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Abstract

Transforming text from one language to another by using computer systems automatically or with little human interven-
tions is known as Machine Translation System (MTS). Divergence among natural languages in a multilingual environment
makes Machine Translation (MT) a difficult and challenging task. The purpose of this paper is to present a comprehensive
survey of MTS in general and for English, Hindi and Sanskrit languages in particular. The state-of-the-art MT approach is
Neural Machine Translation (NMT) which has been used by Google, Amazon, Facebook and Microsoft but it requires large
corpus as well as high computing systems. The availability of MT language modeling tools, parsers data repositories and
evaluation metrics has been tabulated in this article. The classification of MTS, evaluation methods and platforms has been
done based on a well-defined set of criteria. The new research avenues have been explored in this survey article which will
help in developing good quality MTS. Although several surveys have been done on MTS but none of them have followed the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) approach including tools and evaluation

methods as done in this survey specifically for English, Hindi and Sanskrit languages.

Keywords Acrtificial intelligence - BLEU - Knowledge representation - Machine translation - NIST - Natural language

processing - Systematic survey - Statistical machine translation

1 Introduction

Natural languages have shown a vital role in shaping human
social behavior as they prepare the necessary mechanism for
day to day communication among human beings (Fromkin
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et al. 2011). Natural Language Processing (NLP) comprises
of three basic components: processing, understanding and
generation (Allen 1995). NLP is a sub-domain of Artifi-
cial Intelligence (AI) and Machine Translation (MT) is one
of the application of NLP. Machine Translation (MT) is a
mechanism of translating the sentences of one language des-
ignated as Source Language (SL) into other language desig-
nated as Target Language (TL) with the help of computers
(Hutchins 1995; Hutchins and Somers 1992; Slocum 1985).
The translation may occur one-to-one, i.e. from one SL to
another TL, known as bi-lingual translation; one-to-many,
i.e. from one SL into many TLs and many-to-many transla-
tion, i.e. from many SLs to many TLs known as Multilin-
gual Machine Translation (MMT). MT comes under Natural
Language Processing (NLP) domain which is a sub-domain
of Artificial Intelligence (AI) (Rao 1998). The translation
may be unidirectional or bidirectional. Several efforts have
been made to review the MT systems whereas major contri-
butions has been done by Antony (2013), Desai and Dabhi
(2021), Garje and Kharate (2013), Naskar and Bandyopad-
hyay (2005). The research in the MT field has been increased
rapidly in the last few decades. Therefore a systematic yet
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critical evaluation of available MT techniques, methods and
systems is needed. In this article, the authors have surveyed
the traditional as well as state-of-the-art techniques and sys-
tems of MT. An effort has been made to identify existing MT
approaches, development tools, data repositories, environ-
ments, evaluation metrics and platforms.

1.1 Motivation

According to Ethnologue languages of world, approximately
7102 languages and thousands of dialects have been used
by people in the world (Lewis et al. 2015). Human transla-
tion has never been an effective solution for such problems
due to less availability of human translators, high cost of
manual translation and difficult to approach by everyone.
According to Census of India 2001 data, 22 scheduled and
100 non-scheduled languages with approximately 1600 local
dialects were being used by people (Dorr et al. 2004; Mal-
likarjun 2010). So, for the development of country like India,
people have to exchange technology, science, ideas and work
together without any language barrier. MT techniques can
remove such problems in an effective manner. Thus, there is
a great need of MT at the global level as well as local level
in India also.

The summary of contribution and novelty of this review
article is of many folds which are listed as follows:

— Presenting comparison of MT techniques and evalua-
tion methods based on well-defined criteria to analyze
the existing MT platforms with their characteristics and
applications.

— Analyzed the availability of various language resources
and presents word embedding techniques used in neural
machine translation for Indian languages.

— Explored the new research areas in the field of machine
translation for Indian languages.

1.2 Approaches of MTS

Figures 1 and 2 shows different MTS approaches (Dorr et al.
2004; Seasly 2003). Broadly we can categorize approaches
into five groups: Direct Machine Translation (DMT), Rule-
Based MT (RBMT), Corpus-Based MT (CBMT), Knowl-
edge-Based MT (KBMT) and Hybrid Based MT (HBMT).
RBMT is further divided into Transfer Based MT (TBMT)
and Interlingua Based MT (IBMT) whereas CBMT is
divided into Statistical MT (SMT) and Example-Based
MT (EBMT). Neural Machine Translation (NMT) is an
extension of SMT as depicted in Fig. 1. Figure 2 shows the
level of complexity in different approaches in the form of
Vauquois triangle. From bottom to top complexity increases.

1.2.1 DMT

DMT comes at the bottom of the triangle and needs fewer
efforts. There is no intermediary representation of the source
and target language, only word to word matching is per-
formed for the translation and the system may have pre-
processing and post-processing paring phases for the input
sentence morphological analysis and the target sentence
reordering, respectively. The system uses a bilingual dic-
tionary for matching the SL words with TL words. Figure 3
depicts the DMT approach.

Fig.1 MT approaches
Machine Translation Approaches
v
KBMT CBMT RBMT DMT HBMT
| ¥
L 2 L 2 v y
EBMT SMT IBMT TBMT
NMT
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1.2.2 TBMT

In this approach after the morphological analysis of input
sentence, the syntactic and semantic analysis using the SL
dictionary is performed to find out grammar structure and
generates a parse tree. The system uses a set of transfer rules
to transfer SL parse tree into TL with the help of a bilingual
source-target language dictionary. The TL text is generated
as per the grammar of TL using syntactic and semantic gen-
erator modules and the target language dictionary. The work-
ing of TBMT approach is depicted in Fig. 4.

Fig.2 Vaugqois triangle

Semantic Composition,

Syntactic

1.2.3 IBMT

In this approach, SL text is analysed and an intermediate
language independent code is generated to obtain the TL
text. As the intermediate code representation is independ-
ent of SL as well as TL so could be used in multilingual
machine translation. The language analyser is dependent
on SL in the input process and the target language gen-
erator is dependent on the particular target language. The
functioning of IBMT is shown in Fig. 5.
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Fig.5 Interlingua based MT Source Languagel Target Langaugel
approach Analyser Generator
Source L?nguagez Interlingua Tar%et Langtaugez
Analyser Representation enerator
Source Language3 Target Langauge3
Analyser Generator
1.2.4 SMT 1.2.5 EBMT

In this approach, statistical or probabilistic techniques
have been applied in machine translation system develop-
ment. There are two major components of this approach
as-language model and the translation model. The lan-
guage model produces the probability of occurrence for
the strings of words in the source as well as the target lan-
guage and also the conditional probabilities of occurrence
of a word in the target language which translates a word
in the source language. The multiplication of the prob-
ability of occurrence of a word in SL with the conditional
probability of occurrence of a word corresponding to this
word in TL provides the occurrence of source and des-
tination pairs of words occurring in the corpus available
for translation. This method requires a large amount of
database and very complex statistical techniques to do the
translation. The efficiency of the system increases with
more training data sets and parallel corpora availability
for the language pair. Machine translation can be done
based on word, phrase, sentence, or hierarchical phrase.
The translation model generally uses the N-gram model.
N-gram model predicts the occurrence of the next word
of the text given the previous words. The working process
of the SMT approach is presented in Fig. 6.

The basic translation principle used by this approach was
analogy. This approach does not require huge amount of
corpora, it needs a bilingual corpus of stored examples and
using one of the matching algorithm to find the translation
which matches with the source language sentence. Generally
EBMT does not require any grammar rule base in detail; it
uses only the stored examples and the matching algorithm
to find the closest match corresponding to the given input
sentence. The architecture of EBMT approach is shown in
Fig. 7.

1.2.6 KBMT

This approach extracts the linguistic information from SL
and stores that information into the knowledge base used for
translation purpose. Information extraction is done by using
bilingual dictionaries, language structure, stored translation
information, domain specific information dictionaries etc.
Figure 8 depicts the architecture of KBMT approach.

Each approach has its own advantages and disadvan-
tages, so hybridization of two or more than two approaches
might give a better translation quality. Hence researchers are
focusing on hybridization of approaches at different levels
for developing MTS. Comparison of MTS approaches have
been done based on a set of well defined criteria as shown

Source Language Sentence .
Pre-Processing
Translation
Mechanism
Monoling Access to Monolingual | Language Model
ual Data Data
( > Global
Bilingual Access to Bilingual R Search
Aligned Corpus Translation Model
Corpus

Fig.6 Statistical MT approach
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in Table 1. RBMT approach gives better results than other
approaches, but needs deep linguistic knowledge, more time
to create translation rules.

Corpus Based Machine Translation (CBMT) approach
performs better than DMT for long sentence translation, but
requires large volume of text corpus for both SL and TL,
statistical tools, algorithms to handle and high computation

Fig.7 Example based MT
approach

power for the development of MTS. DMT approach is better
for translating single clause sentences and requires less time
to develop MTS. Neural Machine Translation is an emerging
technique and reports similar results to the present state-of-

art MTS (Hassan et al. 2018; Wu et al. 2016).
Hybridization of CBMT and RBMT can be done based
on confidence-estimation and classification (Christopher and

Source Language Sentence |

| Analysis |

Source to Target Language
Example Base

Fig. 8 Knowledge based MT
approach

Source Language Sentence |

| Analysis |

Matcher Module

Synthesis

| Target Language Sentence |

Knowledge Base to store
Extracted Information

Table 1 Comparison of MT approaches based on several criteria

| Knowledge Extraction Module |

Svynthesis

Target Language Sentence |

MT approach criteria ~ DMT RBMT CBMT KBMT NMT
Morphological Required Required Required Required Done by encoder
analysis
Syntactic and semantic Not required Required Required Syntactic required not Encoder performs this
analysis semantic task
Deep linguistic knowl- Not required Required Not required No, require inference ~ Training of encoder and
edge engine decoder is required
not simple, but less
space is required than
SMT
Simple to implement  Yes No Simple than RBMT No
Cost Less costly Costly in terms of time Costly in terms of Costly in terms of Costly in terms of
resources conceptualization computational power
required (needs GPU)
Fast development Yes Time consuming Faster then RBMT Less than RBMT but  Once trained gives
less then CBMT output in fractions of
seconds
Efficiency Better for simple ~ Most efficient Better than DMT Better than DMT and  Better than SMT
and small trans- CBMT
lation
Large computation No No Yes Yes Yes
required
Word level translation  Yes Yes Yes Yes No
Sentence level transla- No No Yes No End-to-end translation

tion
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Rao 2010). However, the problem with such hybridization
is the requirement of a large corpus of parallel sentences to
extract translation rules to cover all aspects of natural lan-
guage. To overcome such problems Recursive Chain-Learn-
ing (RCL) or Genetic Algorithms or Neural Networks can
be used over the existing systems (Echizen-Ya et al. 2004).
For translating fixed patterns, the RBMT approach was not
effective, because conventional syntactic analyzers are not
able to recognize such fixed patterns (collocation, idioms
and compound nouns). To remove such problems specific
pattern recognition modules can be added to the existing
RBMT based systems. This will reduce the load on POS
tagger and parser, helps in resolving word sense ambiguities
(Jung et al. 1999). Other hybrid combinations are explained
in Sects. 4.1 and 4.2.

The rest of the article is organized as Sect. 1 gives the
introduction to MT, Motivation, the contribution of this arti-
cle and approaches of MT. Section 2 describes the evolution
of MT in general as well as for English, Hindi and San-
skrit languages. Section 3 explains the survey methodology
adopted for the current work. Section 4 describes outcomes
as results obtained from various MT systems. State-of-the-
art MTS platforms, parsing and language modeling tools,
available corpora have been discussed in Sect. 5. Section 6
highlights the role of Neural Networks in Machine Trans-
lation with some latest examples of MT systems based on
NMT approach and Sect. 7 depicts MT evaluation methods
and platforms with their characteristics. Section 8 provides
research avenues generated from this work and recommen-
dation for new researchers. Finally the concluding notes are
given in Sect. 9.

2 Evolution of MTS
2.1 Evolution of MTS in general

Machine translation history had started in the 17th cen-
tury when Discartes and Leibniz proposed the concept of
mechanical dictionaries based on the method of universal
numerical codes. But the actual proposal for the machine
translation came in the 20th century. Figure 9 shows the
development of machine translation in five phases in general
(Hutchins 1995; Hutchins and Somers 1992).

2.2 MTS development in Indian perspective

The MTS development for Indian languages has started
in 1990s and Fig. 10 shows various MTS developed for
English, Hindi and Sanskrit languages based on different
approaches.

The domain, efficiency, features and the research group
associated with these MTS is explained in Sect. 4. Initially
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due to non-availability of online corpus for Indian languages
compared to other languages, DMT and RBMT approaches
have been used for developing MTS among Indian lan-
guages, although some CBMT based MTS for English to
Indian languages or Indian to English language translation
have also been developed. In 2003 the hybridization of dif-
ferent approaches have started for developing MTS. From
2009 to 2014 RBMT approach has been used extensively
for MTS development. In the duration from 2016 to now the
graph of CBMT increases due to the application of NMT
approach in MTS. The hybrid approach was also used in
parallel to RBMT and CBMT in a few MT systems during
the same time. In hybridization, Artificial Neural Network
(ANN) and Quantum Neural Network (QNN) techniques
outperform compare to other combinations. RBMT approach
dominates other approaches in Indian MT development
scenario.

3 Survey process

The approach used for survey in this article follows the
guidelines given in Budgen and Brereton (2006), Kitchen-
ham et al. (2009), Moher et al. (2015). The different stages
involved in the survey process are planning, execution, anal-
ysis of results, documentation of results and highlighting the
research gaps. The planning of survey includes the creation
of an effective research question framework as shown in
Table 2, sources of articles as discussed in Sect. 3.1. Execu-
tion of survey includes criteria for searching the article as
shown in Table 3, inclusion or exclusion criteria of articles
in the survey.

3.1 Information sources

A broad perspective is essential for broad coverage of litera-
ture as suggested by Kitchenham et al. (2009) and Budgen
and Brereton (2006). So the following electronic sources
were used for searching the relevant articles for the survey:

“Google Scholar (https://scholar.google.co.in/)”
— “IEEE Explorer (ieeexplore.ieee.org/)”
— “ACM Digital Library (dl.acm.org/)”
— “Science Direct (https://www.sciencedirect.com/)”
— “Springer (www.springerlink.com)”
— “ACL(https://www.aclweb.org/)”

3.2 Searching criteria

All the articles searched over electronic sources include
the token” Machine Translation” which makes the process
of searching relevant articles a time-consuming and chal-
lenging, as these articles are vast in numbers. So, a search


https://scholar.google.co.in/
https://www.sciencedirect.com/
http://www.springerlink.com
https://www.aclweb.org/

A comprehensive survey on machine translation for English, Hindi and Sanskrit languages

3447

Machine Translation Evolution

First Phase (1933-1954)

Second Phase(1954-1966) Optimistic

* Direct, Transfer and Interlingua approach came in 1955. ‘

+ Statistical and Theoretical Based group came in 1955,

* |BM MTS was installed in 1958 based on SMT approach.

* Russian-English MTS was installed at Ispra based on
RBMT.

* ALPAC report demotivated MTS development in 1966

Fourth Phase(1976-1989) Operational
and Commercial MTS

"+ DMT and RBMT approach were used.
* SYSTRAN MTS hased on DMT was used at several
places.
* ATLAS2, DUET, MU, ALPS, HICATS and PENSEE were
famous MTS,
* Focus was on English-Japanese and Korean-Japanese
_MTS. "

The Pioneers

Starts with a patent of Petrovic Troyanshki in 1933,
Turing Test proposed in 1947,

First Concept came in 1947 for MTS.

Russian to English MTS was done in 1954,

Uses grammar rules and vocabulary of words for MTS.

Third Phase (1967-1976)

SYSTRAN for Russian-English and METAL for German-English |
came in.

METAL was hased on IBMT approach.

Finite state and probability models were used.

Q-system and Meteo system, Russian-French MTS came in
1971.

Focus on natural language generation model development.

Fifth Phase(1990-tll Date)

/"+ Focus on probability and data driven MTS,

* Data availability increases from LDC, NIST, ELRA, FIRE.

* NMT came in 2014 with deep learning application .

* Google, Microsoft, Amazon, Facebook and other companies invested
“\\ in MTS and reported hetter translation quality from 2014 till 2021.

Fig.9 MT evolution in general (Cho et al. 2014; Hutchins 1995; Hutchins and Somers 1992; Kalchbrenner and Blunsom 2013; Sutskever et al.

2014)

strategy is needed to include as many related articles as
possible with ease and in less time. One such approach
is presented in Table 3, but still, some of the right papers
might not be added to this survey, a reason may be due to
missing such keywords into the abstract part. The work on
MT for Indian languages started in the 90s, and the current
survey includes articles from different sources like journals,

conferences, workshops, seminars, technical reports, and
symposiums from 1990 to Feb 2021.

3.3 Inclusion/exclusion criteria

The process of including or excluding the article in the
current survey is shown in Fig. 11. In the first phase, the
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Fig. 10 Evolution of MT in Indian perspective based on different approaches

exclusion of articles has been done based on the title of
the article. The exclusion percentage in this stage was
28%. In Phase-2, 1057 articles are separated from the
original 1500 article database, and after studying their
abstracts, only 410 articles are selected for the next
phase based on their relevance to the field of machine
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translation. In Phase-3, after reviewing the full text of 410
articles only 220 are moved to the next phase, and rest are
excluded. In Phase-4, the exclusion is done based on the
MT for English, Hindi and Sanskrit languages and finally,
118 articles are included for the current survey.
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Table 2 Research question framework

Sr. No. Research questions

Motivation

Ql

Q2

Q3

Q4

Q5

Q6

What is the current status of Indian Machine translation systems
Which approaches of machine translation are in use?

What machine translation method has been used the most?

What are the tools used for the method in Q3

What machine translation evaluation methods have been used the

most?

What new research avenues have obtained from the survey?

Identify the duration in which the large and important publications
are done

Identify the different approaches of machine translation develop-
ment

Identify the most popular and efficient technique for MTS develop-
ment

Identify the most efficient tools and techniques used with their
domains

Identify the most popular machine evaluation methods used largely
and effectively

Explore new possible research avenues on which work needs to be
done

Table 3 Search strategy

sion criteria

Sr. No. Key phrase Search string
1 History Historical Background of MT
2 Approaches Machine Translation Approaches
3 Corpus Parallel, Aligned, Tagged Corpus
4 POS Part of Speech Tagger
5 Statistical Statistical Machine translation Systems
6 Rule Base Rule Based MT Systems
7 Example Based Example Based MT Systems
8 Direct Direct Machine Translation Systems
9 UNL Universal Networking Language Based MTS
10 NMT Neural Machine translation Systems
11 ANN Artificial Neural Network Based MTS
12 Parser Different types of Language Parser
13 Evaluation of MT Different methods of evaluating MTS
14 MT Challenges Various challenges in MTS development
15 Semantic/syntactic analyzer Natural language semantic/syntactic analyzers
16 Transfer rules MT translation rule base
Fig. 11 Inclusion and or exclu- Research Article Database |
Phase-1
Phase-2
y Phase-3
1500

Exclusion Phase-4

repino 1080

2 Articles used

Exclusion| in Current Review

of article
after
reading
abstract

—>|z'-|'b

Exclusion|
after
reading
full text
of article

>z

Exclusion
based on
language
pair used
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4 Results and discussion

This article examines the existing literature in the field
of MT based on the research questions as per Table 2 and
finds out the solutions to these questions as the outcome.
Out of 118 articles, 45% are available in Journals, and
55% are published in conferences, workshops, Summits,
Lecture Series and Technical Reports. The following sub-
sections give an outcome-based analysis of various MTS
and further examined based on approach, domain, and
development year.

4.1 Machine translation system for Hindi
and Sanskrit languages

Hindi and Sanskrit both belong to the Indo-Aryan lan-
guage family which is a subgroup of the Indo-Euro-
pean language family. Both the languages are free word
order and different from English which follows Sub-
ject—Verb—Object (SVO) word order. Hindi and Sanskrit
both use the Devanagari script and shares many common
features with each other.

Sanskrit is one of the oldest languages in the world and
has been treated as a holy language in India. In the past, it
was the language of educated people and used as a major
language in communication, literature, education, admin-
istrative documents, and spiritual activities. The treasure
of Sanskrit includes not only scientific, mathematical,
philosophical, medical, poetry, and religious informa-
tion but also India’s spiritual as well as cultural aspects.
Several languages have emerged from Sanskrit including
Indian as well as foreign languages. The Sanskrit users
have decreased gradually with time. Recently the Indian
government and some non-governmental agencies have
started to promote the Sanskrit language so that more
people can be associated with this beautiful, spiritual,
and most powerful language of the world. Several efforts
have been made in developing Sanskrit language MTS all
around the world. Based on Panini grammar several tools
for Sanskrit language analysis, parsing, and generation
tools have been developed by different research groups.
Special Center for Sanskrit Studies at Jawaharlal Nehru
University (Prof. Girish Nath Jha) New Delhi, University
of Hyderabad (Dr. Amba Kulkarni), IIT Bombay (Prof.
Pushpak Bhattacharya), IIT Kanpur (Prof. RMK Sinha and
Pawan Goyal), Banaras Hindu University Banaras have
been the core places for Sanskrit language processing tools
development.

Hindi is regarded as the fourth most spoken language
in the world and is also morphological rich (Lane 2016).
Different research groups have been working to develop
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MTS for Hindi and Sanskrit languages following various
MTS approaches. Tables 4 and 5 provide an overview of
such MT systems based on several criteria which include
approach used, year, language pair, features, domain, and
efficiency. The next section discusses these systems based
on the approach used for development and suggests solu-
tions to improve their efficiency.

4.1.1 DMT based MTS

Based on the DMT approach three MTS have been included
in this survey (Dubey 2019b; Dubey et al. 2013; Goyal and
Lehal 2010). The main drawbacks of these MTS were that
these systems were not able to resolve the word sense ambi-
guities, context resolution, translation of complex sentences
because in the DMT approach word to word replacement
strategy is followed. These issues can be resolved either by
combining DMT with other approaches or by improving the
lexicon of words with more syntactic as well as semantic
attributes.

4.1.2 CBMT based MTS

Four MTS based on the CBMT approach have been included
for review (Jain et al. 2001; Sachdeva et al. 2014; Sinha
2004; Sinha and Thakur 2005). The problems of NER, out
of corpus translation in Jain et al. (2001) were resolved by
Sinha (2004) adding special modules which will handle a
particular problem. This modular approach makes the sys-
tem more scalable and flexible. The problem of the polyse-
mous verb with Sinha and Thakur (2005) can be resolved
either by adding a special module as done in Sinha (2004)
or by using the finite-state automaton approach or enhanc-
ing the POS tagger capability to resolve the issue. The issue
with Sachdeva et al. (2014) is the feature extraction from
the dataset which can be resolved easily with the help of
deep neural networks (LSTM, RNN, CNN). Based on NMT
citepmujadia-sharma-2020-nmt, kumar2019augmented,
singh2020corpus, Laskar et al. (2020) systems have been
developed. Evaluation of two MTS have also been covered
(Goyal and Lehal 2009) and (Dungarwal et al. 2014). Other
evaluation metrics like METEOR, NIST, R-L/W/S can be
applied to validate these systems.

4.1.3 RBMT based MTS

Several MTS and MT tools have been considered for review
based on the RBMT approach. The MTS using UNL as
Interlingua were having issues of scalability and limited
rule base which can be removed by the learning and fea-
ture extraction capabilities of neural networks even without
the deep knowledge of SL and TL (Singh et al. 2007). The
MTS based on GB theory was able to translate only simple
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Narayan et al. (2014)
Mishra et al. (2019)

General
General

0.7502

BLEU Score
NA

Uses Punjabi Unigram Wordnet

to identify correct words
processed first with RBMT then

with QNN architecture
Uses IBMT and TBMT for trans-

RBMT approach for develop-
ing MTS and uses lookup,
pattern matching algorithms to
solve various difficulties like
non-availability of the source
language database, multiple
spelling of the words in the
source language, collocations
faced while developing MTS.
Uses hybridization of Quantum
Neural Networks (QNN) with
RBMT approach. Inputs are
lating Hindi Idioms to English

2014 Hindi-English MTS
2019 Hindi-English MTS

sentences whose capability can be enhanced by the appli-
cation of minimalist approach and generating the transfer
rules either using SMT or NMT (Choudhary and Singh
2009). Hindi to Sanskrit and Sanskrit to Gujarati transla-
tion systems (Bhadwal et al. 2020; Raulji and Saini 2019)
have been discussed. The efficiency of Sampark MTS was
enhanced with the help of Memcached technique which can
be done with LSTM network models (Christopher and Rao
2010). The Shakti Standard Format (SSF) format used in the
system can be applied to other MTS which involves modu-
lar approach (Bharati and Kulkarni 2009). Two MTS for
Sanskrit have also been included (Aparna 2005; Upadhyay
et al. 2014). Several tools have been developed to process
Sanskrit text (Bhadra et al. 2009; Kulkarni 2013; Kulkarni
et al. 2010; Kumar et al. 2010). One issue regarding the mor-
phological analysis of feminine nouns was reported by the
authors to the developer in 2018 and that was rectified later
on by the developer (Kulkarni 2013). The issues with these
tools are that these are still in the testing phase. By develop-
ing the automatic testing tools for such systems an help in
finding the issues early and fix them as soon as possible.

4.1.4 HBMT based MTS

Five MTS based on HBMT approach have been included
for survey (Bawa et al. 2020a,b; Goyal and Lehal 2011;
Narayan et al. 2014; Sitender and Bawa 2018). Different
combinations of MT approaches DMT with RBMT, QNN
with RBMT and RBMT with DMT have been used for the
development of these systems, respectively.

4.1.5 MTS outcomes

After studying above mentioned Hindi and Sanskrit MTS
thoroughly Figure 12 shows the possible outcomes.

4.2 Machine translation system for the English
language to Indian languages

Several MTS have been proposed based on different
approaches for English language which is the third most
spoken language worldwide (Lane 2016). This section dis-
cusses such systems based on the approach used for develop-
ment followed by a tabular representation of such systems is
presented in Table 6.

4.2.1 RBMT based MTS

Based on RBMT approach, various MTS have been catego-
rized into four groups. The first group have used pseduo-
interlingua code (Goyal and Sinha 2009; Jayan and Bhad-
ran 2014; Sinha and Jain 2003; Sinha et al. 1995; Sinha
2005) and second group has used UNL intermediate code
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is developed by using Microsoft Translation (MT)

Hub. Uses 24k bilingual training set

Kumar et al. (2019)

News

BLEU score=13.3

Uses Zero Shot Translation method trained on Eng-

2019 Sanskrit-Hindi MTS

NMT

lish—Hindi and Sanskrit—Hindi data sets. Uses 300

Sanskrit-Hindi data set for testing the MTS

Singh et al. (2020)

Bhagvad Geeta

=0.5

BLEU score

Uses CBMT approach with deep neural networks for

translating Sanskrit to Hindi

2020 Sanskrit—-Hindi MTS

Sitender and Bawa (2018)

General

=0.85

BLEU Score

Sanskrit to UNL translation using RBMT with DMT

combination

2018 SANSUNL

HBMT

Bawa et al. (2020b)
Bawa et al. (2020a)

Singh et al. (2019)s

General

0.81

BLEU score

Uses LSTM for POS tagging and CFG for parsing

2020 Sanskrit to UNL enconverter

2020 Sanskrit-English MTS
2019 Sanskrit-Hindi MTS

General

0.7606

BLEU score

Uses hybridization of DMT and RBMT for translation

Uses Genetic Algorithm (GA) for translating text from  Efficient than existing MTS NA

Sanskrit to Hindi

GA

to represent the intermediate code (Dave et al. 2001; Desai
et al. 2014; Sridhar et al. 2016; Udupa and Faruquie 2005).
The third group has translated the source syntax tree to tar-
get syntax tree using rule base (Aasha and Ganesh 2015;
Bahadur et al. 2012; Darbari 1999; Pathak and Godse 2010).
The fourth group uses Panini grammar rules, Sandhi rules,
root word generation, pattern generation approach for trans-
lation (Ata et al. 2007; Balyan and Chatterjee 2015; Mishra
and Mishra 2012; Reddy and Hanumanthappa 2013).

The issues with these systems are small size and non-
standard form of analysis as well as generation rules, scal-
ability, limited domain, time-consuming while writing the
rules. The language processing tools like stemmer, POS tag-
ger, parser used for the Indian language part were not com-
petent with state-of-the-art tools like Porter stemmer, Malt
parser, and Stanford parser. The approach followed in Porter
stemmer to form the rule base should be adopted while mak-
ing the rule base which will speed up the process. Language
independent parsers should be developed like Malt parser
or UNL parsers for Indian languages with the application
of the NMT approach to remove the scalability and domain
restriction issues.

4.2.2 CBMT and HBMT based MTS

Based on the CBMT approach several MTS have been pro-
posed and classified into three groups. The first group has
used statistical models like the IBM model, Bag of Words
model, SRILM language model (OCH F 2007; Sharma
2011; Udupa and Faruquie 2005; Venkatapathy and Banga-
lore 2009). The second group has used Hierarchical phrase-
based, simple phrase-based SMT techniques to perform the
translation (Ali et al. 2013; Jawaid et al. 2014; Khan et al.
2013). The third group has used the EBMT approach for
translation (Badodekar 2003).One system has also used the
machine learning technique for the English—Bengali ques-
tion—answer system (Sheikh and Conlon 2013). The issues
with these are the availability of parallel aligned corpus of
sentences, the complexity of statistical techniques to form
the language as well as translation models which can be
resolved with the help of the NMT approach or hybridiza-
tion with other approaches. Application of machine learning
techniques for prediction like CRF++, LSTM, RNN. Three
MTS have been included based on the HBMT approach.
Bharati et al. (2003) and NCST (2008) have used RBMT
with SMT, while Narayan et al. (2014) have used RBMT
with QNN for translation.

4.2.3 English MTS outcomes

Based on the discussion done in the above section and
Table 6, Fig. 13 shows the outcomes obtained.
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Outcomes

Ol

MTS development from 1998 to 2018

Hindi MTS

ANUBHARTI, SAMPARK

SANSKRIT

ANUSAARKA.,SAS, SANSUNL

o2

APPROACH USED

HINDI-CBMT

SANSKRIT-RBMT

o3

TOOLS

Moses toolkit contains GIZA-++ for phrase alignment,
CRF++ for POS tagging

SRILM language modeling

MT Platform

APERTIUM, Microsoft Translation Hub (MTH)

ILCI parallel corpus (Hindi-English)

O4

EVALUATION METHODS

HUMAN EVALUATION

Intelligibility, Fluency

BLEU, WER

os

Develop Annotated corpus for Sanskrit language to apply NMT or SMT
Develop Sanskrit Deconverter using UNL

Tools to resolve anaphora and cataphora for Hindi and Sanskrit

Develop efficient stemmer for Sanskrit language

Making Translation rule base available for both Sanskrit and Hindi

Developing Commercial Translation tools freely available like google or bing

Fig. 12 Outcomes of Sanskrit and Hindi MTS

@ Springer
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Outcomes

E1(MTS)

MTS development from 1995 to 2016

ANGLABHARTI, E-Trans, MATRA, Shakti standard MTS,
Shiva, Google, ANUBAD

E2

APPROACH USED

RBMT-CBMT-HBMT

E3(Resources)

TOOLS

Moses toolkit, GIZA++, IBM language models

Parsers-VY AKARTA, Gerard Huet, Stanford, ENCG

KOSHAKAR- grammar generator, QUINTUS PROLOG-
rule base implementer, BOW model,

Feature extractor-Morpha, RelEx, Function Tagger

SRIIL.M, IRSTIL.M model, CYC ontology

corpus
EILM corpus
E4

EVALUATION METHODS

HUMAN EVALUATION

BLEU, METEOR

E5(Research Avenues

Develop tools to handle language divergence automatically

Develop parser for Sanskrit language

Develop universal rule base for Indian languages

Develop standardized lexicon for Indian languages
Automatic grammar generator tool for Indian languages

Developing ontologies for Indian languages to resolve
pragmatic or discourse level ambiguities

Develop tools to handle free word problem for Indian languages

Fig. 13 Outcomes of English to Indian languages MTS

4.3 Research questions vs outcome Questions are denoted by O1, 02, O3, 04, O5 and Q1, Q2,

Q3, Q4, Q5, Q6 are the outcomes for Hindi and Sanskrit
Ten outcomes are obtained after discussing the MTS in Sub- ~ MTS while E1, E2, E3, E4, ES are outcomes of English
sects. 4.1 and 4.2 and are tabulated in Table 7. Research ~ MTS. A four scale mapping is done with value ‘3’ as the

@ Springer
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Table 7 Outcome and research

questions Outcome RQ
Ql Q2 Q3 Q4 Q5 Qo6
Ol 3 3 2 0 0 0
02 1 2 3 0 0 0
03 0 0 1 3 0 0
04 0 0 0 0 4 0
05 0 2 1 2 2 3
El 3 3 0 0 0 0
E2 0 3 3 2 0 0
E3 0 0 0 3 3 0
E4 0 0 3 0 0 0
ES 0 2 2 2 2 3

maximum contribution and value of ‘0’ indicates least con-
tribution of an outcome with respect to the research ques-
tions as shown in Table 7.

5 Machine translation platforms and tools

This section gives an overview of some statistical tools,
parser and corpus available online for developing new MTS
and can be downloaded freely as shown in Table 8. Table 9
shows some of the popular MTS platforms which could be
used for developing new MTS. Various language corpora

available for Indian languages are also highlighted. Ena-
bling Minority Language Engineering (EMILLE) contains
three types of corpora such as parallel, monolingual and
annotated. In parallel corpus it contains two lakhs words
for Bengali, Gujarati, Hindi, Punjabi, and Urdu to English
and reverses. Twenty annotated Hindi files are there in the
corpus.

Gyan Nidhi corpus contains fifty thousand number of
pages as a parallel corpus for each of eleven Indian lan-
guages including (Assamese, Bengali, Gujarati, Hindi, Kan-
nada, Malayalam, Marathi, Oriya, Punjabi, Telugu, Tamil)
and English language.

Table 8 Online Resources Resource

Citation

MTS
Moses Statistical MTS

Cunei Hybrid for Example Based and Statistical MTS

Joshua Statistical MTS
Language Modeling Tool

CMU-Cambridge Statistical Language Modeling Toolkit v2(Open

Source)

SRILM ToolKit (Open Source) 7

IRSTLM Toolkit open source

Neural Probabilistic Language Model Toolkit

Neural Network Joint Model

Shallow Parser

Koehn (2009)
Phillips (2011)
Post et al. (2015)

Rosenfeld and Clarkson (1997)

Stolcke (2002)
Federico et al. (2008)
Vaswani et al. (2013)
Devlin et al. (2014)

For Bengali, Hindi, Kannada, Malayalam, Marathi Punjabi, Tamil, Telugu Hyderabad (2018)

Complete Parser

Malt Parser (language Independent)

For Hindi, Tamil, Telugu, Urdu
Parallel Corpora

EMILLE

OPUS

ILCI

Gyan Nidhi

Bilingual parallel sentences

Nivre et al. (2007)
Pune (2018)

Baker et al. (2002)
Tiedemann (2009)
Jha (2010)

Pune (2018)

Kelly (2021)

@ Springer
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Table 9 Popular MTS Platform

MT platform Language pair Domain Features Organization Citation
Google Translator Multilingual General 60% reduction in error of Google 2016 Wu et al. (2016)
translation using GNMT
Yandex Translator Multilingual General More fluent and human like Yandex Yandex (2017)
translation
Microsoft Translator Hub Multilingual General Supports 60 language systems Microsoft Microsoft (2016)
and 10 speech systems,
produces netter results
OpenNMT Language Inde- General Dependency free, simple, Systran, Harvard nlp Klein et al. (2017)
pendent Multi- compatible to any language
lingual pair
Stanford NMT Multilingual General BLEU score of 5.2 Stanford University Luong and Manning (2015)
Apertium Platform Open Multilingual General Language Independent Apertium Forcada et al. (2011)
Source
Different types of neural network architectures have
Input Encoder | piq Length Decoder Output been used for developing new MTS. Recurrent Neural
Text TP Vector P Tt Networks (RNN) are used mostly for MTS development
due to their feature of preservation with the processing of

Fig. 14 NMT system architecture

Open Source Parallel Corpus (OPUS) contains parallel
corpus for Assamese, Bengali, Bhojpuri, English, Gujarati,
Hindi, Kannada, Kashmiri, Konkani, Malayalam, Marathi,
Oriya, Punjabi, Sanskrit, Tamil, Telugu and Urdu.

ILCI (Indian Language Corpora Initiative) contains a
corpus of 50,000 parallel aligned sentences in Bangla, Eng-
lish, Hindi, Gujarati, Konkani, Malayalam, Marathi, Oriya,
Punjabi, Urdu, Tamil, Telugu in the domain of tourism and
health.

6 Role of artificial neural network
in machine translation

With the explosive growth of the internet and easy access to
high computing power systems, Neural Machine Translation
has emerged as a fast-growing approach for developing new
MTS (Cho et al. 2014; Kalchbrenner and Blunsom 2013;
Sutskever et al. 2014).

The basic components of the NMT system are the encoder
and decoder. It uses single neural network architecture to
generate a target sentence for the input sentence, instead
of using multiple small components optimized in pipeline
form for obtaining translation in traditional phrase-based
systems as shown in Fig. 14. Initially, the problem with
NMT systems was the fixed- size vector space generated
by the encoder for input sentence which was resolved by
Bahdanau et al. (2014).

@ Springer

input data/memorization of features of natural language.
LSTM (Long Short-Term Memory) a type of RNN with
two or more than two hidden layers is used for extracting
features from the input text and increases the efficiency of
translation (Agrawal 2017).

Machine Translation among eleven Indian languages
using the NMT approach has been proposed and obtained
better results than the traditional SMT approach (Agrawal
2017). Microsoft provided NMT based translation sup-
port for 21 languages and added Hindi recently (Micro-
soft 2017). Wu et al. (2016) also uses the NMT approach
over the existing SMT approach and show better results
than SMT. Facebook in 2017 proposed the implementa-
tion of NMT using Convolutional Neural Networks and
claimed faster performance than the work presented by
Gehring et al. (2016, 2017). Amazon has also launched
its machine translation system using NMT approach (Faes
2018). Some important platforms useful for the devel-
opment of NMT systems includes Tensorflow, Torch,
Theano, PyTorch, Matlab, DyNet-lamtram and EUREKA
are available at Zhang (2017).

7 MT evaluation methods

The MT evaluation methods are divided into two cate-
gories : Traditional Evaluation Methods and Automatic
Evaluation Methods
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Table 10 4 Point fluency score

Fluency score 4 point fluency score

1 Incomplete/not intelligible
2 Acceptable

3 Fair

4 Perfectly acceptable

Table 11 Sentence ranking by G Van Slype

Sentence Rank
Sentences are unintelligibile 0
Sentences are having grammatical errors 1
Sentences are intelligible generally 2
Sentences are perfectly intelligible and clear 3

7.1 Traditional evaluation methods

This section will highlight some of the commonly used
methods of MT evaluation (Van Slype 1979) following the
traditional approach.

7.1.1 Fluency test

Fluency of an MTS gives the measure of the amount with
which the target text is well-formed according to the TL
grammar rules. A grammatically well-formed with correct
spellings, stick to the common use of terms, names, and
titles which can easily be interpreted and acceptable by the
native speaker of the TL is known as the fluent segment
(Singh et al. 2007; Goyal 2010). The 4-point scale was used
in the evaluation of the Punjabi EnConverter and DeCon-
verter System. The fluency score using Table 10.

7.1.2 Intelligibility evaluation
It provides the measure of easiness with which the translated

text can be understood by the user. In this method, a group of
persons is required to read the sentences in various versions

(original, human translation with and without revision, MT
without and with post-editing) in such a way that a particular
person is receiving only one copy of the sentences of a par-
ticular version in the group. The ranking of the sentences on
a 4-point scale is shown in Table 11 (Van Slype 1979). The
ranking is received from the readers, and the average is taken
of all the rankings to find out the overall intelligibility rank
of the translation. This approach is applied to the evaluation
of the Hindi—Dogri language, Hindi to Punjabi MTS, Pun-
jabi to Hindi MTS, SYSTRAN English-French MT system.
According to Carroll (1966) the measure of intelligibility is
done on a 9-point scale as shown in Table 12.

This scale is used in the evaluation of automatic transla-
tion of ALPAC system.

7.1.3 Fidelity/adequacy test

Fidelity is the measure of an amount of information correctly
translated into the TL from SL. It tells about the correctness
of the translation. Rating of fidelity should be less than or
equal to the intelligibility ratings and is done on a 4-point
scale. It has been applied to the evaluation of Hindi—-Dogri
MTS, Punjabi Deconverter and English-French MT pro-
duced by the SYSTRAN system in which the rank of ‘3’
means complete faithful and rank of ‘0’ means completely
unfaithful.

7.2 Automatic evaluation methods

Several automatic evaluation methods have also been pro-
posed. Some of the popular methods are included for the
survey and compared based on different metrics as shown
in Table 13.

7.3 MT evaluation platforms

This section provides information about evaluation plat-
forms available to evaluate MT systems on various metrics.
Three platform ORANGE, Asiya, and IQMT have been
explained in Table 14.

Table 12 Sentence Ranking by
J Caroll

Sentence

=
f=)
=
=

Perfectly clear and intelligible sentence
Perfectly clear and intelligible sentence with minor grammatical mistakes

Generally clear and intelligible

The general idea is intelligible only after considerable study
Masquerades as an intelligible sentence, but actually it is more unintelligible than intelligible

Generally unintelligible
Almost hopelessly unintelligible
Hopelessly unintelligible

— N W A N9 0 O
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Table 14 MT evaluation platforms

ORANGE (Lin and Och 2004)

It is an Oracle ranking for Gisting Evaluation. It does not require any human involvement other than the

reference translation. It is used to evaluate different MT metrics in a better way. It requires only a single
parameter optimization than other systems. Smaller the value of ORANGE the better the metric

Asiya (Giménez and Marquez 2010) It is an open toolkit that allows the mixing of different metrics to estimate the quality of MT as well as the
metric useful for a particular MT. It generates reports of MT evaluation based on four schemes (Model,
QUEEN, single, and UIC). It is developed using Perl. Meta Evaluations use five different criteria
(Spearman, Pearson, King, Kendall, and ORANGE). Several metrics like WER, TER, BLEU, ROUGE,

METEOR, and NIST
IQMT (Gimenez and Amig 2006)

It is based on QARLA framework and is available at http://www.lIsi.upc.edu/~nlp/IQMT. It uses three

schemes for the evaluation report as Jack, Queen, and King. Several MT metrics like PER, WER, NIST,
BLEU, GTM, and ROUGE have been used for evaluation

8 Research avenues and recommendations

Although lots of work have been done in the last three
decades for developing MTS with different language pairs
(Indian languages) and of various domains. The emergence
of the NMT approach and the easy availability of high
computing resources and corpus for Indian languages
has created several new opportunities for researchers to
work in this field. The researchers are now more focused
to apply the machine learning algorithms for text process-
ing rather than other fields and as a result, several new
tools and platforms are available for text processing. It is
a very difficult and time-consuming process to create the
rule base which will cover all the aspects of the language
specifically for Hindi and Sanskrit languages which are
highly inflected and morphological rich in nature. To apply
the SMT approach the need for a large corpus is again a
big hurdle for languages like Sanskrit. The following are
some of the research avenues with which the researchers
can start their research work:

— Developing POS tagger or stemmer for Hindi and San-
skrit languages using a hybrid approach of rule base
and machine learning techniques.

— Developing automatic Karaka Analyzer (case marker)
for Sanskrit and Hindi by making use of the similarity
features among Indian languages in such a way that
only a small effort is required to make this system for
other Indian languages.

— Developing a platform like Snowball (http://snowball.
tartarus.org) for creating the rule base in an easy and
fast manner.

— Creating small modules which can enhance the per-
formance or reduce the response time of the existing
MTS like the Named Entity Recognition (NER) tool,
automatic pre- or post-processing tools using machine
learning techniques.

— Anaphora or Catphora resolution is still a challeng-
ing task for the Sanskrit language. So, special modules
can be developed for such types of problems which

can be easily merged with the MTS adopting modular
approach.

For MTS using UNL as an interlingua approach,
the resolution of UNL relation is a challenging area
because it requires thousands of rules to resolve all
the 56 UNL relations (Le Thuyen and Hung 2016).
So, machine learning approaches can be used over the
UNL dictionary to predict the possible relations with
the Case marker module.

Development of the Sanskrit Deconverter using UNL
is still an open area of research.

Development of Operating Systems for computers
using less ambiguous language like Sanskrit.
Developing tools to extract text from scanned images
and develop digital corpus for languages like Sanskrit
and Punjabi.

Based on the discussions done in Sects. 4.1, and 4.2
and the outcomes shown in Figs. 12, 13 on various
MTS the following recommendations are derived for
researchers working in field of machine translation:
The application of any architecture (approach) to
develop new MTS depends on various parameters like
language pair, availability of linguistic resources for the
language pair, the application domain of MTS, linguis-
tic knowledge.

SMT approach performs better for long sentence trans-
lation and DMT gives better results for short length
sentences.

Maximum utilization of similarity feature at syntax
level or semantic level among Indian languages such
as noun, verb, declension, prefix, Karka Analysis for
case identification, word formation, and word order,
etc. should be done for developing MTS among Indian
Languages.

Interlingua approach needs fewer efforts for developing
multilingual MT systems like Anglabharti, Anubharti,
UNL based MTS, and Sampark. So, Interlingua repre-
sentation like of pseudo-Interlingua, UNL expressions,
or an intermediate representation of Sanskrit language
as Interlingua could be used efficiently for developing
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new MTS, and less effort is required for new language
translator development.

— Panini Grammar is one of the most unambiguous gram-
mars ever developed for a natural language and writ-
ten in a more structured manner for Indian languages.
Panini principles will help to develop new MTS for
Indian Languages based on the RBMT or HBMT
approach.

— RBMT systems require deep linguistic knowledge of
the source as well as the target language and are a time-
consuming process although the quality of translation
using RBMT is better than other approaches.

— Use of statistical tools like Moses’ toolkit, Giza + +,
IRSTLM, SRILM makes the developing process much
faster than other systems but requires a large amount
of parallel corpus in digital format, so applicable only
for language pairs having large corpus availability in
digital form.

— Google and Microsoft have used deep neural networks
over the SMT approach and proved that the Neural
Machine Translation approach performs much better
than SMT and even requires fewer amounts of data
for training, but requires large computational power to
train such systems.

— For Sanskrit Language, various part of speech taggers
is available like BIS POS, JPOS (JNU), CPOS, IL POS
(Indian Language), and Gerard Huet Parser, Constraint-
Based Parser, Deterministic Parser of Amba Kulkarni,
and Indic NLP Library could be used to develop San-
skrit Based MTS.

— For English Language Stanford Parser is efficient
enough to give the analysis of the English Language.

— The availability of wordnet for English, Hindi and Pun-
jabi and Punjabi makes the translation task easier and
less time- consuming. The shallow parser available on
the TDIL website could be used for Indian Languages.

— The fastest way of developing MTS is by using the
DMT approach, and the quality of translation is also
good but limited to a small domain and requires bilin-
gual dictionaries and a small number of transfer rules
like in Sampark MTS.

The Hindi and Sanskrit languages have used the tra-
ditional methods of MT evaluation which include Flu-
ency Test, Intelligibility Test, and Fidelity Test. Most of
these tests depend on human evaluation but the applica-
tion of the NMT approach be easily applied to them also.
In the case of automatic evaluation methods, the BLEU
and METEOR score has become the common standards
for MT evaluation. For English to Indian language MTS
the BLEU, NIST, and METEOR have been used by the
developers.

@ Springer

9 Conclusion

This article presents an outcome-based systematic survey
of machine translation for English, Hindi, and Sanskrit
languages. Out of 1500 research articles, 118 articles have
been included in this survey based on the Inclusion-Exclu-
sion criteria mentioned in Subsect. 3.3. The results of the
survey are presented in different dimensions like MT
Evolution, MT approaches, mapping research questions
with outcomes, overview of MTS based on several crite-
ria (approach, language pair, domain, efficiency, features),
state-of-the art-MT tool-kits, technological enhancement
in MT approach, MT evaluation methods and platforms.
The latest trends in MTS development are based on neural
networks and provides human-like translation quality as
seen in Hassan et al. (2018). Also, it is still not feasible for
languages like Sanskrit to develop an efficient MTS and
apply SMT or NMT approach due to non-availability of
corpus and complexity of the language. State-of-the-art
MTS platforms with MT development tools and corpus
have also been discussed. State-of-the-art MT evaluation
methods and platforms with specific features have been
explored in this survey. Several research avenues have
been highlighted in this survey work for further research
in machine translation. Future recommendations have also
been included to help researchers to develop new MT or
enhance existing MT development.
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