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Abstract
Multimodal fusion-based emotion recognition has attracted increasing attention in affective computing because different 
modalities can achieve information complementation. One of the main challenges for reliable and effective model design is 
to define and extract appropriate emotional features from different modalities. In this paper, we present a novel multimodal 
emotion recognition framework to estimate categorical emotions, where visual and audio signals are utilized as multimodal 
input. The model learns neural appearance and key emotion frame using a statistical geometric method, which acts as a pre-
processer for saving computation power. Discriminative emotion features expressed from visual and audio modalities are 
extracted through evolutionary optimization, and then fed to the optimized extreme learning machine (ELM) classifiers for 
unimodal emotion recognition. Finally, a decision-level fusion strategy is applied to integrate the results of predicted emotions 
by the different classifiers to enhance the overall performance. The effectiveness of the proposed method is demonstrated 
through three public datasets, i.e., the acted CK+ dataset, the acted Enterface05 dataset, and the spontaneous BAUM-1s 
dataset. An average recognition rate of 93.53% on CK+, 91.62% on Enterface05, and 60.77% on BAUM-1s are obtained. 
The emotion recognition results acquired by fusing visual and audio predicted emotions are superior to both recognition of 
unimodality and concatenation of individual features.

Keywords  Emotion recognition · Multimodal fusion · Evolutionary optimization · Feature selection · Extreme learning 
machine

1  Introduction

Emotion is a significant part of our daily life that conveys the 
intention, mental state, and physical state of human beings 
(Zeng et al. 2008). With the fast development of the artificial 
intelligence, enabling the computer to recognize the human 
emotional state is with great importance to obtain more nat-
ural and better experience in human-computer interaction 
(Krithika and Priya 2020; Mendoza-Palechor et al. 2019). 
In general, emotions are conveyed mainly through facial 
expression and speech voice. As a result, a considerable 
amount of efforts have been made on emotion recognition 
based on individual facial expression or speech voice, and 
moreover, the combination of visual and audio modalities 
(Wang and Guan 2008). Among most of the existing studies, 
six principal emotions, i.e., anger, disgust, fear, happiness, 
sadness, and surprise, are the major concerns.

Facial expression is primary and common signal for emo-
tion recognition. An effective definition of visual features is 
a prerequisite for precise emotion recognition. Ekman and 
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Friesen (1978) developed the Facial Action Coding System 
(FACS) to reconstruct the facial expressions in terms of 
Action Units (AU), which is a foundation of facial expres-
sion feature extraction. Generally, visual feature extrac-
tion methods can be summarized into two categories, i.e., 
appearance feature and geometric feature (Chu 2017; Shan 
et al. 2009). The appearance feature is obtained through 
image filters and one of the most representative approaches 
is the local binary pattern (LBP) (Zhao and Pietikainen 
2007). Geometric feature-based methods often exploit the 
geometric relationships among different facial components 
to describe an expressive face. Due to the eminent learning 
ability of deep learning (DL) (LeCun et al. 2015), researches 
studying DL algorithms in facial expression recognition are 
springing up (Jain et al. 2019; Liu et al. 2018). Chen et al. 
(2018a) proposed a SR-based deep sparse autoencoder net-
work to recognize the facial expression, which uses a layered 
approach for extracting different levels of data features. In 
Xie et al. (2019), a deep attentive multi-path convolutional 
neural network (DAM-CNN) using the VGG-Face network 
is proposed to extract the advanced emotional features. 
Moreover, to learn high-level expression semantic features, 
Wu et al. (2019) proposed a weight-adapted CNN (WACNN) 
framework for facial emotion recognition.

In the view of audio emotion recognition, the prosodic, 
spectral, and voice features are often explored for emotion 
recognition (El Ayadi et al. 2011). Specifically, the prosodic 
features contain pitch period, energy, intensity, and duration 
time. In spectral features, Mel-Frequency Cepstral Coeffi-
cient (MFCC) is most commonly used to model the audio 
emotion recognition system. Formats, spectral energy distri-
bution, and harmonics-to-noise-ration are the representative 
voice features. Those hand-crafted features are mostly con-
sidered as low-level features. To develop automatic feature 
learning techniques, researchers are paying much attention 
to utilize DL algorithms to obtain high-level features for 
speech emotion recognition (Akçay and Oğuz 2020). Han 
et al. (2014) proposed to employ a deep neural network 
(DNN) and extreme learning machine (ELM) to extract 
high-level features from low-level ones. Zhang et al. (2019) 
presented a multiscale deep convolutional long short-term 
memory (LSTM) framework for spontaneous speech emo-
tion recognition where a deep CNN model is used to learn 
deep segment-level features.

For unimodal emotion recognition, it is required to 
extract appropriate visual or audio features and train the 
emotion classification model by using effective machine 
learning technology. Commonly used classifiers include 
hidden Markov model (HMM), support vector machine 
(SVM), artificial neural network (ANN), etc (Chen et al. 
2018b). Considering that unimodality is sometimes 
insufficient to precisely recognize emotions, some other 
modalities that can offer supplementary information are 

also adopted to increase the recognition accuracy. In prac-
tice, researchers have made significant progress on multi-
modal emotion recognition (Busso et al. 2004; Pons and 
Masip 2020; Poria et al. 2016; Hossain and Muhammad 
2019; Chen et al. 2016). It is worth noting that the fusion 
approaches on multimodal emotion recognition can be 
divided into three categories, i.e., feature-level, decision-
level, and hybrid multimodal fusion (Poria et al. 2017). 
The key to feature-level fusion is to cascade the features 
extracted from different modalities as the input and send 
it into emotion classifiers (Zhang et al. 2017; Kansizoglou 
et al. 2019). For the decision-level fusion, the visual and 
audio modalities emotion classifiers are trained separately 
and the results of two classifiers are fused to further obtain 
the final emotion estimation (Bejani et al. 2014). While the 
hybrid multimodal fusion methods integrate the feature-
level and decision-level fusion (Wöllmer et al. 2013).

As above mentioned, to achieve higher emotion recogni-
tion accuracy, it is important to extract appropriate features 
and exploit the emotion information, from different modali-
ties and thus, finally integrate the complementary informa-
tion. In this work, we propose a multimodal fusion frame-
work for emotion recognition in video clips, which exploits 
the emotion information of visual and audio modalities. To 
address the visual modality, we firstly extract keyframes 
from a consecutive image sequence and define a geometric 
feature representation to detect the transformation of key-
frames. Then the appropriate and informative facial emotion 
features are selected through evolutionary optimization to 
reduce feature dimension as well as improve learning speed. 
Once the critical facial features have been obtained, they 
are fed to the optimized ELM classifier for visual emotion 
recognition. Similar to the visual modality, key acoustic fea-
tures are selected by evolutionary optimization and sent to 
the optimized ELM model for audio emotion recognition. 
Finally, a weighted fusion strategy is employed to integrate 
the visual and audio modalities for high recognition perfor-
mance. The major contributions of this work are summarised 
as follows:

1.	 A framework for effectively extracting and fusing the 
information of visual and audio modalities to recognize 
emotion in the video clips is developed, which is appli-
cable for both the acted and spontaneous emotion rec-
ognition.

2.	 The emotion feature and ELM model structures in visual 
and audio modalities are optimized simultaneously by 
balancing the emotion recognition accuracy and model 
complexity.

3.	 We demonstrate the performance of emotion recognition 
of the proposed multimodal fusion framework is supe-
rior than that based on the individual visual modality or 
audio modality through two video datasets.
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The remainder of the paper is organized as follows: 
Sect. 2 briefly explains the principles of GA and ELM 
methods. The details of the proposed method are present 
in Sect. 3. Then, three emotional datasets are investigated 
to demonstrate the effectiveness and superiority of the pro-
posed method in Sect. 4. Finally, conclusions and future 
work are given in Sect. 5.

2 � Preliminaries

2.1 � Genetic algorithms

Genetic algorithms (GA) (Whitley 1994) is one of the most 
influential evolutionary optimization algorithms inspired by 
the idea of Darwinian evolution. As a kind of stochastic 
search algorithms, GA enables the individual to act like a 
chromosome, and then execute iteration operation to search 
the optimal solution. During each iteration, candidate solu-
tions undergo three main operations: selection, crossover, 
and mutation are executed orderly. The aim of selection is to 
directly inherit the optimized individuals or to produce new 
individuals through crossover to the next generation. The 
selection operation is based on the assessment of the fitness 
of the individuals in the population. During the crossover 
process, the offspring population is generated by crossing 
pairs of chromosomes in the current population. Mutation 
randomly changes some parts of the chromosomes to ensure 
the diversity of the new population. The basic operation pro-
cess of genetic algorithm is summarized as follows:

1.	 Set the number of maximum evolution generation Ngen 
and randomly generate L individuals as the initial popu-
lation.

2.	 Compute the fitness f of each individual and sort the 
population with descending order according to f.

3.	 Perform genetic operations of selection, crossover, and 
mutation to produce a new population.

4.	 Repeat (2) and (3) until the Ngen is reached and the best 
chromosome is obtained.

2.2 � Extreme learning machine

Extreme learning machine (ELM) (Huang et al. 2006; 
Zhang et  al. 2020a) is an efficient learning algorithm 
proposed for training single-hidden layer feedback net-
works (SLFNs). Different from traditional gradient-based 
iterative learning, ELM randomly chooses the weights of 
the hidden nodes and analytically determines the output 
weights of SLFNs. Since the iterative learning of param-
eters in the hidden layer is avoided, ELM model possesses 
an extremely fast training speed (Xiao et al. 2017; Zhang 
et  al. 2020b). Thus, ELM classifier has gained much 

attention in emotion recognition applications because of 
the high computational efficiency and outstanding capa-
bility of generalization. Therefore, ELM is employed to 
classify emotions in this work. For a dataset {�,�} with 
N inputs and M output units, where � =

[

�1, �2, ..., �N
]

 , 
� =

[

�1, �2, ..., �M
]

 , the mathematical formulation of a 
basic ELM model can be described as:

where Nnode is the number of hidden nodes in the ELM, 
�i =

[

�i1, �i2, ..., �im
]T represents the output weight vector 

connecting the ith hidden node and output units. g(⋅) is the 
activation function. �i =

[

wi1,wi2, ...,win

]T denotes the input 
weight vector connecting the input feature and hidden node, 
bi is the bias of the ith hidden node, and �̂n is the predicted 
output vector.

An ideal ELM model is expected to find the least-
squares solution to approximate the training data with 
zero error, i.e.

Thus, the parameters �i , �i , and bi must be satisfied with

Then, ELM model can be rewritten as

where � stands for the hidden layer output matrix with Nnode 
hidden nodes.

It is worth noting that the input weight and hidden bias 
are randomly generated and remain unchanged. Therefore, 
the key for training an ELM is to find a solution Θ̂ by mini-
mizing the following cost function

For many cases, the number of hidden nodes is much fewer 
than the number of training samples, which leads to a non-
squared � matrix. Therefore, Θ̂ is estimated using the small-
est-norm least-squares solution of the above linear system:

(1)
Nnode
∑

i=1

𝜃igi
(

�n
)

=

Nnode
∑

i=1

𝜃igi
(

�i ⋅ �n + bi
)
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∑

i=1

‖

‖
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‖

‖
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where �† is the Moore–Penrose generalized inverse of � . 
If the inverse of �T� exists, then �† can be estimated as:

Finally, Θ̂ is given as follows:

3 � Multimodal fusion‑based method 
for emotion recognition

This section presents the details of our proposed method. 
The method to define and select visual and audio features are 
firstly introduced, and then the fusion strategy is described. 
The proposed multimodal fusion framework for emotion 
recognition is shown in Fig. 1. Specifically, to obtain high 
performance emotion recognition results in decision-level 
fusion, it is necessary to acquire eminent unimodal emotion 
recognition results. Therefore, high-performance visual and 
audio emotion recognition models are constructed. Then the 
individual classification results of the two modalities are 
integrated to enhance the final emotion recognition accuracy.

3.1 � Visual feature

3.1.1 � Keyframes extraction

Keyframes extraction is a fundamental procedure to pick 
out the representative frames from a consecutive image 
sequence for effectively emotion recognition (Noroozi et al. 

(8)Θ̂ = �†�,

(9)�† =
(

�T�
)−1

�T .

(10)Θ̂ =
(

�T�
)−1

�T�.

2017). In general, the principle of the keyframe definition 
is that the number of keyframes should be small while the 
differences among keyframes should be large. To exploit 
the deformation of the different expressions in visual data, 
we focus on extracting the neutral frame and peak expres-
sion frame from an image sequence in this work. The frame 
without any expression of each subject is firstly picked out 
and fixed as the neutral frame for the reference of the expres-
sive face.

Facial landmarks are widely used for facial expression 
recognition, which can describe the whole face by marking 
the eyebrows, eyes, nose, mouth, and chin regions. Given a 
set of facial landmarks l =

{(

x1, y1
)

,
(

x2, y2
)

, ...,
(

xn, yn
)}

 , 
where 

(

xi, yi
)

 denote the coordinates of the i-th facial land-
mark. In this study, the location information of 68 land-
marks is used to compare the differences among successive 
frames in an image sequence. Initially, the face alignment 
is required to fix the orientations so that all the faces in 
the image sequence are straight. In our implementation, we 
use the open-source dlib face detection (Kazemi and Sul-
livan 2014) to locate the face bounding box and align face 
sequence. Then, facial landmark detector inside the dlib 
library is utilized to calculate the 

(

xi, yi
)

-coordinates of 68 
landmarks and the locations of facial landmarks in each 
frame are confirmed.

Generally, the facial region has structural symmetry in 
nature. If we coordinate the Y-axis with the bridge of the 
nose, the left part and right part of the face are almost identi-
cal when folding Y-axis. This property is found in both neu-
tral and expressive faces. Therefore, we propose to compute 
the deformation on the left or right neutral and expressive 
faces to extract keyframes, which can dramatically decrease 
the computational cost compared with considering the whole 
face. Without loss of generality, the landmarks on the left 

Fig. 1   Proposed multimodal fusion framework for emotion recognition
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part of the face are chosen as the specific landmarks in this 
study to extract keyframes.

Since the generation of an expression naturally yields 
geometrical transformation that can be reflected from the 
distance between two landmarks. It is feasible to evaluate 
the difference between two frames in one image sequence by 
computing the distance among specific landmarks in local 
regions. As shown in Fig. 2, to decrease the computational 
cost, we extract certain landmarks from five regions of each 
face image. In those regions, the changes in displacement 
between points are discriminative. The landmark pairs used 
for distance calculation are listed in Table 1 [For example, 
(18,19) indicates the index pair of landmark 18 and land-
mark 19]. The distance between two specific landmarks is 
calculated as:

Vector of differences calculated from specific landmarks for 
each frame is presented as � =

[

d1, d2, ..., dK
]

 , as a result, 
39 features obtained for keyframes extraction in this work. 
To select the peak frame for each video, the sum of differ-
ences between the neutral face and the expressive one is 
calculated, and the frame with the maximum is selected. It 
is formulated as:

where do,k and di,k are the differences of k-th pair of specific 
landmarks of neutral face and i-th frame, respectively.

3.1.2 � Geometric deformation features

Once keyframes are extracted from each image sequence, 
the visual features contained facial expression information 
should be investigated from images to classify different 
emotions. It is noteworthy that, compared to the appearance 

(11)di,j =

√

(

xi − xj
)2

+
(

yi − yj
)2
.

(12)do,i
max

=
1

K

K
∑

k=1

(

do,k − di,k
)

,

feature, the geometric feature is more efficient to track and is 
not restricted by the light. Therefore, we focus on investigat-
ing geometric features to capture the emotion information of 
visual modality. For each emotion, the coordinates of facial 
landmark change from the neutral face to the expressive face 
because of the facial muscle movement. Thus, the geometric 
features are defined by calculating the changes among land-
marks. The face can be divided into numbers of non-overlap 
sub-regions by connecting landmarks according to Delaunay 
triangulation. The triangular mesh connected by landmarks 
in neutral and expressive faces is illustrated in Fig. 3, where 
the red dot and blue line stand for the landmark and the side 
of a triangle respectively.

It can be seen from Fig. 3 that for a pair of edges com-
posed of the same two landmarks in the neutral and expres-
sive faces, facial muscle movements induce the deformation 
of edges. Therefore, we firstly assume that the edges in the 
mesh are independent. The difference between the edge in 
the neutral face and the corresponding edge in the expres-
sive face is estimated as one of the geometric deformation 
features. Additionally, considering the correlation of edges 
in a triangle, the triangles in the whole face are regarded as 
sub-blocks geometric features. As shown in Fig. 3, for a pair 
of green triangles composed of the same three landmarks in 

Fig. 2   Annotated facial landmarks and certain line segments used for 
deformation calculation

Table 1   Landmark pairs used to calculate the distance for keyframe 
extraction

Region Distance di − dj

Eyebrow (18,19),(19,20),(20,21),(21,22)
(18,37),(20,38),(21,39),(22,40)

 Eye (37,38),(38,39),(39,40),(40,41)
(41,42),(42,37)

Nose (32,33),(33,34)
Mouth (49,50),(50,51),(51,52),(58,59)

(59,60),(60,49),(49,61),(50,61)
(60,61),(61,62),(61,68),(51,62)
(62,68),(68,59),(62,63),(68,67)
(52,63),(63,67),(67,58),(52,58)

Chin (6,7),(7,8),(8,9)

Fig. 3   Triangular mesh connected by facial landmarks
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the neutral and corresponding expressive faces, the area of 
a triangle in the expressive face changes during expression 
generation. Specifically, the distance En,f  between two edges 
formed by two landmarks in the neutral face and correspond-
ing expressive face is taken as an edge feature. Besides, the 
difference An,f  between the areas of triangles in the neutral 
face and the corresponding expressive face is calculated as 
the area feature. The two kinds of geometric features are 
calculated as:

where dn,ij and df ,ij are the edge of a triangle in the neu-
tral face and the corresponding edge in the expressive face, 
respectively. An,ijk and Af ,ijk denote the areas of triangles 
in the neutral face and the corresponding expressive face, 
respectively.

3.1.3 � Emotion feature selection and model structure 
optimization by GA

Generally, the features defined from original data contain 
relevant features as well as irrelevant features. To construct 
a more accurate emotion recognition model, it is critical to 
execute feature selection so that extracting the appropriate 
features and removing the irrelevant ones. Although many 
researches have been conducted on features selection and 
dimensionality reduction for emotion recognition, the igno-
rance of correlation between the feature and actual emotion 
makes them suffer from low recognition accuracies. There-
fore, in the current work, we aim to remove the useless fea-
tures and extract discriminative features by considering the 
actual target in the learning algorithm for a better emotion 
recognition rate.

Actually, the selection of geometric features is essentially 
a binary optimization problem, where “0” and “1” denote 
the removal and involvement of features, respectively. As 
described in Sect. 2.1, genetic algorithms (GA) possess 
good performance in searching for the optimal solution and 
is expected to select the appropriate emotional features in 
this work. Thus, GA is carried out to select the appropriate 
features by searching the optimal emotional features that 
contribute to distinguish different emotions directly.

In addition to emotion feature, model structure is also 
an important factor that influence the model performance 
as well as complexity. To enhance the recognition accuracy 

(13)En,f = dn,ij − df ,ij,

(14)An,f = An,ijk − Af ,ijk,

(15)
An,ijk =

1

4

√

(

dn,ij + dn,ik + dn,jk
)(

dn,ij + dn,ik − dn,jk
)

√

(

dn,ij − dn,ik + dn,jk
)(

dn,ik + dn,jk − dn,ij
)

,

and reduce the complexity of visual model, it is desirable 
to optimize the structure of emotion recognition model. 
With the advantages of extremely fast learning speed and 
prominent generalization performance of extreme learning 
machine (ELM), the multi-class ELM is applied for rec-
ognizing emotions in this study. By analyzing ELM struc-
ture, it is easy to see that the number of input features and 
nodes in hidden layer influence the model structure directly. 
Therefore, in this paper, we propose to optimize the emo-
tion feature selection and model structure simultaneously 
through GA to ensure the high recognition performance of 
visual emotion model.

In GA optimization, the geometric features are encoded 
as a binary string, where each bit denotes whether the cor-
responding feature is selected or not. While the determina-
tion of the number of hidden nodes is an integer optimi-
zation problem. Consequently, the decision vector consists 
of the geometric features and the number of hidden nodes. 
Let S =

{

s1, s2, ..., sN ,Nnode

}

 be the decision vector for fea-
ture selection and model structure optimization, where sn 
is the geometric feature and Nnode is the number of hidden 
nodes. Though the proposed emotion recognition method 
for visual modality can benefit from the strong adaptability 
and flexibility of GA optimization, there still exists a high 
risk of overfitting. GA may cause overfitting in the train-
ing set if the decision variables are over-optimized. To deal 
with this issue, an independent validation set is introduced 
to optimize parameters. Moreover, to simplify the calcula-
tion, we convert the multiobjective optimization problem 
into a single-objective optimization problem. Therefore, the 
objective function consists of two parts, i.e., the recognition 
error and model complexity measured by the connections. 
The objective function estimated from the validation set is 
formulated as:

where � is the weight for recognition error, the Accuracyval 
stands for the recognition accuracy of the validation set. Nfea 
denotes the number of selected emotion features. The GA 
algorithm evolves the chromosomes to find the optimal sub-
set of expression features by minimizing the fitness function.

To enable the GA optimization, the decision vector is 
first encoded as chromosome, and an initial population with 
Npop individuals is generated randomly. Then, the objective 
function is calculated for each individual in the population, 
and an offspring population is generated by executing evolu-
tionary operations, i.e., tournament selection, crossover, and 
mutation. Next, a new population is produced by merging 
the offspring and parent populations, and this is followed by 
non-dominated ranking and trimming of individuals. The 
above steps are repeated until the stopping conditions are 

(16)f (S) = � ⋅

1

Accuracyval
+ (1 − �)

(

Nnode ⋅ Nfea

)

,
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satisfied. Finally, the best solution characterized by differ-
ent geometric features and the optimal number of hidden 
nodes is obtained. Figure 4 shows the optimization diagram 
for emotional feature selection and ELM model structure 
using GA.

3.2 � Audio feature

Audio modality, as another expression of emotion, can offer 
complementary and useful information in addition to the 
visual modality. As a result, audio modality contributes to 
dramatically increase the individual performance of emo-
tion recognition in video clips. In this study, the visual 
modality and audio modality are processed in parallel to 
enhance the recognition efficiency of the model. To identify 
emotion through voice, 1582 acoustic features containing 
energy/spectral low-level descriptors, voice-related low-level 
descriptors are extracted from each video. The extracted 
acoustic features are given in Table 2.

Because of the existence of redundant and useless fea-
tures, the efficiency of audio-based emotion recognition 
will be discounted. Therefore, to increase the accuracy of 
emotion recognition of audio modality and decrease the 
computation cost, we propose to optimize the acoustic fea-
tures to select a set of significant features that are strongly 
related to the speech emotion. For audio modality, GA is 
utilized again in acoustic features’ selection and ELM model 

structure optimization in this work. Also, the decision vector 
is composed of acoustic features and the number of hidden 
nodes. The fitness function is defined as the reciprocal of 
the accuracy and the number of connections in ELM of an 
individual validation set. To avoid redundancy, the detailed 
procedure is omitted.

3.3 � Multimodal fusion

In 3.1 and 3.2, we present the approaches to select crucial 
features and optimize ELM models used to predict the emo-
tions of visual and audio modalities. In order to obtain more 
accurate and robust recognition results, the knowledge from 
different modalities are combined in this work. It is notice-
able that with decision-level fusion in emotion recognition, 
the facial expression features and acoustic features do not 
need to be synchronized compared with feature-level fusion. 
Therefore, the decision-level fusion strategy is carried out 
in this work. To realize decision-level fusion, the significant 
geometric and acoustic features need to be separately fed to 
the corresponding ELM classifiers with radial basis function 
kernel to recognize emotions. The outputs of each model 
indicate the probabilities that the emotion expressed by the 
subject belongs to different emotions.

Once the classification results of visual and audio modali-
ties are obtained, the next critical task is to fuse the two 
modalities to build the final recognition model. In this study, 
a weighted fusion strategy is adopted to achieve the combi-
nation of expression related information obtained from the 
two modalities. The basic idea is to assign visual modal-
ity and audio modality different weights according to their 
importance for emotion recognition, which can be expressed 
as follows:

(17)C
(

yv, ya
)

= max
i

(

�pv(i) + (1 − �)pa(i)
)

,

Fig. 4   Optimization diagram for emotional feature selection and 
ELM model structure using GA

Table 2   Acoustic feature: 38 low-level descriptors with regression 
coefficients and 21 functionals Schuller et al. 2010

Descriptors Functionals

PCM loudness Position max./min.
MFCC [0–14] arith. mean, std. deviation
log Mel Freq. Band [0–7] Skewness, kurtosis
LSP Frequency [0–7] lin. regression coeff.
F0 by Sub-Harmonic Sum. lin. regression error
F0 Envelope Quartile
Voicing Probability Quartile range
Jitter local Percentile
Jitter DDP Percentile range
Shimmer local Up-level time
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where yv and ya denote the classification results of visual 
modality and audio modality, respectively. � is the weight 
that reflect the importance of visual modality. pv(i) and pa(i) 
are posterior probabilities of i-th class of visual modality and 
audio modality, respectively.

4 � Experiments on three datasets

In this section, we present the results by using our proposed 
method on the three public databases, i.e., the Extended 
Cohn–Kanade (CK+) (Lucey et  al. 2010), Enterface05 
(Martin et al. 2006), and BAUM-1s (Zhalehpour et al. 2016). 
The unimodality results considering the defined geometric 
features and acoustic features without relevant feature selec-
tion and model structure optimization are shown separately. 
Then the results of emotion recognition with the selected 
features by GA of two modalities are shown respectively. 
Finally, the emotion recognition results of two modalities 
fusion are given.

4.1 � Datasets and setup

CK+: The CK+ dataset contains 593 image sequences from 
123 subjects. There are 327 image sequences with seven 
emotion labels, i.e., anger, contempt, disgust, fear, joy, sad-
ness, and surprise. This dataset focuses on facial expression 
recognition and all the face emotions are lab-controlled. We 
aim to recognize six emotions in this dataset. The aligned 
and cropped facial images are shown in Fig. 5.

Enterface05: The Enterface05 dataset contains six emo-
tions, i.e., anger, disgust, fear, joy, sadness, and surprise, 
which are posed by 43 subjects with 14 different nationali-
ties. 1290 video samples are included in the dataset. Each 
audio sample rate is 48,000 Hz. Figure 6 presents samples of 
the aligned and cropped facial images from the Enterface05 
dataset.

BAUM-1s: The BAUM-1s spontaneous dataset contains 
1222 video clips from 31 Turkish subjects. The dataset is 
collected in real scenarios with spontaneous emotion expres-
sions, which contains six basic emotions (anger, disgust, 
fear, happiness, sadness, surprise) as well as boredom and 
contempt. It also includes four mental states, i.e., unsure, 
thinking, concentrating, and bothered. Similar to the work( 

Hossain and Muhammad 2019), we focus on recognizing the 
six basic emotions, producing 521 video samples in total. 
Samples of the aligned and cropped facial images on the 
BAUM-1s dataset are shown in Fig. 7.

For training our proposed model without feature selec-
tion, each dataset is trained and tested using Leave-One-
Speakers-Group-Out (LOSGO) cross-validation. Moreover, 
to train the proposed feature selection model, we divide the 
three datasets into three sets: 50% for model training, 25% for 
parameter optimization, and 25% for model testing, respec-
tively. In addition, appropriate value of the critical hyperpa-
rameter, i.e., the maximal number of hidden node Nmax

node
 , the 

population size Npop and maximal generation Ngen should 
be predetermined. Those hyperparameters are selected by 
trial and error as follows, Nmax

node
= 30 , Nvisual

pop
= 300 for visual 

modality, Naudio
pop

= 2000 for audio modality, Ngen = 100 . To 
balance model structure and emotion recognition accuracy, 
� is equal to 0.5 in objective function.

4.2 � Experimental results and snalysis

In this section, we present the experimental results on the 
three datasets, respectively. The results of emotion recogni-
tion based on facial expression three datasets are displayed 
separately. Then, the recognition results of audio modality 
on Enterface05 and BAUM-1s datasets are shown respec-
tively. Finally, the fusion performance of two modalities on 
Enterface05 and BAUM-1s is given.

4.2.1 � Visual modality performance

The defined geometric deformation features are firstly com-
puted in three datasets individually. A total of 105 triangles 
and 169 non-redundant edges are used as two basic geo-
metric features in each facial image. Concatenating the area 

Fig. 5   Samples of the aligned and cropped facial images on CK+ 
dataset

Fig. 6   Samples of the aligned and cropped facial images on Enter-
face05 dataset

Fig. 7   Samples of the aligned and cropped facial images on BAUM-
1s dataset
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and edge features, 274 geometric features are obtained in 
total. Then GA is carried out to select the critical geometric 
features and optimal number of hidden nodes. Finally, the 
original defined geometric features and the selected geomet-
ric features by GA optimization are sent into the optimized 
multi-class ELM classifiers to recognize the six emotions 
separately.

As shown in Table  3, the recognition rates of facial 
repression classifiers without feature selection are 79.27% , 
31.15% , and 48.94% on CK+, Enterface05, and BAUM-1s 
datasets, respectively. While 93.53 % , 86.65% , and 55.38% 
recognition rates are achieved on these datasets with GA 
feature selection. This table reveals that, as it was expected, 
feature selection by GA optimization contributes to improv-
ing the emotion recognition rates significantly.

Moreover, the selected visual features on the three 
datasets are given in Figs. 8, 9, and 10, respectively. It is 
noted that the green lines in Figs. 8a, 9a, and 10a denote 
the selected edge features on the three datasets. The yellow 

triangles in Figs. 8b, 9b, and 10b stand for the selected area 
features on the three datasets. For CK+ dataset, 94 visual 
features are selected through GA optimization. For the 
Enterface05 dataset, the numbers of visual features before 
and after GA optimization are 274 and 107. The number of 
visual features is reduced to 116 on the BAUM-1s dataset. 
These figures reveal that the local area in the five regions of 
a face gives valuable information for emotion classification. 
Moreover, it is convenient and intuitive to learn which facial 
areas give better emotion discrimination compared with the 
deep learning-based method. Besides, the number of hidden 
nodes optimized by GA is 12 for CK+, 10 for Enterface05, 
and 21 for BAUM-1s. The introduction of GA optimization 
for visual feature selection and ELM model optimization can 
dramatically decrease the complexity emotion recognition 
model and increase the classification accuracy.

The experiment results of visual emotion recognition on 
three datasets compared with previous methods are listed 
in Table 4. The bold values stand for the recognition results 
of our proposed method. The facial expression features and 
model structure are simultaneously optimized through GA 
in our method. It can be observed from Table 4 that for 

Table 3   Average recognition rate ( % ) of visual and audio modalities 
with and without feature selection by GA on three datasets

Unimodality Feature CK+ Enterface05 BAUM-1s

Visual V
all

79.27 31.15 48.94
V
GA−Selection 93.53 86.65 55.38

Audio A
all

– 61.85 48.75
A
GA−Selection – 74.85 53.08

Fig. 8   Selected visual features through GA on the CK+ dataset

Fig. 9   Selected visual features through GA on the Enterface05 dataset

Fig. 10   Selected visual features through GA on the BAUM-1s dataset

Table 4   Average recognition rate of visual modality compared with 
previous works on three datasets

Dataset Method Accuracy ( %)

CK+ Chen et al. (2016) (GWF) 89.00
Jung et al. (2015) (DTAN) 91.44
Jain et al. (2019) 93.24
Ours 93.53

Enterface05 Zhang et al. (2017) 54.35
Rahdari et al. (2019) 62.80
Ma et al. (2019) 58.19
Avots et al. (2019) 48.31
Miyoshi et al. (2021) 49.26
Ours 86.65

BAUM-1s Zhang et al. (2017) 50.11
Zhalehpour et al. (2016) 45.04
Ma et al. (2019) 54.69
Ours 55.38
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visual modality, our method outperforms the state-of-the-art 
methods, which include certain deep learning-based frame-
works. The results demonstrate that the selected geometric 
deformation features are available to capture the vital emo-
tion information during expression generation. Besides, the 
appropriate ELM model structure can help to enhance the 
recognition performance of visual modality.

Moreover, the classification confusion matrices of visual 
modality on the three datasets are shown in Figs. 11, 12, and 
13, respectively. As can be observed, in the facial domain, 
all emotions are recognized with more than 65% accuracy on 
the CK+ and Enterface05 datasets. Anger, happiness, and 
sadness are much easier classified than the other three emo-
tions on BAUM-1s. Notice that, it is failed to separate fear 
from anger, sadness, and disgust on the BAUM-1s dataset. 
Besides, comparing the three confusion matrices, it is clear 
that the acted emotions are much easier to recognize than 
the spontaneous ones.

4.2.2 � Audio modality performance

The acoustic features are firstly extracted by applying the 
OpenSMILE software and 1582 acoustic features are pro-
duced. Similar to the visual modality, the acoustic features 
with and without feature selection and model structure 
optimization by GA are used for emotion recognition indi-
vidually and the results are presented in Table 3. In general, 
the results are similar to those in the visual modality. It is 
clear to see that the proposed method achieves an improve-
ment from 61.85% to 74.85% for the Enterface05 dataset in 
audio modality. On the BAUM-1s dataset, the accuracy is 
improved from 48.75 to 53.08% . The results demonstrate 
that our proposed method contributes to improving emotion 
recognition accuracy for both visual and audio modalities. 
Besides, the dimensions of acoustic features are decreased 
from 1582 to 762 for the Enterface05 dataset. On the 

BAUM-1s dataset, the dimension of the acoustic feature is 
reduced to 680. From Table 3, it is suggested that the accu-
racies of the acoustic classifier are smaller than that of the 
facial expression classifier. Moreover, the optimized number 
of hidden nodes in ELM for Enterface05 and BAUM-1s are 
12 and 20, respectively.

Also, the comparison results of our proposed audio feature 
selection method with previous audio emotion recognition 
methods are given in Table 5. On the Enterface05 and BAUM-
1s datasets, our method with bold values in Table 5 achieves 
better recognition accuracy and it demonstrates that it is fea-
sible to select crucial features and optimize model structure 
by applying the GA algorithm in audio modality. Besides, the 
classification confusion matrices of audio modality on the 
two datasets are presented in Figs. 14 and 15. Notice that, 
in the acoustic domain, anger, sadness, and surprise can be 
recognized with high accuracies, while disgust, fear, and hap-
piness are slightly worse classified on the Enterface05 data-
set. For the BAUM-1s dataset, happiness and sadness achieve 

Fig. 11   Confusion matrix of visual modality with GA optimized fea-
ture selection on the CK+ dataset

Fig. 12   Confusion matrix of visual modality with GA optimized fea-
ture selection on the Enterface05 dataset

Fig. 13   Confusion matrix of visual modality with GA optimized fea-
ture selection on the BAUM-1s dataset
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higher recognition rates than other emotions. “Fear” expressed 
through speech is failed to be classified because fear, sadness, 
disgust, and happiness have similar patterns observed in acous-
tic parameters. Therefore, it is expected that the recognition 
rate of fear emotion can be improved by fusing facial expres-
sion and acoustic information properly.

4.2.3 � Multimodal performance

After training classifiers for visual and audio modality sepa-
rately, the confidence values on the Enterface05 and BAUM-1s 
datasets are obtained. Next, the decision-level fusion method 
is applied to fuse the classification results of two modalities 
with GA optimization. To reduce the model complexity, a 
fusion strategy that weighs the two modalities according to 
their importance is used in this study. The weights of different 
modalities are defined as listed in Table 6. The performance 
of each pair of weights wi with GA feature optimization is 
investigated and shown in Fig. 16. From the figure, it can be 
seen when the weights of visual modality and audio modality 
are 0.6 and 0.4 respectively on the Enterface05 dataset, the 
model possesses the best performance. While on the BAUM-
1s dataset, the best performance is obtained when the weight 
equals to 0.2 or 0.4 for visual modality.

Besides, to compare the performance of decision-level 
fusion with feature-level fusion, the experiments of feature-
level fusion are conducted on the Enterface05 and BAUM-
1s datasets. Especially, two different feature-level fusion 
approaches are implemented in this work. One is to concat-
enate the raw geometric features and acoustic features directly 
and apply GA for feature selection as executed in visual and 
audio modalities. Then the selected emotion features are input 
to the ELM for classification. The other is to concatenate the 
selected visual feature and acoustic feature and use ELM for 
emotion recognition. The performance of emotion recogni-
tion based on two fusion methods is shown in Table 7. Notice 
that all these feature-level fusion methods give inferior per-
formance than the combination of two classifiers in decision-
level fusion. This table reveals that the best multimodal fusion 
approach in this work is the decision-level fusion because the 
synchronization of visual and acoustic features is free from the 
decision-level fusion.

The proposed method is compared with previous methods 
on the Enterface05 and BAUM-1s datasets separately. The 
results presented in Table 8 show that our multimodal fusion 
method is competitive with previous methods and the overall 

Table 5   Average recognition rate of audio modality compared with 
previous works on two datasets

Dataset Method Accuracy ( %)

Enterface05 Zhalehpour et al. (2016) 72.95
Avots et al. (2019) 50.22
Ours 74.85

BAUM-1s Zhang et al. (2017) 42.26
Zhalehpour et al. (2016) 29.41
Ma et al. (2019) 42.38
Ours 53.08

Fig. 14   Confusion matrix of audio modality emotion recognition 
results with features selection by GA on the Enterface05 dataset

Fig. 15   Confusion matrix of audio modality emotion recognition 
results with features selection by GA on the BAUM-1s dataset

Table 6   The weights of 
different modalities for fusion

Modality w1 w2 w3 w4 w5 w6 w7 w8 w9

Visual 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Audio 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
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recognition rates are 91.62% and 60.77% on the Enterface05 
and BAUM-1s datasets, respectively. Besides, the recognition 
result of the multimodal fusion is better than that obtained 
either from visual modality or audio modality in our frame-
work. These promising results illustrate that even though audio 
modality gives inferior classification results than the visual 
modality, the acoustic features contain valuable information 
that cannot be extracted from visual modality. Also, it proves 

that visual and audio modalities are complementary to each 
other and the emotion classification results can be distinctly 
enhanced by integrating the two modalities. The improved 
emotion recognition rates also demonstrate that our proposed 
method is applicable to both acted and spontaneous emotions.

To compare the recognition performance of different 
classifiers, we conduct experiments using support vector 
machine (SVM), random forest (RF), k-nearest neighbor 
(KNN), and ELM classifiers to train models on the same 
training and test sets. The recognition accuracies for uni-
modality and multimodality by different classifiers on the 
Enterface05 and BAUM-1s datasets are listed in Figs. 17 and 
18. It is shown that, compared with other three classifiers for 
the proposed emotion recognition framework, ELM shows 
the best recognition performance on both unimodality and 
multimodality.

To further measure the multimodality emotion recogni-
tion performance, we compute precision, recall and F-score 
separately on the Enterface05 and BAUM-1s datasets. The 
experiment results are listed in Table 9 and Table10, respec-
tively. The results indicate that “fear” emotion is difficult 
to recognize than other emotions. Comparing those two 
tables, it is clear to see that the posed emotions are easier 
to recognize than the spontaneous ones. Thus, there is still 
ample space to improve the performance of recognition rate 
of spontaneous emotions.

Moreover, it is worth noting that the proposed model is 
computationally efficient compared with the multimodal 
fusion frameworks using deep learning algorithms for 
emotion recognition. Specifically, it takes more than 18 h 
for model training using deep learning-based methods, on 
the computer with Intel(R) Core(TM) i7-8565U CPU, and 
24GB RAM. On the same computer, the training time of 

Fig. 16   Comparison of different weights of visual modality for multi-
modal fusion emotion recognition with GA optimized features selec-
tion on two datasets

Table 7   Multimodal emotion recognition performance ( % ) compari-
son at decision-level and feature-level fusion on two datasets

Feature-level1: concatenate the raw visual and acoustic features for 
GA selection. Feature-level2: concatenate the selected visual and 
acoustic features

Fusion method Enterface05 BAUM-1s

Feature-level1 49.15 45.38
Feature-level2 72.05 54.57
Decision-level 91.62 60.77

Table 8   Average recognition rate of our proposed multimodal fusion 
method and previous works on two datasets

Dataset Method Accuracy ( %)

Enterface05 Hossain and Muhammad (2019) 86.40
Zhang et al. (2017) 54.57
Bejani et al. (2014) 77.78
Ma et al. (2019) 85.69
Ours 91.62

BAUM-1s Zhang et al. (2017) 54.57
Zhalehpour et al. (2016) 51.29
Ma et al. (2019) 59.17
Ours 60.77

Fig. 17   Performance comparison of different classifiers on Enter-
face05
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the proposed multimodal fusion emotion recognition model 
takes only about 15 minutes while the testing time costs 
approximately 0.02s on the two datasets. Therefore, the real-
time performance of the proposed model is satisfied with the 
emotion recognition system.

The confusion matrices of our proposed multimodal emo-
tion recognition method on the Enterface05 and BAUM-1s 
datasets are shown in Figs. 19 and 20. It is observed that the 
performance of each emotion achieves more than 80% by 
fusing the facial expression and acoustic information on the 

Enterface05 dataset, which suggests that the recognition rate 
of each modality is increased by using the weighted strat-
egy in decision-level fusion. Clearly, the holistic recognition 
accuracy on the Enterface05 dataset is higher than that of the 
BAUM-1s dataset. The reason is that the emotions expressed 
in the spontaneous emotion dataset are not deliberately exag-
gerated compared with the acted emotion dataset. Moreo-
ver, comparing Figs. 13, 15, and 20, it can be observed that 
the recognition accuracy of “fear” has been increased by 
using a multimodal fusion method instead of unimodal rec-
ognition on the BAUM-1s dataset, which agrees with our 
previous analysis that the redundant information from two 
modalities is valuable to improve the performance of emo-
tion recognition.

Fig. 18   Performance comparison of different classifiers on BAUM-1s

Table 9   Multimodal performance measure ( % ) for each emotion with 
the recognition accuracy of 91.62% on Enterface05

Emotion Precision Recall F-score

Anger 94.64 100.0 97.25
Disgust 95.74 82.23 88.47
Fear 82.46 89.15 85.67
Happiness 88.00 83.04 85.45
Sadness 89.66 96.38 92.90
Surprise 93.05 100.0 96.40

Table 10   Multimodal performance measure ( % ) for each emotion 
with the recognition accuracy of 60.77% on BAUM-1s

Emotion Precision Recall F-score

Anger 75.00 71.48 73.20
Disgust 45.00 67.13 53.88
Fear 12.54 25.42 16.79
Happiness 76.92 62.37 68.89
Sadness 48.94 74.05 58.93
Surprise 66.67 70.21 68.39

Fig. 19   Confusion matrix of the proposed multimodal fusion frame-
work with 91.62% accuracy on the Enterface05 dataset

Fig. 20   Confusion matrix of the proposed multimodal fusion frame-
work with 60.77 % accuracy on the BAUM-1s dataset



1916	 B. Pan et al.

1 3

5 � Conclusions

A multimodal fusion emotion recognition method is pro-
posed in this study. Visual and audio modality-based indi-
vidual emotion recognition are investigated parallel. The 
decision-level fusion method is utilized to integrate the 
recognition results from two modalities. Specifically, in the 
visual modality, geometric deformation features are firstly 
computed from keyframes extracted through several facial 
components. Then, GA is utilized to select discriminative 
facial features and optimize model structure for performance 
improvement. Similar analytical procedure is performed in 
audio modality. Moreover, the ELM classifier is employed 
to identify the emotions for visual and audio modalities 
individually, and following by a decision-level fusion. The 
proposed framework is evaluated by applying the CK+, 
Enterface05, and BAUM-1s datasets. The results obtained 
from the three datasets show that

•	 The proposed keyframe extraction method and geomet-
ric deformation features are effective for facial emotion 
recognition.

•	 The optimized emotional features and model structure 
can not only significantly improve the accuracy of emo-
tion recognition in visual and audio modalities, but also 
decrease the model complexity.

•	 The performance of the multimodal fusion method out-
performs both emotion recognition methods that are indi-
vidually used in visual and audio modalities.

Although the proposed method has made promising pro-
gress on performance improvement of emotion recognition 
in video clips, there still exist some topics that need to be 
discussed. For example, how to explore the high-level emo-
tion features from different modalities; how to effectively 
fuse the features from different modalities, etc. In future 
work, deep learning technology will be investigated to 
extract high-level emotional features. In addition, develop-
ing strong fusion approaches to enhance the performance of 
multimodal fusion emotion recognition will also be pursued.
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