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Abstract
In recent years, the rapid growth of IoT devices has led to an increase significantly the amount of data generated. Transferring 
a huge amount of datasets from IoT devices to remote cloud servers will result in high latency and bandwidth usage. Fog 
computing has emerged as an Internet-based distributed computing model to store datasets generated by IoT devices near 
the user. Since IoT devices generate continuously massive amounts of datasets, placing them on the storage fog nodes with 
various capabilities to reduce latency and costs of data access and increase reliability and availability of data datasets while 
satisfying the QoS requirements as one of the challenging tasks to be considered. This paper proposes a metaheuristic-based 
data replica placement mechanism using biogeography-based optimization (BBO) for data-intensive IoT applications on the 
fog ecosystem. Besides, we design an autonomous framework to illustrate transferring data replicas between IoT devices 
and storage fog nodes for data replica placement problem in the fog ecosystem. The obtained simulation results by vary-
ing the number of data replicas and fog nodes demonstrate that the proposed mechanism is a cost-effective solution and it 
increases the average reliability and availability by up 13% and 15% and reduces the total cost and the latency 25% and 3%, 
respectively, compared with the other baseline mechanisms.
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1 Introduction

During the last years, there is a rapid growth in the num-
ber of IoT devices connected through the Internet to control 
or monitor physical sensors. Such a large number of IoT 
devices will generate a considerable volume of data that 
needs to be collect and process for sharing and using by 
IoT applications (Devadas et al. 2020). A simple solution 
for storing and processing a large amount of data is using 
the cloud servers and returning the results to IoT devices. 
This solution provided IoT applications' development to 
access unlimited processing and storage capacities (Sen-
gupta and Bhunia 2020). However, transferring a massive 
amount of data between IoT devices and cloud servers will 
lead to high latency and bandwidth usage. To deal with these 
constraints mentioned, fog computing has been explored as 
an extension of cloud computing to provide the storing and 

processing capabilities in the network intermediate devices 
(e.g., routers, switches, gateways) nearby to the data gen-
erators, rather than remote cloud servers (Dadashi Gavaber 
and Rajabzadeh 2021; Mukherjee et al. 2018; Shahidinejad 
and Ghobaei-Arani 2020). Therefore, data management can 
play an essential role in storing, transferring, placing, and 
processing the big volume of data generated by IoT devices 
to enhance system performance in an effective fashion in 
the fog landscape. To this end, the data management issue is 
one of the challenging tasks to be considered. Data manage-
ment includes several issues such as data acquisition, data 
storage, data pre-processing, data cleaning, data exchange, 
data processing, data placement, and data analytics (Kumari 
et al. 2019; Nikoui et al. 2019). In this work, we focus on the 
data replica placement issue to appropriately place the huge 
amount of data generated by IoT devices on the fog nodes 
with various storage capabilities under QoS constraints to 
reduce latency and costs of data access for fog-enabled data-
intensive IoT applications. Since the data replica placement 
is an NP-hard problem, the heuristic or meta-heuristic algo-
rithms are used to find near-optimal solutions in a reasonable 
time. Some data replica placement strategies have already 
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been proposed to place data replicas on the cloud servers 
in the cloud computing scope (Martin et al. 2020; Costa 
Filho et al. 2020). However, compared with cloud servers, 
fog resources are more limited in storage capability, more 
widely geographically distributed in a very large ecosystem, 
and larger in number. Therefore, the cloud-based data rep-
lica placement strategies cannot be used directly in the fog 
computing environment.

In this paper, we develop an extended framework accord-
ing to three-tier fog architecture to illustrate transferring data 
replicas between IoT devices and storage fog nodes for serv-
ing data-intensive IoT applications in the fog ecosystem. The 
proposed framework is consists of several fog domains so 
that each fog domain acts based on a data replica manager 
to place data replicas with various QoS requirements on 
the fog nodes with different storage capabilities. Then, we 
utilized biogeography-based optimization (BBO) (Simon 
2008) as a population-based meta-heuristic technique to 
find an appropriate data replica placement plan. The BBO 
as a population-based meta-heuristic technique is suitable 
for solving large-scale optimization problems to find cost-
efficient solutions into search space. It uses migration and 
mutation operators to generate new solutions and share fea-
tures between candidate solutions so that it provides high 
convergence speed and local optima avoidance during the 
search process compared with existing meta-heuristic tech-
niques. The BBO technique has been successfully applied 
to handle practical problems in various scopes including 
image processing (Pal and Saraswat 2019; Zhang et al. 
2019), social networks (Reihanian et al. 2017; Zhou et al. 
2015), cloud computing (Sangaiah et al. 2019; Zheng et al. 
2016; Khorsand et al. 2018), data mining (Alweshah 2019), 
and IoT (Goudarzi et al. 2019; Paraskevopoulos et al. 2017). 
Finally, the data replica manager is regularly performed at 
certain time intervals to reduce latency and costs of data 
access and increase the reliability and availability of data 
replicas while the QoS requirements of data-intensive IoT 
applications are satisfied.

The main contributions of this study can be summarized 
as follows:

• Proposing a metaheuristic-based data replica placement 
mechanism using the BBO technique for data-intensive 
IoT applications in the fog ecosystem.

• Developing an autonomous framework for data replica 
placement to illustrate transferring data replicas between 
IoT devices and storage fog nodes.

• Describing a problem formulation for data replica place-
ment in fog ecosystem.

The remainder of this study is organized as follows: we 
discuss works related to the data replica placement mech-
anisms in Sect. 2. We describe the proposed data replica 

placement approach in more detail in Sect. 3. The simulation 
results are provided in Sect. 4, and we finally provide future 
research directions and conclusions in Sect. 5.

2  Related works

In this section, we will review the data replica placement 
approaches in the fog/edge computing environment. Then, 
we summarize different works to solve the data replica 
placement problem.

Guerrero et al. (2019) have developed a replica placement 
mechanism for storing the data obtained by IoT devices on 
the fog infrastructure. Their proposed mechanism used graph 
partition techniques to choose the fog nodes to replicate data 
for increasing data reliability and availability. Besides, they 
model the topology of fog infrastructure using complex net-
works to specify the fog nodes close to the IoT devices. Their 
simulation results obtained by the YAFS simulator indicated 
that their proposed mechanism outperforms in terms of net-
work usage, latency, and data availability compared with 
the FogStore mechanism. Shao et al. (2019) have studied 
the data replica placement issue for serving data-centric IoT 
applications in the edge/cloud ecosystem. They described 
the replica placement problem in the form of linear pro-
gramming and proposed a population-based optimization 
technique to make a suitable data placement solution for 
data-centric IoT applications. Further, they developed an 
extended framework, including the replica broker compo-
nent to dispatch the data generated by IoT devices among 
the edge servers and replica manager components to control 
the data replication process in the edge/cloud ecosystem. 
Their numerical results illustrated that their proposed solu-
tion could reduce the number of data movement, the amount 
of data transmission, and data access cost metrics compared 
with existing population-based optimization mechanisms.

Huang et al. (2019) have proposed a multiple replica 
placement strategy for minimizing the total latency for 
data-intensive IoT services in the fog-enabled environment. 
They used a greedy heuristic-based algorithm to achieve an 
approximately good solution in large-scale systems. Their 
proposed strategy utilized a pruning technique to refine the 
poor solutions and obtains the solution with the minimum 
latency for data-intensive IoT applications. Their simula-
tion results obtained by iFogsim toolkit and CPLEX opti-
mizer indicated that their solution better performance in 
terms of solving time and the total data latency compared 
with existing iFogStor mechanisms. Chen et al. (2019) have 
introduced a data-centric service deployment approach for 
improving the time-consuming efficiency in the mobile edge 
computing environment. They model the IoT applications as 
a set of data and services using graph theory to find the rela-
tionship between data-centric services and edge nodes and 
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used a genetic algorithm to achieve a near-optimal deploy-
ment solution. Besides, they conducted a series of simula-
tions to illustrate the effectiveness of the proposed approach 
in terms of convergence speed and response time compared 
with existing meta-heuristic techniques. Aral and Ovatman 
(2018) have presented a fully distributed strategy to place 
data replica among edge servers according to the location 
of the user and the cost of storing data replicas to reduce the 
access latency. Further, they provided a lightweight messag-
ing mechanism to announce between edge servers about the 
closest data replica requested by a data object. Their pro-
posed strategy relies on adding or removing the data replica 
based on monitoring incoming data requests to edge servers 
for minimizing both cost and latency. Besides, they validated 
their distributed proposed strategy under synthetic and real-
world usage patterns and indicated that it to obtain notable 
advantages in terms of cost storage and the access latency 
compared with other caching strategies.

Naas et al. (2018a) have proposed an approximate heu-
ristic-based approach for reducing the solving time of data 
placement issue in fog landscape. Their proposed approach 
used to divide and conquer methodology with the graph par-
titioning and modeling techniques to divide the initial data 
placement problem into different sub-problems. They vali-
date their proposed approach by extending the iFogSim tool 
under mixed, distributed, and zoning workloads on the smart 
city scenarios and demonstrated that it obtains good perfor-
mance in terms of total latency and solving time compared 
with iFogStor and iFogStorZ approaches. In another study 
(Naas et al. 2017), they provided a runtime policy to place IoT 
data for minimizing service latency in the fog-enabled sce-
nario. They presented an exact method using linear program-
ming and CPLEX solver and also, a heuristic-based solution 
according to geographical partitioning of the underlying fog 
ecosystem for reducing solution time. Li et al. (2019a) have 
introduced a dynamic replica selection method to improve 
the data access time in the edge/cloud ecosystem. They con-
sidered the access heat of data replicas and the edge server 
capabilities and utilized the grey Markov technique to adjust 
the number of data replica, dynamically. Moreover, they take 
into account the distance between the data replica and the user 
and the load capacity of the edge server to find the best data 
replica for serving the user data access request. Their analy-
sis results demonstrated that their proposed method achieves 
notable improvements in terms of the prediction accuracy of 
data replica access, response time, and resource utilization. 
In another study (Li et al. 2019b), a fault-tolerant replica 
placement approach with taking into account the budget and 
deadline requirements in the edge/cloud ecosystem has been 
proposed. They have provided a failure recovery mechanism 
according to the availability metric using backup techniques to 
avoid the data replica loss and the data access errors to restore 
the corresponding data replica.

Monga et al. (2019) have proposed a distributed reliable 
data replica service policy for fog and edge servers to offer 
transparent access and discovery stream of data replicas, 
persistently. Their proposed policy was inspired by peer-to-
peer networks and big data storage services like HDFS. It 
utilized federated index strategy and Bloom filters for prob-
abilistic and scalable searching of data replicas according 
to their metadata attributes. Besides, they provided adjust-
able reliability using global statistics about the edge storage 
servers for data replicas to achieve a trade-off the storage 
capacity across edge storage servers and minimum stability. 
Mayer et al. (2017) have developed a fog-enabled replica 
placement policy and context-aware derived consistency 
named FogStore for distributed data storage systems in the 
fog computing environment. The FogStore solution used a 
consistency level to extract user and data locality in the fog 
infrastructure domain. They validate their solution using 
the MaxiNet emulator on the Yahoo cloud benchmark for 
verifying the impact of different consistency levels in terms 
of latency read and write operations on the Cassandra sys-
tem. Breitbach et al. (2019) have proposed a context-aware 
data management strategy in the edge computing domain. 
Their proposed strategy is consist of three-level including 
the data placement to locate data replica on the edge servers 
according to various context attributes, the task scheduling 
to allocate them on the most suitable edge servers, and the 
runtime adaptation mechanism to collects the QoS require-
ments for adapting data placement during the execution of 
tasks. They provided a prototype of their proposed strategy 
to investigate the trade-off between the data overhead and 
access latency according to the context properties.

Silva et al. (2019) have evaluated tree data placement 
mechanisms, namely, cloud-only, mapping, and edge-ward 
using iFogsim simulator on the smart healthcare scenarios. 
The cloud-only mechanism is based on a delay priority pol-
icy, the mapping mechanism used a concurrent method for 
assigning the IoT applications to fog nodes, and the edge-
ward algorithm utilized the First-In-First-Out approach to 
place data on the fog nodes. Their results obtained indicated 
that the mapping mechanism provides good performance in 
terms of execution time and energy consumption under dif-
ferent topologies compared with other mechanisms. Karatas 
and Korpeoglu (2019) have considered a classification of 
data generated by IoT devices in the forms of the various 
data type to use by several IoT applications. They map the 
data-centric replica placement issue into a linear program-
ming model as an optimization problem for minimizing the 
access latency. Then, they proposed two greedy heuristic-
based methods according to the cost function for achieving 
an appropriate place for different data types. Their simula-
tion results of the proposed solution provided good stor-
age performance in terms of bandwidth usage and access 
latency. Confais et al. (2018) have introduced a tree-based 
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mechanism corresponding to the topology of fog infrastruc-
ture to store the position of data objects in the fog landscape. 
Their proposed mechanism recorded the new positions to 
identify the data objects close to replicas for improving 
bandwidth usage and the access time. Further, they pro-
posed an extended Dijkstra’s technique to calculate the low-
est latency paths according to cost function in the underlying 
fog infrastructure. Finally, they validated their solution on 
the Grid’5000 benchmark under a simple topology and indi-
cated that it better access time compared with the existing 
distributed hash table mechanism.

Trakadas et al. (2020) have designed an extended archi-
tectural approach using reference architecture for industry 
4.0 to adopt and integrate artificial intelligence-based sys-
tems in the IoT manufacturing scope. Their proposed archi-
tecture supports data collection and processing while han-
dling security issues with AI-enabled across the entities into 
manufacturing systems. In Habibi et al. (2020) and Punith-
aIlayarani and Dominic (2019), the computing paradigms, 
including edge, fog, and cloud computing, are reviewed 
in terms of algorithmic, technologic architectural aspects. 
Besides, they describe various fog computing model dimen-
sions in terms of software, system, application, networking, 
and resource management. Finally, they provide a compre-
hensive review of different reference architectures for fog 
computing from the architectural perspective. Alvarez et al. 
(2019) have designed a new service platform, which utilizes 
software-defined networking concepts to provide multimedia 
services on 5G networks. Their proposed platform leverages 
serverless computing and cognitive management to provi-
sion network services and multimedia applications.

According to the reviewed and summarized data replica 
placement mechanisms, a side-by-side comparison of them 
in terms of the utilized technique, evaluation tool, perfor-
mance metrics, and strategy (e.g., centralized, decentral-
ized) as well as a case study of each mechanism is shown 
in Table 1.

3  Proposed approach

In this section, we describe the proposed solution in more 
detail, and then a formulation for the data replica placement 
problem is provided. Finally, an algorithm for data replica 
files onto the IoT infrastructure is presented.

3.1  Proposed framework

In this section, we describe an extended framework for the 
data replica placement problem in a fog computing environ-
ment, as shown in Fig. 1. The proposed framework inspired 
according to fog computing architecture and it is consists of 
three layers, namely: the IoT device, the fog, and the cloud 

layers. The IoT device layer (i.e., the bottom layer) includes 
sensors, mobile devices, and tablets and it is responsible for 
collecting and transferring massive amounts of datasets gen-
erated through the data replica broker to the fog layer. The 
fog layer (i.e., the middle layer) includes intermediate equip-
ment’s (i.e., fog nodes) such as routers, gateways, switches, 
access points, and base stations which can be fixed or mobile 
in restaurants, shopping centers, bus stations, streets, parks, 
and so on. These fog nodes are able to processing, trans-
mitting, and storing datasets received from IoT devices. 
Besides, they are able to connect the cloud data center via 
the cloud gateway to obtain more computational and storage 
capabilities. The cloud layer (i.e., the upper layer) includes 
a series of cloud servers with high resource capabilities to 
execute the data-intensive IoT applications. We assume the 
fog layer is consists of several fog domains so that each fog 
domain includes one regional fog node (RFOG) and a series 
of local fog nodes (LFOG), as shown in Fig. 1.

The RFOG nodes are base stations which deployed in 
each fog domain to interact with other fog domains, IoT 
device, and cloud layers. Each RFOG node acts as the master 
node of each fog domain with high computation and storage 
capabilities and it manages and controls a geographical area 
in the fog landscape. Each RFOG node covers a series of 
LFOG nodes in a hierarchical manner into each fog domain 
and data replicas can be deployed on any of the RFOG or 
LFOG nodes. Indeed, the IoT applications on IoT devices 
will generate the datasets, which will be placed on the fog 
nodes.

In the following, we explain the main components of the 
fog layer to implement our proposed solution in more detail.

3.1.1  Data Replica Broker

This component is responsible for receiving data access 
requests from IoT devices and transferring them to storage 
data replicas on the nodes deployed at the fog or cloud lay-
ers. We assume the data access requests are delay-sensitive 
or compute-sensitive. If a data access request is delay-
sensitive, it will be placed through a data replica manager 
deployed on the LFOG nodes into each fog domain at the 
fog layer. Otherwise, it will be placed on the cloud layer. 
Note that privacy and security concerns as one of the main 
challenging issues should be considered in the fog ecosys-
tem. To this end, we focus on the data replica broker as a 
gateway to ensure access control and prevent vulnerabilities 
to different attacks such as denial of service, man-in-the-
middle, and IP spoofing. Therefore, authentication protocols 
are needed to identify incoming data access requests. To this 
end, firstly, the data replica broker refines the data access 
requests to remove abnormal requests from incoming IoT 
workloads. The abnormal requests include the requests with 
null fields, the fake requests as robots to publicize, and the 
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unauthorized requests for utilizing the data replicas, and so 
on. Afterwards, an identifier is assigned to each the data 
access request for tracking the further calls. Finally, the data 
access requests are recognized through the authentication 
protocols to use the data replicas deployed on the data hosts.

3.1.2  Data replica manager

After receiving data access requests from the data replica 
broker, the data replica manager will be launched as the 
main component for implementing our proposed solution. 
This component manages four sub-components, as follows:

3.1.2.1 Monitor This component gathers information about 
the data access requests and data replicas status in a geo-

graphical area. It includes two sub-components namely, user 
monitoring and data replica monitoring. The user monitor-
ing is responsible for collecting information about the num-
ber of requests received from IoT devices to access the data 
replicas, and the data replica monitoring is responsible for 
collecting information about status data replicas (e.g., the 
number of data replica, time delay access, etc.) stored on 
the LFOG nodes into each fog domains at the fog landscape. 
This information is stored in a shared database to use by 
other components.

3.1.2.2 Data replica analyzer This component process the 
raw data collected from the monitoring component to obtain 
useful information and use it to estimate the number of data 
replicas needed for placing on the LFOG nodes while QoS 

Table 1  A comparison of the data replica placement mechanisms in fog computing

References Utilized technique Evaluation tool Performance metric Strategy Case study

Guerrero et al. (2019) Graph partitioning 
algorithms

Simulation (YAFS) Latency, network usage, 
availability, solution 
time

Decentralized IoT application

Shao et al. (2019) Swarm optimization Simulation (Java) Data access cost, 
amounts of data 
transmission, number 
of data movement

Centralized IoT-based Manufacturing 
application

Huang et al. (2019) Greedy heuristic-based Simulation (iFog-
Sim + CPLEX solver)

Overall latency, solving 
time

Centralized IoT application

Chen et al. (2019) GA Simulation (Python) Response time, conver-
gence speed

Centralized Data-intensive applica-
tion

Aral et al. (2018) Heuristic-based Simulation (CloudSim) Latency, cost, through-
put

Decentralized IoT application

Naas et al. (2018a) Heuristic-based + Graph 
partitioning algo-
rithms

Simulation (iFog-
Sim + CPLEX solver)

Overall latency, solving 
time

Centralized Smart city application

Li et al. (2019a) Grey Markov Simulation (Java) Response time, Network 
latency, Resource 
utilization

Centralized IoT application

Li et al. (2019b) Heuristic-based Simulation (Java) Response time, resource 
utilization, reliability

Centralized IoT application

Monga et al. (2019) Heuristic-
based + Bloom filters

Simulation 
(Java + Apache Thrift)

Latency, reliability, 
storage capacity

Decentralized IoT streaming application

Mayer et al. (2017) Heuristic-based Simulation
( MaxiNet)

Network latency Decentralized IoT application

Breitbach et al. (2019) Heuristic-based Prototype (Java) Turnaround times, data 
transfer overhead

Decentralized Face recognition applica-
tion

Silva et al. (2019) Heuristic-based Simulation (iFogSim) Latency, energy con-
sumption, execution 
time

Centralized Smart healthcare applica-
tion

Karatas and Korpeo-
glu (2019)

Heuristic-based + Clas-
sification

Simulation (MAT-
LAB + Gurobi solver)

Access latency, network 
usage, storage capac-
ity

Hierarchical IoT application

Confais et al. (2018) Tree-based technique Prototype (Grid’5000 
testbed)

Search time Hierarchical IoT application

Our approach BBO Simulation (iFogSim) Latency, cost, reliabil-
ity, availability

Centralized IoT application
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requirements of data-intensive IoT applications are satisfied. 
It dynamically determines the number of data replicas based 
on the history of data access requests received and their 
number of visits. Finally, the results obtained are stored in a 
shared database to use by other components.

3.1.2.3 Data replica placement After determining the num-
ber of data replicas needed, the data replica placement com-
ponent appropriately places the data replicas on the LFOG 
nodes with various storage capabilities to reduce latency 
and costs of data access and increase reliability and avail-

Fig. 1  The proposed framework



3697An efficient data replica placement mechanism using biogeography‑based optimization technique…

1 3

ability of data replicas for IoT applications. In this work, 
we use BBO as a metaheuristic-based technique to find an 
appropriate data replica placement plan.

3.1.2.4 Data replica executer This component is respon-
sible for performing the placement plan specified by the 
data replica placement component. It checks case-by-case 
the data replicas to determine whether or not to have been 
placed by the data replica placement component on the 
available LFOG nodes according to the number of data rep-
licas specified by the data replica analyzer.

In addition to the physical entities mentioned, we con-
sider three logical entities namely, data generator, data con-
sumer, and data host. An IoT application can be both gen-
erator and consumer of the dataset, simultaneously. A data 
generator can send data generated by IoT devices to store 
on the LFOG nodes (i.e., data hosts). A data consumer is an 
entity that subscribes to access any one of the data replicas 
stored in the data host. Every LFOG node which has storage 
capability can be the data host. If the storage capacity of the 
data host is greater than the size of the data replica, it can 
host the data. Finally, all the data replicas must be stored on 
at least one of the LFOG nodes.

In the following, we provide a simple example for a bet-
ter understanding of the data replica placement issue in 
the fog ecosystem. According to Fig. 1, three data replicas 
(i.e.,data0, data1 , data2 ) generated by the data generators 
are transferred to the data replica broker. Depending on the 
type of generated data, the required resource capabilities for 
serving IoT request, the QoS requirements (e.g., deadline), 
and the data replica broker decides to transfer the data to the 
fog or cloud layer, as follows:

About scenario data replica data0(i.e., blue dotted line), 
it first arrives at the cloud gateway directly without entering 
the fog layer. Since the cloud gateway is the data generator, 
data consumer, and the data host at the same time, after pro-
cessing data0 , the cloud gateway generates data3 and sends 
it to the store on the cloud servers. Each cloud server in the 
cloud layer can act as both data consumer and data host.

About scenario data replica data1(i.e., green dotted line), 
it transfers to the data replica manager in fog domain 2. 
Afterward, the monitoring component extracts the required 
information about the data access request and available fog 
resources. Then, the data replica analyzer determines how 
many data replicas should be stored on the data hosts (i.e., 
LFOG nodes). Finally, the data replica placement identi-
fies proper LFOG nodes using the BBO technique accord-
ing to the size of data and the amount of available capac-
ity data hosts to store two data replicas data1 on the LFOG 
node2 and LFOG node3 into fog domain 2. Since one of the 
selected LFOG nodes is the data consumer and data host, 
data1 is directly transfer through the RFOG node to the cloud 

gateway, and then it is sent to the cloud layer to store on 
the appropriate cloud servers. On the other hand, another 
LFOG node acts as the data consumer, data generator, and 
data host. It processes the data replica data1 and generates 
data4 to transfer and store at the cloud layer. Finally, about 
scenario data replica data2 (red dotted line), considering the 
data replica data2 is a compute-intensive request, it directly 
forwards to the cloud servers within the cloud layer.

3.2  Problem statement

In this section, we provide the notations and equations used 
to solve data replica placement, as shown in Table 2. Let DG
,DC , and DH be a set of data generators and data consumers, 
and data hosts, respectively, as follows:

where dgi ∈ DG denote the i th data generator, dcj ∈ DC 
denote the j th data consumer, and dhk ∈ DH denote the k th 
data host. Let datai denotes the dataset generated by dgi and 
size(datai) denotes its size and capk be the storage capac-
ity dhk . Therefore, the storage capacity capk must be larger 
than the summation of storage usage of all data replicas, as 
follows:

where Xik = 1 , if there is at least one data replica datai on the 
data host dhk , otherwise Xik = 0 , as follows:

In this work, we consider four kinds of objective func-
tions namely, total latency, total cost, reliability, and avail-
ability of data replicas, as follows:

3.2.1  Total latency

In this work, we describe the total latency as the summation 
of the uploading time to store data replicas on the data hosts 
and downloading time to retrieve data replicas from data 
hosts to the consumers. Let BWup and BWdown denotes the 
network bandwidth capacity required to upload data replica 
datai on the data host and download data replica datai from 
the data host, respectively. Hence, the uploading time (i.e., 

(1)DG =
{
dg1, dg2,… , dgI

}

(2)DC =
{
dc1, dc2,… , dcJ

}

(3)DH =
{
dh1, dh2,… , dhK

}

(4)
I∑

i=1

size(datai) × Xik ≤ capk; ∀k, k = 1, 2, ...,K

(5)Xik =

{
1 data replica is placed on the data host

0 otherwise
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Tupload ) and downloading time (i.e., Tdownload ) are calculated 
as follows:

Therefore, the total latency for accessing data replicas is 
calculated by Eq. (8):

3.2.2  Total cost

The total cost for accessing data replicas placed on the data 
host include the data storage cost (i.e.,DSC ) and the data 
transfer cost (i.e., DTC ), as is expressed by Eq. (9):

(6)Tupload =
size(datai)

BWup

(7)Tdownload =
size(datai)

BWdown

(8)

TL(datai, dhk) =
I∑

i=1

K∑
k=1

[(Tdownload × Xik) + (Tupload × Xik)];

∀j, j = 1, 2, . . . , J

(9)TC = DSC + DTC

3.2.2.1 Data storage cost We consider a unit cost uc for 
each data access request based on the storage location to 
access a data replica. Let ucL , ucR , and ucC denote the unit 
cost for the data replica is stored in the LFOG node, the 
RFOG node, and the cloud server, as follows:

Therefore, the unit cost for the data replica depends on 
the storage location and it is obvious that if the distance data 
transmission is longer, the unit cost to it will be higher, as 
follows:

Finally, the cost of data storage for data replica data datai 
on the data host dhk is determined by Eq. (12):

(10)

uc =

⎧⎪⎨⎪⎩

ucL data replica is placed on the LFOGnode

ucR data replica is placed on the RFOGnode

ucC data replica is placed on theCloud server

(11)ucL ≤ ucR ≤ ucC

(12)

DSC(datai, dhk) =

I∑
i=1

K∑
k=1

(∑
Xik × uc × size(datai)

)

Table 2  Notations and 
descriptions

Notation Definition

dgi The ith data generator
dcj The jth data consumer
dhk The kth data host
datai The dataset generated by ith data generator
size(datai) The size of data replica datai
capk The storage capacity of kth data host
Xik Binary variable to indicate the data replica datai is placed on the kth data host
BWup The network bandwidth capacity required to upload data replica
BWdown The network bandwidth capacity required to download data replica
Tupload The uploading time required to store data replica on the data host
Tdownload The downloading time required to obtain data replica from the data host
BWk1,k2

The network bandwidth capacity between data host dhk1 and dhk2
CCk1,k2

The unit communication cost between data host dhk1 and dhk2
ucL The unit cost for the data replica is stored in the LFOG node
ucR The unit cost for the data replica is stored in the RFOG node
ucC The unit cost for the data replica is stored in the cloud server
TL The total latency
TC The total cost
DSC The data storage cost
DTC The data transfer cost
RE(dhk) Reliability of data replica stored on the data host dhk
AV(dhk) Availability of data replica stored on the data host dhk
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where uc is a unit cost for the data replica according to its 
location and Xik denotes whether the data replica datai on 
the data host dhk is stored.

3.2.2.2 Data transfer cost Let CCk1,k2
 and BWk1,k2

 denote the 
unit communication cost and the network bandwidth capac-
ity between data host dhk1 and dhk2 , therefore, the data trans-
fer cost is calculated by Eq. (13):

3.2.3  Reliability

The reliability of the system or a subsystem is running the 
operations (e.g., data replication) under stable conditions for 
a certain time interval. The reliability of a data host is the 
success rate for replicating a data replica on the data host 
dhk , and it is determined according to the percent of data 
replicas which is successfully stored on the data host. Let Ak 

be the number of referred data replicas by a data host dhk , 
and Sk be the number of data replicas accepted on the data 
host dhk , the reliability of data host is obtained according 
to Eq. (14):

Therefore, the total reliability for accessing data replicas 
on the data hosts is calculated by Eq. (15):

3.2.4  Availability

The availability is the degree to which a system or its com-
ponent is able to use when it is needed or called. It is the 
probability of accessing the data replica requested by a data 
consumer from a data host. Suppose dh1, dh2, ..., dhk, ..., dhK 
are data hosts within a fog domain; for any, k = 1, 2, 3, ...,K 
the percentage availability for a data host (i.e., LFOG node) 
within a fog domain is calculated using Eq. (16), as follows:

(13)DTC(dhk1 , dhk2) =
size(datai)

BWk1,k2

× CCk1,k2

(14)RE(dhk) =
Sk

Ak

(15)

RE(datai, dhk) =

I∑
i=1

K∑
k=1

[
(RE(dhk) × Xik)

]
;∀j, j = 1, 2, ..., J

where MTTF is the mean time in which the data host works 
correctly without failure, MTTR  is the mean time to repair 
the data hosts after failure, and MTBF is the mean time 
between two failures in a data host.

Therefore, the total availability for accessing data replicas 
is calculated by Eq. (17):

3.2.5  Optimization problem

According to the objective functions mentioned, we use a 
multi-objective function as the total fitness function. Note 
that for any fog domain, the average latency, the average 
cost, the average availability, and the average reliability as 
objective functions will be calculated, as follows:

Subject to:

where size(datai) and capk denote the size of the data rep-
lica datai and the storage capacity of the data host dhk . 
Besides,Xik = 1 as a decision variable indicates whether at 
least one data replica datai has been deployed on the data 
host dhk . Indeed, constraint (19) guarantees that the summa-
tion of storage space for the data replicas deployed on the 
data hosts should be less than storage capacity.

Besides, we should be considered preferences for storing 
the data replicas on the data hosts. To do this, we introduce 
scaling factors �C,�L,�R , and �A as the weighted parameters 
to reflect the preferences of the data access requests. There-
fore, the objective function for the data replica placement 
problem is characterized by Eq. (23):

(16)AV(dhk) =
MTTFk

MTBFk
=

MTTFk

MTTFk + MTTRk

(17)

AV(datai, dhk) =

I∑
i=1

K∑
k=1

[
(AV(dhk) × Xik)

]
;∀j, j = 1, 2, ..., J

(18)Maximize

I∑
i=1

K∑
k=1

[
1

TL(datai, dhk)
+

1

TC(datai, dhk)
+ RE(datai, dhk) + AV(datai, dhk)

]
× Xik

(19)
I∑

i=1

size(datai) × Xik ≤ capk; ∀k, k = 1, 2,… ,K

(20)Xik ∈ {0, 1}; ∀i, ∀k

(21)1 ≤ i ≤ I

(22)1 ≤ k ≤ K
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Also, since the objective function values have various 
measurement units, we need to normalize the fitness values 
into the interval [0, 1]. In this study, we calculate the nor-
malized fitness values of negative (i.e., latency and cost) and 
positive (i.e., availability and reliability) objective functions 
according to Eq. (25):

where XN , Xmax , and Xmin are the normalized, the maximum, 
and the minimum values of objective functions. Therefore, 
the normalized values of cost (i.e., TCN ), latency (i.e., TLN ), 
reliability (i.e., REN ), and availability (i.e., AVN ) are calcu-
lated by Eqs. (26)–(29), respectively:

Finally, the weighted normalized objective function is 
expressed by Eq. (30):

3.3  Proposed algorithm

In this section, we explain the general structure of the pro-
posed data replica manager (DRM), as shown in Algo-
rithm 1. The DRM is regularly executed at specified time 
intervals to find a suitable data replica placement solution 
(lines 2–7). First, the monitoring phase gathers the needed 
information about the status available data hosts and data 
replicas through data access requests to store into a shared 
database (line 3). Then, the data replica analysis phase 
refines the data collected from the monitoring phase to 
determine the number of data replicas needed based on the 
history of data access requests (line 4). Afterward, the data 

(23)Maximize ∶ Z = [�C.
1

TC
+ �L.

1

TL
+ �R.RE + �A.AV]

(24)s.t. �C + �L + �R + �A = 1; �C, �L, �R, �A ∈ [0, 1]

(25)XN =
X − Xmin

Xmax − Xmin

(26)TCN =
TC − TCmin

TCmax − TCmin

(27)TLN =
TL − TLmin

TLmax − TLmin

(28)REN =
RE − REmin

REmax − REmin

(29)AVN =
AV − AVmin

AVmax − AVmin

(30)

Maximize ∶ Z =

[
�C ×

1

TCN

+ �L ×
1

TLN
+ �R × REN + �A × AVN

]

replica placement phase used the BBO technique to discover 
a proper data replica placement plan for storing the data 
replicas on the data hosts so that QoS requirements of data 
access requests are satisfied (line 5). Finally, the placement 
plan obtained from the previous phase performs by the data 
replica execution phase (line 6).

Algorithm 1: DRM
1:Begin

2: for each (Time interval t until the system is running) do

3: [Inputs]=Monitoring()

4:        Analyze=Data_Replica_Analaysis(Inputs)  

5: Plans= Data_Replica_Placement(Inputs, Analyze)

6:        Data_Replica_Execution(Plans)

7:  end for each

8:End

Fig. 2  The flowchart of the BBO-DRP algorithm
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3.3.1  Monitoring

In this section, the monitoring phase extracts the required 
information from data access requests received from the 
data replica broker component at given time intervals, as 
shown in Algorithm 2. First, it collects the required infor-
mation about the data access requests including the type 
of request (i.e., delay-sensitive or compute-sensitive), the 
number of required replicas, the required storage space, 
and the deadline time of request (line 4). Then, the latest 
status of resource capabilities for data hosts within the fog 
domains including the available storage space, the number 
of stored data replica, and the access delay are collected (line 
7). Finally, this information is stored in a shared database to 
utilize by other phases (line 9).

Algorithm 2: Monitoring 

Input: data hosts, data  access requests 

Output: monitored_Inputs 

1:Begin 

2: for each (Time interval t  until the system is running) do 

3:       for each (data access request) do  

4:           Monitor ( ( _ Re ), ( _ Re ), ( ), ( )Type q Num p Space Deadline ) 

5:      end for each 

6:      for each (data host kdh into each fog domain) do 

7:          Monitor ( ( _ Re ), ( ), ( )Num stored p Storagecapability accessdelay )  

8:    end for each 

9: DRM_DB= Store(monitored_Inputs) 

10:return  monitored_Inputs

_

 

11:End  

3.3.2  Data replica analysis

This phase used the information obtained from the previous 
phase to estimate the number of data replicas needed for 
storing on the data hosts, as shown in Algorithm 3. Since 
the access rate of IoT users to the data replicas varies over 
the time, determining the number of data replicas required 
to serve the data access requests is a challenging task and it 
depends on the amount of download demand of each data 
replica. Therefore, we used a linear regression model (Sha-
hidinejad et al. 2021) as a prediction technique to specify 
the number of data replicas based on the history of data 
access requests (i.e., Num_Rep(t) ). The general form of the 
linear regression model for data replica datai described by 
Eq. (31):

where t  indicates  the t  th  instance observa-
tion,Pr _Num_Repi(t + 1) as target variable (i.e., dependent 
variable) denotes the predicted number of data replica datai
,Num_Repi(t) as an independent variable is actually the value 
of the number of data replica datai at the t  th instance, and 
n is the total number of collected samples. In this predic-
tion model, we use � and � as coefficients values to fore-
cast future Pr _Num_Repi(t + 1) values. These coefficients 
(i.e.,�, � ) calculated by solving a linear regression equation 
which is described by Eqs. (24) and (25):

(31)Pr _Num_Repi(t + 1) = � + � × Num_Repi(t)

(32)� =

∑
(Num_Repi(t))

2×
∑

Pr _Num_Repi(t) −
∑

Num_Repi(t) ×
∑

[Num_Repi(t) × Pr _Num_Repi(t)]

n
∑

(Num_Repi(t))
2 − [

∑
Num_Repi(t)]

2

(33)� =
n
∑

[Num_Repi(t) × Pr _Num_Repi(t)] −
∑

[Num_Repi(t)] ×
∑

[Pr _Num_Repi(t)]

n
∑

[Num_Repi(t)]
2 − [

∑
Num_Repi(t)]

2
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According to Algorithm 3, the prediction process is con-
sists of three phases: setting up windowing, training the 
model with linear regression, and generating the forecasts. 
In the windowing phase, we convert the time series data into 
a universal data set by setting windowing parameters such as 
window size, step size, and horizon (lines 4–5). Then, in the 
training phase, we utilized the linear regression technique 
to fit the dependent variable (i.e.,Pr _Num_Repi(t + 1) ) and 
generate the predictions (lines 6–7). Finally, we need to col-
lect and store the last prediction results in a separate data 
structure (lines 8).

with different resources capabilities. Indeed, this component 
specifies that a data replica requested to be placed on which 
LFOG node within that fog domain.

In the BBO technique (Simon 2008), we consider each 
solution as a habitat that is measured according to the habitat 
suitability index (HSI) as a fitness function. The habitat with a 
high HIS value is considered as a good solution and a habitat 
with a low HIS value is known as a weak solution. To improve 
the quality of solutions, the solutions with high HIS values 
share features (i.e., suitability index variables (SIVs) to other 
solutions with low HIS values through migration operator. 

Fig. 3  Habitat representation

3.3.3  Data replica placement

After determining the number of data replicas required, 
the data replica placement component appropriately places 
the data replicas on the LFOG nodes with various storage 
capabilities to reduce latency and costs of data access and 
increase reliability and availability of data replicas for data-
intensive IoT applications. The data replica placement as the 
main component of the data replica manager within each fog 
domain is responsible for finding an efficient data replica 
placement solution using the BBO as a population-based 
meta-heuristic technique named BBO-DRP for placing data 
replicas with various QoS requirements on the data hosts 

In migration operator, a habitat Hx through immigration rate 
( � ) and habitat Hy through emigration rate ( � ) is selected to 
migrate SIVs (i.e., genes) from habitat Hx to the habitat Hy for 
enhancing exploitation of the BBO-based algorithms. Besides, 
the mutation operator is performed to avoid local optimum on 
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some SIVs of some habitats which are chosen randomly with 
the probability of Pk . Finally, the overall structure of the BBO-
DRP algorithm is provided step by step, as shown in Fig. 2.

In the following, we explain the BBO-DRP algorithm to 
find the most suitable placement plan for storing the data 
replicas in more detail, as shown in Algorithm 4. The input 
of the algorithm is a list of data replicas and available data 
hosts and also, the output is mapping data replicas on the 
fog nodes as optimal placement plan in the fog ecosystem.

First, we randomly generate the initial habitat population 
(i.e., the initial candidate solution) according to the list of 
data replicas (i.e., data access requests) and available data 
hosts (i.e., fog nodes). Each data replica datai is randomly 
assigned to a data host dhk and a set of habitats are gener-
ated (lines 2–8), as shown in Fig. 3. Each habitat (i.e., a 
candidate solution) has k dimensions (i.e., number of data 
hosts), and each dimension has a value between 1 and i (i.e., 
the number of available data replicas for each data host) and 
it is evaluated according to HIS value. Since the data replica 
placement is a discrete problem, we utilized an integer ver-
sion BBO technique to solve it.

To initialize the habitats, we used an initial function, as 
expressed by Eq. (34):

where lbi and ubi represent the lower and the upper bounds 
for assigning i-th data replica to k-th data host, as follows:

Then, the HIS values of the initial habitats generated will 
be calculated according to the fitness function expressed by 
Eq. (30) (lines 9–10). Note that the purpose of the fitness 
function (i.e., HIS) is to find the best habitat to increase 
the positive criteria (i.e., reliability and availability) and the 
reduction of negative criteria (i.e., latency and cost). After-
wards, the main body of the BBO-DRP algorithm will be 
repeated until the termination condition is satisfied (lines 
11–31). In this work, we take into account the maximum 

(34)H(i, k) = [ub(i) − lb(i)] ∗ rand( ) + lb(i)

(35)lb = [lb1, lb2, lb3,… , lbn−1, lbn]

(36)ub = [ub1, ub2, ub3,… , ubn−1, ubn]

number of iterations as the termination condition to find a 
suitable solution (line 11).

If the termination condition is not satisfied, the migra-
tion and mutation processes will be started for updating the 
parameters and generating the new candidate solutions (i.e., 
habitats) into the current iteration. First, all candidate solu-
tions will be arranged based on their HIS values in descend-
ing order. Then, for each solution Hx , the immigration rate 
( �x ) and the emigration rate ( �x ) will be calculated (lines 
13–14). Note that the best solution has high �x and low �x , 
which are calculated by Eqs. (37) and (38) (Simon 2008):

where Rank(Hx) is the HIS rank of a solution Hx,X is the 
number of solutions, Ix and Ex are the maximum immigra-
tion rate and the maximum emigration rate for the solution 
Hx , respectively. It is clear that a candidate solution Hx with 
higher �x has more chance to be chosen for emigration. To 
perform migration process, we will select two habitats Hx 
and Hy according to Ix and Ey to share features (i.e., SIVs) 
with each other (line 15), as follows:

Then, a random number r1 in [0, 1] is generated. If r1 is 
less than Ix , the migration is launched, as follows:

In the migration process, one location is randomly 
selected between 1 and the size of the habitat (i.e., k). Then, 
from the selected location (i.e., SIV) to the last location, all 
SIVs (i.e., genes) belongs to the habitat Hy are shifted in 
habitat Hx . Similarly, all habitats are modified until the best 
solution is found (lines 16–20). The main aim of the migra-
tion process is that the worst solutions will accept some 
features from desirable solutions to improve exploitations.

After the migration process, we perform the mutation 
process on the solution Hx . First, a random number r2 in [0, 
1] is generated. If r2 is less than mutation probability Pk , the 
mutation process is performed and a random location (i.e., 

(37)�x = Ix(1 −
Rank(Hx)

X
)

(38)�x = Ex(1 −
Rank(Hx)

X
)

(39)Hx(SIV) ← Hy(SIV)

(40)Hx(SIVk) =

{
Hy(SIVk) If (r1 < Ix)∕ ∗ pick solutionHy for emmigration ∗ ∕

Hx(SIVk) Otherwise∕ ∗ No − migration ∗ ∕

∀ x, y ∈ {1, 2,… , x,… ,X}; SIV ∀k ∈ {1, 2,… , k,… ,K}
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SIV) is selected from one solution Hx and its value modifies 
randomly in [1, X] (lines 21–25), as follows:

Therefore, a number of new candidate solutions using 
migration and mutation process are generated at each itera-
tion, and then their HIS values are calculated by Eq. (30). 

(41)

H�
x
(SIVk) =

{
Rand[1,X] if (r2 < Pk)

Hx(SIVk) Otherwise

∀ x ∈ {1, 2,… , x,… ,X}; SIV ∀ k ∈ {1, 2,… , k,… ,K}

Then, an appropriate number of best solutions as elite habi-
tats of each generation are saved for utilizing in the next 
iterations. In the next generation, the candidate solutions 
with low HIS values are replaced with the elite habitats 
obtained from the previous iteration's (lines 27–29). This 
ensures that HIS values of habitats (i.e., candidate solutions) 
are not degraded in the next iterations. Finally, all the men-
tioned above steps are repeated until the termination crite-
rion is satisfied and the best found habitat with the highest 
HIS value would be selected as the best solution for the data 
replica placement problem.
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3.3.4  Data replica execution

The data replica execution phase is in charge of placing the 
data replicas on the data hosts according to the data replica 
placement plan specified by the BBO-DRP algorithm and 
the number of replicas determined by data replica analysis 
(i.e., Algorithm 3), as shown in Algorithm 5. First, the data 
replicas have been examined case-by-case to specify whether 
or not has been found in the previous phase any appropriate 
place on the available host nodes within the fog domains. 
If a suitable data host dhk is found, the data replica datai is 
replicated on that LFOG node according to the number of 
data replicas estimated by the data replica analysis phase.

4  Performance evaluation

To validate the proposed approach, we will describe the sim-
ulation setting and criteria for an evaluation in more detail. 
Then, the experimental results will be analyzed.

4.1  Experimental setup

In this section, we provide the simulation setting to develop 
experiments for validating the effectiveness of the proposed 
mechanism in more detail. To model and simulate the fog 
ecosystem and IoT services, we utilize the iFogSim toolkit 
(Naas et al. 2018b) with some modifications of the classes to 
characterize the fog infrastructure, IoT applications, and data 
replica placement algorithms. It provided a series of classes 
for modeling fog infrastructure (e.g., Sensor, Actuator, and 
Fog Device classes) and IoT applications (e.g., AppEdge, 
Tuple, and AppModule classes). With regard to simulation 
setting, there are two simulation types, namely: transient and 
steady-state. Since we will study the long-term behaviors of 
baseline mechanisms, we consider steady-state simulation 
policy. Besides, there are various solutions for the estima-
tion of steady-state such as the batch means strategy, the 
regenerative strategy, the autoregressive strategy, the spec-
tral estimation strategy, and the standard time-series strategy. 

To validate the effectiveness of the proposed mechanism, 
we utilize the batch means strategy to analyze the simula-
tion results. Also, each simulation periods for 5 min and 
values in the figures are the average value of obtained results 
by performing the baseline mechanisms 20 times. Also, we 
consider RFOGs, LFOGs, gateways, and cloud servers as 
data hosts with resource capabilities and network latency, as 
shown in Tables 3 and 4, respectively. Besides, we used the 
random uniform distribution to generate the synthetic dataset 
in a simulated fog network, as shown in Table 5. Also, we 
performed the simulation experiments on a personal com-
puter with Intel Core i7 2.4 GHz CPU, 1 TB disk, and 8 GB 
of RAM running Windows 10-64bit.

4.2  Performance metrics

We used the following metrics to evaluate the effectiveness 
of the proposed approach compared with other mechanisms.

Total latency: This metric is described as the summation 
of the uploading time and downloading time to store and 
retrieve the data replicas on the data hosts, as is calculated 
by Eq. (8).

Total cost: This metric is defined as the summation of the 
data transfer cost and the data storage cost, as is expressed 
by Eq. (9).

Reliability: This metric is specified as the success rate 
for storing the data replicas on a data host in a given time 
interval, and it is determined by Eq. (15).

Availability: This metric is the probability of a success-
ful accessing the data replicas requested by a data consumer 
from a data host, as is calculated by Eq. (17).

Table 3  Data host’s configuration

Data host Number Storage capacity

Gateway 500–1000 1 GB
RPOP 10–30 500 GB
LPOP 50–70 100 GB
Cloud servers 5–10 1 TB

Table 4  Network latency configuration

Communication link Link delay (ms)

Sensor-Broker 10
Broker-LFOG 50
LFOG-RFOG 5
RFOG-Cloud 100
Cloud-Cloud 100
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4.3  Experimental results

To evaluate the effectiveness of the proposed data replica 
placement mechanism, we carried out a series of experi-
ments under different scenarios, as shown in Table 6. Also, 
we compare the proposed solution (i.e., BBO-DRP) with 
the following data replica placement mechanisms in terms 
of different performance metrics:

• LA-DRP (Huang et al. 2019): The latency-aware (LA) 
mechanism utilized a greedy-based strategy to solve data 
replica placement (DRP) with aim of minimization the 
total latency. It reduces the search space by pruning the 
inappropriate solutions using different heuristic rules to 
provide a reasonable solution in polynomial time.

• GP-DRP (Shao et al. 2019): This strategy developed for 
replicating the data files for IoT workflows in an edge-
cloud ecosystem. It used a meta-heuristic technique to 
find an efficient data replica placement plan for minimiz-
ing the data access cost while satisfying QoS require-
ments such as user cooperation and data reliability.

The reason for choosing these mechanisms is that these 
follow the centralized policy to find an efficient data replica 
placement plan, i.e., all aspects of the placement process 
including monitoring, analysis, and planning are controlled 
by a central component. Another reason is that these mecha-
nisms are dynamic, i.e., the number of data replicas are auto-
matically and dynamically added and removed to handle the 
changes in storage capacity and the varying-time data access 
request patterns.

4.3.1  First scenario

Figure 4 illustrates the effectiveness of our proposed solu-
tion (i.e., BBO-DRP) compared with LA-DRP and GP-DRP 

mechanisms with varying the number of data hosts. Accord-
ing to obtained results in terms of total latency (Fig. 4a), we 
realize that the BBO-DRP mechanism significantly reduces 
the average latency compared with LA-DRP and GP-DRP 
mechanisms. Indeed, if the data replicas are located near 
to the data consumer, the data access latency time will be 
reduced and subsequently, the overall latency will also be 
reduced. As the number of data replicas increases, the data 
will be closer to the data consumers and the data access 
delay will be reduced. According to results in the case where 
the number of fog nodes is equal to 50, the BBO-DRP mech-
anism reduces the average latency by up to 0.2% and 0.93% 
compared with the LA-DRP and GP-DRP mechanisms, 
respectively.

According to the results in terms of the total cost 
(Fig. 4b), we realize that the BBO-DRP mechanism signifi-
cantly reduces the average cost by 31% and 53% compared 
with LA-DRP and GP-DRP mechanisms, respectively. This 
is because that our proposed solution utilized a sub-com-
ponent (i.e., monitoring component) to collect information 
about the data access requests and the status data hosts. 
Besides, our mechanism used BBO as a multi-objective 
optimization technique to make appropriate constraints 
for achieving high accuracy to find an efficient data replica 
placement solution. As a result, we noticed that despite the 
increase in fog nodes, which creates higher computations 
and consequently the cost will be higher than, our proposed 
mechanism reduces the average cost compared with other 
methods. For example, in the case where the number of fog 
nodes is equal to 50, the proposed mechanism reduces the 
average total cost by up to 0.4% and 0.21% compared with 
the LA-DRP and GP-DRP mechanisms, respectively.

Finally, According to the obtained results, we find out that 
the proposed solution outperforms in terms of availability 
and reliability metrics compared with baseline mechanisms, 
as shown in Fig. 4c, d. It improves reliability by 12% and 
20% and also the availability by 17% and 9% compared 
with LA-DRP and GP-DRP mechanisms, respectively. By 
increasing the number of data hosts, the percentage of reli-
ability and availability in all mechanisms have increased. 
This is due to the increase in the number of data hosts than 
data consumers, and as a result, this enhances the reliability 
and availability of data replicas. Besides, since our proposed 
mechanism collects the required information about the sta-
tus data storage location through a monitoring component, 
it causes a higher availability rate compared with other 

Table 5  Simulation parameter 
setting

Parameter Value

Data replica size The random uniform distribution between [1, 20] (GB)
Data access request rate The random uniform distribution between [10, 100] (req/s]
Network bandwidth capacity The random uniform distribution between [5, 100] (bps)

Table 6  Specification of simulation scenarios

Scenario Number of data hosts Number 
of data 
replicas

First scenario 10, 20, 30, 40, 50 3
Second scenario 100 3, 5, 7, 9
Third scenario Random distribution in [0–3000] 5
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mechanisms. Note that the availability is an important QoS 
metric in the field of data replica placement so that when IoT 
devices communicate with data hosts, they can access the 
data replicas as quickly as possible.

4.3.2  Second scenario

Figure 5 depicts the average latency, cost, reliability, and 
availability of the baseline and proposed mechanism with 
100 data hosts and a different number of data replicas. In 
general, according to results in the second scenario, we 
noticed that the BBO-DRP is able to work better in terms 
of specified performance criteria than all baseline mecha-
nisms. It reduces the total cost by up by 5% and 15% and 
it increases the reliability by 13% and 16% and also the 
availability by 27% and 9% compared with LA-DRP and 
GP-DRP mechanisms, respectively. Since the LA-DRP is 
a greedy-based solution and due to its simple nature than 
other algorithms, it achieves a near-optimal solution very 
fast using some heuristic-based rules as soon as possible. 
Thus, the latency of the LA-DRP algorithm is lower than 
the GP-DRP algorithm, as shown in Fig. 5a. On the other 

hand, since the GP-DRP utilized the shortest path between 
fog nodes to find the appropriate location for storing data 
replicas, the discovered paths may not always be the best 
path with the least amount of latency, it will perform worse 
than the proposed mechanism. Also, the GP-DRP algorithm 
follows the divide and conquer policy by partitioning the fog 
ecosystem into several geographical regions to solve the data 
replica placement problem, separately. Transferring results 
between regions can lead to a loss of optimality, subse-
quently, resulting in increased latency and cost. According 
to obtained results in terms of cost (Fig. 5b), we find out that 
the BBO-DRP mechanism outperforms compared with other 
mechanisms due to replacing the candidate solutions with 
low HIS values using saved elite habitats to select the proper 
number of data replicas for managing the storage capacity of 
data hosts, efficiently. Finally, we find out that the proposed 
solution has better performance in terms of availability and 
reliability metrics compared with two baseline mechanisms, 
as shown in Fig. 5c, d. According to the results of Fig. 5c, 
we find out that as the number of data hosts are grown; con-
sequently, the reliability in both BBO-DRP and LA-DRP 
methods have increased. Besides, the BBO-DRP mechanism 

(a) Latency

(b) Cost

(c) Reliability

(d) Availability

Fig.4  Comparison performance metrics in the first scenario a latency, b cost, c reliability, d availability
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successfully stores more data replicas on the data hosts than 
the LA-DRP method. Therefore, it enhances the reliability 
compared with LA-DRP method. Also, since the proposed 
solution provides a more appropriate distribution of data 
replica between data hosts, it achieves high availability than 
LA-DRP and GP-DRP algorithms, as shown in Fig. 5d.

4.3.3  Third scenario

In this scenario, we will discuss the solving time of the 
proposed solution with the LA-DRP and GP-DRP mecha-
nisms, as shown in Fig. 6. Let the number of data replica is 
5 and the number of data hosts is varying between 500 and 
3000 nodes. According to the obtained results, the proposed 
mechanism reduces the average solving time by up to 0.07% 
and 0.75% compared with the LA-DRP and GP-DRP mecha-
nisms, respectively. This is because the LA-DRP mecha-
nism used a greedy-based policy with some heuristic-based 
rules to find a data replica placement solution as soon as 
possible. Therefore, the LA-DRP mechanism DRP is able 
to work better in terms of solving time than the GP-DRP 

mechanism. Besides, the GP-DRP mechanism partitions the 
fog infrastructure into several geographical regions to reduce 
the total solution time. However, the time required to transfer 
the results between regions will increase the total solution 

(a) Latency

(b) Cost

(c) Reliability

(d) Availability

Fig.5  Comparison performance metrics in the second scenario a latency, b cost, c reliability, d availability

Fig.6  Comparison of solving time for different mechanisms
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time. Thus, it will perform worse than the LA-DRP and the 
proposed mechanisms.

5  Conclusion

In this study, we addressed the data replica placement prob-
lem for processing data-intensive IoT applications in the fog 
ecosystem. Due to the generation of a large amount of data 
by IoT devices and the variety of the fog nodes capabilities, 
the data replica placement strategies can play an important 
role for enhancing the system performance and they should 
be considered as one of the challenging issues. We used 
BBO meta-heuristic technique to place data replicas on the 
storage fog nodes for minimizing costs of data access and 
latency and increase reliability and availability of data rep-
licas while meeting the QoS requirements of IoT applica-
tions. Further, we develop an autonomous framework for 
placing data replicas to illustrate transferring them between 
IoT devices and storage fog nodes in the fog ecosystem. We 
validate the proposed mechanism under a different number 
of data replicas and fog nodes, and the obtained experimen-
tal results indicated that it can work better in terms of cost, 
latency, reliability, and availability than other baseline mech-
anisms. For future work, we have planned to extend our pro-
posed mechanism with blockchain-based systems to ensure 
privacy-preserving and data integrity in the fog computing 
environment. Further, we will utilize the deep Q-learning 
technique to identify appropriate fog nodes for storing the 
datasets generated by the IoT devices, dynamically. Finally, 
we will design a hybrid solution using the whale optimi-
zation algorithm (WOA) and simulated annealing (SA) 
techniques to present an efficient data replica placement 
mechanism and also, using the formal verification-based 
techniques to confirm its soundness.
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