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Abstract
In recent years, the number of patients with hypertension is increasing, but the early symptoms of hypertension are not obvi-
ous, the incubation period is long, and the awareness rate and control rate are very low. Therefore, it is necessary to study 
the early recognition of hypertension in a non-clinical environment. The blood pressure of human being is controlled by 
autonomic nervous system, and heart rate variability (HRV) is an impact of autonomic nervous system and an indicator of 
the balance of cardiac sympathetic nerve and vagus nerve. So HRV is good method to recognize the hypertensive patients 
from healthy person. In this paper, we proposed a fined-grained HRV analysis method to recognize hypertensive patients 
from healthy person. Specifically, we cut the 8 h of ECG data into 5 min segments at first, and then we propose an improved 
heartbeat interval extraction algorithm to extract the heartbeat interval from Electrocardiogram (ECG) data and we extract 
22 HRV features in linear, nonlinear domain and histogram, Specially, we model the distribution of the heartbeat interval of 
each time window using a Gaussian mixture model. Next we analyzed the correlation between linear domain and nonlinear 
domain features of heart rate variability. Finally, we use common machine learning algorithms to train a recognition model for 
hypertension. In this paper, we use 138 hypertension patients’ and 138 healthy person real-world clinical Electrocardiogram 
data as our data set. The recognition precision rate for patients with hypertension is 97.1%, and the recall rate is 97.1%. The 
experimental results validate the effectiveness and reliability of the proposed recognition method in this research.

Keywords  Heart rate variability · Heartbeat interval extraction · Gaussian mixture model · Hypertension recognition model

1  Introduction

Hypertension is a common and chronic disease. Accord-
ing to the survey, the number of patients with hyperten-
sion worldwide continues to rise. According to the online 
research published in the Lancet magazine on November 15, 
2016, the number of patients with hypertension in the world 

in 1975 was 594 million. In 2015, this number has exceeded 
1.1 billion, which means that since 1975, the number of 
adults with high blood pressure in the world has nearly dou-
bled in 30 years (NCD-RisC 2016). In China, by the end 
of 2015, the prevalence of adults aged 18 and over reached 
23%, and the number of patients was about 243.5 million. 
However, the early symptoms of hypertension are not obvi-
ous, and the incubation period is long. In the early years of 
the onset, there are no obvious symptoms and it is not easy 
to be detected. So it is called “silent killer” (Li et al. 2016). 
In 2012, The annual awareness rate is only 46.5%, and the 
control rate is only 13.8% in china, which means that more 
than half of the hypertensive patients still do not know their 
condition and miss the best treatment opportunity (Wang 
et al. 2016). Therefore, it is extremely important to study 
the early identification of hypertension in a non-clinical 
environment.

Heart rate variability (HRV) reflects the autonomic nerv-
ous system activity and quantitative evaluation of cardiac 
sympathetic nerve and vagus nerve tension and balance, to 
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determine the washing is an important indicator of cardio-
vascular disease. ECG is an effective measure and record 
the details of the electrical activity of diagnostic equipment. 
ECG signals come from the Electrocardiogram (ECG) is 
one of the most obvious features of QRS complex, contains 
from the ventricular electrical activation of P, Q, R, S,T and 
U wave(Van Oosterom 2009). The heartbeat interval refers 
to the distance between two adjacent R waves, which is also 
called the RR intervals, and Heart rate variability is a general 
term for all features extracted from the heartbeat interval.

Based on the above statements, it is a good method to 
recognize hypertensive patients from healthy people by HRV 
extracted from the ECG in sleep stage. Instead of extracting 
features with 8 h ECG data directly, we cut entire nights’ 
ECG with 5 min segments and extract features from 5 min 
segments, which is a fine-grained analysis method and 
can enhance the precision and recall of the recognition of 
hypertension.

To the best of our knowledge, the problem of recogniz-
ing hypertensive patients from healthy person leveraging 
ECG data has not been well investigated in the literature. 
There are several challenging questions to be answered. How 
to extract the heartbeat interval from the ECG data, while 
avoiding the false and missed detection of R waves as much 
as possible? How to extract effective features to recognize 
the hypertensive patients from heartbeat interval sequence? 
The linear domain and nonlinear domain features come from 
the same data source. How relevant are they?

To answer these questions, we propose RecogHyperten-
sion, a system that predicts the healthy status (Hypertension 
or health) of the unknown person leveraging ECG data dur-
ing nighttime sleep.

We first extract the ECG data for each person from 10:00 
to 6:00 in the evening. Then we extract heartbeat interval 
from ECG data, and propose an improved heartbeat inter-
val extraction algorithm to correct the heartbeat interval 
between the false detection and the missed detection. Using 
these data, at first, we extract linear domain and nonlinear 
domain features, then we model the distribution of heartbeat 
intervals for each segment using a Gaussian mixture model 
(GMM) and use Expectation Maximum (EM) Algorithm to 
solve unknown parameters. Finally, we train a classification 
model to predict the healthy status of unknown person. We 
make the following contributions.

1.	 This work proposes an improved heartbeat interval 
extraction algorithm to correct the heartbeat interval 
between the false detection and the missed detection. 
By observing the features of ECG signals, we propose a 
targeted R-wave error detection and miss detection algo-
rithm.

2.	 We not only extract the linear domain and nonlinear 
domain features from the heartbeat interval sequence, 

but also model the distribution of the heartbeat interval 
of each segment with a Gaussian mixture model. This 
modeling method is applicable to the modeling of other 
physiological parameter data distribution.

3.	 To quantitatively analyze the correlation strength 
between linear domain and nonlinear domain features, 
we use Pearson correlation analysis method to calculate 
the correlation coefficient between each two features of 
each people, and combine the physiological reasons of 
the features to analyze the reasons for strong correla-
tion between some features. What is more, we propose 
a feature selection method based on correlation strength 
and information gain.

2 � Related work

2.1 � Traditional hypertension recognition method

The most common and traditional method of diagnosis of 
hypertension is to determine whether you have high blood 
pressure by measuring blood pressure (Coccagna and Luga-
resi 1978; Fletcher and Levin 1984).

One of the methods is to measure blood pressure directly, 
but this method requires the tester to wear an inflatable cuff, 
fingertip cuff, etc. Davies et al. (1994) dedicated meas-
urement equipment, and cannot continue to measure, and 
the measured blood pressure value will be affected by the 
measurement person’s personal status and the surrounding 
environment, resulting in inaccurate results. In view of the 
shortcomings of direct measurement of blood pressure in 
a non-clinical environment, many studies have proposed a 
method of indirectly measuring blood pressure based on the 
pulse wave conduction time, which refers to the pressure 
wave after the heartbeat spreads between two arterial sites. 
The time delay, the speed of this forward wave depends on 
the support of the artery. When the artery is enhanced, the 
speed of pulse wave propagation is accelerated. Since the 
arterial blood pressure is proportional to the blood pressure, 
the pulse conduction time is inversely proportional to the 
blood pressure of the person, and the pulse wave conduc-
tion is obtained. After the time, you can get blood pressure 
according to the calculation formula. Zheng et al. (2013) 
monitored the ECG and PPG signals simultaneously on 
the arm, and then used these signals to estimate the blood 
pressure during nighttime sleep based on the pulse wave 
conduction time; Wiens et al. (2017) used smart watches 
to monitor the micromotion caused by the heartbeat. Then, 
the pulse transit time is calculated, but this method is 
more accurate only when the tester stands. The above two 
measurement methods require wearing wearable devices, 
and these devices may cause measurement results may be 
inaccurate due to the tightness of the wearing. Carek et al. 
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(2017) and Carek and Holz (2018) used both acceleration 
and optical sensors to obtain pulse Conduction time, specifi-
cally the integration of the acceleration sensor in the shorts 
and contact with the wearer’s torso, while the optical sensor 
observes the pulse wave reflection of the femoral artery on 
the wearer’s thigh. This method requires the tester to wear 
a special wear during nighttime sleep. Shorts, and will be 
disturbed by body movements during sleep, and the limita-
tions are relatively large.

2.2 � Hypertension recognition method based 
on heart rate variability

In recent years, heart rate variability has been used in many 
studies to study the identification of hypertension.

Ni et al. (2017) used the belt to continuously collect electro-
cardiogram (ECG) data during the night’s sleep, first dividing 
the data of the whole night into data segments of different 
time scales such as 8 h, 4 h, 2 h, 1 h, and 30 min. Constructing 
a time series pyramid, the time scale of the next layer of data 
is half of the upper layer, and then extracts the time domain, 
frequency domain and nonlinear domain features from the 
heartbeat interval of each time segment, so that each layer of 
The data segments correspond to a feature vector, and then, in 
order to reduce the dimension, a plurality of feature vectors are 
aggregated into one feature vector by using a pooling method 
in each layer, and an average value of all the layers of each 
feature is obtained between the layers. As the final value of 
the feature, and then using the feature training model, the clas-
sification accuracy rate of the two types of people can reach 
93.33%. This method solves the problem that only considers 
a single time scale in most studies. The focus of the research 
is on how to The selection of features between different time 
scales, but this paper divides the data of the whole night into a 
5-min time window, extracts features from multiple angles, and 
studies the heart rate variability features in fine-grained man-
ner. A correlation and volatility model, a new feature selection 
method was proposed; MG Poddar et al. (2014) and others 
used a 5-min electrocardiogram (ECG) record collected in a 
clinical environment of 57 healthy people and 56 hyperten-
sive patients. The classification accuracy of the support vector 
machine model using all time domain, frequency domain and 
nonlinear domain feature training can reach 100%. However, 
in this article, the author simply uses all features for classi-
fication, using only 5 min of research objects. The records 
were analyzed, and this paper analyzed the ECG signals for 96 
consecutive periods of time, avoiding the possible impact of 
accidental factors on the classification results in the process of 
collecting ECG data, and the results were more convincing and 
credible. Song et al. (2015) used BCG signals collected from 
fretting sensitive mattresses to classify healthy people, hyper-
tensive patients, and patients with coronary heart disease. This 
study proposes a new method for extracting heartbeat intervals 

using collective empirical mode decomposition, and then the 
time domain, frequency domain and nonlinear domain features 
were extracted from the heartbeat interval, and the differences 
between these three features were compared. The t-test results 
showed that these features had significant differences among 
the three types of people, and then respectively. Using the time 
domain, frequency domain, nonlinear domain and the combi-
nation of these features, the model is trained by Naive Bayesian 
algorithm. The results show that the accuracy of classification 
using the combination of three types of features is higher than 
that of using single class features. The main contribution of 
this paper is to propose a new method to extract the heartbeat 
interval. The focus of this paper is on feature extraction, feature 
analysis and modeling of hypertension recognition models.

3 � Data acquisition and analysis

ECG is an important bioelectricity that embodies the physi-
ological state of various parts of the human heart. In this 
study, we use ECG data for two types of people, patients 
with hypertension used the SHAREE (Smart Health for 
Assessing the Risk of Events via ECG) data set downloaded 
from the PhysioNet website (2015). The dataset includes 
139 patients’ 24-h Holt recording recruited from the Naples 
Federico II University Hospital Hypertension Center in Italy 
(data from 138(including 90 males), in this article, one of 
which was discarded due to less than 24 h) after one month 
of antihypertensive treatment. The data set for healthy peo-
ple comes from the Telemetric and Holter ECG Warehouse 
(THEW) database (Couderc et al. 2005), which is run by 
the University of Rochester Medical Center. The dataset 
contains data for 202 people. For healthy people, this arti-
cle uses the data of the previous 138 people (including 71 
males). This paper studies the classification of hypertensive 
patients and healthy people by using ECG signals continu-
ously collected by two types of people during nighttime 
sleep. Ni et al. (2019) studies have shown that people’s 
physical parameters in the sleep state are more stable, less 
affected by the external environment, can more accurately 
reflect the various functions of the body, and the duration 
of sleep is relatively long. There are fewer activities when 
people in the sleep process, and the collected data is less 
noisy. The data can fully reflect the dynamic changes and 
intrinsic subtle changes of the heart rate variability of the 
subjects, so we use the data of hypertensive patients and 
healthy people from 10:00 to 6:00 the next morning. The 
hourly data was studied. During the study, all subjects were 
in the sleep state by default. After extracting the data for the 
specified time period, the data of 8 h in the whole night is 
divided into 5 min, that is to say, 96 segments, in the follow-
ing analysis of data.
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4 � Problem statement and system framework

4.1 � Problem statement

The problem can be stated as follows: given the ECG sig-
nal of a person sleeping at night, to determine whether it 
is a hypertensive patient, this problem is essentially a two-
category problem.

The problem can be formalized as that the heartbeat 
interval sequence is obtained from the electrocardio-
gram signal of the study subject, and the feature set F is 
extracted from the heartbeat interval sequence, and we 
want to predict the category C (C = 0, 1). Let F = {F1, 
F2,…, Fn}, C = {0, 1}, given F(1∶t+1)

(
=
{
F(1),… ,F(t+1)

})
 

and C(1∶t)
(
=
{
C(1),… ,C(t)

})
 , our objective is to predict 

C(t + 1).

4.2 � System framework

The overview of the framework is illustrated in Fig. 1, the 
system includes two parts, offline learning and online clas-
sification. Specially, offline learning mainly consists of five 
layers: heartbeat interval extraction, feature extraction, and 
feature analysis and model training.

4.2.1 � Heartbeat interval extraction

We cut the whole night data into 5 min segments, then perform R 
wave detection and calculate the heartbeat interval, and correct it 
with R-wave error detection and miss detection algorithm.

Fig. 1   System framework
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4.2.2 � Feature extraction

To effectively extract and quantify the factors impacting 
hypertension recognition, we extract features from different 
perspectives including the linear domain features, nonlinear 
domain features, what’s more, we use the Gaussian mixture 
model to model the distribution of the heartbeat interval 
sequence of each time window, and calculate the relevant 
parameters of the Gaussian mixture model as features.

4.2.3 � Feature analysis

Considering that the linear domain and nonlinear domain 
features are from the same data source, and each of these 
features reflects the intrinsic properties of the cardiac auto-
nomic nervous system from different aspects, it is believed 
that there may be some degree of correlation between these 
features, so the correlation between linear domain and non-
linear domain features is analyzed.

4.2.4 � Algorithm selection

With these features extracted from heartbeat interval 
sequence, we use a variety of commonly used classification 
algorithms to train the model, and compare the performance 
of various classification algorithms. Finally, we choose ran-
dom forest classification algorithm with better classification 
effect to train the hypertension recognition model.

5 � Hypertensive patients recognition

In this section, we first obtain heartbeat interval sequence 
from ECG data, then extract features from different perspec-
tives from heartbeat interval sequence to characterize differ-
ent properties. Next, we use the Pearson correlation analysis 
method to quantitatively analyze the correlation between 
linear and nonlinear domain features and select features 
based on correlation between features and information gain. 
Finally, we train a hypertensive recognition model based on 
multi-dimensional features.

5.1 � Heartbeat interval extraction

The heartbeat interval data is the basis for studying hyper-
tension and other related diseases by using heart rate vari-
ability. In this paper, the heartbeat interval indicates the 
difference between the peak positions of adjacent R waves 
in the ECG, and the R wave peak is accurately detected. 
Thereafter, the time interval between adjacent R waves is 
the RR interval. Therefore, accurately detecting the position 
of the R wave peak is the basis for accurately calculating the 
heartbeat interval. We use the fixed-length sliding window 

method to detect the position of the R wave peak in this 
paper. When the peak detection method based on the slid-
ing window is used for peak detection, the accuracy of the 
detection of the peak point has a certain relationship with 
the width of the window. When the window is large, the 
length of the covered data segment is long. When the peak 
detection is performed, the peak point is missed, and the 
peak point of some R waves cannot be recognized (ie, the R 
wave is missed); when the window is small, the length of the 
data segment is short, and the detection of the peak causes a 
misdetection of the peak point, and the point that is not part 
of the R wave is recognized as the peak point (ie, the R wave 
is misdetected). Therefore, how to effectively detect the peak 
value of R wave, reduce the occurrence of false detection 
and missed detection, and ensure the correct extraction of 
the heartbeat interval sequence is a problem worth studying.

In this paper, through many experiments, it is found 
that the window length is set to 200 and the moving step 
is set to 110, which can effectively reduce the occurrence 
of false detection and missed detection. At the same time, 
the experiment found that although the reasonable setting 
of the window length and the step length can effectively 
reduce the false detection and missed detection of the R 
wave peak, misdetection and missed detection still occur. 
Therefore, this paper proposes R wave Error detection and 
miss detection correction algorithms to further reduce the 
probability of occurrence of misdetection and missed 
detection based on the specific features of the ECG sig-
nal. as shown in Algorithm 1, where the error detection 
correction algorithm corresponds to lines 8 to 37, and the 
miss detection algorithm corresponds to lines 39 to 43. 
Figure 2a shows the R-wave diagram detected by using the 
sliding window. It can be seen that there are many false 
detections of R waves, and the points that are not R waves 
are erroneously detected as R waves. Figure 2b shows the 
R wave position using R wave misdetected correction algo-
rithm. The correction algorithm performs a R-wave peak 
detection on the same piece of data, and it can be seen 
that the problem of false detection of the R wave is effec-
tively solved. Figure 3 shows the R-wave miss detection. 
Unlike the error detection, the missed detection cannot be 
avoided by setting the threshold. Considering when the 
missed detection occurs, the interval between two adja-
cent R-waves becomes larger. Therefore, the missing test 
is corrected by the RR interval mean interpolation method.

5.2 � Feature extraction

5.2.1 � Time domain features

The time domain feature refers to the statistical analysis 
of the variation of the heartbeat interval over a period of 



3951RecogHypertension: early recognition of hypertension based on heart rate variability﻿	

1 3

time, also known as statistical features. we extract eight 
features from heartbeat interval sequence as follows.

(1)	 Mean, indicating the average of the heartbeat interval 
sequence, reflecting the average level of the heartbeat 
interval sequence. The formula is as follows:

(2)	 The maximum value max represents the maximum 
value of the heartbeat interval sequence, and the cal-
culation formula is:

(3)	 The minimum value min indicates the minimum value 
of the heartbeat interval sequence, and the calculation 
formula is:

(1)mean =
1

n

n∑
i=1

RRi

(2)MAX = max
(
RR1,RR2,RR3,… ,RRn

)

(4)	 The standard deviation indicates the standard deviation 
of the heartbeat interval sequence, reflecting the degree 
of dispersion of the heartbeat interval sequence. The 
calculation formula is:

(5)	 The root mean square of the difference, the square root 
of the mean squared difference of the lengths of all 
adjacent adjacent heartbeats, calculated as:

(6)	 Difference standard deviation sdsd: indicates the 
standard deviation of all RR interval differences over 
a period of time. The calculation formula is as fol-
lows:

(7)	 The number of neighboring RR intervals greater than 
50 ms is nn50, the number of adjacent cycles above 
50 ms interval.

(8)	 The coefficient of variation cv, the degree of variation 
of the heartbeat interval sequence over a period of time. 
This feature is normalized by the mean value to stand-
ard deviation, which can offset the impact of individual 
differences. The calculation formula is:

5.2.2 � Frequency domain features

The information obtained from the time domain analysis 
of the heartbeat interval sequence is finite and cannot fully 
reflect the attributes of the data sequence. Therefore, this 
section considers the features of the time series from the 
frequency domain. We use the fast Fourier transform method 
(Clifford and Tarassenko 2002) to convert the heartbeat 
interval sequence into a frequency signal and extract five 
features from the power spectrum density.

(1)	 High-frequency HF: (0.15 ~ 0.4 Hz) high-frequency 
band energy value, mainly related to the activity of 

(3)MIN = min
(
RR1,RR2,RR3,… ,RRn

)

(4)SD =

√√√√1

n

n∑
i=1

(
RRi − RR

)2

(5)RMSSD =

√√√√1

n

n∑
i=2

(
RRi − RRi−1

)2

(6)

SDSD =

√√√√1

n

n∑
i=2

[(
RRi − RRi−1

)
− RRi − RRi−1

]2

(7)nn50 = sum(RR ≥ 50)

(8)CV = SDNN∕mean

Fig. 3   R wave miss check

Fig. 2   R wave error check
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parasympathetic nerves, reflecting the rapid changes 
in heart rate.

(2)	 Low frequency LF: (0.04 ~ 0.15 Hz) The energy value 
of the low frequency band is mainly affected by sympa-
thetic nerve and parasympathetic nerve, among which 
sympathetic nerve is dominant.

(3)	 Low frequency high frequency ratio LF/HF: reflects the 
balance of sympathetic and parasympathetic activity.

(4)	 Normalized high frequency HFnorm:

(5)	 Normalized low frequency LFnorm:

5.2.3 � Nonlinear domain features

Poincare's scatter plot (France and Miroljub 2002) are often 
used to identify hidden patterns in time-series signals, and are 
one of the most common methods for detecting complex non-
linear behavior in heart rate variability. The Poincare scatter 
plot for hypertensive patients and healthy people is shown in 
Fig. 4. The scatter plot is based on the current heartbeat inter-
val as the abscissa value and the next heartbeat interval as the 
ordinate value. Through observation, it is found that the scat-
ter plot of healthy people is compact, 45-degree oval, mainly 
distributed in the middle of the ellipse, with less distribution 
at both ends, while the scatter plot of hypertensive patients is 
more scattered and has no regular shape. It is speculated that 
this reason may be that the physiological state of healthy peo-
ple is stable, the range of heartbeat interval is small, and the 
expression in the scatter plot is relatively concentrated, while 
the hypertensive patients are sympathetically activated, and the 
ratio of sympathetic and parasympathetic nerves is unbalanced.

In order to quantitatively analyze the properties of the scat-
ter plot, the ellipse is commonly used to fit the scatter plot, and 
then the standard deviation on the major and minor axes at the 
center of the scatter plot is determined. The center point is the 
X and Y axis mean heartbeat interval. The intersection of the 
lines, usually located on the 45-degree line of the coordinates, 
the 45-degree line representing the long axis of the scatter plot, 
and the vertical intersection of the long-axis at the center point 
is the short axis. As shown in Fig. 4b, the standard deviation 
measured by the long axis is called SD1, which reflects the dif-
ference between heartbeat and heartbeat. It is controlled by sym-
pathetic nerves. The standard deviation measured by the short 
axis is called SD2. It reflects the difference in the RR interval 
over a long period of time and is controlled by the parasympa-
thetic nerve. In addition, the relative size of the instantaneous 
and long-term RR interval differences is evaluated by SD1/SD2.

(9)HFnorm =
HF

HF + LF

(10)LFnorm =
LF

LF + HF

5.2.4 � Distribution morphological features

In this section we analyze the properties of the histogram of 
the sequence of the center of each time window. Firstly, we 
calculate skewness and kurtosis (Xiaonan et al. 2018) of the 
histogram of heartbeat interval sequence. Skewness reflects 
the symmetry of the distribution pattern of heartbeat interval.

The kurtosis is a statistic that describes the degree of 
steepness in the distribution of the values of the variables. 

(11)s =

1

n

n∑
i=1

�
RRi − RR

�3

�
1

n

n∑
i=1

�
RRi − RR

�2
�2

Fig. 4   The Poincare scatter plot for hypertensive patients and healthy 
people
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When the data distribution is the same as the standard nor-
mal distribution, the kurtosis value is equal to 0.

In the previous section, it is observed that the distribution 
of heartbeat intervals in each time window exhibits a double 
peak, similar to the shape of the Gaussian Mixture Model 
(GMM) (Chen et al. 2016; Costa et al. 2012), and existing 
research indicates that people are within a certain period of 
time, the distribution of parameters such as heart rate and 
pulse rate is consistent with the Gaussian mixture model. 
Therefore, the Gaussian mixture model is used to model 
the distribution of heartbeat intervals in each time window.

Because finite hybrid models can be used to define any com-
plex probability density function, it is widely used in many 
cases where statistical data is modeled. Statistically speaking, 
the premise of using the Gaussian mixture model is to assume 
that the sample data conforms to the independent and identi-
cal distribution, using a linear combination of normal distribu-
tions to approximate the unknown distribution of the data. The 
Gaussian mixture model is based on the following probabil-
ity density hypothesis: Given a sequence of sample data, the 
model considers the probability of occurrence of each sam-
ple as a result of a mixture of several Gaussian models, which 
are sampled from the same probability density function while 
independent of each other. Usually a Gaussian mixture model 
is composed of K division Gaussian models, and the probabil-
ity density function of the Gaussian mixture model is a linear 
superposition of K divisional Gaussian models. The probability 
density expression of the Gaussian mixture model as follows.

where ui and σi represents the mean and standard deviation 
of the i-th Gaussian distribution, wi represents the weight of 
each Gaussian distribution in the GMM, and wi satisfies the 
following constraints.

The probability density expression for a single Gaussian 
distribution as follows.

(12)k =

1

n

n∑
i=1

�
RRi − RR

�4

�
1

n

n∑
i=1

�
RRi − RR

�2
�2

− 3

(13)f (x) = w1 ∗
1√
2��1

exp
�
−(x − �1)

2∕2�2
1

�
+ w2 ∗

1√
2��2

exp
�
−(x − �2)

2∕2�2
2

�

(14)0 ≤ wi ≤ 1,

2∑
i=1

wi = 1, i = 1, 2

(15)f
�
xi
���i

�
=

1√
2��i

exp

�
−

�
xi − ui

�2
2�2

i

�

In order to obtain the optimal solution of unknown param-
eters, the traditional method is solved by the method of maxi-
mum likelihood estimation. The specific solution step is to 
find the joint probability density function of the sample first, 
because each sample is independent and identically distrib-
uted. Therefore, these samples are the joint probability density 
is the product of the probability density of a single sample and 
is expressed as:

Next, taking the logarithm of the joint probability density 
function,

Then use the maximum likelihood estimate to determine 
the optimal value of the unknown parameter �i =

{
�i, �i

}
,

Since the above formula contains the logarithm of the 
sum, it is difficult to maximize the log-likelihood function. 
In order to solve the above problem, Demptater proposed 
the expectation maximization (EM) algorithm (Zhihua 
2016) in 1977, A commonly used algorithm in the field of 
machine learning domain, which can effectively solve the 
optimization problem of hidden variables in Gaussian mix-
ture models.

In this study, the specific process of the algorithm 
includes the following four steps.

(1)	 Given the number K of individual Gaussian distributions 
in the mixed Gaussian model, assigning initial values to 
the parameters wi, ui, σi of each Gaussian distribution;

(2)	 E-step: Calculate the posterior probability of the hidden 
variable w according to the initial value of the param-
eter or the model parameter of the last iteration, which 
is essentially the expectation of the invisible variable 
as the current estimated value of the hidden variable;

(3)	 M-step: Calculate the value of the hidden variable as an 
input by E-step, and maximize the likelihood function to 
calculate the values of the new parameters u, σ and w;

(4)	 Iterating 2) and 3) until the value of u, σ remains 
unchanged, at which point the maximum value of the 
parameters u, σ can be obtained.

(16)L(�) =

K∏
i=1

f
(
xi
||�i

)

(17)LL
�
�i
�
= log

K∏
i=1

f (xi��i )
=

m�
i=1

logf (xi��i )

(18)(�, �)MLE = argmax
�,�

LL(�, �) = argmax
�,�

m∑
i=1

logf (xi;�,�)



3954	 H. Ni et al.

1 3

After calculating the parameters of the Gaussian mix-
ture model, this paper selects the mean, standard devia-
tion and the corresponding probability density of the two 
Gaussian distributions as the features for the recognition of 
hypertension.

5.3 � Feature correlation analysis of linear domain 
and nonlinear domain

Considering that the linear domain and nonlinear domain 
features extracted from this paper are from the same data 
source, and these features reflect the intrinsic properties 
of the cardiac autonomic nervous system from different 
aspects. therefore, these features are likely to be related. 
We use the Pearson correlation coefficient to analyse the 
correlations between time domain and frequency domain 
features Quantitatively. The Pearson Correlation Coef-
ficient (PCC) is a quantitative measure of the degree of 
correlation between features (Wang et al. 2016). For two 
eigenvectors X and Y, X = (X1, X2, …, Xn), F2 = (Y1, Y2, 
…, Yn), the correlation coefficient PCC of these two fea-
tures is calculated as:

The method for calculating the feature correlation coef-
ficient of this paper as follows:

(19)PCC =

n∑
i=1

�
Xi − X

��
Yi − Y

�

�
n∑
i=1

�
Xi − X

�2�
Yi − Y

�2

Step 1:	� For each person, we cut the whole night data into 
5 min time window, and extract the linear domain 
and nonlinear domain features from the time win-
dow, and form the feature column vector Fi, ie 
Fi = {Fi,1;Fi,2;…;Fi, j… Fi,96}, get the feature matrix 
FMk.

Step2:	� Calculate the Pearson correlation coefficient 
(PCC) for the two-two features in FMk, and obtain 
the correlation coefficient matrix CMk.

Step3:	� Calculate the correlation coefficient matrix in the 
same way for everyone, and average each coef-
ficient in the correlation coefficient matrix of the 
same person as the correlation coefficient between 
the humanoid features.

The feature correlation algorithm proposed in this paper 
is shown in Algorithm 2.

(21)FMk =

⎡
⎢⎢⎢⎢⎢⎣

F1,1 F1,2 . . F1,16

F2,1 F2,2 . . F2,16

. . .

. . .

F96,1 F96,2 . . F96,16

⎤
⎥⎥⎥⎥⎥⎦

(22)CMk =

⎡
⎢⎢⎢⎢⎢⎣

r1,1 r2,1 r3,1 . r16,1
r1,2 r2,2 . . r16,2
r1,3 . . . .

. . . . .

r1,16 r2,16 r3,16 . r16,16

⎤⎥⎥⎥⎥⎥⎦
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We use the above method to calculate the correlation coef-
ficient matrix between the features of hypertensive patients 
and healthy person, and the calculated correlation coefficient 
tables of various types of people are shown in Fig. 5. It can be 
seen that there is a strong correlation between some features, 
and there are some differences in the correlation strength 
between the two types of human features.

As can be seen from the above table, for the two types of 
people, the features correlated with the low frequency LF 
are the standard deviation SD, the coefficient of variation 
CV and the short axis standard deviation SD2 of the scatter 
plot, and there is also a strong correlation between the fea-
tures related to the low frequency. The reason for the strong 
correlation between these features is that the low frequency 
is affected by the sympathetic nerve and the parasympa-
thetic nerve. The sympathetic nerve is dominant, while the 

standard deviation and coefficient of variation are important 
to measure the slow change component of heart rate vari-
ability. SD2 reflects the long-term variability of heartbeat 
interval. These features are also affected by sympathetic 
nerves (Schroeder et al. 2003), and when the function of 
the sympathetic nerves changes, they change synchronously. 
In addition, the correlation between low-frequency and 
other features of hypertensive patients is higher than that of 
healthy people. The reason for this is related to the exces-
sive activation of sympathetic nerve in hypertensive patients.

The features strongly related to high frequency HF are the 
difference root mean square rmssd, the difference standard 
deviation sdsd, the number of the heartbeat interval greater 
than 50 ms, and the long axis standard deviation sd1. There 
is also a strong correlation between these features, indicating 
that the values of these features is increased or decreased 
synchronously. The reason why these features are strongly 
correlated with each other is that the high frequency range 
is 0.15–0.4 Hz, which is very close to the frequency of res-
piration. Breathing causes high frequency periodic fluctua-
tion of the vagus nerve, which changes the length of the 
hop-by-hop heartbeat interval. While rmssd, sdsd, nn50, and 
sd1 respond to short-term changes in the heartbeat interval, 
these features are commonly affected by the vagus nerve. In 
addition, the overall correlation between high frequency and 
other features of hypertensive patients is weaker than that 
of healthy people, which may be related to the inhibition of 
parasympathetic function in hypertensive patients.

The low-frequency high-frequency ratio LHratio reflects 
the dynamic equilibrium state of the sympathetic nerve and 
the vagus nerve, and has a strong correlation with sd12 in 
the scatter plot. This is because sd12 is the ratio of sd1 and 
sd2, and also reflects the equilibrium state of sympathetic 
and parasympathetic nerves. The correlation between the 
normalized high frequency and low frequency features is 
very strong (r =  − 1.00, p < 0.05), but the correlation with 
other features is very weak.

When there is a strong correlation between features, the 
information represented by these features is redundant, 
and feature selection can be made based on the correlation 
strength of the features. Here, the features are first aggre-
gated based on the correlation strength between the features, 
and the features can be aggregated into seven groups, as 
shown in Table 1. For each set of features, one of the fea-
tures needs to be selected instead of other features of the 
group to achieve feature selection. In this paper, Information 
Gain (IG) (Kullback et al. 1959; Entropy 2002) is used to 
measure the distinguishing ability of each feature for two 
types of people. The information gain for each feature is 
then replaced with the other features of the set with the most 
information gain in each group.

As shown in the above table, the features can be aggre-
gated into seven categories according to the correlation Fig. 5   Heatmap of correlation coefficient
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strength between the features. The feature with the largest 
information gain in each class represents the other features 
of the group, and finally the features included in the sub-
set of the time domain and frequency domain features are 
selected. There are standard deviation, low frequency high 
frequency ratio, normalized low frequency, high frequency, 
average, maximum and minimum, as shown in bold.

5.4 � Hypertensive patients recognition

5.4.1 � Feature process

5.4.1.1  Feature merge  When extracting the heartbeat 
interval, we first divide the 8-h ECG data into a 5-min time 
window, and then extract three types of features from each 
time window. For each person, each feature is a vector of 
96 values, where multiple values for each feature need to be 
merged into one value. The problem here is for the feature 
vector, which method is used to fuse the feature vector into 
a feature value to reflect as much as possible the properties 
of all the values in the data sequence, and the final result is 
more representative.

In order to fuse multiple feature vectors into one spe-
cial diagnosis vector, Boureau et al. (2010), Ni et al. (2017) 
and others have solved the problem by pooling. The pool-
ing method is commonly used in convolutional neural net-
works. The convolutional neural network (Kiranyaz et al. 
2016; Liu et al. 2015) includes an input layer, a convolution 
layer, a sampling layer, a connection layer, and an output 
layer. The sampling layer is also called a pooling layer. The 
downsampling is based on the principle of local correla-
tion, which can effectively reduce the amount of data while 
retaining useful information (Romanuke Vadim 2017). Com-
monly used pooling methods include finding the maximum, 
minimum, average, and sum of squares of all values. The 
method of calculating the mean and sum of squares and 

(22)Feature =
{
F1,F2,… ,F96

} ?
⟶ value

roots can consider the information of all eigenvalues, the 
method of maximum and minimum. An extreme value in the 
data sequence is substituted for the data sequence. Since the 
maximum and minimum values reflect the extremes of the 
data sequence and do not fully reflect the overall properties 
of the data sequence, the average takes into account all the 
elements in the data sequence and can reflect the average 
level of the data sequence, but ignores the data sequence. 
The details, squares, and roots take into account all the ele-
ment values in the data sequence, and reflect the intrinsic 
properties of the data sequence compared to the averaging 
method. Therefore, when we aggregate multiple values of 
a single feature into a single value, we use the method of 
square sum rooting, as shown in the following formula.

5.4.1.2  Feature normalization  We find that the range of values 
between the features varies greatly, and the values of some fea-
tures differ by several orders of magnitude. Therefore, before 
using the feature training model of this paper, the features are 
normalized. Normalization refers to a linear feature transfor-
mation method that scales the value of a feature to a specific 
range, but does not change the distribution of the feature val-
ues. In this paper, the min–max normalization method (Patro 
and Sahu 2015; Mustaffa and Yusof 2011) is used to transform 
the numerical range of each feature into the (0, 1) interval, and 
then the model is trained with the normalized feature. Given 
heartbeat interval sequence RR =

{
RR1,RR2,RR3,⋯ ,RRn

}
 , 

The formula for calculating the transformed eigenvalue by the 
min–max method is as follows.

In the above formula, RRmax and RRmin respectively 
represent the maximum and minimum values of the heart-
beat interval sequence.

5.4.1.3  Construction of  hypertension recognition 
model  Given the feature set of two types of people, the 
existing machine learning method is used to train the model, 
and then when there is unknown type of user data, the trained 
model can be used to output the prediction result of the user 
category. The extracted heart rate variability features and 
corresponding categories are composed of training samples, 
and the sets of all the training samples of the two types of 
people constitute a training set. In the section of construct-
ing the hypertension recognition model, the training set is 
used as the input of the classification algorithm.

The classification algorithms commonly used in machine 
learning include decision trees, random forests, Bayesian 

(23)value =

√
F2
1
+ F2

2
+⋯ + F2

96

(24)RR
�

i
=

RRi − RRmin

RRmax − RRmin

, i = 1, 2,… , n

Table 1   Feature grouping and information gain of each feature

GroupID Features InfoGain GroupID Features InfoGain

1 LF 0.00855 3 lhratio 0.10567
sd 0.01037 sd1/sd2 0.05595
cv 0.00783 4 HFnorm 0.10567
Sd2 0.02426 LFnorm 0.10569

2 HF 0.0439 5 mean 0.04609
rmssd 0.0402 6 max 0.04569
sdsd 0.0402 7 min 0.36945
nn50 0.04082
Sd1 0.03716
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networks and multi-layer perceptrons. These papers use 
these algorithms to train models and then evaluate the per-
formance of these models. We extracted a total of 13 linear 
domain features, 3 nonlinear domain features, and 8 distrib-
uted morphological features. The feature subsets obtained 
in the correlation analysis section include 7 features. In this 
paper, these features are combined into different feature set 
training models to obtain different recognition models. The 
performance of the model is evaluated from different angles, 
and the model with the best recognition effect is used as the 
hypertension recognition model.

6 � Performance evaluation

6.1 � Experimental setup

6.1.1 � Evaluation metrics

For features evaluation, we measure the effectiveness of the 
extracted features using following metric:

The goal of this paper is to identify patients with hyper-
tension from healthy people. We take hypertension as a posi-
tive example. So we use Presicion, Recall and AUC (Wang 
et al. 2016) to evaluate the performance of the hypertension 
recognition model. AUC is an independent indicator, the 
larger the value, the better the recognition of the trained 
model. Indicates how many of the identified hypertensive 
patients do have high blood pressure, and the recall rate indi-
cates how many hypertensive patients are correctly identi-
fied. The accuracy rate needs to be used in conjunction with 
the recall rate, when both indicators have large values at 
the same time. It shows that the system recognition effect 
is good.

In the above two formulas, TP indicates that it is origi-
nally a hypertensive patient, and is actually divided into 
hypertensive patients. FP indicates that it is originally a 
healthy person and is misclassified as a hypertensive patient. 
FN indicates that it is originally a hypertensive patient and 
is misclassified as a healthy person.

6.1.2 � Verification method

In order to fully verify the performance of the pro-
posed hypertension method, this paper used 10 tenfold 

(25)Pr ecision =
TP

TP + FP

(26)Recall =
TP

TP + FN

cross-validation experiments. Specifically, for each tenfold 
cross-validation, the data set is randomly divided into 10 
equal parts, each data is rotated as a test set and the remain-
ing nine data are used as a training set.

6.1.3 � Baseline algorithms

For hypertension recognition, we use the following methods 
as the baselines:

(1)	 In the work of Ni et al. (2019), the data of the whole 
night is first divided into 1/2, 1/4, 1/8, 1/16, 1/32 of the 
original length, which is equivalent to dividing the data 
into 6 layers, each layer contains several data segments, 
and the lengths of the data segments are equal. Then, 
for each piece of data of each layer, 20 features of time 
domain, frequency domain and entropy are extracted, 
and then the sum of squares for each feature is used to 
find the root. A plurality of feature vectors in each layer 
are fused into a single feature vector, and between the 
layers, a plurality of feature vectors are fused into a sin-
gle feature vector by averaging. In the feature selection 
part, the information gain is obtained for the feature, 
and then the first seven feature training recognition 
models are selected;

(2)	 In the work of M. G. Poddar et al., a 5-min ECG record 
was used as the data source, and the features of the 
time domain, the frequency domain and the nonlinear 
domain were extracted respectively, and the support 
vector machine was used for classification. In this 
experiment, in order to make the experimental results 
comparable, the method described in this paper and the 
two control methods use the same experimental data.

6.2 � Experimental results

6.2.1 � Difference analysis of heart rate variability features

In order to analyze whether the features extracted in this 
paper have significant differences between the two types 
of people, the time domain frequency domain subsets and 
distribution morphological features obtained by two kinds 
of human correlation analysis are separately calculated. 
The statistical results of the features are expressed by the 
mean ± standard deviation in Table 2.

From above Table we can observe:

(1)	 Observing the eight features of the time domain, we 
found that in addition to the minimum and coefficient 
of variation, other time domain features of hypertensive 
patients are higher than those of healthy people. The 
three features of scatter plots can be found in patients 
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with hypertension. All three features are lower than 
healthy people. In addition, the p-values of these 11 
features of hypertensive patients and healthy people 
are less than 0.05, and the P value of some features is 
even less than 2E − 5. Such a small p-value indicates 
that the time domain features of hypertensive patients 
and healthy people are derived from the probability of 
the same distribution is small.

(2)	 Observing the five features of measuring the frequency 
domain information of heartbeat interval, we found that 
except for the low frequency high frequency ratio and 
the normalized low frequency, other features of hyper-
tensive patients are higher than those of healthy people. 
Similarly, the T-test results of these two types of people 
are less than 0.05, which indicates that the frequency 
domain features of the two types of people are from the 
same distribution with a low probability.

(3)	 Observing the distribution morphological features, 
except for the weight and kurtosis coefficient of the 
main Gaussian distribution, other features of hyper-
tensive patients are higher than those of healthy peo-
ple. The P value of these characteristic T tests is much 
smaller than 2E − 5, such a small p value indicates 
the time domain features of hypertensive patients and 
healthy people are small from the same distribution.

6.2.2 � Comparison of different algorithms

We want to compare the effectiveness of different algorithms 
in hypertension recognition. We use all the extracted fea-
tures, train the models with four classification algorithms: 
random forest (RF), decision tree (DT), Bayesian network 
(BN), and multi-layer perceptron (MP), and compare the 
accuracy, recall and AUC of these models.

Figure 6 shows the Precision, Recall and AUC of RF, DT, 
bN and MP. We observe that the classification precision and 

Table 2   Heart rate variability 
feature statistics

Feature Hypertension Heathy p value

mean 0.998 ± 0.099 0.871 ± 0.084 2.77207E − 08
sd 0.088 ± 0.018 0.087 ± 0.023 0.00729
max 1.35 ± 0.089 1.158 ± 0.089 1.08956E − 09
min 0.599 ± 0.049 0.701 ± 0.051 2.01966E − 14
rmssd 0.025 ± 0.011 0.0191 ± 0.007 0.00729
sdsd 0.025 ± 0.011 0.0191 ± 0.007 4.31874E − 09
nn50 10,193.159 ± 9461.904 6351.891 ± 5675.355 3.82187E − 08
cv 0.087 ± 0.019 0.101 ± 0.017 3.82153E − 08
LF 0.00093 ± 0.00074 0.00087 ± 0.00054 0.00284
HF 0.00005 ± 0.00002 0.000038 ± 0.00001 5.45688E − 05
lhratio 527.722 ± 112.242 558.568 ± 163.608 6.08009E − 06
hfnorm 0.00198 ± 0.00046 0.00157 ± 0.00035 1.27906E − 06
lfnorm 0.998 ± 0.00046 0.998 ± 0.00035 0.00214
sd1 9203.798 ± 2956.413 10,209.345 ± 2577.855 3.96339E − 08
sd2 29,528.719 ± 5580.647 36,922.358 ± 4814.064 5.6803E − 05
sd12 0.277 ± 0.064 0.310 ± 0.067 1.23698E − 09
mainU 1.004 ± 0.106 0.877 ± 0.088 3.68111E − 10
subU 0.969 ± 0.112 0.822 ± 0.119 4.77362E − 07
mainstd 0.078 ± 0.019 0.075 ± 0.028 4.76056E − 05
substd 0.057 ± 0.038 0.042 ± 0.029 3.38771E − 06
mainweight 0.764 ± 0.130 0.798 ± 0.132 7.32134E − 06
subweight 0.236 ± 0.131 0.202 ± 0.132 9.92831E − 06
skew 0.073 ± 0.571 0.067 ± 0.346 4.26276E − 05

Fig. 6   Comparison of different algorithms
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recall of the four types of algorithms can reach above 0.85 
When using all feature training models. Among them, the 
RF has the highest precision and recall rate and is used as the 
default classification algorithm to construct a classification 
model. This shows that when the features proposed in this 
paper are used to identify hypertensive patients, it can ensure 
high recall rate while ensuring high detection rate.

6.2.3 � Performance comparison before and after feature 
selection

In order to compare the performance of data sets before and 
after feature selection, we compare the performance of dif-
ferent feature sets here. the feature sets here include four cat-
egories: (1) Linear and nonlinear domain feature sets (TF); 
(2) Correlation analysis obtained feature subsets (TFsub-
set); (3) Linear domain, nonlinear domain and distribution 
morphological feature set (TF + RRHis); (4) a collection of 
feature subsets and distribution patterns (TFsubset + RRHis).

Figure 7 shows the Precision, Recall and AUC of four 
types of feature sets. It can be seen that compared with the 
simultaneous use of the all features, the classification preci-
sion is not significantly reduced by using the subset training 
model. This is because some features of the linear domain 
and the nonlinear domain are strongly correlated, and the 
information of the strongly correlated features is redundant, 
and the removal of some features does not lead to informa-
tion loss. When three types of features are used at the same 
time, the attributes of the heartbeat interval sequence can 
be reflected from different angles, so the recognition result 
is the best.

6.2.4 � Comparison of different type of feature sets

What’s more, we extract three types of feature sets from 
heartbeat interval sequence, here we compare the perfor-
mance of different types of feature sets. the feature sets 

include three categories: (1) Linear and nonlinear domain 
feature sets (TF); (2) Linear and nonlinear domain feature 
subsets (TFsubset); (3) Distribution morphological features 
(RRHis).

As can be seen from the above Fig. 8, the accuracy, recall, 
and AUC of the hypertension recognition model trained 
using linear and nonlinear domain characteristics are 91.8%, 
97.1%, and 97.1%, respectively, and the performance of the 
hypertension recognition model trained using the distri-
bution pattern features. It is slightly worse than the other 
two types of feature sets. The reason for the analysis is that 
the distribution morphological feature is a coarse-grained 
description of the distribution pattern of the heartbeat 
interval sequence, while the linear and non-linear domain 
features reflect the changing trend of the corresponding 
heartbeat interval sequence, which is a fine-grained feature. 
Therefore, the latter classification Better results.

6.2.5 � Comparison of principal component analysis

In order to verify the validity of the feature selection method 
proposed in this paper, it is compared with the principal 
component analysis method. We use all linear domain and 
nonlinear domain features as the input of the principal com-
ponent analysis method to obtain the principal component. 
In order to keep the number of features obtained from the 
correlation analysis in this paper, the first seven principal 
component training models are used here. The proportion 
of each of the main components is shown in Table 3. It can 
be seen that the cumulative weight of the first nine principal 
components reaches 95.7553% (Table 3).

We denote the seven principal component sets obtained 
from principal component analysis as PCA, train the models 
with two types of feature sets PCA and TFsubset, and com-
pare the performance of the two models.Fig. 7   Comparison of before and after feature selection

Fig. 8   Recognition result



3960	 H. Ni et al.

1 3

Figure 9 shows the Precision, Recall and AUC of TFsub-
set and PCA. It can be seen that the accuracy, recall rate 
and AUC of the model trained using TFsubset are slightly 
higher than PCA, and the features selected in this paper have 
clear physiological significance, and are highly explanatory, 
which is helpful to understand which features are more 
important. and the physiological significance expressed by 
the principal component obtained by principal component 
analysis is not clear. Comparing the time performance of 

Table 3   Principal components and weight

Principal 
component

Weight (%) Principal component Weight (%)

pc1 49.2429 pc5 3.9577
pc2 17.8195 pc6 2.5120
pc3 10.9921 pc7 2.1393
pc4 9.0918 Cumulative sum 95.7553

Fig. 9   Performance comparison in model and time

these two methods, the time required to calculate the fea-
tures of 276 individuals using PCA is 45.92 s longer than 
the time required to calculate the subset of time domain 
frequency domain features, while the decision tree is used 
to train the models with these two feature sets. The time 
required is less than 1 s. In summary, the feature subset of 
this paper can reduce the time performance while achieving 
higher accuracy.

6.2.6 � Comparison of different baseline methods

In order to confirm the validity of the method proposed 
in this paper, we compare it with the methods of Ni et al. 
(2017) and Poddar et al. (2014).

From the above Table 4, we can observe that the precision 
and recall rate of the method were 7.1% and 3.4% higher 
than the first baseline, and 18.4% and 9.2% higher than the 
second baseline.

We compared the ROC curves of the three types of meth-
ods for hypertension recognition. As can be seen from the 
Fig. 10, the method described herein achieves a relatively 
low false alarm rate while ensuring a relatively high recogni-
tion rate relative to the two control methods. Specifically, the 
best case of this method can guarantee a recognition rate of 
98.6%, while the false positive rate is only 4.35%, while the 
method of NI et al. can achieve a recognition rate of 94.2% 
in the best case. At the same time, the false positive rate was 
12.3%. In the best case of MG Poddar et al., the recognition 
rate was 87.7% and the false positive rate was 23.9%.

Table 4   Comparison of recognition result of different methods

Precision Recall AUC​

Ni 2017 0.900 0.935 0.866
Poddar 2014 0.787 0.877 0.769
Our 0.971 0.969 0.987

Fig. 10   ROC Curve of Hypertension recognition
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6.2.7 � Analysis of time complexity

Time complexity is an effective indicator to measure the 
performance of the proposed method. In order to analyze the 
time performance of the proposed hypertension method on 
different scale data sets, this part we compare the data sets of 
different scales in the heartbeat interval extraction. The time 
consumed by feature extraction and the total CPU consump-
tion time are shown in Fig. 11. Compared with heartbeat 
interval extraction and feature extraction, the time required 
to train the model is much lower than the two processes. 
Therefore, the time performance when training the model is 
not considered here. In the experiment, we tested the time 
performance and total time performance of extracting heart-
beat intervals, extracting features using different numbers of 
ECG signals.

We can observe that whether the time to extract the heart-
beat interval or features, or the total CPU consumption time 
of these two parts, it has a linear relationship with the data 
size, and does not increase sharply with the increase of the 
data set size.

7 � Conclusion

In this paper, we focus on the problem of recognizing hyper-
tensive patients from healthy person leveraging ECG data. 
Specifically, we first extract heartbeat interval sequence 
from ECG data and propose an improved heartbeat interval 
extraction algorithm to solve the problem of false detection 
and missed detection of R waves. Then we extract features 
from different perspectives including the linear domain, non-
linear domain and Distribution morphological features from 
heartbeat interval sequence. We propose a method of mode-
ling the distribution pattern of heartbeat interval in each time 
window based on Gaussian mixture model. Considering the 

correlation between linear domain and nonlinear domain 
features, we use Pearson correlation analysis method to ana-
lyze the correlation strength quantitatively, and make fea-
ture selection based on correlation strength and information 
gain. Finally, Based on the features of multi-dimensional 
heart rate variability, an early recognition model of hyper-
tension based on random forest classification algorithm is 
constructed. Experimental results demonstrate the effective-
ness of our approach.

In the future work, we will consider using data from each 
person for a period of time before and after the onset of 
illness, and based on the fluctuation pattern of heart rate 
variability in each person during this period, establish a 
predictive model. Besides, we will examine the correlation 
between heart rate variability features and two types of peo-
ple to select targeted features.
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