intuitionistic fuzzy game theoretic model for Model 3.1 
are defined in Eqs. (45) and (46) respectively.

(42)

�Z�
(x) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

1, if Z�(x) ≤ Z∗
�
,

Ẑ� − Z�(x)

Ẑ� − Z∗
�

, if Z∗
�
≤ Z�(x) ≤ Ẑ� ,

0, if Z�(x) ≥ Ẑ� ,

�Z�
(x) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

0, if Z�(x) ≤ Z∗
�
,

Z�(x) − Z∗
�

Ẑ� − Z∗
�

, if Z∗
�
≤ Z�(x) ≤ Ẑ� ,

1, if Z�(x) ≥ Ẑ� .

(43)

�Z3
(x) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

0, if Z3(x) ≤ Ẑ3,

Z3(x) − Ẑ3

Z∗
3
− Ẑ3

, if Ẑ3 ≤ Z3(x) ≤ Z∗
3
,

1, if Z3(x) ≥ Z∗
3
,

�Z3
(x) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

1, if Z3(x) ≤ Ẑ3,
Z∗
3
− Z3(x)

Z∗
3
− Ẑ3

, if Ẑ3 ≤ Z3(x) ≤ Z∗
3
,

0, if Z3(x) ≥ Z∗
3
.

(44)minimize B − S

Fig. 6  Membership and non-
membership functions for a 
minimization (� = 1, 2) and b 
maximization (� = 3) objective 
functions
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the constraints (8),

the constraints (12)−(14),

the constraints (18)−(22).

Model 4.2 (for Model 3.2)

The intuitionistic fuzzy game theoretic objective func-
tion to obtain the efficient solution of Model 3.2 is defined 
in Eq. (47).

The bargaining (B) and the super criterion (S) functions of 
the intuitionistic fuzzy game theoretic model for Model 3.2 
are defined in Eqs. (48) and (49) respectively.

the constraints (8),

the constraints (12)−(14),

the constraints (26)−(35).

(S4) On solving Model 4.1 and Model 4.2, we obtain the 
efficient solutions of Model 3.1 and Model 3.2 respectively. 
The flowchart of IFGTM is illustrated in Fig. 7.

5.2  ATM

ATM, which is suggested in this paper, is an extension 
of augmented weighted Tchebycheff method. The main 
advantage of this method is that it eliminates weakly non-
dominated solutions. Efficient solutions of the deterministic 
models can be obtained from this method by going through 
the following simple steps: First, the ideal solutions of three 
objective functions are obtained by solving the deterministic 
M 3SFSTP models (Models 3.1 and 3.2) as single-objective 
multi-item SFSTP by considering one objective function at 
a time with subject to the constraints defined in Models 3.1 
and 3.2. Then, the efficient solutions of Models 3.1 and 3.2 
are derived by solving Models 5.1 and 5.2 respectively.

Model 5.1 (for Model 3.1)

(45)subject to B =

2∑

�=1

(Z� − Z∗
�
) + (Z∗

3
− Z3),

(46)S =

3∏

�=1

�Z�
−

3∏

�=1

�Z�
,

(47)minimize B − S

(48)subject to B =

2∑

�=1

(Z� − Z∗
�
) + (Z∗

3
− Z3),

(49)S =

3∏

�=1

�Z�
−

3∏

�=1

�Z�
,

Equation (50) represents the objective function of the aug-
mented Tchebycheff program which is an additional variable 
and used for linearising the max-min program of Model 3.1.

Equations (51) and (52) define the relations between the addi-
tional variable and the Tchebycheff metric for Model 3.1.

the constraints (8),

the constraints (12)−(14),

the constraints (18)−(22).

Model 5.2 (for Model 3.2)
Equation (53) represents the objective function of the 

augmented Tchebycheff program which is an additional 
variable and used for linearising the max-min program 
of Model 3.2.

Equations (54) and (55) define the relations between the addi-
tional variable and the Tchebycheff metric for Model 3.2.

(50)minimize Γ

(51)

subject to Γ ≥ (Z� − Z
∗
�
)

+ �

[
2∑

�=1

(Z� − Z
∗
�
) + (Z∗

3
− Z3)

]
, ∀ � = 1, 2

(52)Γ ≥ (Z∗
3
− Z3) + �

[
2∑

�=1

(Z� − Z∗
�
) + (Z∗

3
− Z3)

]
,

(53)minimize Γ

Fig. 7  A conditional flowchart of IFGTM
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the constraints (8),

the constraints (12)−(14),

the constraints (26)−(35).

Here, Z∗
�
 is the ideal value of the 

objective function Z� , � = 1, 2, 3, and � is a very small num-
ber in Models 5.1 and 5.2.

6  Computational experiment

This section evaluates the effectiveness of the proposed 
model and solution techniques by implementing an indus-
trial application example and sharing the computational 
experiences.

6.1  Industrial example

Here, we consider a reputed marble manufacturer company, 
Rajasthan Marble Ltd. in India produces two types of mar-
ble namely, ‘Makrana white marble’ and ‘Abu white marble’ 
(P = 2) , and wishes to transport these mentioned marbles 
from two production centers at Doongri and Ambaji (M = 2) 
in the state of Rajasthan to three different places (N = 3) 
at Kolkata, Delhi and Bhubaneswar in India via two types 
of transportation modes, trucks and goods trains (V = 2) , 
through highways and railways respectively. As fixed costs, 
toll charges of National Highway, booking charges of Rail-
way Authority, maintenance charge and fuel cost of vehicles 
etc. are considered, and as step fixed-cost, an extra charge is 
considered due to overloading of conveyances by 15 units 
(A = 15) . Also, variable labour cost besides other costs, load-
ing and unloading time are taken into account. Furthermore, 
the manager of this operation is not only concerned about 
making profit by minimizing overall logistic cost but also 
decides to take into consideration the customers’ satisfac-
tion and social factors. Therefore, he/she sets the targets of 
this operation as: (i) minimize overall operational cost, (ii) 
minimize total expend time, and (iii) maximize total created 
employments. Triangular intuitionistic fuzzy parameters 
related to the three objective functions and the constraints, 
and their crisp forms are displayed in Tables 3, 4, 5, 6, 7, 
8, 9 and 10. The corresponding units of all parameters are 
presented in these tables.

(54)

subject to Γ ≥ (Z� − Z∗
�
)

+ �

[
2∑

�=1

(Z� − Z∗
�
) + (Z∗

3
− Z3)

]
, ∀ � = 1, 2,

(55)Γ ≥ (Z∗
3
− Z3) + �

[
2∑

�=1

(Z� − Z∗
�
) + (Z∗

3
− Z3)

]
,

6.2  Efficiency analysis

In order to render the performances of the solution meth-
ods for solving the example we consider the degree of 
closeness (DOC), which was defined by El-Washed and 
Lee (2006) as follows:

Dn(�, �) =
[∑3

�=1
��(1 − ��)

n
]1∕n

, where �� is the weight 
preference of �th objective function and �� is the DOC of the 
compromise value of the �th objective function to its ideal 
value. In our study, we assume 

∑3

�=1
�� = 1 and consider the 

following DOC: D1(�, �) =
(
1 −

∑3

�=1
����

)
, where �� = 

(the ideal value of Z�)∕( the compromise value of Z�), for 
� = 1, 2, and �3 = (the compromise value of Z3)/(the ideal 
value of Z3). The lesser value of DOC implies more nearness 
of the efficient solution to the optimal solution. Thus, the 
method with least DOC is preferable than other methods.

6.3  Parley of outcomes and analogy

Here, we share our experiences for solving the presented 
application example by the proposed two methods, described 
in Sect. 5, utilizing same set of given inputs. Thus, DM can 
choose his/her preferred solution from the outcomes of the 
methods.

The optimal solutions obtained by solving the example 
through two deterministic models (Models 3.1 and 3.2) 
described in Sect. 4.2 executing two proposed and two 
existing methods, are depicted in Tables 11 and 12 respec-
tively. From Tables 11 and 12, it is evident that all methods 
produce better efficient solutions in the possibility measure 
model than in the ranking model, but take a little bit much 
CPU time (except IFGTM). By going through Tables 11 
and 12, we conclude that the proposed IFGTM yields the 
best efficient solution in comparison with the efficient solu-
tions obtained by other methods in least CPU time. On the 
other hand, the other proposed method, ATM provides 
less preferable solutions than IFGTM, but better solution 
than the existing methods in preferable CPU time. Also, 
from Tables 11 and 12, based on the degrees of closeness, 
the order for the preferable methods from the best to the 
worst, is concluded as: (i) IFGTM, (ii) ATM, (iii) GCM, 
(iv) IFP. Moreover, the illustrated results disclose that the 
economical, customers’ satisfaction and social objectives 
are optimized, and the optimum product flow and the num-
ber of labours required at plants, destinations, and during 
transportation are also traced. Furthermore, to provide a 
notion about the structures of three objective functions, we 
calculate the values of different segments of each objective 
function after obtaining the efficient solution by IFGTM. 
Therefore, the components of three objective functions 
are revealed in Fig. 8. From Fig. 8, we find that most of 



6992 A. Mondal et al.

1 3

Table 3  Multi-choice intuitionistic fuzzy and multi-choice crisp transportation costs (Rupees/unit) 
(
c̃
(p)T

ijk
,ℜ

(
c̃
(p)T

ijk

))

Conveyance k = 1

Product (p) i j

1 2 3

p = 1 1 {(5, 7, 9; 4, 7, 10), (4, 6, 8; 3, 6, 9)}, 
{ 7, 6}

{(7, 8, 9; 6, 8, 10), (10, 11, 12; 9, 11, 13), 
(9, 10, 1; 8, 10, 12)}, { 8, 11, 10}

{(6, 8, 10; 5, 8, 11), (5, 6, 7; 4, 6, 8)}, 
{ 8, 6}

2 {(5, 6, 8; 4, 6, 9), (5, 5, 6; 5, 5, 7)}, 
{ 6.25, 5.375}

{(8, 9, 10; 7, 9, 11), (10, 11, 12; 9, 11, 
14)}, { 9, 11.125}

{(6, 7, 8; 5, 7, 9), (9, 10, 11; 8, 10, 13)}, 
{ 7, 10.125}

p = 2 1 {(6, 7, 8; 5, 7, 9), (7, 8, 9; 6, 8, 10)}, 
{ 7, 8}

{(13, 14, 15; 12, 14, 17), (14, 16, 18; 
13, 16, 19), (17, 18, 19; 16, 18, 20)}, 
{ 14.125, 16, 18}

{(6, 8, 9; 5, 8, 10), (5, 8, 11, 4, 8, 12)}, 
{ 7.75, 8}

2 {(5, 7, 9; 4, 7, 10), (4, 6, 9; 3, 6, 9)}, 
{ 7, 6.125}

{(11, 12, 13; 10, 12, 14), (11, 12, 13; 10, 
12, 15)}, { 12, 12.125}

(4, 5, 6; 3, 5, 7), 5

Conveyance k = 2

Product (p) i j

1 2 3

p = 1 1 {(7, 8, 9; 6, 8, 10), (6, 7, 8; 5, 7, 9)}, 
{ 8, 7}

{(5, 7, 9; 4, 7, 10), (6, 8, 10; 5, 8, 11), (4, 
6, 8; 3, 6, 9)}, { 7, 8, 6}

{(5, 8, 10; 4, 8, 12), (5, 7, 9; 4, 7, 10)}, 
{ 7.875, 7}

2 (5, 6, 7; 4, 6, 8), 6 {(6, 7, 8; 5, 7, 9), (4, 5, 6; 3, 5, 7)}, { 7, 5} {(5.5, 6, 6.5; 5, 6, 7), (6, 7, 8; 5, 7, 9)}, 
{ 6, 7}

p = 2 1 {(5, 7, 9; 4, 7, 10), (5, 6, 7; 4, 6, 8)}, 
{ 7, 6}

{(5, 7, 8; 4, 7, 9), (4, 5, 6; 3, 5, 8)}, 
{ 6.75, 5.125}

{(5, 5, 7; 5, 5, 8), (4, 5, 6; 3, 5, 7), (6, 
7, 8; 5, 7, 9)}, { 5.625, 5, 7}

2 (4, 6, 8; 3, 6, 9), 6 {(10, 11, 12; 9, 11, 13), (9, 10, 11; 8, 10, 
12)}, { 11, 10}

(6, 7, 8; 6, 7, 9), 7.125

Table 4  Intuitionistic fuzzy and crisp fixed 
(
f̃
(p)T

ijk
,ℜ

(
f̃
(p)T

ijk

))
 and step fixed-costs (Rupees) 

(
g̃
(p)T

ijk
,ℜ

(
g̃
(p)T

ijk

))

Conveyance k = 1

Product (p) i j

1 2 3

p = 1 1 (12, 13, 14; 11, 13, 15), 13; (14, 16, 17; 
12, 16, 18), 15.625

(15, 16, 17; 14, 16, 18), 16; (16, 17, 18; 
15, 17, 19), 17

(11, 12, 14; 10, 12, 15), 12.25; (11, 12, 
13; 10, 12, 13), 11.875

2 (12, 13, 14; 11, 13, 15), 13; (13, 14, 16; 
12, 14, 18), 14.375

(17, 18, 19; 16, 18, 20), 16; (17, 18, 19; 
16, 18, 20), 18

(15, 16, 18; 14, 16, 19), 16.25; (14, 15, 
16; 13, 15, 17), 15

p = 2 1 (10, 11, 12; 9, 11, 14), 11.125; (10, 13, 
15; 9, 13, 18), 13

(13, 14, 16; 12, 14, 18), 14.375; (16, 17, 
18; 15, 17, 19), 17

(10, 13, 15; 9, 13, 18), 13; (13, 14, 15; 11, 
14, 16), 13.875

2 (10, 11, 12; 9, 11, 13), 11; (11, 12, 13; 
10, 12, 13), 11.875

(21, 22, 23; 20, 22, 24), 22; (21, 22, 23; 
20, 22, 24), 22

(11, 12, 13; 10, 12, 15), 12.125; (13, 14, 
16; 12, 14, 18), 14.375

Conveyance k = 2

Product (p) i j

1 2 3

p = 1 1 (5, 6, 7; 5, 6, 8), 6.125; (8, 10, 12; 7, 10, 13), 10; (6, 7, 8; 5, 7, 8), 6.875;
(6, 7, 8; 5, 7, 9), 7 (9, 10, 11; 8, 10, 12), 10 (8, 9, 10; 7, 9, 11), 9

2 (5, 5, 7; 5, 5, 8), 5.625; (10, 11, 12; 9, 11, 13), 11; (7, 8, 9; 6, 8, 10), 8;
(6, 7, 8; 5, 7, 9), 7 (11, 12, 13; 10, 12, 15), 12.125 (9, 11, 13; 8, 11, 14), 11

p = 2 1 (7, 8, 9; 6, 8, 10), 8; (11, 14, 16; 10, 14, 18), 13.875; (7, 9, 10; 5, 9, 11), 8.625;
(9, 10, 11; 8, 10, 12), 10 (13, 14, 16; 12, 14, 18), 14.375 (8, 10, 12; 7, 10, 13), 10

2 (7, 10, 13; 6, 10, 14), 10; (15, 17, 20; 14, 17, 21), 17.25; (7, 8, 9; 6, 8, 10), 8;
(8, 10, 12; 7, 10, 13), 10 (17, 18, 19; 16, 18, 20), 18 (8, 10, 14; 7, 10, 15), 10.50
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Table 5  Intuitionistic fuzzy and crisp transportation times (hour) 
(
t̃
(p)T

ijk
,ℜ

(
t̃
(p)T

ijk

))

Conveyance k = 1

Product (p) i j

1 2 3

p = 1 1 (15, 16, 17; 14, 16, 18), 16 (16, 17, 18; 15, 17, 19), 17 (13, 14, 15; 12, 14, 16), 14
2 (8, 9, 10; 7, 9, 11), 9 (10, 11, 12; 9, 11, 13), 11 (6, 7, 8; 5, 7, 9), 7

p = 2 1 (14, 15, 16; 12, 15, 18), 15 (17, 18, 19; 15, 18, 21), 18 (14, 15, 16; 12, 15, 18), 15
2 (9, 10, 11; 7, 10, 13), 10 (11, 12, 14; 10, 12, 16), 12.375 (6.5, 7.5, 9; 5.5, 7.5, 10), 7.625

Conveyance k = 2

Product (p) i j

1 2 3

p = 1 1 (20, 22, 24; 19, 22, 25), 22 (20, 21, 22; 19, 21, 23), 21 (19, 20, 21; 18, 20, 22), 20
2 (6, 7, 8; 5, 7, 9), 7 (13, 14, 15; 12, 14, 16), 14 (5, 6, 7; 4, 6, 9), 6.125

p = 2 1 (19, 20, 21; 18, 20, 24), 20.375. (20, 22, 23; 19, 22, 25), 21.875 (20, 21, 22; 19, 21, 23), 21
2 (7, 8, 9; 6, 8, 10), 8 (15, 16, 17; 14, 16, 18), 16 (6, 8, 10; 5, 8, 11), 8

Table 6  Intuitionistic fuzzy and crisp supplies (unit) 
(
ã
(p)T

i
,ℜ

(
ã
(p)T

i

))
 , labour costs (Rupees/number) 

(
l̃l
T

i
,ℜ

(
l̃l
T

i

))
 , required manpowers (num-

ber/unit) 
(
m̃l

T

i
,ℜ

(
m̃l

T

i

))
 and loading times (hour/unit) 

(
l̃T
i
,ℜ

(
l̃T
i

))
 at source

i p ã
(p)T

i
,ℜ

(
ã
(p)T

i

)
l̃l
T

i
,ℜ

(
l̃l
T

i

)
m̃l

T

i
,ℜ

(
m̃l

T

i

)
l̃T
i
,ℜ

(
l̃T
i

)

1 1 (54, 55, 56; 53, 55, 57), 55 (20, 24, 28; 18, 24, 30), 24 (.05, .1, .2; 0, .1, .25), .11 (.7, 1, 1.3; .6, 1, 1.4), 1
2 (60, 61, 62; 58, 61, 64), 61

2 1 (49, 50, 51; 47, 50, 53), 50 (25, 28, 31, 23, 28, 33), 28 (.15, .3, .45; .1, .3, .5), .3 (1.2, 1.5, 1.8; 1.1, 1.5, 1.9), 1.5
2 (57, 58, 59; 56, 58, 60), 58

Table 7  Intuitionistic fuzzy and crisp demands (unit) 
(
b̃
(p)T

j
,ℜ

(
b̃
(p)T

j

))
 , labour costs (Rupees/number) 

(
l̃u

T

j
,ℜ

(
l̃u

T

j

))
 , required manpowers 

(number/unit) 
(
m̃u

T

j
,ℜ

(
m̃u

T

j

))
 and unloading times (hour/unit) 

(
ũl

T

j
,ℜ

(
ũl

T

j

))
 at destinations

i p b̃
(p)T

j
,ℜ

(
b̃
(p)T

j

)
l̃u

T

j
,ℜ

(
l̃u

T

j

)
m̃u

T

j
,ℜ

(
m̃u

T

j

)
ũl

T

j
,ℜ

(
ũl

T

j

)

1 1 (18, 20, 22; 16, 20, 24), 20 (22, 25, 28; 20, 25, 30), 25 (.2, .3, .4; .1, .3, .45), .29 (1.7, 2, 2.3; 1.6, 2, 2.4), 2
2 (22, 25, 28; 20, 25, 30), 25

2 1 (22, 26, 30; 21, 26, 31), 26 (21, 26, 30; , 20, 26, 32), 25.88 (.1, .2, .25; 0, .2, .3), .18 (1.3, 1.5, 1.7; 1.2, 1.5, 1.8), 1.5
2 (19, 22, 25; 18, 22, 26), 22

3 1 (24, 25, 26; 23, 25, 27), 25 (25, 28, 32; 22, 28, 34), 28.13 (.15, .2, .35; .08, .2, .4), .22 (1.1, 1.7, 2.3; 1, 1.7, 2.4), 1.7
2 (17, 18, 19; 16, 18, 20), 18

Table 8  Intuitionistic fuzzy and 
crisp labour costs (Rupees/
number) 

(
l̃t
T

ij
,ℜ

(
l̃t
T

ij

))
 , 

required manpowers (number/
unit) 

(
m̃t

T

ij
,ℜ

(
m̃t

T

ij

))
 , created 

new jobs (man hour) (
s̃t
T

ij
,ℜ

(
s̃t
T

ij

))
 , and crisp 

conveyances capacity (unit) ( ek)

i j l̃t
T

ij
,ℜ

(
l̃t
T

ij

)
m̃t

T

ij
,ℜ

(
m̃t

T

ij

)
s̃t
T

ij
,ℜ

(
s̃t
T

ij

)
k ek

1 1 (27, 30, 33; 26, 30, 34), 30 (.1, .2, .3; 0, .2, .4), .2. (4, 5, 6; 3, 5, 7), 5 1 96.
2 (24, 25, 28, 23, 25, 30), 25.625 (.2, .4, .5; .1, .4, .55), .37 (2, 4, 6; 1, 4, 7), 4
3 (18, 20, 24; 17, 20, 25), 20.5 (.2, .3, .4; .1, .3, .5), .3 (2, 3, 4; 1, 3, 5), 3

2 1 (25, 27, 30; 24, 27, 32), 27.375 (.2, .3, .6; .1, .3, .7), .35 (3, 4, 5; 2, 4, 6), 4 2 82.25
2 (32, 35, 38; 31, 35, 40), 35.125 (.15, .3, .5; .1, .3, .5), .3 (1, 2, 3; 0, 2, 4), 2
3 (25, 28, 30; 24, 28, 32), 27.875 (.1, .2, .4; .05, .2, .5), .23 (2, 3, 4; 1, 3, 5), 3
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the portions in three objective functions are occupied by 
labour related aspects, which is justifiable, as the workers 
are active in plants, destinations as well as during trans-
portation for loading, unloading and shipping of various 
products. Also, by going through Fig. 8 and the solutions 
of the model, organizations can reduce or increase the 
components of financial, customers’ satisfaction and social 
aspects which are larger or smaller than expectation, respec-
tively, by sending preferable amounts of products to proper 
demand points via proper conveyance.

6.4  Sensitivity analysis

In this subsection, we pursue the resiliency of the com-
promise solution by carrying out the sensitivity analysis 

on the key parameters (supply, demand and capacity of 
conveyance) of the proposed M 3SFSTP. For this pur-
pose, we employ a simple technique which was men-
tioned in Das and Roy (2019). The procedure is taken 
place based on the fact that the basic variables remains 
basic, but their values will change. Thus, the same steps 
mentioned in Das and Roy (2019) are repeated to obtain 
the legitimate ranges of the key parameters. For this, let 
us assume ℜ(ã

p

i
) is altered to ℜ(ã

p∗

i
) (i = 1, 2) , ℜ(b̃

p

j
) is 

changed to ℜ(b̃
p∗

j
) (j = 1, 2, 3) and ek is transformed to 

e∗
k
(k = 1, 2) . Exploring the aforementioned steps, we dis-

play the ranges of ℜ(ã
p∗

i
),ℜ(b̃

p∗

j
) and e∗

k
 in Table 13, in 

which the proposed model (Model 3.1) is stable and the 
extracted solutions remain efficient for these input 
parameters.

Table 9  Intuitionistic fuzzy and 
crisp operational costs (Rupees/
unit) (
õl

T

i
, õu

T

j
,ℜ

(
õl

T

i

)
ℜ

(
õu

T

j

))
 , 

and vehicle maintenance cost 
(Rupees/km.) 

(
m̃c

T

k
,ℜ

(
m̃c

T

k

))

i õl
T

i
,ℜ

(
õl

T

i

)
j õu

T

j
,ℜ

(
õu

T

j

)
k m̃c

T

k
,ℜ

(
m̃c

T

k

)

1 (4, 5, 8; 3, 5, 10), 5.625 1 (12, 15, 18; 11, 15, 20), 15.125 1 (0.1, 0.2, 0.3; 0.0, 0.2, 0.4), 0.2
2 (7, 10, 13; 6, 10, 14), 10

2 (5, 8, 10; 4, 8, 12), 7.875 3 (12, 15, 18; 10, 15, 20), 15 2 (0.4, 0.5, 0.6; 0.3, 0.5, 0.7), 0.5

Table 10  Intuitionistic fuzzy 
and crisp new created jobs (man 
hour) 

(
s̃l
T

i
,ℜ

(
s̃l
T

i

))
 at source 

and at destination 
(
s̃uj,ℜ

(
s̃uj

))
 

and distances (km.) (dij)

i s̃l
T

i
,ℜ

(
s̃l
T

i

)
j s̃u

T

j
,ℜ

(
s̃uj

) i j

1 2 3

1 (2, 3, 4; 1, 3, 5), 3 1 (1, 2, 3; 0, 2, 4), 2 1 25 30 20
2 (2, 4, 6; 1, 4, 7), 4

2 (3, 5, 7; 2, 5, 8), 5 3 (1, 3, 5; 0, 3, 6), 3 2 28 22 32

Table 11  Efficient solution of Model 3.1 (the optimal solution is indicated by boldface)

Technique Solution Average 
CPU 
time (s)

DOC

IFGTM �
�
= ����.��,�

�
= ���.��,�

�
= ��.��, x1

111
= 20, x2

111
= 25, x1

122
= 26, x2

122
= 22, x1

131
= 9, x2

131
= 14, x2

231

= 4, x1
232

= 16,wt11 = 9,wt12 = 18,wt13 = 7,wt23 = 5,wl1 = 13,wl2 = 6,wu1 = 13,wu2 = 9,wu3 = 9 , 
and remaining all variables are 0

0.506 0.067

ATM Z1 = 5970.54,Z2 = 503.73,Z3 = 32.05, x1
111

= 20, x2
111

= 25, x1
122

= 26, x2
122

= 22, x1
131

= 9, x2
132

= 14, x2
231

= 4, x1
232

= 16,wt11 = 9,wt12 = 18,wt13 = 7,wt23 = 5,wl1 = 13,wl2 = 6,wu1 = 13,wu2 = 9,wu3 = 9 , 
and remaining all variables are 0

0.516 0.117

GCM (Majum-
der et al. 
2019)

Z1 = 6535.96,Z2 = 508.94,Z3 = 36.11, x1
111

= 20, x2
111

= 25, x1
122

= 26, x2
122

= 31.25, x2
231

= 19.75, x1
232

= 25,wt11 = 9,wt12 = 21,wt23 = 10,wl1 = 11,wl2 = 13,wu1 = 13,wu2 = 10,wu3 = 10 , and remaining 
all variables are 0

0.546 0.140

IFP (Roy and 
Midya 2019)

� = 0.602, � = 0.398, Z1 = 7254.39, Z2 = 575.74, Z3 = 40.71, x1
111

= 20, x2
111

= 13.75, x2
112

= 11.25, x1
122

= 35, x2
122

= 36, x1
231

= 25, x2
231

= 23.24,wt11 = 9,wt12 = 26,wt23 = 11,wl1 = 13,wl2 = 14,wu1 = 13,wu2 = 13,wu3 = 11 , 
and remaining all variables are 0

0.587 0.168
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7  Performance evaluation

The performances of the proposed models and methods 
are further analysed in this section. In order to do this, we 
present two existing examples which are particular cases 
of the proposed problem. Thereafter a stochastic optimiza-
tion approach namely genetic algorithm (GA) is executed 
to solve the examples and results are compared with the 
proposed methods. Lastly, computational complexity of the 
methods is presented.

Example 7.1 For the first case, we consider the follow-
ing particular features of the proposed problem: (F11) 
only one item is transferred via one type of transporta-
tion mode, (F12) fixed, step-fixed and labour costs, and 
loading/unloading times are not taken into consideration, 
(F13) all parameters are crisp in nature, (F14) three objec-
tive functions are of minimization types. With these fea-
tures, the proposed problem is transferred into an MOTP. 
One can see Rizk-Allah et al. (2018) for more mathemati-
cal details. Hence, we pick up the example from Rizk-
Allah et  al. (2018), in which the following inputs are 

Table 12  Efficient solution of Model 3.2 (the optimal solution is indicated by boldface)

Technique Solution Average 
CPU time 
(s)

DOC

IFGTM �
�
= ����.��,�

�
= ���.��,�

�
= ��.��, x1

111
= 30.7, x2

111
= 25.7, x1

122

20.7, x2
122

= 19.7, x2
231

= 20.7, x1
232

= 24.7,wt11 = 10,wt12 = 14,wt23 = 8,wl1 = 8,wu1 = 15,wu2 = 7,wu3 = 8 , 
and remaining all variables are 0

0.598 0.088

ATM Z1 = 5740.26,Z2 = 509.38,Z3 = 34.15, x1
111

= 30.7, x2
112

= 25.7, x1
122

= 20.7, x2
122

= 19.71,

x
1

231
= 24.7, x2

231
= 20.7,wt11 = 10,wt12 = 14,wt23 = 8,wl1 = 5,wu1 = 15,wu2 = 7,wu3 = 8 , and 

remaining all variables are 0

0.695 0.103

GCM (Majum-
der et al. 2019)

Z1 = 6217.6,Z2 = 541.1,Z3 = 37.64, x1
111

= 30.7, x2
111

= 25.7, x1
122

= 22.9, x2
122

= 22.2, x2
231

= 28.9, x1
232

= 24.7,wt11 = 10,wt12 = 15,wt23 = 9,wl1 = 9,wu1 = 15,wu2 = 8,wu3 = 10 , and remaining all vari-
ables are 0

0.745 0.119

IFP (Roy and 
Midya 2019)

� = 0.638, � = 0.362,Z1 = 6721.93,Z2 = 606.32,Z3 = 41.66, x1
111

= 30.7, x2
111

= 10.7, x2
112

= 15, x1
122

= 20.7, x2
122

= 21.85, x2
231

= 44.9, x1
232

= 24.7,wt11 = 10,wt12 = 14,wt23 = 12,wl1 = 8,wu1 = 15,wu2 = 7,wu3 = 13 , 
and remaining all variables are 0

0.633 0.153

Fig. 8  Components of three objective functions obtained by IFGTM

Table 13  The ranges of supply 
(
ℜ
(
ã
p

i

))
 , demand 

(
ℜ

(
b̃
p

j

))
 and con-

veyance capacity (ek)

Actual values Ranges

ℜ(ã1
1
) = 55 21 ≤ ℜ(�a1

1
) < ∞

ℜ(ã2
1
) = 61 7 ≤ ℜ(�a2

1
) < ∞

ℜ(ã1
2
) = 50 16 ≤ ℜ(�a1

2
) < ∞

ℜ(ã2
2
) = 58 4 ≤ ℜ(�a2

2
) < ∞

ℜ(b̃1
1
) = 20 1 ≤ ℜ(b̃1

1
) ≤ 54

ℜ(b̃2
1
) = 25 1 ≤ ℜ(b̃1

1
) ≤ 67.25

ℜ(b̃1
2
) = 26 1 ≤ ℜ(b̃1

1
) ≤ 60

ℜ(b̃2
2
) = 22 1 ≤ ℜ(b̃1

1
) ≤ 64.20

ℜ(b̃1
3
) = 25 1 ≤ ℜ(b̃1

1
) ≤ 59

ℜ(b̃2
3
) = 18 1 ≤ ℜ(b̃1

1
) ≤ 60.25

e1 = 96 53.75 ≤ e1 < ∞

e2 = 82.25 40 ≤ e2 < ∞

used: Supplies: a1 = 5, a2 = 4, a3 = 2, a4 = 9 ; Demands: 
b1 = 4, b2 = 4, b3 = 6, b4 = 2, b5 = 4; and the penalties of 
three objective functions are as follows:
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Example 7.2 To investigate the validity of the possibility 
measure model, we consider another example with the fol-
lowing features: (F21) step-fixed and labour costs, and loading/
unloading times are emitted, (F22) three objective functions 
are of minimization types, (F23) only single item is trans-
ported. With these particular features, the proposed problem 
becomes a multi-objective solid FTP under intuitionistic fuzzy 
environment. More details of this problem can be found in Roy 
and Midya (2019). Therefore, the whole problem and input 
data are lifted from Roy and Midya (2019).

Comparison: The optimal solutions for both of the examples 
which are acquired by the proposed and existing methods, are 
displayed in Table 14. From Table 14, we elicit that, the pro-
posed methods deliver better optimal solutions than other exist-
ing methods and the cited authors’ proposed methods for both 
examples as DOCs of the proposed methods are less than the 
existing methods. Consequently, by going through Tables 11, 
12 and 14, we conclude that the proposed IFGTM is the most 
promising method among the mentioned methods. Further-
more, from Table 14, we observe that although the authors (Roy 
and Midya 2019) applied two same methods (GCM and IFP), 
their proposed model (ranking model) provided worse solution 
than our proposed possibility measure model. This fact asserts 
the efficiency of the possibility measure model.

7.1  Comparison with GA

In this subsection, we compare the results of the proposed 
methods with GA. The operators of the GA (evaluation, 

C1 =

⎡
⎢
⎢
⎢⎣

9 12 9 6 9

7 3 7 7 5

6 5 9 11 3

6 8 11 2 2

⎤
⎥
⎥
⎥⎦

, C2 =

⎡
⎢
⎢
⎢⎣

2 9 8 1 4

1 9 9 5 2

8 1 8 4 5

2 8 6 9 8

⎤
⎥
⎥
⎥⎦

,

C3 =

⎡
⎢
⎢
⎢⎣

2 4 6 3 6

4 8 4 9 2

5 3 5 3 6

6 9 6 3 1

⎤
⎥
⎥
⎥⎦

.

crossover, mutation, etc.) are considered as default, and 
number of population and maximum iteration are set as 
100 and 200 respectively. Therefore, three examples are 
solved by GA and results are displayed in Table 15. From 
Table 15, based on the values of DOCs we see that GA has 
outperformed the existing methods (GCM and IFP) but has 
shown worse performance than the proposed methods in 
three examples.

7.2  Computational complexity

In this subsection, we share the complexity in performing 
the numerical experiments of all examples. All the methods 
are coded in GAMS 31.2.0 software except GA, which is 
coded in MATLAB 9.10.0.1684407 on a computer with 2.10 
GH CPU and 8 GB RAM. The CPU times for solving three 
examples by all methods are displayed in Tables 11, 12, 14 
and 15. In these tables, we see that the proposed possibility 
measure model has taken more CPU time but produces bet-
ter efficient solutions than the ranking model. Furthermore, 
IFGTM has taken least CPU time to produce the most pref-
erable solution. Also, from Table 15, we see that times for 
solving three examples by GA are longest.

8  Managerial implication

The presented study can be applied widely in various organ-
izations associated with logistic system and supply chain 
management. Organizations can build a potential network 
design as well as can take into account the sustainability 
impacts with the help of the proposed model. The proposed 
model can be very helpful to deal with two-fold uncer-
tainty (multi-choice and IFN) during any logistic operation 
when single type uncertainty is not enough to define some 
parameters. Taking into account step fixed-charges together 
with fixed-charges, DMs will be able to operate the logistic 
system by transporting proper amount of products to the 
proper demand centers without extra expenses. Also, vari-
able labour costs will be a beneficial factor to take decisions 

Table 14  Comparative results of the proposed and other existing methods, and models

Example 7.1 Example 7.2

Methods (Z1,Z2,Z3) CPU time DOC (Z1,Z2,Z3) Degree of 
closeness (our 
model)

CPU time DOC 
(authors’ 
model)

IFGTM (114, 112, 72) 0.157 0.1824 (833.30, 41.50, 170.44) 0.0415 0.181 –
ATM (118, 104, 76) 0.164 0.1942 (847.24, 49.50, 170.51) 0.0876 0.203 –
GCM (Majumder et al. 2019) (130.42, 89.70, 79.85) 0.168 0.2057 (848.09, 49.50, 170.57) 0.0880 0.186 0.1127
IFP (Roy and Midya 2019) (119.85, 101.49, 77.97) 0.158 0.2006 (851.52, 47, 170.69) 0.0788 0.190 0.1107
Their proposed method (132, 100, 76) – 0.2223 (852.66, 40, 176.80) – – 0.0522
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about appointing workers. Furthermore, loading/unload-
ing times are also incorporated together with transporta-
tion time, which will direct the organizations to calculate 
more appropriate time. Thus, the model is constructed with 
economic (overall cost) and customers’ satisfaction (overall 
time) related objective functions with multiple items, which 
will help the organizations to maintain a reputable position 
in the competitive global market by gaining more profit and 
customers’ satisfaction. Again, the social impacts of the 
model will help the organization to build a nice public image 
by creating new employments. A draft of the usefulness of 
the proposed study is depicted in Fig. 9. In the real-world 
problems, the possibility measure model will be helpful by 
giving scopes to set desired satisfaction levels (i.e., � and 
�) in order to acquire the best outcome. Also, from three 
practical examples it is evident that, two proposed solving 
methods can provide better efficient solutions than exist-
ing methods with less computational burden. Once more, 
experts can extract more appropriate defuzzified values of 
IFNs by applying the proposed ranking concept without 
larger errors and computational complexity. Last but not the 
least, organizations can choose the best efficient solution 
as well as appropriate solution strategy by going through 
the outcomes and comparative studies. Also, the sensitivity 
analysis will help to set suitable inputs.

9  Epilogue and future exploration scopes

An integrated sustainable logistic systems with economi-
cal, customers’ satisfaction and social aspects under a two-
fold uncertainty has been formed in this paper. In order to 
perform this operation, an unprecedented MOMIP model 
has been formulated which describes an M 3SFSTP with 

three objective functions related to the above-mentioned 
aspects and multiple items under multi-choice as well as 
intuitionistic fuzzy environment. The formulation has 
also provided information about the number of required 
labours and the optimal quantities of delivered commodi-
ties by different conveyances during the logistic opera-
tion. Besides, some major contributions such as fixed and 
step-fixed charge cost, variable labour cost and constraints, 
loading and unloading time, and new created jobs during 
the whole operation has been made through this study. 
Thereafter, a simple form of IFN, TIFN has been envis-
aged to deal with the uncertainties in the parameters. 
Consequently, based on the total integral values, a new 
ranking concept has been introduced to present a determin-
istic model by defuzzifying the TIFN parameters. Also, the 
ranking concept has defuzzified TIFNs with lesser compu-
tational exertion. Moreover, possibility measure of TIFN 
has also been utilized to display another deterministic 
model. Following that, two equivalent fully crisp models 
have been put forward by transforming the multi-choice 
parameter into a single choice with the help of binary vari-
ables. A fresh and an extended solving method have been 
implemented to obtain the efficient solution of the stated 
problem. The superiority of the models and the proposed 
solving methods have been clarified through a practical 
industrial example. Furthermore, some particular cases of 
the narrated formulation have also been incorporated by 
demonstrating two existing examples. The stable ranges 
of some parameters have been debunked by the sensitivity 
analysis. Finally, discussing some decisions regarding the 
sustainability impacts, we have inferred that our rendered 
formulation and solution can assist the organizations/com-
panies in resolving the economical, customers’ satisfaction 
and social issues.

Various emerging areas have not been underlined in this 
study, because of their exteriorities from our enforceable 
set. None the less, some fascinating research directions 
can be forwarded, for instance other sustainability aspects 
such as environmental, safety, vehicles efficiency (Gupta 
et al. 2018), fixed jobs, etc., can be encountered in our pro-
posed M 3SFSTP. Beside that, different uncertainties such 
as type-2 fuzzy, rough, fuzzy-rough, neutrosophic, type-3 

Table 15  Results of three examples solved by GA

Example (Z1,Z2,Z3) CPU time (s) DOC

1 (6720.40, 540.23, 33.90) 20.885 0.121
7.1 (156, 109, 91) 5.133 0.196
7.2 (850.60, 47.50, 168.45) 8.445 0.072

Fig. 9  Three aspects of the 
proposed model
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fuzzy system (Mohammadzadeh et al. 2019) etc., can be 
developed in our model. Also, including time windows can 
make the proposed model more satisfactory. Other forms of 
IFN such as trapezoidal, hexagonal can be used in the pro-
posed model and apart from possibility measure, necessity 
or credibility measure can also be used for obtaining deter-
ministic model. The proposed problem can be extended by 
integrating type-2 fuzzy control method (Mohammadzadeh 
and Kayacan 2020), type-2 fuzzy neural network (Moham-
madzadeh and Zhang 2019) etc. Furthermore, the inclusion 
of fixed and step-fixed charge in M 3SFSTP has made it a 
complex problem, therefore, various heuristic, meta-heuris-
tic and hybrid methods can be developed to solve the large 
scale instances of our proposed problem.

Acknowledgements The authors are very much grateful to the Editor-
in-Chief and anonymous respective reviewers for their insightful com-
ments that helped us so much to rigorously improve the quality of the 
manuscript. The author, Arijit Mondal is very much grateful to the 
University Grant Commission of India for supporting financially to 
continue this research work under JRF (UGC) scheme: Sanction letter 
number [F.NO. 16-9(June 2018)/2019(NET/CSIR)] dated 16/04/2019.

Declarations 

Conflict of interest Authors declare that, there is no conflict of interest 
of the paper.

References

Angelov PP (1997) Optimization in an intuitionistic fuzzy environ-
ment. Fuzzy Sets Syst 86(3):299–306

Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 
20(1):87–96

Biswas A, Shaikh AA, Niaki STA (2019) Multi-objective non-linear 
fixed charge transportation problem with multiple modes of trans-
portation in crisp and interval environments. Appl Soft Comput 
80:628–649

Chankong V, Haimes YY (2008) Multiobjective decision making: 
theory and methodology. Courier Dover Publications

Charnes A, Cooper WW (1957) Management models and industrial 
applications of linear programming. Manag Sci 4(1):38–91

Chen L, Peng J, Zhang B (2017) Uncertain goal programming mod-
els for bicriteria solid transportation problem. Appl Soft Comput 
51:49–59

Chen B, Liu Y, Zhou T (2019) An entropy based solid transportation 
problem in uncertain environment. J Ambient Intell Humaniz 
Comput 10(1):357–363

Das SK, Roy SK (2019) Effect of variable carbon emission in a multi-
objective transportation-p-facility location problem under neutro-
sophic environment. Comput Ind Eng 132:311–324

Ebrahimnejad A, Verdegay JL (2018) A new approach for solving fully 
intuitionistic fuzzy transportation problems. Fuzzy Optim Decis 
Mak 17(4):447–474

El-Washed WFA, Lee SM (2006) Interactive fuzzy goal programming 
for multi-objective transportation roblem. Omega 34(2):158–166

Ghosh S, Roy SK, Ebrahimnejad A, Verdegay JL (2021) Multi-objec-
tive fully intuitionistic fuzzy fixed-charge solid transportation 
problem. Complex Intell Syst 7(2):1009–1023

Gupta P, Mehlawat MK, Aggarwal U, Charles V (2018)An integrated 
AHP-DEA multi-objective optimization model for sustainable 
transportation in mining industry. https:// doi. org/ 10. 1016/j. resou 
rpol. 2018. 04. 007

Hirsch WM, Dantzig GB (1968) The fixed charge problem. Naval Res 
Logist Quart 15(3):413–424

Hitchcock FL (1941) The distribution of a product from several sources 
to numerous localities. J Math Phys 20(1–4):224–230

Jianqiang W, Zhong Z (2009) Aggregation operators on intuitionistic 
trapezoidal fuzzy number and its application to multi-criteria deci-
sion making problems. J Syst Eng Electron 20(2):321–326

Kowalski K, Lev B (2008) On step fixed-charge transportation prob-
lem. Omega 36(5):913–917

Li DF (2010a) A ratio ranking method of triangular intuitionistic fuzzy 
numbers and its application to MADM problems. Comput Math 
Appl 60(6):1557–1570

Li DF (2010b) TOPSIS-based nonlinear-programming methodology 
for multiattribute decision making with interval-valued intuition-
istic fuzzy sets. IEEE Trans Fuzzy Syst 18(2):299–311

Liou TS, Wang MJJ (1992) Ranking fuzzy numbers with integral value. 
Fuzzy Sets Syst 50(3):247–255

Liu L, Zhang B, Ma W (2018) Uncertain programming models for 
fixed charge multi-item solid transportation problem. Soft Comput 
22(17):5825–5833

Maity G, Roy SK (2016) Solving a multi-objective transportation prob-
lem with nonlinear cost and multi-choice demand. Int J Manag Sci 
Eng Manag 11(1):62–70

Majumder S, Kundu P, Kar S, Pal T (2019) Uncertain multi-objective 
multi-item fixed charge solid transportation problem with budget 
constraint. Soft Comput 23(10):3279–3301

Mehlawat MK, Kannan D, Gupta P, Aggarwal U (2019) Sustainable 
transportation planning for a three-stage fixed charge multi-
objective transportation problem. Ann Oper Res. https:// doi. org/ 
10. 1007/ s10479- 019- 03451-4

Midya S, Roy SK, Vincent FY (2021) Intuitionistic fuzzy multi-stage 
multi-objective fixed-charge solid transportation problem in a 
green supply chain. Int J Mach Learn Cybern 12(3):699–717

Miettinen K (2012) Nonlinear multiobjective optimization, vol 12. 
Springer Science and Business Media

Mohammadzadeh A, Kayacan E (2020) A novel fractional-order type-2 
fuzzy control method for online frequency regulation in ac micro-
grid. Eng Appl Artif Intell 90(103):483

Mohammadzadeh A, Zhang W (2019) Dynamic programming strategy 
based on a type-2 fuzzy wavelet neural network. Nonlinear Dyn 
95(2):1661–1672

Mohammadzadeh A, Sabzalian MH, Zhang W (2019) An interval 
type-3 fuzzy system and a new online fractional-order learn-
ing algorithm: theory and practice. IEEE Trans Fuzzy Syst 
28(9):1940–1950

Nayagam VLG, Jeevaraj S, Sivaraman G (2016) Complete ranking of 
intuitionistic fuzzy numbers. Fuzzy Inf Eng 8(2):237–254

Rao SS, Freiheit TI (1991) A modified game theory approach to mul-
tiobjective optimization. J Mech Des 113(3):286–291

Rizk-Allah RM, Hassanien AE, Elhoseny M (2018) A multi-objective 
transportation model under neutrosophic environment. Comput 
Electr Eng 69:705–719

Roy SK, Midya S (2019) Multi-objective fixed-charge solid transpor-
tation problem with product blending under intuitionistic fuzzy 
environment. Appl Intell 49(10):3524–3538

Shell E (1955) Distribution of a product by several properties, Direc-
torate of Management Analysis. In: Proceedings of the second 
symposium in linear programming, vol 2, pp 615–642

https://doi.org/10.1016/j.resourpol.2018.04.007
https://doi.org/10.1016/j.resourpol.2018.04.007
https://doi.org/10.1007/s10479-019-03451-4
https://doi.org/10.1007/s10479-019-03451-4


6999Intuitionistic fuzzy sustainable multi‑objective multi‑item multi‑choice step fixed‑charge…

1 3

Sifaoui T, Aïder M (2019) Uncertain interval programming model 
for multi-objective multi-item fixed charge solid transportation 
problem with budget constraint and safety measure. Soft Comput. 
https:// doi. org/ 10. 1007/ s00,500- 019- 04,526-x

Singh SK, Yadav SP (2016) A new approach for solving intuition-
istic fuzzy transportation problem of type-2. Ann Oper Res 
243(1–2):349–363

Singh V, Yadav SP (2018) Modeling and optimization of multi-objec-
tive programming problems in intuitionistic fuzzy environment: 

optimistic, pessimistic and mixed approaches. Expert Syst Appl 
102:143–157

Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353
Zimmermann JH (1978) Fuzzy programming and linear programming 

with several objective functions. Fuzzy Sets Syst 1(1):45–55

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s00,500-019-04,526-x

	Intuitionistic fuzzy sustainable multi-objective multi-item multi-choice step fixed-charge solid transportation problem
	Abstract
	1 Introduction
	2 Motivation for this investigation
	3 Preliminaries
	3.1 Defuzzification of TIFN
	3.2 Advantages of proposed ranking concept

	4 Problem description
	4.1 Model identification
	4.2 Deterministic equivalence of the model

	5 Solution procedure
	5.1 IFGTM
	5.2 ATM

	6 Computational experiment
	6.1 Industrial example
	6.2 Efficiency analysis
	6.3 Parley of outcomes and analogy
	6.4 Sensitivity analysis

	7 Performance evaluation
	7.1 Comparison with GA
	7.2 Computational complexity

	8 Managerial implication
	9 Epilogue and future exploration scopes
	Acknowledgements 
	References




