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Abstract
Smartphones that can support and assist the screening of various cardiovascular diseases are gaining popularity in recent 
years. The timely detection, diagnosis, and treatment of atrial fibrillation (AF) are critical, especially for those who are at 
risk of stroke. AF detection via screening with wearable devices should always be confirmed by a standard 12-lead electro-
cardiogram (ECG). However, the inability to perform on-site AF confirmatory testing results in increased patient anxiety, 
followed by unnecessary diagnostic procedures and treatments. Also, the delay in confirmation procedure may conclude 
the condition as non-AF while it was indeed present at the time of screening. To overcome these challenges, we propose an 
efficient on-site confirmatory testing for AF with 12-lead ECG derived from the reduced lead set (RLS) in a wireless body 
area network (WBAN) environment. The reduction in the number of leads enhances the comfort level of patients as well as 
minimizes the hurdles associated with continuous telemonitoring applications such as data transmission, storage, and band-
width of the overall system. The proposed method is characterized by segment-wise regression and a lead selection algorithm, 
facilitating improved P-wave reconstruction. Further, an efficient AF detection algorithm is proposed by incorporating a 
novel three-level P-wave evidence score with an RR irregularity evidence score. The proposed on-site AF confirmation test 
reduces false positives and false negatives by 88% and 53% respectively, compared to single lead screening. In addition, the 
proposed lead derivation method improves accuracy, F

1
-score, and Matthews correlation coefficient (MCC) for the on-site 

AF detection compared to existing related methods.

Keywords  Atrial fibrillation (AF) · Reduced lead set (RLS) · Derived 12-lead ECG · Regression · Wireless body area 
network (WBAN)

1  Introduction

According to the World Health Organization (WHO), cardio-
vascular disease (CVD) is the leading cause of death glob-
ally, causing about an estimated 17.9 million deaths each 
year. To reduce the incidence, prevalence, morbidity, and 
mortality of CVD, WHO joins hands with countries and 
various healthcare partners to develop cost-effective and fea-
sible innovations for detecting CVD accurately. The widely 
used and inexpensive diagnostic method to investigate CVD 
is electrocardiogram (ECG) monitoring. The ability to 
acquire, process, and transmit ECG in conjunction with the 
ability to automatically verify and provide decisions based 

on the remotely perceived ECG, help the medical practi-
tioners to tackle the dangers of CVD considerably. With the 
rapid advancement in technology, wireless body area net-
works (WBANs) have become indispensable for IoT-based 
remote health monitoring (Abiodun et al. 2019; Siddharth 
et al. 2019; Dong et al. 2021; Manickavasagam and Amutha 
2020). The prevalence of CVD has prompted an increased 
surge in the electrocardiogram (ECG) based monitoring 
system in WBAN (Tinnakornsrisuphap and Billo 2015). 
However, the scarcity of resources at the sensor nodes and 
gateway nodes has hampered the efficient use and implemen-
tation of WBAN (Poon et al. 2015).

Atrial fibrillation (AF) is one of the most common CVD 
among elderly people, especially those who are at risk of 
strokes (Psaty et al. 1997). It is characterized by uncoordi-
nated atrial activation and contraction resulting in irregu-
larly irregular R peaks, absence of P-waves, and the pres-
ence of fibrillatory waves (Harris et al. 2012). Due to its 
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asymptomatic nature and prevalence among people, there 
raised a need to promote screening of AF using wearable 
devices (Lip et al. 2016; Petryszyn et al. 2019). In Almusal-
lam and Soudani (2019), the authors presented an embed-
ded solution for AF screening using smart wireless body 
sensors. However, the screening process comes with many 
snags (Mandrola et al. 2018). The gold standard for AF con-
firmation is the standard 12-lead ECG (Harris et al. 2012). 
False positive findings in the screening of AF and the lack 
of availability of immediate on-site 12-lead ECG data results 
in unwanted patient anxiety. In situations like COVID-19 
pandemic, various factors such as the fear of getting infected, 
saturation of clinics/hospitals, travel restriction due to lock-
down etc. prevents the patients from visiting the clinics/
hospitals to record the standard 12-lead ECG for confirm-
ing the screen-detected AF. In paroxysmal AF, episodes of 
AF persists for a short duration and then vanishes, to return 
later. In such cases, the delay in confirmation testing may 
diagnose the condition as non-AF, although AF was present 
at the time of screening. Hence, there is a strong recommen-
dation for standard 12-lead on-site AF confirmation testing 
in a WBAN environment (Rosenfeld et al. 2019) that will 
eventually help physicians to improve the medical care and 
the treatment made available to the patients.

The acquisition and transmission of 12-lead ECG from 
ten electrodes in a WBAN environment will considerably 
reduce the battery lifetime of sensor nodes and gateway 
nodes; it will also pose discomfort to the patients making 
them carry more nodes on their body for a long duration. 
Several data compression techniques have been presented in 
the literature (Cetin et al. 1993; Miaou and Yen 2001; Eft-
ekharifar et al. 2018; Olmos and Laguna 1999) for address-
ing these issues, but a reduction in the number of leads ulti-
mately determines the overall compression of the system. 
There are methods reported in the literature to derive 12-lead 
ECG from a reduced lead set (RLS) with 3 or 4 leads by 
exploiting the spatial redundancy (Maheshwari et al. 2014; 
Nelwan et al. 2004; Maheshwari et al. 2014). RLSs are 
designed in such a way as to derive the 12-lead ECG that 
matches the actual recorded 12-lead ECG to the best extent. 
In diagnosing atrial arrhythmia like AF, the absence of 
P-waves in all the leads is a reliable indicator. However, due 
to its low amplitude and the presence of artifacts, faithful 
reconstruction of P-waves from RLS as well as the P-wave 
detection from the derived leads are challenging tasks. In the 
literature, the RLS-based lead derivation methods (Nelwan 
et al. 2004; Nallikuzhy and Dandapat 2017) are prone to 
P-wave distortions. Therefore special care needs to be taken 
to prevent the loss of P-wave information during the deriva-
tion of 12-lead ECG from the RLS. So the challenge here is 
to ensure robust and reliable derivation of standard 12-lead 
ECG signals with acceptable medical quality from the RLS 

and efficiently detect AF from the derived ECG signals at 
the receiver end.

This paper addresses the efficient design of on-site con-
firmatory testing for AF with 12-lead ECG derived from 
an RLS in a WBAN environment. The contributions of our 
paper are as follows: 

1.	 Derivation of 12-lead ECG from the RLS such that the 
P-waves of the derived leads follow the original signal 
in all leads. This is achieved by incorporating segment-
wise regression together with the best lead selection for 
the RLS.

2.	 Design of an efficient method to detect AF from the 
derived ECG leads. The method involves two param-
eters, namely, a novel P-wave measure based on three 
levels of P-wave evidence score and an R-wave measure 
based on RR irregularity score.

3.	 Performance analysis of the proposed 12-lead ECG deri-
vation method together with AF detection method, and 
validation of improved performance by comparing with 
the existing related methods.

2 � Related work

In this section, we outline the significant related works that 
addressed the reduced ECG lead system and AF detection.

2.1 � Reduced ECG lead system

Even though there are several methods for compressing 
12-lead ECG signals, the ability to derive all the 12-leads 
data from a reduced set of leads without affecting the diag-
nosability will ultimately determine the effectiveness of 
the system (Maheshwari et al. 2014). The most common 
method for obtaining coefficients to derive 12-lead ECG 
from the reduced lead system is by applying linear regres-
sion on the learning set. Nelwan et al. (2004) found that the 
best 3-lead subset consists of (I, II, and V2), which was also 
recommended by Scherer et al. (1989). Nelwan et al. (2004) 
focused on continuous ischemia monitoring, and the authors 
did not include the P-wave in their performance assessment 
due to its distortion. Scherer et al. (1989) extracted a subset 
of leads (I, II, and V2) and created a separate set of recon-
struction coefficients for PR, QRS, and ST segments. The 
authors determined that the segmented technique had higher 
correlations and smaller deviations compared to the non-
segmented case. However, their reduced lead set consists of 
fixed leads and did not employ the selection of best lead for 
deriving the remaining leads. In Tsouri and Ostertag (2014), 
the authors reconstructed 12-lead ECG signals using inde-
pendent component analysis (ICA) from two reduced 3-lead 
systems, namely (I, II, and V2) and Frank’s XYZ leads. 
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However, the method requires high computational power 
for implementing ICA. Also, the performance is deterio-
rated as the ECG recording progresses. The method based 
on ICA also faces the issue of convergence. Although the 
principal component analysis (PCA) based lead derivation 
method in Maheshwari et al. (2015) shows better results, it 
requires all the leads for computing principal components 
and is effective only in reducing the transmission costs rather 
than reducing the number of leads on the body. The patient 
specific model presented in Nallikuzhy and Dandapat (2017) 
exploits the frequency domain characteristics of the ECG 
signal along with the best predictor lead-set to improve the 
diagnosability from the derived leads. The discrete wavelet 
transform (DWT) computation in the method requires high 
computational power and hence, the method is not feasible 
in a resource-constrained WBAN nodes. Also, the authors 
have experimentally shown that the P-waves are distorted in 
most of the leads.

2.2 � AF detection

In the literature, various ECG features are employed to 
detect and characterize AF using single-lead or multi-lead 
ECG signals. The three cardinal features of AF are (i) RR 
irregularity, (ii) absence of P-wave, and (iii) presence of 
fibrillatory waves. Most of the AF detectors are based on RR 
intervals (Dash et al. 2009; Lee et al. 2013) rather than that 
based on P-wave (Clavier et al. 2002) and fibrillatory waves 
(Henriksson et al. 2018), and this is mainly due to the low 
computational requirement of RR based detectors. P-wave 
detection has been an open problem due to its low ampli-
tude, presence of noise, as well as the wave segments that 
mimics the P-waves (Kennedy et al. 2016). The Physionet/
CinC challenge 2017 (Clifford et al. 2017) presented a wide 
range of AF detection algorithms using single lead short 
ECG recordings. However, most of those algorithms involve 
high computational processes such as machine learning and 
neural networks. In the case of AF detection using 12-lead 
ECGs, most of the methods in the literature are based on 
deep learning (Cai et al. 2020). It is impractical to consider a 
computationally intensive method for a WBAN environment 
where the sensors as well as gateways are battery-powered 
entities. Hence, in this paper, in order to have an efficient 
on-site AF detection using multi-lead ECG, we use RR 
irregularity measure and a P-wave measure based on novel 
three-level P-wave evidence score.

In the literature, although there are works (Guldenring 
et al. 2012) evaluating the performance of a reduced lead 
system for the monitoring of ST segment using continuous 
12-lead ECG, there are no work related to the detection of 
AF using reduced lead system.

3 � System model

The proposed system model consists of a reduced lead sys-
tem, an on-body super node (smartwatch), a gateway node 
(smartphone), and a remote receiver as shown in Fig. 1. The 
reduced lead system is activated as soon as AF is detected 
by a screening device or by the instruction of a physician. 
The smartwatch will collect the ECG data from reduced 
lead system and forward them to the gateway node. The 
gateway node will derive the remaining leads from the 
reduced set of leads and confirm whether the patient has 
AF or not. Also, the gateway node can send the ECG data to 
the remote station for further analysis. The standard 12-lead 
ECG comprises of 12-leads (I, II,III, aVR, aVL, aVF, V1, 
V2, V3, V4, V5, V6). Among these leads (III, aVR, aVL, 
aVF) can be directly derived from leads {I, II} as follows: 
III = II − I, aVR = −(I − II)∕2, aVL = (I − III)∕2, aVF =

(II + III)∕2 .  The remaining independent ECG leads need to 
be derived from the RLS through a suitable method. The 
RLS includes two limb leads I, II, and one or two precordial 
leads from V1-V6.

4 � Proposed method

A novel approach to on-site AF detection from RLS is 
presented in this section. Since the presence or absence 
of P-wave is significant in AF detection, there is a need to 
increase the resolution of P-waves in the derived ECG leads. 
The authors in Scherer et al. (1989) demonstrated that the 
derivation of leads via segment-wise regression have higher 
average correlation between the derived and original leads 
compared to that of regression using the entire beat. But 
their method used a fixed subset of leads (I, II, V2), and the 
improvement in signal quality for individual segments were 
not analyzed and discussed. The lead selective algorithm in 
Nallikuzhy and Dandapat (2017) selected the best precor-
dial lead for linear regression and it is shown that the lead 
selection will enhance the signal quality of derived leads 
compared to the regression using any fixed subset of leads. 
However, the method in Nallikuzhy and Dandapat (2017) 
exploits the inter-lead correlation in wavelet domain, and 
the authors have illustrated that the P-waves are distorted 
in most of the derived leads. Also, the linear regression in 
wavelet domain requires the transformation of incoming sig-
nals to the wavelet domain which is an energy consuming 
process, and it will eventually burden the sensor nodes and 
gateway nodes in a WBAN system. In our proposed method, 
we integrate the segment-wise regression with lead selec-
tive algorithm in time domain and demonstrate the viability 
in reliable and efficient derivation of ECG leads for on-site 
AF detection.
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The proposed method comprises of different stages, 
namely preprocessing, lead selection, model learning, sig-
nal derivation, and AF detection as shown in Fig. 2. The 
derivation of 12-lead ECG from a 3-lead/ 4-lead RLS is 
based on segment-wise regression and patient-specific best 
lead selection. The segment-wise regression improves the 
reconstruction quality of each segment of ECG beat. The AF 
detection procedure involves two measures, namely R-wave 

measure based on RR irregularity score and P-wave measure 
based on three levels of P-wave evidence score.

4.1 � Derivation of 12‑lead ECG from RLS

For the derivation of 12-lead ECG from RLS, the preproc-
essed data is employed to perform model learning, lead 
selection and signal derivation as shown in Algorithms 1, 
2, and 3 respectively. Lead selection and model learning 

Fig. 1   Proposed system model for on-site AF confirmatory testing

Fig. 2   Different stages in the proposed method
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operations are performed in the off-line phase where the 
eight independent leads of ECG are used to learn the model 
as well as to select the best lead to be used along with limb 
leads (I, II) or (I, II, and V1) for deriving the remaining 
leads. The regression model Cs containing regression coef-
ficients to derive the different segments of remaining leads 
is chosen from the model learning stage based on the lead 
Vs selected. In the on-line phase, using the regression model 
Cs and the lead Vs , the incoming ECG signal from 3/4 RLS 
of the patient’s body is processed at the on-body super node 
or gateway node so as to derive the remaining precordial 
leads. To simplify the usage of notations in algorithms and 
equations, the precordial leads V1, V2, V3, V4, V5, and 
V6 are denoted as V

1
 , V

2
 , V

3
 , V

4
 , V

5
 , V

6
 , respectively. The 

detailed description of each stage is presented in the follow-
ing subsections.

4.1.1 � Preprocessing

The preprocessing block performs the conditioning of 
12-lead ECG for further analysis. It mainly involves the 
removal of baseline wandering, normalization of amplitude, 
and removal of the mean.

4.1.2 � Model learning

The model learning unit determines the regression coeffi-
cients for the derivation of different segments in the derived 
leads. As mentioned in Sect. 3, two limb leads I and II are 
readily included in the reduced lead system. Lead II is seen 
as one of the best leads to verify P-waves. From the precor-
dial leads V

1
 to V

6
 , different leads can give best results for 

verification of P-wave depending upon the statistical proper-
ties of ECG signal which vary from person to person. So the 
best practice will be to check for P-waves in all leads.

Algorithm 1: Model learning algorithm
Input : Leads [I, II, V1, V2, V3, V4, V5,V6]
Output: Regression coefficients Ci

1 Divide ECG into 3 segments [S1, S2 and S3]
2 for n ←− 1 to N do
3 for i ←− 1 to 6 do
4 for ∀ j �= i, j ∈ { 1, 2, 3, 4, 5, 6 } do
5 for k ←− 1 to 3 do
6 Gikn ←− [Sk(In) Sk(IIn) Sk(Vin)]
7 Cijkn ←− (Gikn

TGikn)−1Gikn
TSk(Vjn)

8 end for
9 end for

10 end for
11 end for
12 Ci(jk) ←− mean(Cijkn), ∀ j �= i, j ∈ { 1, 2, 3, 4, 5, 6 }

To design a reduced 3-lead set, we have to select one of 
the best precordial lead from V

1
− V

6
 along with limb leads I 

and II. The model learning algorithm is summarized in Algo-
rithm 1. The model learning unit takes 8-lead ECG as its input. 
Initially the beat interval of each lead is segmented into three: 
(i) segment S

1
 (containing P-wave), (ii) segment S

2
 (contain-

ing QRS) and (iii) segment S
3
 (containing T-wave). N is the 

total number of beats taken for model learning. For each beat, 
different precordial leads are taken as the predictor lead along 
with the limb leads I and II, and the regression coefficients are 
determined for different segments to derive the other precordial 
leads. i.e., the separate regression coefficients are determined 
for each segment corresponding to various lead combinations 
{I, II,Vi ∣ i ∈ 1, 2, 3, 4, 5, 6} by applying the regression analysis 
based on least square optimization technique as shown in (1).

Here, Cijkn represents the regression coefficients for deriving 
the segment Sk of lead Vj using leads {I, II,Vi} for the nth 
beat interval and Gikn is an Nk × 3 matrix, where Nk is the 
length of segment Sk . For the nth beat interval,

The final regression coefficients Ci(jk) are obtained for each 
model by taking the mean of regression coefficients com-
puted for N beats. At the end of model learning stage, each 
model Ci, i ∈ {1, 2, 3, 4, 5, 6} consist of five set of regression 
coefficients [ j ∈ {{1, 2, 3, 4, 5, 6} − {i}} ] corresponding to 
each precordial lead i for deriving the other five precordial 
leads j, and in total there will be six learned models.

In similar lines, there are three different ways to deter-
mine a reduced 4-lead set: (i) Fix the popular combination 
{I, II,V

2
,V

5
} (ii) Select the two precordial leads from the set 

V
1
-V

6
 which give best reconstruction quality (iii) Fix three 

leads as {I, II,V
1
} and then select the best lead from V

2
-V

6
 

using the lead selection algorithm. The reason for fixing lead  

(1)Cijkn = (Gikn
TGikn)

−1Gikn
TSk(Vjn)

(2)Gikn ⟵ [Sk(In)Sk(IIn)Sk(Vin)]
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V
1
 lies in the fact that P-waves are best seen in V

1
 , and informa-

tion loss in the P-waves will lead to error in detecting AF. In 
order to learn the model for a 4-lead RLS, the lead combina-
tion {I, II,V

1
,Vp} is considered in the proposed work, where 

Vp corresponds to any one of the five precordial leads V
2
-V

6
 , 

and each model contains four sets of segment-wise regression 
coefficients to derive the four other precordial leads.

4.1.3 � Lead selection

The lead selection unit selects the precordial lead that is used 
to derive other leads in such a way as to retrieve P-wave with 
the best accuracy levels. The learned model Cs correspond-
ing to the selected precordial lead Vs is picked out, which 
holds the segment-wise regression coefficients for deriving 
the other precordial leads. Here, diagnostic similarity score 
(DSS) used in Nallikuzhy and Dandapat (2017) is incorpo-
rated to select the best precordial lead. The procedure for lead 
selection is depicted in Algorithm 2. The 8-lead ECG and the 
models Ci learned via model learning, where i varies from 1 
to 6, are taken as input in the lead selection algorithm. For 
each lead combination, the corresponding regression model 
obtained via model learning is used to derive the other leads. 
The three segments in each beat interval are derived using the 
segment-wise regression coefficients as shown in (3).

Here, Ŝk(Vijn) denotes the derived kth segment in the nth beat 
interval of precordial lead Vj for the lead combination {I, II,Vi} . 
The performance of each precordial lead in deriving other leads 
is then quantified by using the following metrics: (1) M(1), 
inverse of percent root mean square difference (PRD), (2) M(2), 
inverse of wavelet energy based diagnostic distortion (WEDD) 
measure, and (3) M(3), correlation coefficient (CC).

(3)Ŝk(Vijn) ⟵ GiknCi(jk)

Algorithm 2: Lead selection algorithm
Input : Leads [I, II, V1, V2, V3, V4, V5,V6] and learned models Ci, where, i varies

from 1 to 6
Output: Selected lead Vs and Model Cs

1 Divide ECG into 3 segments [S1, S2 and S3]
2 for i ←− 1 to 6 do
3 for j �= i, j ∈ { 1, 2, 3, 4, 5, 6 } do
4 for n ←− 1 to N do
5 for k ←− 1 to 3 do
6 Gikn ←− [Sk(In) Sk(IIn) Sk(Vin)]

7 ̂Sk(Vijn) ←− Gikn Ci(jk)
8 end for

9 V̂ijn ←− [ ̂S1(Vijn) ̂S2(Vijn) ̂S3(Vijn)]

10 [Mijn(1),Mijn(2),Mijn(3)] ←− metric(Vijn, V̂ijn)
11 end for
12 [Mij(1),Mij(2),Mij(3)] ←− mean(Mijn(1),Mijn(2),Mijn(3))
13 end for
14 [MMi(1),MMi(2),MMi(3)] ←− mean(Mij(1),Mij(2),Mij(3))
15 end for
16 Vs ←− FQ(DSS(MM))

Inverse of PRD: PRD (Zigel et al. 2000) indicates the 
signal quality between the reconstructed/derived signal x′ 
and the original signal x. Lower the PRD, higher the recon-
struction quality. This inturn implies that higher the inverse 
of PRD, higher the reconstruction quality.

Inverse of Wavelet energy based diagnostic 
distortion(WEDD): WEDD (Manikandan and Dandapat 
2007) is determined from the Wavelet coefficients of the 
original and the reconstructed/derived ECG signals. The 
inverse of WEDD value is higher for the reconstructed sig-
nal with less distortion in diagnostic features.

The wi in (6) is the weight for ith sub-band and it is given by 
(7). The wavelet PRD for ith sub-band is given by (8). The 
ti(h) and t̂i(h) represents the hth wavelet coefficients in ith 
sub-band for original and derived bands respectively.

(4)PRD(%) =
‖x − x�‖
‖x‖

× 100

(5)M(1) =
1

PRD

(6)WEDD =

L+1∑

i=1

wi.WPRDi

(7)wi =

∑Hi

h=1
t2
i
(h)

∑L+1

k=1

∑Hi

h=1
t2
k
(h)

, i = 1, 2, ....(L + 1))

(8)WPRDi =

�����
∑Hi

h=1
[ti(h) − t̂i(h)]

2

∑Hi

h=1
[ti(h)]

2

× 100
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Correlation coefficient (CC): It is a measure of linear 
dependence between two signals (say, x and y). Higher the 
correlation coefficient, better the correlation between the 
signals.

where, x̄ and ȳ denote mean of x and y respectively.
The DSS function specified in Algorithm 2 takes as input, 

the mean values of metrics denoted as MM. Let Mij(k) where 
k ∈ {1, 2, 3} be the kth metric for deriving jth precordial 
lead using (I, II, Vi ). Then MMi(k) denotes the average of 
metric Mj(k) where j ∈ {{1, 2, 3, 4, 5, 6} − {i}} . Thus MM is 
a 6 × 3 matrix where the ith row [ MMi(1) MMi(2) MMi(3) ] 
corresponds to the ith precordial lead Vi . The function DSS 
calculates the sum of metrics SUMi for each precordial lead i 
for different combinations as given in Eq. (11) where [ a

1
 , a

2
 , 

a
3
 ] range from [0 0 1] to [1 1 1], and picks the ith lead that 

gives maximum SUMi value for each combination.

Out of the different leads assigned to 7 combinations 
using DSS function, the lead that occurs most frequently is 
selected as the best lead Vs by the function FQ. The func-
tion FQ selects the precordial lead that occurs frequently 
in DSS(MM). The learned model Cs corresponding to the 
best lead Vs is then used to derive the signals through linear 
regression.

(9)M(2) =
1

WEDD

(10)M(3) = CC =

∑n

i=1
(xi − x̄)(yi − ȳ)

�∑n

i=1
(xi − x̄)2

�∑n

i=1
(yi − ȳ)2

(11)SUMi = a
1
.MMi(1) + a

2
.MMi(2) + a

3
.MMi(3)

4.1.4 � Lead derivation

The lead derivation is the on-line real-time operation in 
the proposed scheme, whereas the model learning and lead 
selection operations are off-line procedures. In the lead deri-
vation stage, the selected lead and the set of regression coef-
ficients from the corresponding learned model are employed 
to derive the remaining precordial leads as shown in Algo-
rithm 3. Here, the precordial lead Vs selected via lead selec-
tion algorithm is used along with the limb leads I and II to 
derive the remaining precordial leads. The learned model Cs 
corresponding to the lead Vs equips the lead derivation stage 
with the required segment-wise regression coefficients. i.e., 
the kth segment of the precordial lead Vj for the nth beat 
interval is derived via linear regression as follows.

where Gskn denotes the arrangement of kth segment of leads 
{I, II,Vs} as given in Eq. (2), and Csjk denotes the regres-
sion coefficients for the derivation of kth segment of precor-
dial lead Vj . The derived three segments are concatenated 
to form V̂jn for the nth beat interval. Then the N beats are 
concatenated to form the derived lead V̂j . In this way, all 
the remaining precordial leads are derived from the reduced 
lead set {I, II,Vs}.

4.2 � On‑site confirmatory testing for AF

A new approach to on-site AF detection from the RLS is 
presented in this section. Since the presence or absence 

(12)Ŝk(Vjn) ⟵ GsknCsjk

Algorithm 3: Lead derivation algorithm
Input : Leads [I, II, Vs], Model Cs

Output: { V̂j }, j ∈ { { 1, 2, 3, 4, 5, 6 } - s }
1 for n ←− 1 to N do
2 for ∀ j �= s, j ∈ { 1, 2, 3, 4, 5, 6 } do
3 for k ←− 1 to 3 do
4 Gskn ←− [Sk(In) Sk(IIn) Sk(Vsn)]

5 ̂Sk(Vjn) ←− Gskn Csjk

6 end for

7 V̂jn ←− [ ̂S1(Vjn) ̂S2(Vjn) ̂S3(Vjn)]
8 end for

9 V̂j ←− Concatenate (V̂jn), ∀ j �= s, j ∈ { 1, 2, 3, 4, 5, 6 }
10 end for
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of P-wave is significant in AF detection, there is a need 
to increase the resolution of P-waves in the derived ECG 
leads. The proposed method for lead derivation derivation 
which is designed in such a way as to ensure improvement 
in the reconstruction quality of all the three segments of the 
ECG signal can be used to confirm the AF, since it gives 
excellent reconstruction quality for P-waves. Therefore, the 
12-lead ECG derived from the RLS is applied to AF detector 
as shown in Fig. 2. The proposed AF detection procedure 
involves two measure scores, namely RR irregularity score 
and three levels of P-wave evidence score. The derived sig-
nal at the gateway node can be verified for AF directly at 
the gateway node, or it can be sent to the hospitals for the 
physicians to confirm the same. For the AF detection at the 
gateway node, a simple algorithm is developed to detect AF 
from the 12-lead ECG derived from RLS using the proposed 
method.

4.2.1 � Parameters employed for AF detection

To develop the energy-efficient on-site AF detector, two 
parameters are employed namely RR irregularity score and 

P-wave evidence score as shown in Fig. 3. RR irregularity 
score is based on the number of consecutive R–R intervals 
extracted that differ by more than 50 ms, and P-wave evi-
dence score is based on three levels of P-wave evidence. 
The objectives of three levels of P-wave evidence are sum-
marized in Table 1.

RR irregularity: Heart rate variability (HRV) analysis, 
a noninvasive method for assessing cardiac autonomic con-
trol, provides useful information about the variation between 
consecutive heartbeats (TFESC/NASPE 1996). The HRV 
analysis on ECG signal can be done in time domain and 
frequency domain. A decreased HRV is a predictor of ven-
tricular arrhythmias and sudden death in different patient 
populations (Sessa et al. 2018). In the proposed AF detection 
scheme, RR irregularity score employed is pNN50 (Mietus 
et al. 2002), and it is determined by the ratio of number of 
consecutive RR intervals that differ by more than 50 ms to 
the total number of RR intervals. RR irregularity score is 
significantly higher for AF compared to normal sinus rhythm 
(Khan et al. 2021).

First level P-wave evidence: In this level, P-wave detec-
tion of individual leads is performed and the lead having 
P-wave detection as 80% of the total number of beats is 
identified. The procedure to determine the first level P-wave 
evidence score is summarized in Algorithm 4. Initially, 
R-peaks are detected and the corresponding RR intervals 
are determined. The detected P-waves that have duration 
atleast 0.12 times the respective RR interval (Kimura-
Medorima et al. 2018) are considered as valid P-waves. If 
this condition is not met, then the respective P-wave loca-
tions are skipped. The ratio of P-waves detected initially to 
the number of beat intervals in each lead is referred as the  

Fig. 3   Block diagram for AF detection

Table 1   Objectives of three levels of P-wave evidence

P-wave evidence Objectives

First level 1. P-wave detection in individual leads
2. The best lead with maximum number of P-waves is identified

Second level Individual leads are compared with best lead and missed P-waves in the first level are scrutinized
Third level For each beat interval, P-wave positions of 8 leads are compared and confirmed the presence or 

absence of p-waves in each beat interval
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Fig. 4   Adjusting P-wave duration based on the variation in maxima

initial P-wave score. The initial ratio of P-waves detected 
in 8 leads is referred to as the initial P-wave score. If none 
of the leads have more than 50% P-wave detection, then the 
new onset and offset locations of P-wave are found based on 
the slope variation in maximas (continuously reducing maxi-
mas from the peak P value is included in P-wave duration) 
as shown in Fig. 4 and the corresponding P-wave duration 
(PWD) are checked for validity. Finally, the ratio of P-waves 
detected in each lead to the total number of beat intervals 

defines the first level P-wave evidence score. The lead having 
the highest first level P-wave evidence score is selected as 
the best lead for the spatial comparison in the second level.

Second level P-wave evidence: This level performs cor-
relation between the PWD in different leads and the PWD 
of best lead selected in the first level as depicted in Algo-
rithm 5. If the correlation between PWDs of best lead and 
other lead is greater than a threshold (say, 0.7), then that 
PWD with a maxima is designated as a P-wave; otherwise 
the PWD is ignored in those leads. Finally, the enhanced 
P-wave count is determined, and the ratio of P-waves 
detected in 8 leads is taken as the second level P-wave evi-
dence score.

Algorithm 4: First level P-wave evidence algorithm
Input : 8 lead ECG
Output: Best Lead, Initial P-wave score, First level P-wave evidence score

1 Detect R peaks
2 Determine the maxima and minima in the range [0.65×RR 0.9×RR]
3 Find the potential P-wave location from maxima
4 Find the onset and offset for P-wave from minima
5 if P-wave duration < 0.12×RR
6 Skip the corresponding P-wave locations
7 end if
8 Initial P-wave score ←− Percentage of P-waves detected in 8 leads
9 If no leads have initial P-wave score > 0.5

10 Set new onset and offset P-wave locations based on variation in maximas
11 if P-wave duration < 0.12×RR
12 Skip the corresponding P-wave locations
13 end if
14 end if
15 First level P-wave evidence score ←− Ratio of no. of P-waves detected to the no. of

beat intervals for each lead.
16 Best lead ←− Lead with highest first level P-wave evidence score.
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Algorithm 5: Second level P-wave evidence algorithm
Input : 8 lead ECG, Best Lead, PWDs, P-wave locations
Output: Second level P-wave evidence score

1 Determine the correlation between the PWDs of best lead and the other leads.
2 if the correlation > threshold (say, 0.7),
3 Designate a P-wave with the corresponding duration in the missed lead.
4 else
5 Recognize a P-wave miss with the corresponding duration in the missed lead.
6 end if
7 Determine the P-wave count for each leads
8 Second level P-wave evidence score ←− Ratio of no. of P-waves detected to the no. of

beat intervals for each lead.

Algorithm 6: Third level P-wave evidence algorithm
Input : 8 lead ECG, Best Lead, PWDs, P-wave positions
Output: Third level P-wave evidence score

1 Consider the entire P-wave search area for signal analysis
2 Remove the trend from signals
3 Determine the maxima and minima in the range [0.5×RR 0.9×RR]
4 P-wave position (PWP) ←− position at which maximum peak lies.
5 Find the mean M of PWPs for different leads at the same beat intervals
6 for each interval g do
7 for i ←− 1 to 8 do
8 if PWP(g,i) is within range [M(g) ± 0.2×M(g)]
9 P-wave identified

10 count(g) = count(g) + 1
11 else
12 No P-wave
13 end if
14 end for
15 if count(g) ≥ T
16 P-wave count = P-wave count + 1
17 end if
18 end for
19 Net P-wave count = P-wave count/no. of beat intervals
20 Third level evidence score ←− Net P-wave count

Third level P-wave evidence: This level determines the 
final P-wave count in spatial domain based on the P-waves 
detected in various leads as shown in Algorithm 6. In this 
level, the P-wave position (PWP) in each lead for a particular 
time beat is compared, and the PWP is validated accord-
ingly. PWPs of 8 leads are compared for each beat interval, 
and if the PWP is within a range ( ± 0.2 times the mean of 
the positions), then the P-wave count is incremented. The 
final P-wave count denotes the number of leads in which 
the PWPs are validated. If the final P-wave count is greater 
than a threshold T (say, six leads), then the P-wave in that 
particular beat interval is validated. The ratio of number of 
P-waves validated to the total number of beat intervals gives 
the net P-wave count. The net P-wave count thus obtained is 
referred to as the third level P-wave evidence score.

4.2.2 � AF detection algorithm

The architecture of the proposed AF detection algorithm is 
depicted in Fig. 5. Initially, RR irregularity is determined 
using a score that measures the number of consecutive RR 

intervals which differ by 50 ms and more. If the RR score 
is greater than a threshold (Thr), then the system proceeds 
to determine the three levels of P-wave evidence score. 
The P-wave evidence score is measured in three levels as 
explained in Algorithms 4, 5, and 6. The thresholds are 
determined experimentally, and the four rules in Fig. 5 are 
formulated as follows, where N(score > z) denotes the num-
ber of leads in which ’score’ has a value greater than z, and 
{AND,OR} denote the logical operators:

Rule 1: RR irregularity score < 0.35
If RR irregularity score is less than a threshold Thr, then 

the detection algorithm can rule out the presence of AF. 
Otherwise, the next rule is carried out. The authors in Chris-
tov et al. (2018) have shown that the RR irregularity for 
the normal ECG ranges from 0-0.2, whereas it ranges from 
0.4-1 for AF. So, we varied Thr from 0.2 to 0.4 in steps of 
0.05 in the simulation study and validated that Thr = 0.35 
yields good results.

Rule 2: [N(First level P-wave evidence score > 0.8) ≥ 5] 
OR [N(First level P-wave evidence score > 0.9) ≥ 3]
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After the first level detection, if 5 or more number of 
leads have more than 80% P-wave detection OR at least 3 
leads have more than 90% P-wave detection, then the detec-
tion algorithm will ascertain that P-waves are present and 
rule out the possibility of AF. Otherwise, the algorithm 
passes to Rule 3. This rule is formulated after experimentally 
validating that the probability of falsely detecting more than 
80% P-waves in more than 4 leads is very low.

Rule 3: [N(Second level P-wave evidence score > 0.8) ≥ 
4] AND [N(Initial P-wave score > 0.5) ≠ 0]

Since second level search improves the confidence level 
of P-wave detection, the possibility of AF is ruled out if 
4 or more leads have 80% P-wave detection. But here, an 
additional condition that at least one lead has more than 50% 
P-wave detection in the initial P-wave score is included to 
avoid the effect of false detected P-waves. This is because, 
we observed during our experiments that some subjects with 
none of the leads having an initial P-wave score greater than 
0.5 exhibit very good second-level P-wave evidence score 
due to the falsely detected P-waves.

Rule 4: Third level P-wave evidence score < 0.5
The highest level of scrutiny is at the third level, where 

P-wave positions of 8 leads are compared and the presence 
or absence of P-waves in each beat interval is confirmed. If 
the ratio of number of P-waves validated to the total num-
ber of beat intervals considered is greater than 0.5, then the 
detection algorithm can rule out the possibility of AF. Oth-
erwise, the algorithm confirms that the particular subject 
has AF.

5 � Results

The experiments are performed on two different databases, 
namely the most commonly used PTB (Physikalisch-Tech-
nische Bundesanstalt) ECG database Goldberger et  al. 
(2000) and China Physiological Signal Challenge (CPSC) 
2018 database (Liu et al. 2018). Since the number of AF 
subjects in PTB database is very low, the performance of 
RLS in AF detection is determined using the CPSC 2018 

Fig. 5   Architecture of proposed 
AF detection algorithm
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database. There are nine classes/categories of ECG signal 
records in CPSC 2018 database that include one normal 
class and eight abnormal classes. AF is one of the abnormal 
classes in the database. All the experiments are carried out 
in the MATLAB platform using a 3.3 GHz Intel Xeon pro-
cessor. The ECG data from the datasets are downloaded in 
MATLAB format.

5.1 � Experiment 1: Effect of RLS on the P‑wave 
analysis

The PTB database contains 549 records from 290 subjects 
with each record having the conventional 12 leads (I, II,III, 
aVR, aVL, aVF, V

1
 , V

2
 , V

3
 , V

4
 , V

5
 , V

6
 ) and the 3 Frank lead 

ECGs (vx, vy, vz). The signals are recorded at a sampling 
frequency of 1000 Hz. In the case of a reduced lead system 

with three leads, two leads I and II are fixed, and one of 
the precordial lead is selected from V

1
-V

6
 . The reduced lead 

system having four leads includes I, II, V
1
 and one of the 

leads from V
2
-V

6
.

Fig. 6 shows the distortion in ECG signal of lead V
1
 com-

pared with the original signal when the lead V
1
 is derived 

from a 3-lead RLS with the method mentioned in Nallikuzhy 
and Dandapat (2017). Similarly, Fig. 7 depicts the effect 
of using separate regression coefficients for different seg-
ments of ECG compared to the same coefficients. Although 
the P-wave can be detected, the morphology is completely 
changed when the method in Nallikuzhy and Dandapat 
(2017), or the method with same regression coefficients is 
applied for lead derivation. The proposed lead derivation 
method with separate regression coefficients shows an excel-
lent reconstruction quality for the P-wave as shown in Fig. 7.

Table 2 shows the significance of lead selective approach 
compared to the fixed lead combinations for a 4-lead reduced 
system in terms of PRDs (Mean ± Standard deviation). The 
PRDs are averaged over the entire subjects in PTB database. 
As the reconstruction quality increases with the decrease in 
PRDs, the lead selective approach has better reconstruction 
quality compared to other fixed lead combinations. Tables 3 
and 4 show the average PRDs and correlation coefficients 
corresponding to different segments {S

1
, S

2
, S

3
} with same 

regression coefficients as Ps , Rs and Ts , and with different 
coefficients as Pd , Rd and Td for a 3-lead RLS. The PRDs 
as well as correlation coefficients are improved drastically 
by segment-wise regression (i.e., different regression coef-
ficients for different segments). Also, it can be seen that 
the improvement is very significant in the case of P-wave. 
Entire beatd denotes the PRD or correlation coefficient for 

Fig. 6   Original and derived V
1
 lead using the method in Nallikuzhy 

and Dandapat (2017) in a 3-lead reduced system for PTB database 
subject ’ s0460_rem’

Fig. 7   Original and derived 
V
1
 lead using separate coeffi-

cients and same coefficients for 
different segments in a 3-lead 
reduced system for PTB data-
base subject ’ s0460_rem’



6809Efficient on-site confirmatory testing for atrial fibrillation with derived 12-lead ECG...

1 3

the entire beat when each segment in the beat are regressed 
using different coefficients. The signal quality of each seg-
ment particularly P-wave segments are improved signifi-
cantly by the different coefficients. Similarly, Tables 5 and 
6 show the performance of 4-lead reduced system with dif-
ferent coefficients for different segments and with same coef-
ficients for different segments. The performance of 4-lead 
reduced system is superior compared to 3-lead RLS.

Figs. 8 and 9 present the boxplots of overall PRD values 
for P-waves with same regression coefficients and with dif-
ferent regression coefficients respectively in a 3-lead reduced 
system. Similarly, Figs. 10 and 11 show the boxplots cor-
responding to 4-lead reduced system. The performance of 
system with different regression coefficients is superior and 
is clearly visible from figures. The performance of the pro-
posed system compared to the method in Nallikuzhy and 
Dandapat (2017) in terms of different performance metrics 

is shown in Table 7. The performance evaluation using met-
rics such as PRD, correlation coefficient, WEDD, and R2 
statistics indicate that the proposed system outperforms the 
system presented in Nallikuzhy and Dandapat (2017) for 
both the 3-lead and 4-lead reduced systems.

The important observations from the experimental results 
are the following: (i) The lead selective approach has better 
reconstruction quality for the complete ECG signal com-
pared to other fixed lead combinations as shown in Table 2. 
This clearly demonstrates that the proposed method out-
weighs the state-of-the-art methods presented in Nelwan 
et al. (2004) and Scherer et al. (1989) (ii) The proposed 
method shows an excellent reconstruction quality for the 
P-wave compared to other existing methods in Nelwan et al. 
(2004) and Nallikuzhy and Dandapat (2017) as illustrated 
in Figs. 6 and 7. (iii) By analyzing Table 7, we can conclude 
that the proposed method has better performance in terms of 

Table 2   PRDs corresponding to different lead combinations for a 4-lead reduced system

Lead combinations V
2

V
3

V
4

V
5

V
6

Net average

[I, II, V
1
 , V

2
] – 11.98 ± 7.94 20.31 ± 13.62 20.45 ± 16.28 17.94 ± 15.94 17.67 ± 13.44

[I, II, V
1
 , V

3
] 9.31 ± 7.87 – 12.81 ± 10.63 17.48 ± 14.30 16.88 ± 13.71 14.12 ± 11.63

[I, II, V
1
 , V

4
] 13.81 ± 10.09 11.34 ± 9.50 – 12.90 ± 11.23 15.43 ± 13.48 13.37 ± 11.07

[I, II, V
1
 , V

5
] 16.68 ± 11.81 18.66 ± 13.11 15.96 ± 12.80 – 10.96 ± 11.00 15.57 ± 12.18

[I, II, V
1
 , V

6
] 17.58 ± 12.20 21.56 ± 13.66 22.55 ± 14.91 13.16 ± 11.48 – 18.71 ± 13.06

Lead selective [I, II, V
1
 , V

s
] 11.14 ± 8.58 11.32 ± 9.92 11.83 ± 9.37 14.20 ± 10.78 14.13 ± 11.69 12.52 ± 10.07

Table 3   Average PRDs 
corresponding to different 
segments with same regression 
coefficients ((P

s
 , R

s
 and T

s
 )) 

and with different regression 
coefficients ( P

d
 , R

d
 and T

d
 ) for 

3-lead reduced system

V
1

V
2

V
3

V
4

V
5

V
6

Average

P
s

86.65 81.37 65.59 64.53 79.17 66.80 74.02
P
d

52.21 32.53 28.59 24.92 32.32 34.26 34.14
R
s

19.85 19.22 17.86 18.14 18.73 15.75 18.26
R
d

16.75 13.96 14.47 14.82 15.77 13.86 14.94
T
s

45.53 30.62 29.43 35.87 49.23 41.70 38.73
T
d

33.18 21.35 20.37 22.80 31.46 31.12 26.71
Entire beat s 24.96 20.31 20.40 21.91 24.59 21.47 22.28
Entire beat 

d
20.17 14.98 15.80 15.83 18.19 17.00 17.00

Table 4   Average correlation 
coefficients corresponding to 
different segments with same 
regression coefficients ((P

s
 , 

R
s
 and T

s
 )) and with different 

regression coefficients ( P
d
 , 

R
d
 and T

d
 ) for 3-lead reduced 

system

V
1

V
2

V
3

V
4

V
5

V
6

Average

P
s

0.60 0.52 0.68 0.85 0.88 0.89 0.74
P
d

0.79 0.86 0.89 0.92 0.89 0.89 0.87
R
s

0.97 0.97 0.97 0.97 0.98 0.99 0.98
R
d

0.98 0.98 0.99 0.98 0.98 0.99 0.98
T
s

0.83 0.91 0.94 0.92 0.85 0.87 0.89
T
d

0.88 0.95 0.96 0.95 0.91 0.90 0.93
Entire beat s 0.96 0.97 0.97 0.97 0.96 0.97 0.97
Entire beat 

d
0.97 0.98 0.98 0.98 0.98 0.98 0.98
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Table 5   Average PRDs 
corresponding to different 
segments with same regression 
coefficients ( P

s
 , R

s
 and T

s
 ) 

and with different regression 
coefficients ( P

d
 , R

d
 and T

d
 ) for 

4-lead reduced system

V
2

V
3

V
4

V
5

V
6

Average

P
s

61.75 50.95 48.19 57.85 52.51 54.25
P
d

25.87 25.56 23.51 28.32 30.98 26.85
R
s

12.26 11.97 12.83 13.87 12.30 12.64
R
d

9.74 10.05 10.91 12.11 11.26 10.81
T
s

22.50 20.74 25.66 36.34 33.39 27.73
T
d

16.65 16.27 18.25 25.51 26.85 20.71
Entire beat s 14.69 14.26 15.74 18.18 16.88 15.95
Entire beat 

d
11.16 11.41 12.14 14.37 14.23 12.66

Table 6   Average correlation 
coefficients corresponding to 
different segments with same 
regression coefficients ( P

s
 , 

R
s
 and T

s
 ) and with different 

regression coefficients ( P
d
 , 

R
d
 and T

d
 ) for 4-lead reduced 

system

V
2

V
3

V
4

V
5

V
6

Average

P
s

0.83 0.83 0.84 0.87 0.88 0.85
P
d

0.93 0.92 0.93 0.92 0.91 0.92
R
s

0.99 0.99 0.99 0.98 0.99 0.99
R
d

0.99 0.99 0.99 0.99 0.99 0.99
T
s

0.95 0.96 0.95 0.90 0.90 0.93
T
d

0.97 0.97 0.97 0.94 0.93 0.96
Entire beat s 0.99 0.99 0.98 0.98 0.98 0.98
Entire beat 

d
0.99 0.99 0.99 0.99 0.99 0.99

Fig. 8   Boxplot showing PRD of P-waves with same regression coef-
ficients in a 3-lead reduced system

Fig. 9   Boxplot showing PRD of P-waves with separate regression 
coefficients in a 3-lead reduced system

Fig. 10   Boxplot showing PRD of P-waves with same regression coef-
ficients in a 4-lead reduced system

Fig. 11   Boxplot showing PRD of P-waves with separate regression 
coefficients in a 4-lead reduced system
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various performance metrics compared to the method in Nal-
likuzhy and Dandapat (2017) that exploits frequency domain 
characteristics of ECG signal along with best lead selection.

The power efficiency of the proposed system is evalu-
ated by following a power model reported in Abdulghani 
et al. (2009) and employed in earlier studies (Majumdar et al. 
2014; Shukla and Majumdar 2015a, b; Majumdar and Ward 
2015); Singh et al. 2017) for comparative power consump-
tion analysis in remote monitoring applications. The total 
power ( Ptot ) is given by the sum of three different types of 
power.

The power consumed for signal sensing ( Psen ) includes two 
stages, namely amplification ( Pamp ) and analog-to-digital 
conversion ( PADC ). For C number of channels,

The processing power ( Pproc ) involves power needed for dif-
ferent operations like regression ( Preg ) or principal compo-
nent analysis ( PPCA ) or discrete wavelet transform ( PDWT ). 
The transmission power ( Ptrans ) is given as

where C, J, fs , and R denote the number of channels/leads, 
transmission energy per bit, sampling frequency, and the 
number of bits per sample, respectively.

In the proposed method, C = 3 or 4 as reduced number of 
leads are used to derive the other leads. Also, we consider 
the entire system of deriving leads for calculating the power 
efficiency. A CMOS amplifier having a gain of 67.7 dB 

(13)Ptot = Psen + Pproc + Ptrans

(14)Psen = C(Pamp + PADC)

(15)Ptrans = CJfsR

consumes Pamp = 0.274 �W  for ECG signal amplification. 
An ADC with 12-bit resolution and fs = 500 Hz consumes 
approximately 0.2 �W  . The transmission energy per bit is 
5 nJ. Preg involves 4 Ns multiplications and 3 Ns additions 
for deriving a single lead from RLS. As the energy cost 
for addition is negligible, we consider only the energy cost 
for 32-bit floating-point multiplication which is 3.7 pJ. The 
power required for DWT computation, i.e. PDWT is 100 �W 
per ECG channel.

With the above-mentioned values for different types of 
power, the total power for the proposed method using 4-lead 
RLS (i.e., C = 4) is compared with that in Nallikuzhy and 
Dandapat (2017) as shown in Table 8. The lead derivation 
using method in Nallikuzhy and Dandapat (2017) involves 
DWT computation on the four input predictor leads as well 
as inverse DWT computation on the four regressed output 
(wavelet coefficients). Therefore, the total PDWT in Nalliku-
zhy and Dandapat (2017) is estimated as 800 �W  . Table 8 
shows that the proposed method consumes only 13% power 
compared to that in Nallikuzhy and Dandapat (2017).

Table 7   Comparison of 
proposed system with the 
system presented in Nallikuzhy 
and Dandapat (2017) in terms 
of different performance metrics

Reduced 
lead system

Method Metric V
1

V
2

V
3

V
4

V
5

V
6

Average

3-lead  Nalliku-
zhy and 
Dandapat 
(2017)

PRD 27.12 21.61 23.54 24.01 28.82 29.81 25.82
Correlation 0.95 0.96 0.96 0.96 0.94 0.94 0.95
WEDD 9.36 6.47 7.82 8.47 11.04 10.61 8.96
R
2 0.90 0.93 0.92 0.92 0.89 0.88 0.91

Proposed PRD 20.17 14.98 15.80 15.83 18.19 17.00 17.00
Correlation 0.97 0.98 0.98 0.98 0.98 0.98 0.98
WEDD 7.12 4.44 4.70 5.46 6.78 5.91 5.74
R
2 0.93 0.95 0.95 0.96 0.95 0.96 0.95

4-lead  Nalliku-
zhy and 
Dandapat 
(2017)

PRD – 15.54 16.21 17.20 18.49 19.79 17.45
Correlation – 0.98 0.98 0.98 0.98 0.97 0.98
WEDD – 4.89 5.35 6.13 7.47 7.79 6.33
R
2 - 0.96 0.96 0.96 0.95 0.94 0.95

Proposed PRD – 11.14 11.32 11.83 14.20 14.13 12.52
Correlation – 0.99 0.99 0.99 0.99 0.99 0.99
WEDD – 3.39 3.39 3.39 3.39 3.39 3.39
R
2 – 0.98 0.98 0.97 0.97 0.96 0.97

Table 8   Power consumption analysis

Method Sensor node Gateway node Ptot ( �W)

Psen ( �W) Ptrans 
( �W)

Preg ( �W) PDWT 
( �W)

 Nalliku-
zhy and 
Dan-
dapat 
(2017)

1.896 120 0.03 800 921.9

Proposed 1.896 120 0.03 – 121.9
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5.2 � Experiment 2: Performance of RLS in AF 
detection

The CPSC 2018 database is intended to boost the development 
of algorithms for the detection of various ECG abnormalities. 
The 12-lead ECGs used in CPSC 2018 include one normal type 
and eight abnormal types, namely AF, First-degree atrioven-
tricular block, Left bundle brunch block, Right bundle brunch 
block, Premature atrial contraction (PAC), Premature ventricular 
contraction (PVC), ST-segment depression (STD), and ST-seg-
ment elevated (STE). The training set contains 6877 recordings 
sampled at 500 Hz. Out of 6877 records in the first training set, 
990 records having number of beats greater than 30 are selected 
for simulation. Among the 990 records, 229 records are positive 
class (i.e., having AF) and 761 records are negative class (i.e., 
having no AF). To evaluate the performance of proposed AF 
detection algorithm, the metrics used are the following.

(16)Specificity (%) =
TN

TN + FP
× 100

(17)Sensitivity (%) =
TP

TP + FN
× 100

(18)Accuracy (%) =
TP + TN

T
× 100

(19)Recall =
TP

TP + FN

(20)Precision =
TP

TP + FP

(21)F
1
− score =

2 × Precision × Recall

Precision + Recall

(22)

MCC

=
(TP × TN) − (FP × FN)

√
(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

where the parameters TP, TN, FP, FN and T denote true 
positive, true negative, false positive, false negative and total 
(T = TP + TN + FP + FN) respectively. MCC denotes Mat-
thews correlation coefficient (Boughorbel et al. 2017) and 
it is a binary classification rate that achieves a high score 
only if the predictor is able to correctly predict the majority 
of positive data instances and the majority of negative data 
instances.

The threshold values for the different rules in the deci-
sion tree are determined experimentally. In Table 9, the 
performance of the proposed algorithm on AF detection is 
compared with method in Nallikuzhy and Dandapat (2017) 
and the AF screening method in Almusallam and Soudani 
(2019). A total of 990 subjects from CPSC 2018 database is 
used to evaluate the performance. The proposed method per-
forms better as the false positives are reduced significantly. 
The number of false positives in the screening method 
(Almusallam and Soudani 2019) is considerably reduced 
from 356 to 42 by the proposed on-site AF confirmation 
scheme. Also, the accuracy of the proposed scheme is high 
compared to other methods. Even though the method in Nal-
likuzhy and Dandapat (2017) has accuracy in AF detection 
somewhat closer to the proposed lead derivation method, 
this is achieved at a much higher power consumption for 
DWT computation (Acharya and Chakrabarti 2006).

In order to handle the imbalanced classification problem 
(Luque et al. 2019), precision, recall, F

1
-score, and MCC are 

considered for comparing the classification performance of 
the proposed system with the methods in Almusallam and 
Soudani (2019) and Nallikuzhy and Dandapat (2017). F

1

-score, the most common metric employed on imbalanced 
classification problem, captures the properties of both preci-
sion and recall. The F1-score is simply the harmonic mean 
of precision and recall. Higher the F

1
-score, better the per-

formance. The MCC value ranges between –1 (perfect mis-
classification) and +1 (perfect classification). The proposed 
method exhibits higher F

1
-score and MCC value compared 

to Almusallam and Soudani (2019) and Nallikuzhy and Dan-
dapat (2017) as shown in Fig. 12 and thus it is evident that 
the proposed method outweighs the other methods.

Table 9   Performance 
comparison of methods in 
Almusallam and Soudani (2019) 
and Nallikuzhy and Dandapat 
(2017) with the proposed 
method for AF detection in 
terms of specificity, sensitivity, 
and accuracy

Single lead 3-lead 4-lead

Almusallam and 
Soudani (2019)

Nallikuzhy and 
Dandapat (2017)

Proposed Nallikuzhy and 
Dandapat (2017)

Proposed

TP 193 213 213 212 212
FP 356 57 48 50 42
TN 405 704 713 711 719
FN 36 16 16 17 17
Specificity (%) 53.2 92.5 93.69 93.43 94.48
Sensitivity (%) 84.3 93.01 93.01 92.58 92.58
Accuracy (%) 60.4 92.63 93.53 93.23 94.04



6813Efficient on-site confirmatory testing for atrial fibrillation with derived 12-lead ECG...

1 3

The reconstruction quality of the derived ECG leads 
depends on the quality of the input ECG signal. The 
recorded ECG signals will have a low amplitude in gen-
eral, particularly for P-waves. When the noise during signal 
recording causes the signal-to-noise ratio (SNR) to reduce, 
the system fails to detect P-waves from the noisy signal, and 
as a result, false-positive for atrial fibrillation (AF) detection 
increases. As SNR of the input ECG signal is varied from 
20 to 10 dB, the proposed method exhibits robustness to 
noise till SNR = 11 dB as depicted in Fig. 13 by the effect 
of noise on the F

1
-score of the proposed method. Only some 

subjects are adversely affected by the noise, whereas others 
are robust to noise.

Some common types of ECG noises are baseline wan-
der noise, powerline interference noise, electromyographic 
(EMG) noise, and electrode motion artifact noise. The effect 
of baseline wander noise can be reduced by using a high pass 
filter with a cut-off frequency of 0.5 to 0.6 Hz. Powerline 
interference noise (50 or 60 Hz noise from mains supply) 
can be removed by using a notch filter of 50 or 60 Hz cut-off 
frequency. High-frequency noise such as EMG noise can be 
removed by employing a low pass filter with an appropriate 

cut-off frequency. Under noisy environment, the ECG signal 
has to be filtered as a part of preprocessing before proceed-
ing to the detection process.

6 � Discussion

This paper discusses the method for confirming AF in a 
WBAN scenario using the derived standard 12-lead ECG 
from an RLS. Although there exist several AF detectors 
using single lead and 12-lead standard ECG, AF confirma-
tion using standard 12-lead ECG in a low-power setting like 
WBAN is not addressed in the literature. The confirmation 
using standard 12-lead ECG is vital even for the most reli-
able existing AF screening/detection methods.

The proposed ECG signal derivation from RLS employs 
segment-wise regression of ECG and lead selection algo-
rithm. The proposed method improves the reconstruction 
quality of P-wave signals in almost all leads. From the 
Tables 3, 4, 5, 6 and 7, it is evident that the reconstruction 
quality of the derived signals ( V

1
-V

6
 ) are improved signifi-

cantly with the proposed method. Compared to the reduced 
lead system with the same regression coefficients, PRD of 
P-wave segment is reduced to half from 54.46% to 26.21% as 
well as the correlation coefficient is increased from 0.85 to 
0.92 for the system with different regression coefficients. In 
the proposed ECG lead derivation method, the morphology 
of P-waves are preserved better than the other methods as 
clearly depicted in Figs. 6 and 7.

Each on-body sensor node of the RLS senses the ECG 
signal and sends it to the gateway node for lead derivation. 
For reduced power consumption at the sensor nodes and 
gateway node, deterministic binary block diagonal (DBBD) 
matrix based compressed sensing (CS) can be performed 
at the sensor nodes as discussed in Mamaghanian et al. 
(2011) and Koya and Deepthi (2019). The ECG signals of 
the reduced lead set can be reconstructed from the received 
measurements at the gateway node through a simple and low 
complex algorithm (Koya and Deepthi 2019). The proposed 
lead derivation algorithm is carefully developed with very 
low number of operations to ensure that the power consump-
tion at gateway node is maintained low. The proposed lead 
derivation at the gateway node is a simple linear mapping of 
the reduced leads using the learned model regression coef-
ficients during the online phase. Here, only 4 Ns multiplica-
tions and 3 Ns additions are required for the derivation of a 
lead from the 4-lead reduced set at the gateway node, where 
Ns is the number of samples in each lead. This computational 
complexity is very low when compared with the recent lead 
derivation method presented in Nallikuzhy and Dandapat 
(2017), where the online phase involves both DWT and 
inverse DWT functions in addition to the 4 Ns multiplica-
tions and 3 Ns additions required for the lead derivation via 

Fig. 12   Performance comparison of methods in Almusallam and 
Soudani (2019) and Nallikuzhy and Dandapat (2017) with the pro-
posed method for AF detection in terms of recall, precision, F

1
-score, 

and MCC

Fig. 13   Effect of noise on the F
1
-score of the proposed method
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regression analysis. The DWT computations are computa-
tionally intensive; even the hardware-efficient DWT filter 
banks that can be employed in embedded platforms for 
physiological signal monitoring consume reasonable power 
(Eminaga et al. 2018). Hence the proposed AF detection 
scheme having lead derivation based on time-domain com-
putation is power-efficient, and it is a suitable candidate for 
deployment in a resource-constrained WBAN environment.

The proposed AF detection scheme has improved speci-
ficity, sensitivity, accuracy, precision, recall, F

1
-score, and 

MCC as demonstrated in Table 9 and Fig. 12. The few 
false positives and false negatives in the proposed scheme 
(Table 9) can be substantially reduced to a minimum by 
making available the derived 12-lead ECG to a physician 
via cloud for confirmation. To tackle the effect of mobility 
artifacts, the patients can rest in a supine position to record 
the 12-lead ECG using RLS when the AF is detected via 
screening. Also, the proposed method can be combined 
with other energy-saving techniques like duty-cycling, pro-
tocol optimization, and transmission power adaptation as 
presented in Xu et al. (2020) and Xu et al. (2020) so as to 
develop a cross-layer design for resolving the various chal-
lenges inherent in remote continuous healthcare monitoring.

7 � Conclusion

In this paper, we proposed a scheme for the efficient on-site 
confirmation testing of AF using standard 12-lead ECG. The 
proposed lead derivation method improves patient comfort 
and reduces the power consumption of sensor nodes and 
gateway nodes. On-site confirmatory testing minimizes the 
patients’ anxiety and improves the medical care that can be 
timely provided to the patients. The segment-wise regres-
sion approach together with the precordial lead selection 
improves the reconstruction quality of the signals compared 
to the entire ECG beat regression using the same regres-
sion coefficients. Different performance evaluation metrics 
such as PRD, correlation coefficient, WEDD and R2 statistics 
were used to quantify the improvement in signal quality. AF 
detection is carried out on the derived ECG signal using 
a simple scheme that involves only two score measures, 
namely RR irregularity score and a novel P-wave evidence 
score specifically designed for AF. The proposed scheme 
exhibits improved accuracy, F

1
-score, and MCC in classify-

ing AF from a dataset containing one normal and 8 abnormal 
types including AF.

Further research is required to understand the effect of 
noise and mobility artifacts on the performance of the pro-
posed scheme.
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