
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2023) 14:497–509 
https://doi.org/10.1007/s12652-021-03309-3

ORIGINAL RESEARCH

A feature temporal attention based interleaved network for fast video 
object detection

Yanni Yang1 · Huansheng Song1  · Shijie Sun1 · Yan Chen1 · Xinyao Tang1 · Qin Shi1

Received: 27 October 2020 / Accepted: 1 May 2021 / Published online: 11 May 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Object detection in videos is a fundamental technology for applications such as monitoring. Since video frames are treated 
as independent input images, static detectors ignore the temporal information of objects when detecting objects in videos, 
generating redundant calculations in the detection process. In this paper, based on the spatiotemporal continuity of video 
objects, we propose an attention-guided dynamic video object detection method for fast detection. We define two frame 
attributes as key frame and non-key frame, then extract complete or shallow features, respectively. Distinct from the fixed 
key frame strategy used in previous studies, by measuring the feature similarity between frames, we develop a new key frame 
decision method to adaptively determine the attributes of the current frame. For the extracted shallow features of non-key 
frames, semantic enhancement and feature temporal attention (FTA) based feature propagation are performed to generate 
high-level semantic features in the designed temporal attention based feature propagation module (TAFPM). Our method is 
evaluated on the ImageNet VID dataset. It runs at the speed of 21.53 fps, which is twice the speed of the base detector R-FCN. 
The mAP decline is only 0.2% compared to R-FCN. Effectively, the proposed method achieves comparable performance 
with the state-of-the-arts which focus on speed.

Keywords Object detection in videos · Self-attention · Feature propagation · Key frame · Feature similarity

1 Introduction

Object detection in videos is a critical and challeng-
ing research field in object detection, which has received 
increasing attention in recent years. With the rapid develop-
ment of deep learning, the CNN-based detectors (Ren et al. 
2015; Dai et al. 2016; Cai and Vasconcelos 2018; Zhang 
et al. 2020) have become the main-stream object detection 
algorithms. The state-of-the-art object detection methods 
have been demonstrated to show improved detection per-
formance in accuracy. Since these existing studies mainly 
focus on detecting objects in single images, we define them 
as static detectors. However, compared to single images, vid-
eos include spatiotemporal information, that is, objects in 
video frames are continuous in temporal and spatial domains 
(Zhu et al. 2017b). Therefore, serious problems exist when 
using static detectors in video object detection. As shown 

in Fig. 1a, the features of consecutive frames in the video 
are similar. However, static detectors ignore the feature 
similarity and extract features for each frame, resulting in 
computational redundancy. On the other hand, as illustrated 
in Fig. 1b, video frames often suffer from the situations as 
object occlusion and motion blur, resulting in false posi-
tives. The state-of-the-art static detectors still cannot solve 
this accuracy degradation caused by the false positives. 
Therefore, the challenges of video object detection lie in 
computational redundancy and accuracy degradation bring 
by static detectors.

The key to solve the above challenges of computational 
redundancy and accuracy degradation is to exploit the spa-
tiotemporal information of the videos. Feature propagation 
is an effective technique in video object detection. It is an 
application of spatiotemporal information at the feature level 
and can be used for feature association between frames. Fea-
ture aggregation is another important technique in video 
object detection, which is mainly used to improve the fea-
ture of some frames. In order to address the challenge of 
accuracy degradation, the video object detection methods of 
FGFA (Zhu et al. 2017a), STMN (Xiao and Jae Lee 2018), 
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and STSN (Bertasius et al. 2018) apply feature aggrega-
tion to strengthen the features of deteriorated frames using 
nearby frames. FGFA predicts pixel-level features of using 
optical flow (Dosovitskiy et al. 2015) and aggregates nearby 
features to improve the feature quality for each frame. Based 
on pixel-level feature calibration of FGFA, MANet (Wang 
et al. 2018a) fuses instance-level to deal with occlusion. 
However, these accuracy-focused studies enhance detection 
accuracy relying on expensive CNN-based feature extraction 
networks, thus, leading to low detection speed.

For the problem of high computing complexity existing 
in accuracy-focused studies, an ideal solution is to apply fea-
ture propagation to reduce computing cost while maintaining 
detection accuracy. In video object detection methods, opti-
cal flow using motion information and the memory based 
technology Long Short Term Memory Network (LSTM) are 
often used to propagate features. For instance, DFF (Zhu 
et al. 2017b) extracts feature maps for sparse key frames, 
and estimate feature maps for other non-key frames by opti-
cal flow. Because the complexity of optical flow network 
(Dosovitskiy et al. 2015) is lower than that of convolutional 
network, the total detection time is reduced. However, since 
the motion of high-level feature pixels is quite different from 
that of image pixels, estimating high-level features using 
optical flow representing image pixel motion may introduce 

artificial error. In addition, a fixed key frame strategy is 
used in DFF, resulting in missed detections for newcomers 
in non-key frames. Research of Liu et al. (2019) proposes an 
interleaved framework to propagate and aggregate features 
through LSTM (Xingjian et al. 2015). Moreover, an adap-
tive key frame policy using reinforcement learning (Hasselt 
et al. 2016) is used to further improve results. However, the 
inherent defect of LSTM is that object memory remains after 
it has moved to a different position, resulting in the inability 
of LSTM to accurately align features. In addition, LSTM is 
more time consuming. Thus it is not an optimal choice to 
propagate features with LSTM.

Self-attention mechanism (Vaswani et al. 2017) is a fea-
ture learning method more commonly used recently in vision 
analysis. For instance, attention mechanism (Bahdanau et al. 
2015) is used for capturing long-range dependencies in Non-
Local (Wang et al. 2018b), where connections between two 
pixels within an image or inter-frame are established using 
attention. Compared with optical flow and LSTM, self-
attention mechanism directly calculates the correspondence 
between features, thus the attention-guided feature propaga-
tion method is more accurate and lightweight.

In this work, we focus on improving the video object 
detection speed by reducing the redundant computation in 
feature extraction while ensuring the detection accuracy. 

Fig. 1  Problems existing in video object detection caused by static detectors. a Duplicate extraction of similar features from neighboring frames. 
b False positives due to object blurring, occlusion, etc
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Based on the high similarity between features of nearby 
frames and attention-guided feature propagation, we pro-
pose a dynamic video object detection network with a 
transformable feature extracting process. The complete and 
lightweight feature extracting networks are designed for 
sparse key frames and dense non-key frames, respectively. 
The extracted features of key frames are high-level semantic 
features, which are suitable to generate detection results. 
The low-level features produced by the lightweight feature 
extracting networks have fast extracting speed, but cannot 
be fed to the detection network. Thus feature propagation is 
employed to establish semantic features for non-key frames. 
In order to propagate features accurately and quickly, a reli-
able and lightweight feature propagation method named 
feature temporal attention (FTA) is introduced based on 
self-attention. We use the self-attention mechanism in time 
domain to establish connections between two feature pixels 
inter-frame. In addition, a lightweight transform network is 
used to further improve semantic information of low-level 
features. Based on FTA, the temporal attention based fea-
ture propagation module (TAFPM) predicts the final features 
of non-key frames by the key frame features and the trans-
formed non-key frame features. Furthermore, in view of the 
fact that alternating frequency of complete and lightweight 
feature extracting networks is determined by key frame, we 
propose an adaptive key frame decision strategy using the 
similarity of low-level features from inter-frames. The inte-
gration of the TAFPM and key frame strategy leads to our 
video object network achieving comparable detection accu-
racy and greatly increases detection speed.

In summary, the contributions of this paper are as follows:

• We propose a new online dynamic video object detection 
network, which significantly improves detection speed by 
reducing redundant calculation in feature extraction.

• We introduce a lightweight attention-guided feature 
propagation method, which establishes an accurate con-
nection between inter-frame features.

• We design a new adaptive key frame decision strategy 
based on the low-level features to further balance detec-
tion accuracy and computing time.

• We verify the proposed detection network on the Ima-
geNet VID dataset, obtaining satisfactory detection per-
formance.

2  Related work

2.1  Object detection in images

Currently, CNN-based approaches are the leading object 
detection methods. Since generating default boxes rely on 
anchors, methods in Ren et al. (2015), Dai et al. (2016), Liu 

et al. (2016), Bochkovskiy et al. (2020) and Cai and Vascon-
celos (2018) are called anchor-based methods. In contrast, 
methods of CornerNet (Law and Deng 2020) and Centrip-
etalNet (Dong et al. 2020) are anchor-free methods. Anchor-
based methods fall in two categories: one-stage methods 
(Liu et al. 2016; Bochkovskiy et al. 2020) and two-stage 
methods (Ren et al. 2015; Dai et al. 2016; Cai and Vascon-
celos 2018). YOLOv4 (Bochkovskiy et al. 2020)is a state-
of-the-art one-stage method, which detects object by regres-
sion, and has a fast detection speed. However, compared 
with two-stage methods, the detection accuracy of one-stage 
methods is generally lower. Faster R-CNN (Ren et al. 2015) 
is the most representative two-stage method, which uses the 
idea of classification to detect objects. The extracted features 
are first used to propose possible regions, which are then 
classified to produce detection results. As a result, the Faster 
R-CNN is highly accurate, but time-consuming. R-FCN (Dai 
et al. 2016) increases the number of shared feature layers to 
101, which generates an increase in the computing speed 
compared with Faster R-CNN. Cascade R-CNN (Cai and 
Vasconcelos 2018) combines the cascade idea and the Faster 
R-CNN detection framework, thus improving the detection 
accuracy. CornerNet uses the idea of keypoint to handle the 
object detection problem. It generates the detection box by 
finding the top-left point and bottom-right point. Centripe-
talNet is based on CornerNet. For the accurate match of key-
points, CentripetalNet proposes a corner matching method 
based on centripetal shift, along with a cross-star deformable 
convolutional module.

Based on the characteristics of the above detection meth-
ods, the two-stage method with higher accuracy is more suit-
able for our study. Therefore, R-FCN with ResNet-101 (He 
et al. 2016) is chosen as the static detector in the proposed 
video object detection method.

2.2  Object detection in videos

Video object detection methods incorporate video-specific 
spatiotemporal information into static detectors to improve 
the detection performance. The Spatiotemporal information 
can be fused in the post-processing stage or inside the static 
detection network. The former study is called the box level 
method, and the latter belongs to feature level method.

Box level methods operate on detection boxes in time 
domain in post-processing stage. For example, Seq-NMS 
(Han et al. 2016) propose sequence NMS, by which boxes 
of adjacent frames are linked to box sequences to boost weak 
detections. Seq-NMS can be embedded in other video object 
detection methods to further improve the detection perfor-
mance. T-CNN (Kang et al. 2017b) utilizes box propaga-
tion to reduce false negatives, and introduces tracking to 
establish long-term connections of boxes. TCN (Kang et al. 
2016) designs a strategy to classify and re-score tubelet. 
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D&T (Feichtenhofer et al. 2017) computes cross-correla-
tion between features of adjacent frames to track the objects 
and forms tracklets, by which the inter-frame detections are 
linked to improve detection accuracy. By the proposed spa-
tiotemporal cuboid proposal network, method in Tang et al. 
(2018) link detections in short and long range to improve the 
classification quality. These box-level methods use complex 
post-processing to enhance detection accuracy and become 
time-consuming.

State-of-the-art methods for detecting object in videos are 
feature level methods, where feature propagation and aggre-
gation are usually applied to optimize detection structure. 
In the researches for boosting performance, it is a common 
operation to strengthen features by aggregating features from 
other frames, e.g., FGFA (Zhu et al. 2017a) and MANet 
(Wang et al. 2018a). The memory-guided method STMN 
(Xiao and Jae Lee 2018) aggregates feature by the proposed 
Spatial-Temporal Memory Module (STMM), and aligns 
feature with the MatchTrans module. STSN (Bertasius 
et al. 2018) uses deformable convolution to aggregate fea-
ture. Deng et al. (2019), Shvets et al. (2019) and Chen et al. 
(2020) aggregate features in the proposal-level. RDN (Deng 
et al. 2019) propagate and aggregate object relation over the 
supportive proposals. The aggregated features are then used 
to augment the feature of each reference object proposal. 
Shvets et al. (2019) proposes a temporal relation module to 
establish the similarities between inter-frame proposals and 
select proposals from nearby frame to strengthen the current 
proposals. In MEGA (Chen et al. 2020), the candidate box 
features of current frame are augmented by global and local 
information to achieve high accuracy. The above studies 
enhance detection accuracy at the cost of computing time.

Among the methods that consider speed and accu-
racy, (Zhu et al. 2018) combines the methods of DFF and 
FGFA, thus designs a common optical flow based detection 
framework for high detection performance. In addition, the 
proposed temporally-adaptive key frame scheduling also 
replaces the fixed key frame strategy in this work. TSSD-
OTA (Chen et al. 2019) temporally integrates multi-scale 
features by ConvLSTM. Moreover, attention mechanism 
is introduced to selects optimal features for memory mod-
ule ConvLSTM. Liu and Zhu (2018) proposes an efficient 
Bottleneck-LSTM to reduce computational cost in feature 
propagation. Later, Liu et al. (2019) designs a dynamic 
framework including multiple feature extractors and aggre-
gates features using the Bottleneck-LSTM. Yao et al. (2020) 
integrates detection and tracking at the object level. The 
real-time tracker updates detections and propagates the box 
features between frames. LSTM is then used to aggregate 
the object-level features. Jiang et al. (2020) uses the idea 
of fixed key frame and propagates features by the proposed 
attention-based module of Learnable Spatio-Temporal Sam-
pling (LSTS). From this collection of research of balancing 

detection speed and accuracy, feature propagation method 
and key frame strategy are key elements to reducing cal-
culating speed while ensuring accuracy. For accurate and 
fast feature propagation, we use self-attention mechanism 
as relation module to model inter-frame dependencies on 
features.

2.3  Key frame strategy

Key frame idea is used to select sparse frames to improve 
computational efficiency when processing a video. It plays 
an important role in video object detection, video behav-
ior recognition and video object segmentation. AdaFrame 
(Wu et al. 2019) proposes a framework to adaptively select 
relevant frames for fast video recognition. It uses a mem-
ory-agumented LSTM as the selector of the key frame. Li 
et al. (2018) and Xu et al. (2018) design lightweights CNN 
network to determine the key frames in video semantic 
segmentation.

In the existing research area of video object detection, 
most of the methods use fixed key frame strategies such 
as DFF, FGFA, MEGA, etc. Adaptive key frame strategy 
is adopted by methods in Liu et al. (2019) and Zhu et al. 
(2018). Zhu et al. (2018) defines key frame based on the out-
put of optical flow. The density of key frame in Chen et al. 
(2018) depends on propagation difficulty. Relying on rein-
forcement learning, key frame is selected in Liu et al. (2019) 
and Yao et al. (2020). From the observation, the adaptive key 
frame has been less studied in video object detection. We 
propose an effective and lightweight key frame strategy by 
leveraging the feature itself, creating a complete and efficient 
detection network.

3  Methods

We develop an attention-based dynamic framework for video 
object detection, by which the running time is reduced while 
maintaining detection performance. In this section, we pre-
sent the framework and implementation details. We first 
detail an overall outline of the framework. Then the princi-
ple of feature propagation and two component modules are 
introduced in detail: Feature temporal attention (FTA), tem-
poral attention based feature propagation module (TAFPM), 
and key frame decision module.

3.1  Overview

Our method is based on the well-known static detector 
R-FCN. As shown in Fig. 2a, two steps are required to 
produce detection results in the network of R-FCN. Input 
images are first fed into CNN-based feature extractor Nf  
to produce feature maps f, which are then used as inputs of 
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RPN to generate region proposals (RoIs). Finally, through 
position-sensitive RoI pooling layers and softmax layers, 
RoIs are processed to get the final detection results. Since 
undertaking the detection task, we define the subnetworks 
after Nf  as detection network Nd . Compared with Nd , Nf  is 
more time-consuming due to its multiple convolution oper-
ations. However, when a video sequence is served as the 
input, the output features of Nf  are similar for neighboring 
frames, as shown in Fig. 1a. This means that extracting 
features for each frame is not necessary for video object 
detection, and the feature similarity of adjacent frames can 

be used to solve the computational redundancy in video 
object detection.

We propose a dynamic video object detection net-
work to avoid the complex feature extraction for non-key 
frames. Moreover, based on the feature similarity, a key 
frame determination strategy is applied to further optimize 
the detection performance. Figure 2b illustrates the pipe-
line of the proposed dynamic framework. The key frames 
Ik and non-key frames It are defined by the key frame deci-
sion module, which is detailed in Fig. 4.

Fig. 2  Pipeline of the proposed video object detection method. Key 
frame decision module defines the properties (key or non-key) of 
each input frame. Key frame features are extracted via the complete 
feature network (ResNet-101). The lightweight low-level feature net-

work and feature propagation module is designed for extracting and 
producing non-key frame features. Detection network is the same for 
each frame. It takes semantic features as input and outputs detection 
results
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In this paper, we divide the original Nf  into a low-level 
feature network Nl

f
 and high-level feature network Nh

f
 . Output 

features f l of the lightweight Nl
f
 contain more detailed infor-

mation. Semantic information of images needed in object 
detection is mainly reflected in the output features f h of Nh

f
 . 

For key frames Ik , Nf  is used to extract both low-level features 
f l
k
 and high-level features f h

k
 , that is, the final detection results 

of Ik are given by the complete R-FCN.
We define the starting frame of each input video as the first 

key frame. For each current frame, f l
t
 is first extract by Nl

f
 . 

Then, f l
k
 and f l

t
 act as inputs for the key frame decision module 

to determine whether the current frame is the next key frame. 
If the current frame is a non-key frame, no high-level features 
are extracted. Given that the extracted low-level features f l

t
 are 

less semantic for later detection tasks, feature semantic 
enhancement handling is designed to produce approximate 
high-level feature f happrt  . Then the proposed feature temporal 
attention (FTA) acted on f h

k
 and f happrt  to produce the propa-

gated high-level feature of non-key frame f h
t
 , which are fol-

lowed by Nd to generate the detection results.

3.2  Feature temporal attention

Self-attention can assign weights to each feature unit through 
autonomous learning between feature maps, thereby extracting 
more useful feature maps. We use self-attention in the time 
domain, and propose feature temporal attention (FTA), by 
which high-level feature maps of key frames are propagated 
to non-key frames. FTA propagate feature through three steps. 
We first calculate the similarity between pairs of feature maps, 
and then normalize the similarity matrix to generate corre-
sponding weights, based on which the propagated features are 
eventually produced.

We define the feature maps of frames Ik and Ik+� as Fk and 
Fk+� , respectively, and both features have a size of N ∗ W ∗ H . 
The similarity matrix of the two feature maps is calculated by 
the dot-production function, as shown in Eq. (1):

where Fi
k
 represents an arbitrary position of Fk , similarly, 

F
j

k+�
 corresponds to Fk+� . f (⋅) refers to the dot-produc-

tion function, and the dimension of the output features is 
WH ∗ WH . �(Fi

k
) and �(Fj

k+�
) are two embedding functions 

with the same processes. They are defined in Eq. (2):

where W� and W� represent the same feature transformation 
for Fi

k
 and Fj

k+�
 , respectively. Taking W� as an example, first 

features Fk are convolved with the convolutional kernel of 
(N∕8) ∗ 1 ∗ 1 to generate the intermediate features, which 

(1)f (Fi
k
,F

j

k+�
) = �(Fi

k
)T�(F

j

k+�
)

(2)
{

�(Fi
k
) = W�Fi

k

�(F
j

k+�
) = W�F

j

k+�

are then unfolded into a feature matrix with resolution of 
(N∕8) ∗ WH.

Since the similarity matrix f (Fi
k
,F

j

k+�
) is used as a weight 

in self–attention mechanism, we normalize it with the soft-
max function to construct the attention map attj,i of Fk and 
Fk+�:

where attj,i represent the attention to Fi
k
 when generating 

F
j

k+�
 . n indicates pixel number of Fk+� after embedding, that 

is, all possible positions of j, n = (N∕8) ∗ WH.
According to attention map attj,i and Fk , the propagated 

feature map Fjpro

k+�
 of Ik+� can be estimated with Eq. (4):

where n is all possible positions of i, n = N∕8 ∗ WH  . 
Through 1*1 convolution again, Fpro

k+�
 is transformed into 

the same dimension as the extracted feature map Fk+� . F
pro

k+�
 

is represented by Eq. (5):

where m is the position number of Fpro

k+�
 , and which dimen-

sion is N ∗ W ∗ H . Therefore, through the rule of FTA, we 
propagate feature map of Ik to Ik+�.

3.3  Temporal attention based feature propagation 
module

Until this point, we have elaborated the basis (FTA) of fea-
ture propagation, that is how to update feature Fk+� based 
on feature Fk . In FTA, the same-level features of two related 
frames are required. However, in our study, only low-level 
features are extracted in non-key frames for fast detection. 
Therefore, we propose a temporal attention based feature 
propagation module (TAFPM) to fix the feature propagation 
problem in this paper.

Next, we detail how to use high-level features of key 
frame f h

k
 and low-level features of non-key frame f l

t
 to 

obtain the high-level features of non-key frames. Since the 
high-level features used in subsequent detection network Nd 
express semantic information, which happens to be lacking 
in f l

t
 , we design a lightweight network Nl for f l

t
 to enhance 

semantic information. The resulting features are the approxi-
mate semantic features f happrt .

The structure of Nl is shown in Fig. 3. A convolu-
tion layer with a 1*1 kernel is first used to reduce the 
feature channels. In addition, the network includes two 
3*3 convolutional layers with 512 and 1024 channels, 

(3)attj,i =
exp(f (Fi

k
,F

j

k+�
))

∑n

j=1
exp(f (Fi

k
,F

j

k+�
))

(4)F
jpro

k+�
=

n∑

j=1

(attj,i ⋅ F
i
k
)

(5)F
pro

k+�
= (F

1pro

k+�
,F

2pro

k+�
,… ,F

jpro

k+�
,…F

mpro

k+�
)
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respectively. The output feature maps f happrt  have the same 
dimensions as f h

k
 to ensure the implementation of feature 

propagation.
Feature propagation from key frame to non-key frame 

is performed based on FTA. We take f h
k
 and f happrt  as inputs 

of FTA:

where f h
k
 are the extracted high-level features of key frames, 

and f happrt  are the outputs of semantic enhancement handling 
of non-key frames.

After defining the inputs of FTA, through Eqs. (1)–(5), 
the output f hprot are calculated as the propagated high-level 
features of non-key frame, which can be sent to Nd to 
produce the detection results of non-key frame.

(6)

{
Fk = f h

k

Fk+� = f
happr
t

3.4  Key frame decision module

The key frame module is a switching device for the proposed 
dynamic network. Feature similarity of video frames is the 
basis of the key frame module. Due to object emergence, dis-
appearance, or change in appearance, feature maps of video 
frames will change with time. Research (Shelhamer et al. 
2016) proves that, compared with semantic feature layers, 
intermediate layers can better reflect the changes in video 
frames. In this paper, we design an adaptive key frame decision 
method from the perspective of measuring low-level feature 
similarity.

As shown in Fig. 4, the module takes the previous key 
frame and current frame as inputs, and outputs feature simi-
larity. The size of low-level features of previous key frame 
f l
k
 and current frame f l

t
 are defined as N ∗ W ∗ H . We first 

convolve f l
k
 and f l

t
 with 1*1*1 convolution kernel to reduce 

their feature channels to 1 , respectively. The resulting features 
are then unfolded into feature vectors with the size of 1 ∗ WH . 
The previous key frame and current frame feature vectors are 
denoted by vl

k
 and vl

t
 . Cosine similarity is used to calculate 

the similarity of these two feature vectors, so the similarity 
parameter sk,t of vl

k
 and vl

t
 is obtained by Eq. (7):

where ai
k
 is an element of feature vector vl

k
 , ai

t
 belongs to 

feature vector vl
t
 , 0 < i < W ∗ H . ‖⋅‖ denotes 2-norn.

Through sk,t , the properties (key frame or non-key frame) of 
the current frame can be defined according to Eq. (8):

(7)sk,t =
ai
k
⋅ ai

t

‖‖‖a
i
k

‖‖‖
‖‖ait‖‖

(8)Kt =

{
1, sk,t ≥ 𝜎

0, sk,t < 𝜎

Fig. 3  The lightweight network for feature semantic enhancement 
handling. It takes low-level features ( f l

t
 ) as input and outputs the esti-

mated features f happrt  suitable for FTA

Fig. 4  Our key frame decision strategy. We process low-level features ( f l
t
 ) to obtain feature similarity, which is used as the basis for determining 

key frames
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where Kt stands for the indicator of key frames. The current 
frame t is a key frame when Kt = 1 , otherwise, the value 0 
means a non-key frame. � represents the threshold of sk,t , and 
� = 0.94 . The optimal value 0.94 is obtained by analyzing 
the influence of sk,t on accuracy and running time, which is 
detailed in the second part of the Experiment.

Figure 5 shows an example variation curve of similarity 
parameter sk,t with frame number. The first red point is the 
first frame of the video and is selected as the first key frame. 
The next six red points are the key frames selected by the 
proposed method. It is observed that frame difference of 
adjacent key frames is different. Also, non-key frames that 
farther away from the previous key frame has a smaller sk,t.

4  Experiment

In this section, we evaluate our method on the ImageNet 
VID dataset, displaying the experimental results both quali-
tatively and quantitatively. All the experiments are on the 
computer equipped with a single GPU (NVIDIA GeForce 
GTX 1080 Ti) and 12 CPU (Intel i7-6800K), 32G RAM.

4.1  Experiment setup

4.1.1  Dataset and evaluation metric

The ImageNet VID dataset (Russakovsky et al. 2015) is the 
most preventative dataset for video object detection now. 
There are 5354 videos in the dataset, containing 3862 on 
training set, 555 on validation set, and 937 on testing set. 
The frames of training set and validation set are fully anno-
tated. The 30 categories in VID dataset are a subset of the 
200 categories in the DET dataset. The data of each category 

in VID dataset is imbalance. Additionally, sample quality of 
VID is poor than that of DET. Therefore, like most previous 
VID methods, we train detection model on the mixture of 
VID and DET (using the same category as VID). We sam-
ple 10 frames from each video in VID dataset and up to 2K 
images per class from DET dataset to compose our training 
set. As with the other video object detection research (Wang 
et al. 2018a; Zhu et al. 2017b), the detection performance is 
tested on the validation set.

Average precision (AP) and mean average precision 
(mAP) are the most widely used metrics in object detec-
tion. AP is defined as the mean precision corresponding to 
11 recall values, which are produced by equally taken 10 
points on the horizontal axis [0, 1] on the Precision-recall 
(PR) curve. We select AP and mAP to evaluate the accuracy 
of our method. Runtime is expressed in frames per second 
(fps). In experiments, following R-FCN, 0.5 is applied to 
the IoU threshold between RPN proposals and ground truth.

4.1.2  Implementation details and training

In our study, R-FCN is selected as the static detector. For 
feature extraction, we use ResNet-101 pre-trained on the 
ImageNet as our backbone network Nf  . The convolution 
layer res4b3 is defined as the boundary between Nl

f
 and Nh

f
 . 

Layers up to res4b3 belong to Nl
f
 , and the higher layers are 

Nh
f
.
The detection model is trained end-to-end with Stochastic 

Gradient Descent (SGD). During training, a sample consists 
of two frames, which are randomly sampled within a certain 
range in VID. The former acts as key frame and the latter is 
non-key frame. In order to produce samples with the same 
form as in VID, we replicate sampled images of DET once. 

Fig. 5  Example variation of feature similarity. The red circles represent key frames. Between two key frames, feature similarity of key frame and 
current frame gradually decreases as the frame number increases
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Iteration is set to be 120K, with learning rates of 10−3 and 
10−4 in the first 80K and last 40K iterations, respectively. In 
both training and testing, input frames are resized such that 
their shorter side is 600 pixels.

4.2  Ablation study

4.2.1  Parameter analysis

Similarity threshold � is an important parameter for key 
frame strategy. It determines the density of key frames and 
has a significant impact on detection accuracy and speed. 
We investigate the influence of � on detection accuracy and 
running time, and display the results in Fig. 6. As � rising, 
key frames become denser, detection accuracy increases, but 
runtime decreases. When � takes the maximum value 1, each 
frame is a key frame and complete features are extracted. 
Thus the proposed detector is equal to the static detector. 
Conversely, lower � produces sparse key frames, thus causes 
lower detection accuracy but faster running speed. Moreover, 

referring to the two curves, accuracy decreases slowly in ini-
tial stage, while the running time increases slowly in later 
stages. Since feature difference between frames is mainly 
caused by objects, the difference has a limit, which corre-
sponds to the minimum value of feature similarity. When 
� is too low, key frames are too sparse, and most frames 
detecting objects according to the inaccurate propagated fea-
tures, resulting in a sharply drop in accuracy. Based on above 
analysis and tradeoffs of accuracy and speed, we eventually 
choose 0.94 as the optimal �.

4.2.2  Tradeoffs of accuracy and speed

Table 1 shows the accuracy results of our method and the 
base detector R-FCN on the ImageNet VID dataset. We 
obtain an mAP of 73.7%, which is just 0.2% lower than the 
base detector, compared with 73.9% produced by R-FCN. 
This demonstrates that the proposed FTA based feature 
propagation method causes a slight decline in accuracy 
while accelerating processing speed. In addition, our AP 
is higher than R-FCN in several categories (e.g., bear, bus). 
The result is mainly due to the inter-frame association 
established at the feature-level. The extracted features are 
replaced with propagated features in non-key frames, thus 
avoiding detection failures on deteriorated non-key frames. 
This illustrates the necessity of inter-frame feature propaga-
tion in video object detection.

Since operation of detection network and post-pro-
cessing are the same for each frame in our method, the 
total running time depends on the feature extracting time. 
Therefore, we analyze feature extracting times for both 
keys and non-key frames, as shown in Table 2. Input 
frames are preprocessed into 600*1000. Compared to 72 
ms used in extracting complete features in key frames, 
it takes 12 ms extracting low-level features in non-key 
frames, which is five times lower than in key frames. The 
proposed key frame module and feature propagation mod-
ule take 2 ms and 6 ms, respectively. Therefore, in non-
key frame, we consume 20 ms to produce features avail-
able for object detection, which is less than 1/3 of key 

Fig. 6  Influence of feature similarity threshold � on detection accu-
racy and running time

Table 1  Average precision (in %) of our method and the base detector on the ImageNet VID dataset

Methods Airplane Antelope Bear Bicycle Bird Bus Car Cattle Dog Domestic

R-FCN (Dai et al. 2016) 88.5 79.2 83.4 69.9 73.2 78.6 56.0 62.1 69.2 80.5
Ours 88.1 79.0 83.8 69.5 73.1 78.7 55.9 61.8 68.7 80.1
Methods elephant fox giant panda hamster horse lion lizard monkey motorcycle rabbit
R-FCN (Dai et al. 2016) 77.1 86.6 79.8 87.8 73.7 49.2 77.5 51.4 79.9 66.2
Ours 77.4 86.3 79.8 87.4 74.1 49.1 77.7 51.0 79.2 66.0
Methods Red panda Sheep Snake Squirrel Tiger Train Turtle Watercraft Whale Zebra mAP
R-FCN (Dai et al. 2016) 78.8 58.8 70.2 55.8 90.1 82.6 79.4 67.5 73.1 90.6 73.9
Ours 78.3 58.6 70.5 55.4 89.2 82.5 79.3 67.3 73.9 89.9 73.7
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frame. These results indicate that the proposed temporal 
attention based feature propagation module (TAFPM) 
demonstrates improvement in the speed of feature pro-
cessing for non-key frames.

In order to verify the performance of our key frame 
strategy, we compare our strategy with the fixed key 
frame strategy. As shown in Table 3, when using the pro-
posed adaptive key frame strategy, the mAP is 73.7%, 
which is 0.4% higher than using fixed key frame strat-
egy. Similar results are achieved in terms of runtime, 
and our runtime is 0.81 fps higher than the fixed key 
frame strategy. This is because the fixed key frame strat-
egy determines the properties of current frame based on 
frame difference, and the inter-frame feature variations 
are not taken into account. Therefore, large object appear-
ance changes and emerging objects cannot be detected in 
time, resulting in a failure to detect the involved objects. 
Our adaptive key frame strategy effectively makes up for 
this deficiency. The enhancement in accuracy and speed 
proves that the proposed adaptive method is an improve-
ment to the fixed key frame strategy.

4.2.3  Comparison with the state‑of‑the‑art

Comparison with the state-of-the-art object detectors is 
reported in Table 4. Our method outperforms Faster R-CNN 
in both accuracy and runtime. We achieve 21.53 fps, which 
is about 3 times higher than Faster R-CNN. Unlike the com-
parable accuracy of our method and R-FCN, our processing 
speed is twice as fast as R-FCN. Among the compared video 
object detectors, due to using multi-frame feature aggrega-
tion to enhance feature quality, the accuracy-focus meth-
ods of FGFA, MANet, and STSN produce higher detection 
accuracy. However, the complex feature operations make 
detection speed of these detectors lower than that of DFF 
and TSSD-OTA. As a result, video object detectors (FGFA, 
MANet, and STSN) that focus on improving accuracy sac-
rifice speed for accuracy.

The optical flow based method DFF shares the same 
research focus and static detector as ours. Compared to the 
73.1% mAP of DFF, we observe a 0.6% mAP improvement 
brought by the FTA and adaptive key-frame strategy. Our 
runtime is also 1.28 fps faster than DFF. The accuracy and 
runtime results prove than the proposed FTA based feature 
propagation method outperforms optical flow. In order to 
realize real-time processing, TSSD-OTA adopts a light-
weight base network VGG16 (Simonyan and Zisserman 
2015) and one-stage base detector SSD. TSSD-OTA runs 
at roughly the same speed as our method, but its mAP is 
8.4% lower than ours. Since using the time-consuming Fast 
R-CNN (Girshick 2015) and LSTM, TPN has the lowest 
computing speed among these video object detection meth-
ods, and its mAP is 5.3% lower than the proposed method.

Figure 7 visualizes the qualitative detection results of the 
proposed method on the ImageNet VID validation dataset. 
We show six scenes. Scene 1 corresponds to the first row 
of images, and thus the sixth row is Scene 6. It can be seen 
from Scene 1 that the direction of the red car changes sig-
nificantly (from an initial right front direction to a positive 
front direction, and finally a left front direction), our method 
successfully detects the car in all directions. In the remaining 

Table 2  Feature processing time (in ms) for key and non-key frames

Key frame Non-key frame Feature 
extrac-
tion

Key 
frame 
selecting

Feature 
propaga-
tion

Total

✓ 72 2 74
✓ 12 2 6 20

Table 3  Performance comparison of fixed and adaptive key frame 
stretagy

Feature 
propagation

Fixed strat-
egy ( L = 10)

Adaptive 
strategy

mAP (%) Runtime (fps)

✓ ✓ 73.3 20.72
✓ ✓ 73.7 21.53

Table 4  Accuracy and runtime comparison with state-of-the-arts on the ImageNet VID validation set

Methods Base network Base detector Principle of feature propagation  mAP (%) Runtime (fps)

Faster R-CNN (Ren et al. 2015) ResNet-101 Faster R-CNN 73.4 5.61
R-FCN (Dai et al. 2016) ResNet-101 R-FCN 73.9 10.31
FGFA (Zhu et al. 2017a) ResNet-101 R-FCN Optical flow 76.3 1.36
MANet (Wang et al. 2018a) ResNet-101 R-FCN Optical flow 78.1 4.96
STSN (Bertasius et al. 2018) ResNet-101 Deformable R-FCN Deformable convolution 78.9
TPN (Kang et al. 2017a) GoogLeNet Fast R-CNN LSTM 68.4 2.1
DFF (Zhu et al. 2017b) ResNet-101 R-FCN Optical flow 73.1 20.25
TSSD-OTA (Chen et al. 2019) VGG-16 SSD LSTM 65.4 21.00
Ours ResNet-101 R-FCN Attention 73.7 21.53
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four scenes (Scene 3 with small objects and Scene 4 a com-
plex scene), our method also detects objects accurately. For 
the case of large scale variation and occlusion in in Scene 6, 
our method is successful in detecting the car.

5  Conclusion

This paper aims at fast video object detection while ensur-
ing detection accuracy. We propose an attention-guided 
dynamic video object detection method, by which com-
plete and low-level features are extracted for the defined 
key frames and non-key frames, respectively. The complete 
features of key frames can be used for detection tasks. For 
non-key frames, the semantic information of low-level fea-
tures is first enhanced through a lightweight network. Then, 
based on the proposed feature temporal attention (FTA), we 
propagate feature from key frames to non-key frames to pro-
duce the final features for detection. Furthermore, According 

to the feature similarity between frames, we design a new 
adaptive key frame decision method, which is served as the 
selection criteria for the two feature extraction processes. 
We demonstrate that our method offers a speed advantage 
while maintaining accuracy compared to the base detector. 
It is also competitive with the state-of-the-arts that focus on 
fast video object detection.

In the future, we will continue to study the algorithms 
of object detection in videos. We plan to further optimize 
the key frame decision method. The problem of key frame 
decision is to determine the interval between two adjacent 
key frames. Referring to the Keyframe Scheduling in Yao 
et al. (2020), the interval of key frames can be set to shorten 
interval, long interval, and mean interval, which correspond 
to fast change, slow change, and mean change of the objects, 
respectively. In this way the key frame decision problem 
can be viewed as a multiple attribute decision-making 
problem. Since the success of spherical fuzzy sets (SFSs) 
(Ashraf et al. 2019; Jin et al. 2019) and picture fuzzy sets 

Fig. 7  Example detection results of our method on the ImageNet VID validation dataset. The images in each row belong to one scene. For each 
scene, we sample one frame every 5 frames and display its detection results. Our method achieves satisfactory results in these scenes
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(PFSs) (Qiyas et al. 2020) in the field of decision-making, 
we will explore using the improved concept (e.g. linguistic 
picture fuzzy Dombi (LPFD) aggregation operators (Qiyas 
et al. 2019a) and Triangular picture fuzzy linguistic induced 
ordered weighted aggregation operators (Qiyas et al. 2019b)) 
to solve our key frame decision problem.
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