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Abstract
For flexible job-shop scheduling problem with low carbon emission constraints, an improved quantum genetic algorithm 
based on double chains coding is proposed. Firstly, a mathematical model is established to minimize makespan, total work-
load of machines and carbon emissions of machines. Secondly, carbon emission equations in job shop scheduling process 
are inducted and designed. Based on the selected model, a method using an improved quantum genetic algorithm with dou-
ble chains to solve processing route selection is proposed. Finally, on the basis of Kacem example, the performance of the 
method proposed in the paper was analyzed by ANOVA through experimental simulation and compared with the algorithms 
commonly used at present. The results show that the method not only achieves the goal of optimization, but also meets the 
practical requirements of reducing carbon emissions in production and processing.

Keywords Flexible job-shop scheduling · Carbon emission · Double chains quantum encoding · Improved quantum genetic 
algorithm

1 Introduction

Flexible job-shop scheduling has been proved to be a NP-
hard problem, and the discharged  CO2 in the production has 
a serious impact on the environment. Studying low-carbon 
emission flexible job shop scheduling issues and realizing 
low-carbon green manufacturing is an important direction 
for flexible job shop scheduling and a necessary requirement 
for the benign development of manufacturing. According 
to the survey, the energy consumption of manufacturing 
industry accounts for nearly 1/3 of the global total consump-
tion (Wang et al. 2018a). With the increasing awareness of 
energy conservation and emission reduction, the low-carbon 
scheduling of flexible job-shop has attracted the attention of 
scholars at home and abroad.

1.1  Related works

Because of the high complexity of the problem, many 
researchers use intelligent optimization algorithm to 
solve the problem, such as shuffled frog-leaping algorithm 
(Jiang 2018), drosophila algorithm (Wu and Sun 2018a, 
b), particle swarm optimization (Wu and Sun 2018a, b) 
and ant colony optimization (Piroozfard et al. 2018), etc., 
which have been applied to low-carbon scheduling. Quan-
tum genetic algorithm (QGA) is a combination of quan-
tum mechanics theory and genetic algorithm. Domestic 
scholars built high dimensional and low carbon schedul-
ing model and optimized quantum genetic algorithm for 
low-carbon dispatch FJSP problem with multidimensional 
economic indicators and green indicators, which make up 
for the shortage of insufficient pressure in many-objec-
tive space selection (Ning et al. 2019a). Zheng and Ling 
(2018) extended the results of static job shop scheduling 
to dynamic flexible job shop scheduling, and proposed a 
dynamic scheduling algorithm based on hybrid quantum 
genetic algorithm. Ming and Deming (2019a, b) proposed 
an improved quantum genetic algorithm based on parti-
cle swarm algorithm to build a mathematical model of 
the problem by minimizing completion time, total cost 
and penalty value. Multi-objective and low carbon FJSP 
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is still in its infancy in China, but it has become a hot and 
difficult point in scheduling research. Wang et al. sum-
marized the research progress on such problems in China 
from optimizing green shop scheduling, introducing quan-
tum bits into genetic coding for the first time, and using 
quantum gates to update quantum chromosomes, which 
achieved good results (Wang et al. 2018b). From consid-
ering FJSP low carbon scheduling problem of depend-
ing on sequence release time, Li Ming et al. collated and 
improved the framework of quantum evolutionary algo-
rithms, adding quantum variations and quantum crossover 
operations to optimize the total energy consumption of 
key and non key objectives. They analyzed the relation-
ship between deterioration of total energy consumption 
and improvement of key objectives (Ming and Deming 
2019a, b). Literature (Gong et al. 2019; Li et al. 2018) 
shows job shop scheduling model of minimize machine 
energy consumption. Compared with the scheduling that 
minimizes the completion time, this model effectively 
reduces the energy consumption of machine idling. In the 
literature (Shan et al. 2020; Caijie et al. 2020), carbon 
emission factors caused by energy consumption in shop 
scheduling problem is considered, and the overall carbon 
emission in the manufacturing process is reduced through 
an improved quantum cloud genetic algorithm. Literature 
(Ning et al. 2018a, b, 2019a, b, 2020) showed quantum 
genetic algorithm based on bacterial foraging algorithm to 
minimize completion times and total energy consumption 
for the production process for the optimization goal, which 
considered energy consumption during material cutting 
and normal operation of the machine, and meet the goal 
of saving energy for FJSP by optimizing environmental 
factors within peak power.

1.2  Contribution of this paper

Although relevant scholars have made effective research 
on the flexible job shop scheduling problem, the param-
eters of processing method, processing route, and cutting 
of workpieces in the study are static. How to achieve effi-
cient energy saving, emission reduction and environmen-
tal pollution reduction is one of the urgent problems in 
manufacturing industry. Firstly, a multi-objective model 
is established to minimize makespan, total workload of 
machines and carbon emissions of machines. Secondly, an 
improved quantum genetic algorithm with double chains 
quantum encoding is used to solve the problems, and the 
validity and efficiency of carbon emission model are ana-
lyzed by ANOVA. At last, a new scheduling strategy is 
proposed in this paper, which can reduce adjustment time 
and waiting time of machines through changing the pro-
cessing order of workpieces on each machine, moreover, 

it can also reduce the energy consumption generated by 
machine idling.

2  FJSP model of low‑carbon emission

2.1  Description of problem

The low-carbon emission FJSP problem is an extension of 
the FJSP problem. This kind of problem not only needs to 
solve the problem of processing machine selection and pro-
cess sequencing in the production workshop, but also needs 
to achieve the goal of minimizing the carbon emissions of 
machine processing (Ning and Wang 2018). The low-carbon 
emission FJSP problem can be described as: The shop con-
sists N processing workpieces and M machines. Each job i 
(i ∈{1,2,……,N}) has ni (ni ≥ 1) processes, and each process 
can be produced on any machine with processing capability. 
Rij represent j (j ∈{1,2,……, ni}) process of workpiece i. Mij 
(Mij ⊆ {1,2,……, M}) are defined as the set of machines that 
can process the j operation of job i. Process Rij can be pro-
cessed in any machine mk (k = 1,2,…,Mij}) in Mij. Machine 
m can process multiple processes for different workpieces 
(Ning et al. 2018a, b). The difference in machine perfor-
mance makes the processing time and energy consumption 
of the process Rij on the machine m different. The optimiza-
tion goal of low-carbon scheduling is to allocate a suitable 
machine m for each process Rij; Meanwhile, the process-
ing order of the workpieces on machine m are arranged and 
the start processing time is determined, so as to achieve a 
synergistic optimization of the efficiency indicators and the 
low-carbon emission indicators. In this paper, the following 
assumptions are made when solving the flexible job shop 
scheduling problem under low-carbon constraints:

(1) A process in which the same machine can only process 
one workpiece at a certain time;

(2) The same process can only be processed on one 
machine;

(3) It is not allowed to be interrupted when the process is 
processed on the machine;

(4) During the processing, if the machine does not break 
down, it cannot be shut down once it is started;

(5) There is no priority order between processes of differ-
ent workpieces, and there is a sequence relationship 
between processes of the same workpiece;

(6) All workpieces can be processed at time t = 0, with the 
same priority;

(7) Carbon emissions are also generated when the machine 
is idle after starting, and the carbon emissions gener-
ated when the machine processes the workpiece are 
independent of the type of workpiece.



791Low carbon emission management for flexible job shop scheduling: a study case in China  

1 3

2.2  Equation of carbon emission equation 
and related parameters

tijk, pijk, cijk represent the processing time, processing power 
and carbon emission of Rij on machine mk.

The carbon emission of job-shop mainly comes from the 
power consumption. Taking electricity consumption as a 
measure of carbon emission indicators, the coefficient matrix 
of carbon emission in this paper can be expressed as follows:

The balance equation of power p can be expressed as 
follow:

In which, pe is the no-load power to maintain its own run-
ning, pc is the cutting power for workpiece processing and pw 
is the load loss power to bear the processing load.

In the actual machining process, pc is proportional to pw, 
if the ratio is expressed as load loss power coefficient of � , 
then Eq. (2) can be simplified as p = pe + (1 + �)pc. Set the 
processing time as tijk; the no-load power of mk is pe

ijk
 , the 

cutting power is pc
ijk

 , and the carbon emission for Rij on mk 
can be expressed as:

Some researches show that the cutting energy of the same 
workpiece on the same kind of machine is approximately 
constant (Kim et al. 2017) and the change of load loss power 
factor can be ignored. Therefore, the difference of carbon 
emission in the machine process mainly comes from the no-
load power, and the carbon emission coefficient matrix of Rij 
on mk can be simplified as cijk ≈ ∫ tijk

0
pe
ijk
(t)dt . While the no-

load power of the machine mainly depends on the processing 
speed of the spindle, the carbon emission calculation can be 
further expressed as:

In Eq. (4) s is the parameter related to the processing 
speed.

2.3  Objective function

The goal of low-carbon FJSP scheduling is to select the 
appropriate machine for each process of the workpiece and 
determine the optimal processing order for each process 
of each machine, so as to minimize the carbon emissions 
of the processing machines in the workshop. In this paper, 
minimizing the average completion time of the workpiece, 
minimizing the total cost, and minimizing carbon emissions 

(1)C = {cijk}m×n

(2)p = pe + pc + pw

(3)cijk = ∫
tijk

0

pe
ijk
(t)dt + (1 + �)∫

tijk

0

pc
ijk
(t)dt

(4)cijk ≈ pe
ijk
(s) × tijk

are established. Considering the differences between mul-
tiple targets, the key to solve the problem lies in finding a 
satisfactory balanced solution among the multiple targets. 
The objective function is established as follows:

Minimize makespan

Minimize carbon emissions

Minimize total cost

In the Eq. (5), F represents the completion time of all 
machines, as an important indicator to measure the workload 
of the machine; Fmk

 represents the total completion time of 
machine mk, bijk represents the starting processing time of 
process Rij on machine mk, tijk represents the processing time 
of process Rij on machine mk, and Sijk represents the process-
ing of process Rij on machine mk in Eq. (6), which means:

In Eq. (7), C and pijk represent the total carbon emissions 
and processing power of the process Rij processed on the 
machine mk respectively. In Eq. (8), A represents the total 
processing cost of workpiece i, Ai represents the raw mate-
rial cost of workpiece i, and Aijk represents the cost of pro-
cessing Rij on machine mk. In Eq. (9), �ijk and �

ijk
 represent 

the labor cost and machine cost of processing Rij on machine 
mk respectively.

2.4  Constraints conditions

(1) Operation constraints
  There are constraints between processes of the same 

workpiece, that is, the jth process of the workpiece i 
must start after the completion of (j − 1)th process.

(5)f1 = min(F) = min

[(
M∑

k=1

Fmk

)/
M

]

(6)Fm
k
=

N∑

i=1

ni∑

j=1

(
Sijkbijk + Sijktijk

)

(7)f2 = min(C) = min

(
N∑

i=1

ni∑

j=1

M∑

k=1

tijkpijksijk

)

(8)f3 = min(A) = min

[
N∑

i=1

(
Ai +

ni∑

j=1

M∑

k=1

AijkSijk

)]

(9)Aijk =
(
�ijk + �

ijk

)

Sijk =

{
1, Rij is cut on mk;

0, Rij is not cut on mk.
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  In Eq. (10), Sijk=Si(j-1)k=1.
(2) Machine constraints
  The same machine can only processed one process 

at the same time, that is, for process Rij at time t(t > 0), 
if ∃Sijk = 1 , then Sxyk = 1 must not be established (when 
i = x, j ≠ y).

(3) Continuity constraints
  The process Rij cannot be interrupted during process-

ing:

  In Eq. (11), fijk indicates the completion time of the 
process Rij.

3  Improved quantum genetic algorithm

An improved quantum genetic algorithm is established in 
this paper to solve the multi-objective FJSP low-carbon 
scheduling problem. First, the double-chain genetic algo-
rithm is used to encode the machine distribution chain and 
the process ranking chain. Secondly, the non-dominated 
Pareto solution ranking method is used to rank the popula-
tion. The evolutionary population is selected by calculating 
the crowding distance (Sheremetov et al. 2018).

3.1  Encoding and decoding

In this paper, a double-chain coding method based on the 
combination of machine chain and process chain is used to 
determine machine selection and process ordering. Based on 
the equal coding length of the machine and the total num-
ber of processes of all the workpieces, the chromosomes 
are sorted from left to right according to the number of the 
workpieces and processes. The coding length of the pro-
cesses is equal to the total number of processes of all the 
workpieces, and the processes of each workpiece are labeled 
with the corresponding workpiece number. The integer at 
the locus represents the sequential number of the current 
processing machine in the set of optional machines, so the 
integer on the locus represents the sequential number of the 
current processing machine in the set of optional machines.

The insertion greedy decoding algorithm is used for 
chromosome decoding to ensure the generation of active 
scheduling solutions. The process of chromosomes reads 
in sequence, and the processes are inserted into the availa-
ble machine idle interval to reduce machine idle operation, 

(10)
M∑

k=1

bijkSijk ≥
M∑

k=1

[(
bi(j−1)kti(j−1)k

)]
Si(j−1)k

(11)fijk =

{
max{fi(j−1)k, bijk} + tijk, j > 1;

bijk + tijk, j = 1.

thereby improving machine utilization and shortening the 
maximum completion time.

3.2  Quantum genetic algorithm

Quantum genetic algorithm (QGA) is a combination of 
quantum evolution algorithm and genetic algorithm. The 
chromosome coding of genetic algorithm is replaced to 
quantum bit probability amplitude by quantum bit, quan-
tum coding and quantum overlay state. A quantum bit state 
can be expressed as ��⟩ = � �0⟩ + � �1⟩ . Where � and � 
are plurals, corresponding to the probability amplitudes 
of 0|> state and 1|> state respectively, and |�|2 + |�|2 = 1 , 
in which the chromosome with n quantum bit coding can 
be represented 2n states. The key of quantum genetic algo-
rithm is to add quantum crossover and quantum variation 
after quantum rotatory gate operation. Although this can 
avoid trapping into local minima to a certain extent, the 
possibility of trapping into local minima is not completely 
eliminated. Literature (Zhu et al. 2020) showed a method 
for dynamically adjusting the quantum rotating gate as 
follows:

[�i, �i]
T represents the ith qubit of chromosome, �i repre-

sents the rotation angle, and its size and symbol are deter-
mined by the following equation:

The symbol Δ�i in Eq. (13) represents the angular step 
size of the rotation angle, and the symbol D(�i, �i) rep-
resents the rotation direction of the rotation angle. QGA 
searches use quantum bit probability amplitude to rep-
resent chromosome coding and quantum gate updating, 
which guarantees the diversity and parallelism of popula-
tion. In this paper, qubits are used to store and express 
quantum chromosome. Quantum chromosome can be “0” 
state or “1” state, or any superposition state of them. That 
is, what the quantum chromosome expresses is no longer 
certain information. It contains all possible information, 
and any operation on quantum chromosome will also affect 
all possible information at the same time. In this paper, the 
use of quantum chromosome allows the genetic individual 
to select quantum chromosome in multiple superposition 
states, so that the improved quantum genetic algorithm has 
better diversity characteristics. However, QGA is complex 
in coding and decoding when it is used to solve multi-
objective complex optimization problems, so an improved 
double chains quantum genetic algorithm (IDCQGA) is 
proposed in this paper.

(12)
[
�T
i

�T
i

]
=

[
cos �

i
− sin �i

sin �i cos �
i

][
�
i

�
i

]

(13)�i = D(�i, �i)Δ�i
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3.3  Improved double chains quantum genetic 
algorithm

3.3.1  Double chains quantum coding

In the genetic operation, the estimated distance between 
the current solution and the target optimal solution is cor-
rected by the compensation factor. The ability of optimizing 
quantum genetic algorithm is enhanced, the occurrence of 
inferior value is reduced and the errors between the cur-
rent solution and the optimal solution are corrected. In the 
genetic operation, the positioning distance between the cur-
rent solution and the optimal solution is calculated, and the 
compensation factor is determined. The algorithm is con-
tinuously corrected by the compensation factor, and the 
population with large positioning error is eliminated. This 
helps to improve the positioning accuracy of the solution in 
the algorithm. Moreover, it can make algorithm find better 
solutions, and effectively improve the convergence perfor-
mance. The correction process of the compensation factor 
is shown in the following Fig. 1.

Therefore a new compensation factor � ( � ≥ 1 ) on the 
basis of probability amplitude coding is introduced in this 
paper, assuming that cri represents a quantum chromosome. 
Then the ith chromosome coding scheme is as follows:

Among them, � , � need to meet the normalization con-
straint, that is |�|2 + |�|2 = 1 ; tij = 2� × � , � represents a 
random number between (0, 1); i = 1, 2,… , u; j = 1, 2,… , v; 
u represents the population size, v represents the number of 

(14)

cri =

[|||||

�i1

�i1

|||||

|||||

�i2

�i2

|||||
…

|||||

�im

�im

|||||

]
=

[|||||

cos(�ti1)

sin(�ti1)

|||||

|||||

cos(�ti2)

sin(�ti2)

|||||
…

|||||

cos(�tim)

sin(�tim)

|||||

]

qubits. The compensation factor � extends the period from 
2� to multi-period, which can improve the convergence 
probability of the algorithm. Each chromosome contains two 
parallel gene chains. These two gene chains respectively rep-
resent the machine distribution chain and process sequence 
chain of the FJSP problem, which means that each chromo-
some corresponds to two optimal solution, that is:

cricos and crisin are called cos and sin solutions, respectively. 
When the chromosome is iterated, the two solutions can be 
updated synchronously.

3.3.2  Non‑dominated optimal sorting

The solution of FJSP problem is difficult to obtain the 
optimal solution satisfying all the goals. In this paper, a 
non-dominated Pareto solution sorting method is proposed 
based on the fuzzy set theory. In this method, the parameters 
Zg and zg of individual g in population u are calculated to 
achieve classification. The specific steps are as follows:

Step 1: Initialize the parameter set Zg, which includes all 
the individuals dominated by the individual g, so that Zg = ∅;

Step 2: Initialize the parameter variable zg, which repre-
sents the total number of individuals that can dominate the 
individual g;

Step 3: To calculate the dominance relationship, set g, g′ 
∈ u, if g can dominate g′ , then make Zg = Zg ∪

{
g�
}
 ; if g′ 

dominate g, then zg = zg + 1; if zg = 0, then g is a non-domi-
nated individual, which belongs to the first level denoted as 
gr = 1, makes g join the rank set R1, that is R1 = R1 ∪ {g};

cri cos = (cos(ti1), cos(ti2),… , cos(tin))

cri sin = (sin(ti1), sin(ti2),… , sin(tin))

Fig. 1  The influence of the 
compensation factor
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Step 4: Let G′ represent the set of remaining individu-
als g′ , let i = 1, when Ri ≠ ∅ , G′= � , for individuals g� ∈ Zg , 
let zg = zg − 1, if zg = 0, then g�r = i + 1 ; let G� = G� ∪

{
g�
}
 , 

i = i + 1, Ri = G′;
Step 5: Judge whether Ri is empty. If it is empty (all indi-

viduals have corresponding levels), stop; otherwise, go to 
Step 4.

Corresponding pesudocode:
Begin
Input individual g
Initialize the parameter set Zg, and Zg = ∅.
Initialize the parameter variable zg,
Set g, g′ ∈ u,
if g can dominate g′ then
make Zg = Zg ∪

{
g�
}
.

else if g′ dominate g then
do zg = zg + 1;
if zg = 0 then
output g is a non-dominated individual and g belongs to 

The first level,
denoted as gr = 1
makes g join the rank set R1 and R1 = R1 ∪ {g}.
for (i = 1, Ri is empty, i = i + 1)
Let G′ represent the set of remaining individuals g′.
if G′= � and g� ∈ Zg then
zg = zg − 1,
if zg = 0 then
do g�r = i + 1.
let G� = G� ∪

{
g�
}
.

Ri = G′.
End
output all individuals have corresponding levels
End
The smaller the non-dominated sorting value, the better 

the individuals are, if the non-dominated soring value is the 
same, the individual with larger crowding distance will be 
preferred.

3.3.3  Selection strategy based on crowded distance

The crowding distance of a chromosome individual is 
obtained by calculating the sum of the distance difference 
between two adjacent chromosomes in the same rank on 
each sub target (Reddy et al. 2018). First, all the chromo-
somes at the same rank are sorted in ascending order accord-
ing to the fitness value of target j. Assuming that the crowd-
ing distance of the first and last chromosomes is infinite, the 
crowding distance of chromosome target j between them is:

(15)L[g]dj =
f
g+1

j
− f

g−1

j

f n
j
− f 1

j

In Eq. (15), L[g]dj represents the crowding distance of 
target j of chromosome g, f x

j
 represents the fitness value of 

the jth target of the xth chromosome in the current rank, 
where the values of x are 1, g − 1, g + 1, n. The crowding 
distance of the chromosome is the sum of all target crowding 
distances of the current chromosome L[g]dj. The chromo-
somes with large crowding distance are more likely to be 
selected for evolution, which is conducive to maintaining 
population diversity (Shao et al. 2013). By calculating the 
crowded distance, the algorithm can converge to evenly dis-
tributed Pareto surfaces.

The non-dominated sorting and crowding distances make 
each chromosome individual g obtain two attributes: the 
non-dominated sorting rank grand the crowding distance 
L[g]dj. Thus, the partial order relationship ≻n is defined as 
g ≻n g

′ : if gr < g′r or gr = g′r and L[g]d > L[g′]d; The mean-
ing of this partial order relationship is that the solution g is 
better than the solution g′ , and the partial order relationship 
is the basis of the selection operation.

3.3.4  Description of algorithm

The steps to optimize the double-chain QGA algorithm:
Step 1: The initial population u0 is made up of n chromo-

somes by double-stranded quantum coding;
Step 2: Decoding chromosomes follow the restrictions;
Step 3: Population is processed by non-dominant sorting 

and calculation of crowding distance;
Step 4: Two individuals were randomly selected for a 

non-inferiority level comparison. If the levels are different, 
select the individuals with lower levels; otherwise, select 
the individuals with low crowding density to generate a new 
population u1 and ensure that all states appear with the same 
probability in the early algorithm search;

Step 5: Solve suitability values of each chromosome, 
record the contemporary optimal solution Xa and the corre-
sponding quantum chromosome ga, and the current optimal 
solution Xb and the corresponding quantum chromosome gb;

Step 6: The quantum bit corresponding to the current 
optimal chromosome gb are the target to determine the size 
and direction of the quantum gate rotation angle, and update 
the quantum bit according to the quantum gate;

Step 7: Each chromosome is mutated by the quantum 
Hadamard gate according to the probability of mutation;

Step 8: Determine whether the convergence condition 
is satisfied or the maximum number of iterations has been 
reached. If it is satisfied, go to Step 9; otherwise, the itera-
tion number add 1 and go to Step 2;

Step 9: Output current optimal solution Xb and corre-
sponding fitness suitability values.

Corresponding pesudocode:
Begin
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n chromosomes by double-stranded quantum coding
Input the initial population u0
for (iteration = 0, the convergence condition is satisfied 

or the maximum number of iterations has been reached, the 
iteration number add 1)

Decoding the chromosomes follow the restrictions
Population is processed by non-dominant sorting
calculation of crowding distance;
Select two individuals randomly to compare the non-

inferiority ranks.
If the levels are different then
select the individuals with lower levels;
else if then
select the individuals with low crowding density to gener-

ate a new population u1
record the contemporary optimal solution Xa
record the corresponding quantum chromosome ga,
record the current optimal solution Xb
record the corresponding quantum chromosome gb;
if quantum bit corresponding to the current optimal chro-

mosome gb then
determine the size and direction of the quantum gate rota-

tion angle
update the quantum bit according to the quantum gate
each chromosome is mutated by the quantum Hadamard 

gate
End
Output current optimal solution Xb and corresponding 

fitness suitability values.
End

3.3.5  Sensitivity analysis

(1) The influence of multi-workpiece issues
  In order to show the influence of problem complexity 

on the factual response ability of the decision-making 
method, Fig. 2 shows the comparison of real-time pro-
cessing time and decision space of a single sample 
in Brandimarte examples Mk01/Mk02/Mk03/Mk04 
(Brandimarte 2011) for single-workpiece machining 
and multi-workpiece machining problems. It can be 
seen from Fig. 2 that the processing time and decision 
space increase exponentially when the single-work-
piece problem is extended to multi-workpiece problem.

(2) The influence of changes in processing demand
  In order to show the influence of changes in process-

ing demand on the algorithm in this paper and carbon 
emission cost, Fig. 3 takes the example MK03 (15 × 8) 
as an example to show the variation curve of the carbon 
emission cost of 1000 online samples with the dynamic 
demand under different algorithms. It can be seen from 
Fig. 3 that no matter what algorithm is used, the sys-
tem needs to pay high cost to deal with high dynamic 

demand. However, according to the variation curve, 
the cost increase of IDCQGA proposed in this paper 
is less than that of  EDA+ (estimation of distribution 
algorithm) (Zeng et al. 2018) and CGA + (canonical 
genetic algorithm) (Yang et al. 2019), which indicates 
that with the increase of demand uncertainty, the sys-
tem will inevitably produce high carbon emission cost. 
But in general, IDCQGA is superior to  EDA+ and CGA 
+ when demand degree changes dynamically.

Fig. 2  Comparison on the CPU and decision space for a single sam-
ple

Fig. 3  Carbon emission cost curve and of three algorithms under dif-
ferent dynamic demand
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(3) The influence of � and �
  Analyze the effect of improved algorithm data on 

model results, and take different � and � for simulation 
analysis (Ning et al. 2018a, b). The optimal compre-
hensive cost and carbon tax cost results under different 
algorithm parameters are shown in Table 1.

  In Table 1, five different values of the proposed algo-
rithm parameters are taken respectively, which have lit-
tle effect on the overall cost and carbon emission cost of 
FJSP, and the experiment results are relatively stable.

4  Validation and analysis of experiment

The application research object of this case is the bogie of 
Dongfeng 4D diesel locomotive, including shock absorber 
seat, casing, derrick, traction rod and other parts, with codes 
TF022000-TF022010, and case data is shown in Table 2. 
The workshop has 13 operation centers, 29 assembly carri-
ers and 82 processes, including bogie fitter shift, heat treat-
ment, small connecting rod shift and machining shift, etc. 
The delivery date of each batch of processing parts is differ-
ent, which belongs to the discrete production and processing 
mode. Research and analysis found that the workshop has 
the following problems:

(1) Although workshop production is carried out according 
to the priority of the workpiece, workshop production 
may be interrupted in the case of emergency insertion 
of the workpiece or the arrival of the workpiece, thus 
reducing the stability of scheduling.

(2) The processing machine load in the workshop is une-
ven. FJSP allows parts to be processed in one of the 
machines with processing capabilities, but if the pro-

Table 1  Comparison of optimal results under different algorithm 
parameters

(�, �) (1,1) (1,2) (1,3) (2,1) (2,2)

Optimal cost Z 4435 4404 4393 4418 4407
Carbon tax cost 4407 4105 3978 4272 4113

Table 2  Data of workpiece

No. Parent 
work-
piece

Name Code No. of 
process-
ing

Mission Work 
hours 
(m)

Department

1 – Cardan shaft TF022000-87 1 Assemble 50 Assembly one
2 1 Balance block assembly TF022000-87 1 Assemble 20 Assembly one
3 1 Flange fork assembly TF022013/012-87 1 Assemble 20 Assembly one
4 1 Sliding fork assembly TF022008/012-87 1 Assemble 20 Assembly one
5 1 Spline shaft fork assembly TF022011/012-87 1 Assemble 20 Assembly one
6 1 End cover TF022007-87 1 Assemble 25 Assembly two
7 1 Anti-off nut TF022009-87 1 Assemble 15 Assembly one
8 1 Lining tile TF022010-87 1 Roughcast 0 Processing second class

2 Rough car 8 Processing second class
3 Milling 18 Processing second class
4 Finishing car 20 Processing class
5 Cleanup. Lapping. Assembly 

welding
10 Small link class

9 4 Sliding fork TF022002-87 1 Roughcast 0 Processing second class
2 Rough car 40 Processing second class
3 Mark(1) 8 Processing class
4 Boring and milling inside 30 Processing second class
5 Drill 2 Processing class
6 Boring 12 Processing second class
7 Quenching and tempering 35 Heat treatment class
8 Finishing car 50 Processing class
9 Mark(2) 6 Processing class
10 Tensile spline 55 Processing second class
11 Grinding process surface 26 Processing second class
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duction scheduling plan remains unchanged, then some 
machines will slowly appear to be overloaded. While 
the idle rate of other parts of the machine is high.

(3) The parts such as shock absorber seat and casing pro-
cessed in this workshop can be processed on multiple 
machine tools, and the processing time varies with dif-
ferent processing machines and operators, which is a 
typical FJSP.

4.1  Comparison of the algorithms result

In order to verify the performance of the proposed method, 
this paper aims at minimizing the average completion time 
f1, minimizing carbon emissions f2 and minimizing the total 
cost f3. Taking the classic Kacem (Caijie et al. 2020) as an 
example, the design population size is 200, if the population 
size is too large, the running time will be lengthened, and 
the convergence effect will be unstable; if the population 
size is too small, it will obviously appear inbreeding and 
produce sick gene, which makes the population evolution 
unable to produce the expected number according to the 
pattern theorem. Experiments in literature (Ning et al. 2020) 
show that if the population number is 200, the convergence 
speed will be fastest and the performance of the algorithm 
will be the best. If the number of iterations is too small, 
the algorithm is not easy to converge, and the population 
is not mature; if the number of iterations is too large, the 
algorithm is already skilled or the population is too early to 
converge again, so it is meaningless to continue evolution, 
which will only increase the time expenditure and resource 
waste. When the number of iterations is 100 (Caijie et al. 

2020), the running time is the shortest and the convergence 
speed is the fastest, the maximum iteration number is 100. 
If the crossover probability is too small, the population can 
not be effectively updated. If the crossover probability is too 
large, the randomness increases. With the increase of the 
crossover probability, the convergence is not necessarily fast 
or slow, but the time cost will increase. When the crossover 
probability is 0.45, the convergence situation is better (Ning 
et al. 2020). If the mutation probability is too small, the 
diversity of the population will decrease too fast, which will 
easily lead to the rapid loss of effective genes and difficult to 
repair; if the mutation probability is too large, although the 
diversity of the population can be guaranteed, the probability 
of high-order mode being destroyed will also increase. When 
the mutation probability is 0.02, the convergence effect and 
optimal value are the best, and the time is better than the 
mutation probability of 0.01 (Ning et al. 2020).

Using IDCQGA to solve five kinds of scale standard 
problems of Kacem (4 × 5, 8 × 8, 10 × 7, 10 × 10, 15 × 10), 
and compared with the existing problems including CGA 
+,  PSO+ (particle swarm optimization) (Mishra and Shriv-
astava 2018) and  EDA+ and the data of comparison result 
is shown in Table 3. In Table 3, n represents the number of 
jobs, m represents the number of machines; rsx (x = 1, 2, 3, 
4) represents different solutions obtained by the algorithm; 
Tl represents the maximum completion time of the machine 
(unit: min); At represents the cost of the job (unit: CNY); Ct 
represents the total carbon emission of the machine (unit: 
kg). It can be seen from the results of solving five Kacem 
examples with different algorithms in Table 3. The IDC-
QGA proposed in this paper can obtain more non-dominated 
solutions, and the current optimal solutions are obtained in 
the examples. Taking the 10 × 7 problem as an example, 

Table 3  Comparison of Kacem 
of different algorithms

n × m Obj CGA + PSO+ EDA+ IDCQGA

rs1 rs2 rs1 rs2 rs1 rs2 rs3 rs1 rs2 rs3 rs4

4 × 5 Tl 15 10 10 11 12 10 10 11 10
At 33 31 30 30 32 30 29 30 31
Ct 45.2 45.2 45.2 40.6 38.4 45.2 40.6 40.6 40.6

8 × 8 Tl 14 15 14 14 13 14 15 13 14 14 13
At 78 74 76 74 75 74 72 74 74 72 74
Ct 62.5 62.5 60.7 60.8 60.8 60.7 62.5 60.4 60.2 62.5 59.8

10 × 7 Tl 11 10 11 11 10 10
At 60 60 59 59 61 59
Ct 55.4 58.2 58.2 55.1 50.6 58.2

10 × 10 Tl 6 6 7 5 6 6 5 6 5
At 44 42 40 41 40 40 39 40 40
Ct 25.6 28.2 28.2 25.4 25.4 28.2 25.5 25.4 28.2

15 × 10 Tl 22 10 10 10 9 9
At 94 92 89 90 89 90
Ct 52.3 52.1 51.8 51.8 51.3 48.8



798 T. Ning, Y. Huang 

1 3

although the  EDA+ and IDCQGA algorithms both get three 
non-dominated solutions: (11, 60, 55.4), (10, 60, 58.2), 
(11, 59, 58.2) and (11, 59, 55.1), (10, 61, 50.6), (10, 59, 
58.2), but the solution of  EDA+ algorithm (11, 60, 55.4) is 
dominated by the solution of IDCQGA algorithm, the solu-
tions (11, 59, 58.2) of  EDA+ algorithm are dominated by 
the solutions (11, 59, 55.1) and (10, 59, 58.2) of IDCQGA 
algorithm.

4.2  Performance test of algorithm

In order to test the performance of the improved IDCQGA in 
solving the low-carbon FJSP, MATLAB R2010b was used in 
the experiment, and the platform has 2.8 GHz Intel Core I6 
CPU and 4 GB RAM. The operation termination condition 
is up to 200 s. In order to reflect the influence of parameter 
optimization on carbon emission and maximum completion 
time, the parameters in literature (Sheremetov et al. 2018) 
are used in the experiment (as is shown in Table 4).

For the above example, CGA +,  EDA+ and IDCQGA 
were tested and run 50 times respectively. For the three 
algorithms, after obtaining the optimal scheduling plan for 
each test, the maximum completion time, maximum machine 
load, carbon emissions, and weighted targets corresponding 
to the plan were calculated respectively. The average value 
and standard deviation of the obtained results are shown in 
Table 5, and the figures of mean value and SD are shown in 
Figs. 4 and 5.

It can be seen from Table 5 that in 50 experiments, the 
standard deviation of the maximum load of IDCQGA is 
slightly higher than the standard deviation of  EDA+, but 
in comparison, the average and standard deviation of IDC-
QGA completion time are 7.9% and 55.3% better than CGA 
+. Compared with  EDA+, it is optimized by 1.79% and 3.2%. 
The average and standard deviation of IDCQGA carbon 
emissions are 3.1% and 79.4% better than CGA +. Compared 
with  EDA+, it is optimized by 0.8% and 56.7%. The mean 
and standard deviation of IDCQGA maximum load are 5.1% 
and 48.6% better than CGA +. The mean and standard devia-
tion of the IDCQGA weighted target are optimized by 8.9% 
and 54.5% compared to CGA +, and the mean is optimized 
by 5.1% compared to  EDA+, but the standard deviations of 
the three are the same. Therefore, for the three algorithms, 

IDCQGA has the best solution. The algorithm not only has 
better targets, but also has the smallest standard deviation. 
It shows that the efficient and improved IDCQGA algorithm 
designed in the study has the best convergence and stability 
in solving FJSP for low-carbon optimization.

The results of the analysis of variance for each target 
obtained by the three algorithms are shown in Tables 6, 7, 8 
and 9 and the corresponding figures can be seen in Figs. 6, 
7, 8 and 9:

As can be seen from Tables 6, 7, 8 and 9, there are four 
goals to be considered: maximum completion time, carbon 
emissions, maximum machine load, and weighted goals. The 
solution performance of different algorithms is statistically 
significant, that is, Sig < 0.05. The comparison of the three 
algorithms shows that the solution performance and robust-
ness of the IDCQGA algorithm are better than CGA + and 
 EDA+.

4.3  Comparison with other quantum genetic 
algorithm

In order to test the performance of IDCQGA and its 
improved strategy for solving low carbon flexible job shop 
scheduling, the performance of IDCQGA was compared 
with the popular classical quantum genetic algorithm of 

Table 4  Parameter setting of 
different algorithms

IDCQGA CGA + EDA+

Parameter Value Parameter Value Parameter Value

POP size 200 POP size 200 POP size 200
PR of selection 0.65 Gravitational coefficient 95 Dominant POP rate 11%
PR of cross 0.20 Adjustment coefficient 2 × uptime/total 

elapsed time
Learning rate 0.2

PR of mutation 0.04 \ \ \ \

Table 5  The mean value and standard deviation of each scheduling 
target

Algorithm Objective Average value SD

CGA + Makespan (m) 319.172 12.735
Carbon emission (kg) 228.502 2.788
Maximum load (m) 245.724 6.202
Weighted objective (%) 67.90 0.011

EDA+ Makespan (m) 299.398 5.886
Carbon emission (kg) 223.217 1.325
Maximum load (m) 233.392 3.002
Weighted objective (%) 65.20 0.005

IDCQGA Makespan (m) 294.053 5.698
Carbon emission (kg) 221.364 0.574
Maximum load (m) 233.163 3.185
Weighted objective (%) 61.89 0.005



799Low carbon emission management for flexible job shop scheduling: a study case in China  

1 3

HQGA (Jin et al. 2020). In this section, MATLAB R2010a 
was used to run the computer with 2.8 GHz Intel Core 
I5 CPU and 4 GB RAM. The algorithm was set to termi-
nate when the running time reached 900 s. The algorithm 

parameters were obtained from the literature (Ning et al. 
2020) (Psize = 80), the dominant population ratio was 10%, 
and the learning rate was 30%. The specific workpiece and 
lathe parameter data are shown in Table 2.

Fig. 4  The comparison of mean value of three algorithms

Fig. 5  The comparison of standard deviation of three algorithms
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In Matlab, the frontier solutions obtained by the algo-
rithm are shown in Table 10 and in the three-dimensional 
diagram composed of three objects (eg Fig. 10).There 
are ten real frontier solutions obtained by the synthesis 
of IDCQGA and HQGA, that is, on the basis of the nine 
solutions of IDCQGA, plus which obtained by HQGA of 
[291 228.08 225], the details are shown in Table 11.

It can be seen from Tables 10, 11 and Fig. 10 that all 
the nine frontier solutions obtained by IDCQGA enter 
the real frontier solutions, while only two of the seven 
frontier solutions obtained by HQGA enter the real fron-
tier solutions. Therefore, the performance of the multi-
objective IDCQGA algorithm can be improved through 
the double-stranded quantum algorithm and the introduc-
tion of compensation factor, which not only obtains more 
frontier solutions, but also improves the quality of frontier 
solutions.

On the basis of the above testing, the classical Solomon 
(Piroozfard et al. 2018) examples are used to compare IDC-
QGA with other variations of quantum genetic algorithm. 
There are six kinds of examples in Solomon, and one stand-
ard problem from each kind of examples is selected and 
executed for 20 times using IDCQGA. The efficiency will 
be verified through the comparison with existing QGA-
SVR (quantum genetic algorithm-support vector regression) 
(Deguang et al. 2020), ICQGA (improved cloud quantum 
genetic algorithm) (Yansong et al. 2020), CGA + and HQGA.

To verify the performance of the IDCQGA proposed in 

this paper. In the experimental environment set in this paper, 
benchmark tests (CEC2017 test function) are used to com-
pare the above three algorithms independently executed 20 
times to verify the feasibility and effectiveness of the pro-
posed algorithm. The benchmark test results are shown in 
Fig. 11.

This paper uses the benchmark test function 
(CEC2017) to test the performance of the algorithm 
proposed in this paper, which can have better algorithm 
performance evaluation indicators. At the same time, the 
test method is suitable for machine learning, combinato-
rial optimization, FJSS and other problems. At the same 
time, the FJSS problem designed in this paper is a non-
linear programming problem, which can be better adapted 
to the test function. It can be seen from Fig. 11 that the 
IDCQGA proposed in this paper converges to the optimal 

Table 6  ANOVA analysis of maximum makespan under different 
algorithms

Sum of 
squares

Expecta-
tion func-
tion

Mean square F-test Sig

Between 
groups

560.780 2 279.800 8.059 0.001

Within 
groups

3018.300 87 34.650

Total 3579.080 89

Table 7  ANOVA analysis 
result of carbon emission under 
different algorithms

Sum of squares Expectation 
function

Mean square F-test Sig

Between groups 816.509 2 407.638 117.338 0.000
Within groups 301.682 87 3.479
Total 1118.191 89

Table 8  ANOVA analysis result 
of maximum load of machine 
under different algorithms

Sum of squares Expectation 
function

Mean square F-test Sig

Between groups 4278.253 2 2139.204 107.273 0.000
Within groups 1733.938 87 19.838
Total 6012.191 89

Table 9  ANOVA analysis 
result of weighted targets under 
different algorithms

Sum of squares Expectation 
function

Mean square F-test Sig

Between groups 0.023 2 0.013 196.891 0.000
Within groups 0.006 87 0.000
Total 0.029 89
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solution in the 20th generation and the convergence speed 
of the proposed IDCQGA is faster than the other four 
algorithms obviously, moreover, it also has better global 
optimization capability.

Fig. 6  ANOVA analysis of maximum makespan

Fig. 7  ANOVA analysis result of carbon emission
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5  Conclusion

(1) An integrated optimization model of shop scheduling 
with the objective of minimizing carbon emissions 
and minimizing makespan in manufacturing process is 

proposed. According to the feature of multiple optimi-
zation parameters in the integrated model, the carbon 
emission equations, the optimized quantum genetic 
algorithm, the double-chain coding method and the 
non-dominant Pareto solution ordering method are 
designed to sort the population, and obtain good indi-

Fig. 8  ANOVA analysis result of maximum load of machine

Fig. 9  ANOVA analysis result of weighted targets
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viduals based on the quantum Hadamard gate muta-
tion strategy. Finally, through example verification and 
comparison with the three commonly used algorithms, 
each target value is obtained, and then the objective 
parameters are processed by the variance analysis. 
It shows that the integrated optimization model and 
improved quantum genetic algorithms proposed in this 
paper can effectively solve low-carbon shop scheduling 
problem.

(2) The possibility of improved quantum genetic algo-
rithm and shop scheduling integration optimization to 
further reduce carbon emissions in the manufacturing 
process is explored. During formulating the scheduling 

scheme, only performance indicators such as machine 
processing time are involved, and other environmental 
factors such as peak power of machine processing are 
not considered. When optimizing carbon emission con-
sidering machine energy consumption, the change of 
machine energy consumption power is not considered, 
and the influence of peak power is ignored. There is 
still a distance between the research results and practi-
cal application, and the research has some limitations. 
The next step is to design scheduling model with all 
feasible processing route to improve the practicability 
of the model.

Table 10  The frontier solution 
obtained with IDCQGA and 
HQGA

No. IDCQGA HQGA

Makespan Carbon mission Machine loader Makespan Carbon mission Machine loader

1 286 223.46 235 290 222.58 235
2 289 224.35 226 295 221.55 232
3 290 221.29 226 301 221.24 230
4 290 222.66 235 308 220.24 229
5 294 220.03 230 313 219.47 227
6 295 219.61 228 322 219.01 231
7 296 222.87 227 291 228.08 225
8 297 219.01 226
9 299 222.74 225

Fig. 10  3D graph of frontier solution obtained by IDCQGA and HQGA
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