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Abstract
Convolutional neural network (CNN) models have been used extensively in many image recognition tasks for their state-
of-the-art performance in recent years. Researchers inspired by this success frequently prefer CNNs in the agricultural 
field, especially for disease detection and classification. Many CNN models have been proposed for plant leaf diseases and 
impressive performance results have been obtained. On the other hand, standard CNNs usually need millions of parameters 
in the network for computation, but it is difficult to implement them on embedded and mobile devices with limited resources. 
Therefore, it is important to obtain lighter models by decreasing the number of parameters in addition to the high perfor-
mance of the models. In this paper, a new hybrid CNN approach based on Inception architecture and depthwise separable 
convolutions is proposed to reduce the number of parameters and computational cost for plant leaf disease detection and clas-
sification. Although the number of parameters is significantly reduced, the results show that the proposed approach has high 
accuracy performance. The proposed hybrid model has been trained and tested with k-fold cross-validation using a dataset 
of 50,136 images containing 30 classes from 14 different leaves, including healthy and diseased ones. The new model has 
achieved the best accuracy of 99.27% and an average accuracy of 99%, and provides about a 75% reduction in the number 
of parameters compared to the standard CNN.

Keywords Convolutional neural network · Computation cost · Depthwise separable convolution · Inception · Plant leaf 
disease detection

1 Introduction

Deep learning implies artificial neural networks, which, 
unlike standard neural network architectures, include numer-
ous processing layers. Deep learning approaches have seen 
significant improvements in recent years. CNNs are the most 
popular of deep neural networks because of their great suc-
cess in the classification of large-scale image datasets (Jin 
et al. 2019). In recent years, they have achieved excellent 
performance and state-of-the-art results in many fields, such 
as image classification and clustering and pattern recogni-
tion applications. They have drastically changed traditional 
image processing methods, and in this respect, have become 
increasingly popular in many image processing applications. 
It is possible to extract the appropriate features from training 

datasets automatically with CNNs instead of relying on man-
ual feature extraction (Ma et al. 2018). Various studies have 
made significant improvements in classification accuracy 
by trying different filter sizes or different network depths 
in CNN models. In particular, AlexNet (Krizhevsky et al. 
2012), VGGNet (Simonyan and Zisserman 2014), Inception 
(Szegedy et al. 2015), and ResNet (He et al. 2016) are some 
of the popular CNN architectures.

Recent studies on leaf diseases show that plant diseases 
affect the growth and crop yield of the plants. This problem 
causes social, ecological, and economic impacts on agricul-
ture. Detection and classification of plant leaf diseases are 
important issues in agricultural research. The detection is 
traditionally carried out by human experts. Human experts 
identify diseases visually, but they face some difficulties 
that may harm their efforts. This approach is common in 
practice, but it is error-prone and expensive in terms of time 
and labor usage (Barbedo 2016). There are studies in the 
literature to automate detection and classification. However, 
the solutions proposed so far suffer from limitations due 
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to the methods used and datasets. As in many fields, deep 
learning-based approaches also in the agriculture field are 
extensively explored in recent years. The image classifica-
tion solutions based on CNN have been successfully applied 
to plant leaf disease detection, crop, fruit classification, and 
weed identification in the agricultural field (Kamilaris and 
Prenafeta-Boldú 2018).

Real-time object detection applications on embedded or 
mobile devices are becoming increasingly popular using 
deep learning algorithms. Due to the fact that CNN-based 
algorithms can be employed on these devices in recent 
years, it has become easier and more practical to detect 
plant leaf diseases in real-time in agricultural areas. How-
ever, the resources on embedded devices are limited such 
as computing capability and storage capacity. The number 
of parameters used in a network and the computation cost 
vary depending on the size and complexity of the problem. 
CNNs usually need millions of parameters in the network 
for computation. Therefore, they have large computational 
complexity and are difficult to deploy on embedded devices 
with limited resources (Zhang et al. 2019a). As the number 
of parameters in the network increases, it is very important 
to reduce computation cost for real-time applications.

This paper proposes a hybrid deep learning architecture 
with fewer parameters for the detection and classification of 
different plant leaves. The Inception architecture and depth-
wise separable convolutional neural network have been com-
bined, and the hyper-parameters have been tuned to achieve 
higher accuracy. The proposed model provides an advantage 
over standard CNN by reducing the number of parameters 
and computational complexity. The model has been trained 
using the PlantVillage (Hughes and Salathé 2015) dataset 
of 50,136 images containing 30 classes from 14 different 
leaves, including healthy and diseased ones, and the perfor-
mance results are presented herein. The main contributions 
of this study are summarized as follows:

– A new architecture has been designed that gives high-
performance results, by also avoiding overfitting problem 
for leaf diseases rather than pre-trained architectures.

– A hybrid approach is presented by combining the parallel 
structure of the Inception architecture and the advantage 
of depthwise separable convolutions.

– The proposed architecture is lighter with fewer param-
eters and faster compared to standard CNNs.

– The proposed architecture, which significantly reduces 
the number of parameters, can be implemented for real-
time object detection applications on embedded and 
mobile devices with limited resources.

– Performance results show that although the proposed 
approach uses fewer parameters, it has the same success 
rate as other studies in the literature that offer high accu-
racy.

The rest of the paper is organized as follows: related works 
carried out on the agriculture field using CNN models are 
given in Sect. 2. In this section, studies also with depthwise 
separable convolutions are presented. Section 3 presents the 
materials and methods to accomplish the task of the pro-
posed architecture. Experimental results are shown and dis-
cussed in Sect. 4, and the conclusion is presented in Sect. 5.

2  Related works

The literature has some studies on deep learning models 
developed for plant leaf disease detection. Most of the stud-
ies employ pre-trained, general-purpose models and some of 
them propose a modified version of standard CNN models 
to classify diseased leaves.

The pre-trained, general-purpose image recognition CNN 
architectures VGG, AlexNet, AlexNetOWTBn, Overfeat, 
and GoogLeNet were tested for their ability to identify plant 
diseases and compared by Ferentinos (2018). Pawara et al. 
(2017) presented a comparative study of different image 
recognition techniques, such as AlexNet and GoogLeNet, 
on three different plant leaf dataset. For their part, Lee et al. 
(2017) introduced a hybrid global-local feature extraction 
model for leaf data based on pre-trained CNN models and 
a deconvolutional network. In the research conducted by 
Durmuş et al. (2017), they trained and tested the AlexNet 
and SqueezeNet pre-trained network architectures on a data-
set of tomato images. In their study, Zhang et al. (2018) 
presented modified versions of the GoogLeNet and Cifar10 
models for maize leaf disease recognition. The models have 
been carried out with different pooling combinations and 
dropout operations. Rangarajan et al. (2018) used pre-trained 
deep learning architectures namely VGG16 and AlexNet 
for classifying tomato crop diseases with the images from 
the PlantVillage dataset including 6 diseases and a healthy 
class. 13,262 tomato images were used in the study and 
classification accuracy was 97.29% for VGG16 and 97.49% 
for AlexNex. Mohanty et al. (2016) trained AlexNet and 
GoogLeNet to recognize 14 crop species and 26 diseases. 
Too et al. (2019) reported a comparative study of four dif-
ferent convolutional neural network models including VGG 
16, Inception V4, ResNet with 50, 101, and 152 layers, and 
DenseNets with 121 layers. They used the models for the 
classification of plant diseases consist of diseased classes 
and 14 healthy classes taken from the PlantVillage dataset. 
In the paper by Rangarajan Aravind and Raja (2020), the 
disease classification system was proposed for ten differ-
ent diseases of four varieties of crops. AlexNet, VGG16, 
VGG19, GoogLeNet, ResNet101, and DenseNet201 which 
are the pre-trained deep learning models were evaluated. 
From comparisons, it was stated that GoogleNet had the 
best with 97.3% accuracy. Chen et al. (2020) studied the 
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transfer learning approach for plant leaf disease identifica-
tion using pre-trained VGGNet and Inception architectures. 
They modified the pre-trained VGGNet by replacing its last 
layers with an additional convolutional layer and indicated 
that their approach reached an average accuracy of 92% for 
the classification of rice plant images. Hu et al. (2019) used 
VGG16 deep learning model to identify the tea leaf’s dis-
eases, and indicated that the model reached an accuracy of 
90%. In sum, these papers employed various well-known, 
pre-trained models as opposed to proposing a new CNN 
architecture, and most of these studies have focused on high 
detection accuracy, but there are not enough lighter models 
with less computation cost and time for embedded devices.

On the other hand, Lu et al. (2017) carried out a model for 
detection of rice diseases based on CNN. They indicated that 
their model could classify ten common rice diseases through 
image recognition, and their model achieved an accuracy 
of 95.48%. They compared their model with traditional 
machine learning algorithms, such as the standard back 
propagation algorithm, support vector machine, and particle 
swarm optimization. Ma et al. (2018) proposed symptom-
wise recognition of four cucumber diseases based on a CNN 
model. The accuracy results of their system on unbalanced 
and balanced datasets were 93.4% and 92.2%, respectively. 
Zhang et al. (2019b) proposed a vegetable disease recogni-
tion approach based on three-channel CNN (TCCNN). The 
research by Sardogan et al. (2018) proposed the detection 
and classification of tomato leaves based on CNN with the 
learning vector quantization (LVQ) algorithm. Their CNN 
model used only one filter, and the fully connected layer 
was implemented using the LVQ algorithm. Huynh et al. 
(2020) proposed a CNN model for leaves classification and 
the leaf pre-processing extract modified for the red color 
channel was based on vein shape data. They used Flavia and 

the Swedish dataset and reported that their model was effec-
tive with the best accuracy greater than 98.22%. Kaya et al. 
(2019) demonstrated the effect of the four transfer learning 
models for deep learning based on plant classification. They 
presented five general schemas for experimental studies con-
sisting of end-to-end CNN, fine-tuning, cross dataset fine-
tuning, deep feature learning, and CNN-RNN classification. 
Geetharamani and Pandian (2019) proposed a CNN model 
with a nine-layer to identify plant leaf diseases including 
39 classes with a 96.46% accuracy rate. Singh et al. (2019) 
proposed multilayer CNN for the classification of mango 
leaves using PlantVillage and real-time captured datasets. 
They indicated that the proposed model achieved an accu-
racy of 97.13%.

There are also some related studies based on depthwise 
separable convolutions. Kamal et al. (2019) presented two 
versions of depthwise separable convolution comprising two 
varieties of building blocks using a subset of publicly avail-
able PlantVillage dataset. They compared their models to 
VGG and MobileNet. A video smoke detection algorithm 
for a forest fire by Peng and Wang (2019) and a lightweight 
face recognition by Li et al. (2019) was proposed based on 
depthwise separable convolutions. A channel pruning algo-
rithm for depthwise separable convolution and a new chan-
nel selection, implemented on MobileNet were proposed by 
Zhang et al. (2019a).

Table 1 summarizes the related studies especially based 
on plant leaf diseases. Although the references have different 
results with different experiments, the best results obtained 
are given in the table. The best and average accuracy values 
obtained in this study are comparable to the recent studies. 
On the other hand, the proposed model achieves these suc-
cessful results with fewer parameters decreasing the com-
putation cost.

Table 1  The summary of 
related studies

References Method Datasets Accuracy

Mohanty et al. (2016) GoogleNet, AlexNet PlantVillage 93.88%
Lu et al. (2017) DCNN Self 95.48%
Durmuş et al. (2017) AlexNet, SqueezeNet PlantVillage 95.65%
Ferentinos (2018) CNN Plantvillage 99.53%
Ma et al. (2018) DCNN Self 93.40%
Zhang et al. (2018) GoogleNet PlantVillage 98.90%
Rangarajan et al. (2018) AlexNet, VGG16 PlantVillage 97.49%
Hu et al. (2019) VGG16 Self 90.00%
Too et al. (2019) DenseNets PlantVillage 99.75%
Singh et al. (2019) Multilayer-CNN PlantVillage, Self 97.13%
Kamal et al. (2019) Reduced MobileNet PlantVillage 98.34%
Geetharamani and Pandian (2019) CNN PlantVillage 96.46%
Huynh et al. (2020) CNN Flavia, Swedish 98.22%
Chen et al. (2020) VGGNet, Inception PlantVillage, Self 92.00%
This study Hybrid-CNN PlantVillage 99.27%
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3  Materials and methods

The recent studies on image classification tasks in the lit-
erature primarily utilizes deep learning methods, such as 
CNN, and the results have been promising. The advantage of 
CNNs is that they can learn intended features from training 
data that automatically consists of both local and deep pat-
terns instead of relying on manual feature extraction (Sharif 
et al. 2019).

CNNs consist of four main layers: a convolution layer, an 
activation function layer, a pooling layer, and a fully con-
nected layer. A convolution layer is used to extract various 
features by convoluting the input data. Hence, the convolu-
tion operation is the most important component of CNN. 
Convolution layers consist of several filters (also known as 
kernels) that are used to calculate different feature maps. 
The feature maps are obtained by applying the evolutionary 
layers several times, usually depending on the size of the 
input image. The pooling layer’s purpose is to reduce the 
spatial size of the feature map and computation. The pooling 
operation is applied after convolution, such that the output 
of the convolution layer serves as the input of the pooling 
layer. The feature maps obtained after completion of the con-
volution layers are then passed through an activation unit. 
The activation functions, which introduce nonlinearities to 
the CNN, are preferred for detecting nonlinear features in 
multi-layer networks (Gu et al. 2018). There is some kind of 
activation functions, such as Hyperbolic Tangent, Sigmoid, 
and ReLU (Rectified Linear Unit); however, the nonlinear 
ReLU activation function is more effective and is more fre-
quently used in deep learning studies (Zhang et al. 2019b). 
After completion of the convolution and pooling operations, 
the feature map is converted to a one-dimensional vector, 
which is fed as an input into the fully connected layer. This 
feature vector is classified and predicted in the output of 
the network using the fully connected layer. In Fig. 1, an 
example standard CNN architecture with two convolution 
and pooling layers is presented.

3.1  Depthwise separable convolution

Depthwise separable convolution has been used by Xception 
(Chollet 2017) and MobileNet (Howard et al. 2017) architec-
tures. This study, inspired by the performance advantage of 
Xception and MobileNet, uses a CNN model using depthwise 
separable convolution. While standard convolution is per-
formed in a single step and involves the application of filters 
into all input channels as well as the combination of these 
values, depthwise separable convolution contains two different 
layers: depthwise convolution (which performs the filtering 
step) and pointwise convolution (which performs the combin-
ing step). Figure 2 shows standard convolutions and depthwise 
separable convolutions, separately. As shown in the figure, a 
depthwise convolution applies only a single filter to each input 
channel separately, while pointwise convolution applies a 1 × 1 
convolution that combines different channels to obtain new 
features (Chollet 2017).

The computational cost of standard convolutions is com-
puted as:

where D
F
 is the width and height of a square input feature 

map, D
K

 is the dimension of the filter assumed to be square, 
M is the number of the input channels, and N is the number 
of filters which means output channels.

The computational cost of depthwise separable convolu-
tions, which is the sum of the depthwise and pointwise con-
volutions, computed as:

The ratio of the computational cost of the standard convolu-
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Fig. 1  Standard convolutional neural network
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It can be understood from the Eq. (3) that the computa-
tional complexity of the depthwise separable convolution 
is reduced to about the square of the number of filters of the 
standard convolution. As the size of the convolution filters 
increases, the number of parameters used in the standard 
convolution increases much more than those used in the 
depthwise separable convolution.

3.2  The proposed hybrid CNN architecture

Deep learning methods are a subset of machine learning 
methods. The fully connected layer of a deep learning model 
is an artificial neural network with a big set of hidden layers. 
The machine learning methods are fed by features such as 
statistical or signal processing values to construct a repre-
sentation of data. Deep learning models need more hardware 
requirements and time-consuming. Nevertheless, recent 
studies prefer deep learning models with the use of cloud 
systems and GPUs.

Although the literature features many CNN approaches 
for classification and detection, researchers put effort to 
create different variants of CNN architectures to increase 
accuracy or reduce the numbers of parameters and compu-
tation cost. The training phase of the deep learning algo-
rithm is carried out on powerful computers but the predic-
tion phase is carried out on end devices. Those end devices 
such as mobile phones or other embedded device solutions 

are limited for loading and running complex models, they 
need lighter models to deploy and run. Considering all these 
constraints, in this study, a lighter CNN model has been pro-
posed with fewer parameters and faster compared to standard 
CNNs.

The Inception architecture is designed to perform well 
even under high computational efficiency and a low number 
of parameters. It concatenates the filter outputs from various 
filter sizes, and besides, it also provides a dimensionality 
reduction. As shown in Fig. 3, the original Inception archi-
tecture (Szegedy et al. 2015) consists of four parallel layers. 
The three layers consist of convolutions with sizes of 1 × 1 , 
3 × 3 , and 5 × 5 to extract information from different spatial 
sizes. The other layer consists of a 3 × 3 maximum pooling, 
followed by a 1 × 1 convolutions. 1 × 1 convolutions follow 
3 × 3 and 5 × 5 convolutions to reduce the number of input 
channels, reducing the complexity of the model.

Instead of sequential convolution operations in standard 
CNN approaches, Inception architecture can extract bet-
ter features by performing convolution and pooling opera-
tions in parallel. However, the existing Inception module 
can be optimized in terms of parameters without reducing 
the success rate in feature extraction. The depthwise sepa-
rable convolution factorizes the standard convolution into a 
depthwise convolution together with a pointwise convolu-
tion. The depthwise convolution is used to independently 
perform a spatial convolution for each channel of the input 

Fig. 2  a The standard convo-
lutional filters, b depthwise 
separable convolutional filters
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image, pointwise convolution then is used to combine the 
output obtained from the depthwise convolution. Depth-
wise separable convolution separates feature extraction and 
combination, thereby reducing the number of parameters 
and redundant computation cost (Howard et al. 2017). By 
combining different advantages of Inception architecture and 
depthwise separable convolutions, a hybrid model with a 
high success rate and a low number of parameters is aimed.

In the study, a hybrid CNN approach has been proposed 
by combining the Inception architecture with the depthwise 
separable convolutions. Thus, a new model with low com-
putation cost has been developed due to the use of fewer 
parameters. In the proposed approach, as shown in Fig. 4, 
the sequential 1 × 1 and 3 × 3 , 1 × 1 and 5 × 5 convolutions in 
the standard Inception architecture have been replaced with 
3 × 3 depthwise and 1 × 1 pointwise convolutions, and 5 × 5 
depthwise and 1 × 1 pointwise convolutions. The number of 
parameters of the Inception with standard convolutions and 
proposed architecture is given in Tables 2 and  3, respec-
tively. The total number of parameters calculated with Eqs. 

(1) and  (2) is 35,392 for the Inception architecture and 614 
for the proposed architecture. With this change, the num-
ber of parameters used for calculation has been reduced by 
58 times with extremely successful results. The effect of 
parameter reduction on computation cost is dramatic on the 
whole hybrid CNN architecture in the study. The proposed 

Fig. 3  Inception architecture

Fig. 4  Modified Inception 
architecture with depthwise and 
pointwise convolutions

Table 2  Parameters of the inception architecture

Type Input Filter (size/number) Parameters

Input image 256 × 256 × 3 – –
Conv. 1 Input image 1 × 1 / 32 128
Conv. 2 Input image 1 × 1 / 32 128
Conv. 3 Conv. 2 3 × 3 / 32 9248
Conv. 4 Input image 1 × 1 / 32 128
Conv. 5 Conv. 4 5 × 5 / 32 25,632
Max-pooling Input image 3 × 3 / 32 –
Conv. 6 Max-pooling 1 × 1 / 32 128

35,392
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hybrid CNN architecture does not consist entirely of modi-
fied Inception architecture. Besides, there are also sequen-
tial depthwise separable convolution layers like standard 
convolutions.

Figure 5 shows the proposed hybrid CNN architec-
ture used in the study. As shown in the figure, modified 
Inception architecture with depthwise separable convolu-
tions and consecutive depthwise separable convolutions 
and pooling operations have been carried out. Modified 
Inception architecture has been applied two times. Apart 
from the modified Inception blocks, four depthwise sepa-
rable convolution layers and four pooling layers have been 
applied consecutively. After all convolution and pooling 

operations were completed, a fully connected (FC) layer 
and softmax classifier have been applied in the model. The 
ReLU activation function has been applied to all convolu-
tion layers.

While the total number of parameters in the proposed 
model is 76,576, the number of parameters required is 
303,546 if it is realized with standard CNN. Thus, about 
75% reduction in the number of parameters has been 
achieved. The number of parameters varies according 
to the number and size of the filters used for convolu-
tion operations in the CNN design. In this respect, as the 
number of convolution processes, filter sizes, and num-
bers in the models’ increases, the number of parameters 
in the standard CNN increases more than the number of 
parameters in the proposed hybrid model. All the opera-
tions applied to the proposed architecture and the standard 
CNN and the required number of parameters are given in 
Table 4. DS-Conv term in the table refers to depthwise 
separable convolution.

Dropout has been applied to the fully connected layer. 
One of the reasons for poor performance in deep learning 
is overfitting, a solution for the reduction of which is drop-
out (Srivastava et al. 2014), a simple and powerful regu-
larization technique used in deep learning models. The 
basic approach in dropout is to randomly and temporarily 
drop units in layers during the training. Besides, Batch 
Normalization has been also used to improve the speed 
and performance of the model. It normalizes the output of 
the previous layer by the batch mean and variance. Thus, 
the number of training epochs required to train the CNN 
model is decreased significantly. In the model, the Batch 

Table 3  Parameters of the modified inception architecture with 
depthwise separable convolutions

Type Input Filter (size/num-
ber)

Parameters

Input image 256 × 256 × 3 - –
Conv. 1 Input image 1 × 1 / 32 128
Depthwise conv. 

2
Input image 1 × 1 / 32 155

Pointwise conv. 2 Depthwise conv. 
2

3 × 3 / 32

Depthwise conv. 
3

Input image 1 × 1 / 32 203

Pointwise conv. 3 Depthwise conv. 
3

5 × 5 / 32

Max-pooling Input image 3 × 3 / 32 –
Conv. 4 Max-pooling 1 × 1 / 32 128

614

Fig. 5  The proposed hybrid CNN architecture
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Normalization process has been applied after all convolu-
tion layers except the modified Inception blocks.

4  Experimental results

The experiments have been conducted on plant leaf images 
to evaluate the performance of the proposed hybrid CNN 
model. A total of 50,136 different leaf images of 30 classes 
from 14 different leaves, with healthy and diseased ones, 
obtained from the PlantVillage dataset, have been used 
for training and testing of the proposed model. Figure 6 
shows sample images of different leaves from the PlantVil-
lage dataset used in the study. All images in the dataset has 
been resized to 256×256 pixels in the pre-processing stage. 
The experiments have been implemented in Python with 
a single NVIDIA Geforce GTX-1080 GPU. In the experi-
ments, the networks have been trained on the training set 
for 150 epochs and the averages results of the experiments 
have been taken. Adam optimizer with a batch-size of 32 
has been used.

One of the most important requirements for the train-
ing of the model in deep learning applications is the suffi-
cient number of data in the dataset. Because having a large 
dataset directly affects the performance of the model. Some 
of the studies have used data augmentation techniques to 
artificially expand the number of images used in training. 

Although the dataset used in this study has enough number 
of images for some classes, there are few for some. Data 
augmentation methods (Shorten and Khoshgoftaar 2019) 
in which the training images are flipping horizontally or 

Table 4  Parameters of the 
standard CNN and the proposed 
hybrid CNN architectures

Standard CNN architecture Proposed hybrid architecture

Type Output size Parameters Type Output size Parameters

Input image 256 × 256 × 3 – Input image 256 × 256 × 3 –
Inception 256 × 256 × 32 35,392 Modified inception 256 × 256 × 32 614
Conv (5,5) 126 × 126 × 32 102,432 DS-conv (5,5) 126 × 126 × 32 7328
Batch norm. 126 × 126 × 32 128 Batch norm. 126 × 126 × 32 128
Max-pooling (3,3) 62 × 62 × 32 – Max-pooling (3,3) 62 × 62 × 32 –
Conv (5,5) 58 × 58 × 32 25,632 DS-conv (5,5) 58 × 58 × 32 1856
Batch norm. 58 × 58 × 32 128 Batch norm. 58 × 58 × 32 128 
Max-pooling (3,3) 28 × 28 × 32 – Max-pooling (3,3) 28 × 28 × 32 –
Inception 28 × 28 × 32 39,104 Modified inception 28 × 28 × 32 5312
Conv (3,3) 26 × 26 × 32 36,896 DS-conv (3,3) 26 × 26 × 32 5280
Batch norm. 26 × 26 × 32 128 Batch norm. 26 × 26 × 32 128
Max-pooling (3,3) 12 × 12 × 32 – Max-pooling (3,3) 12 × 12 × 32 –
Conv (3,3) 10 × 10 × 32 9248 DS-conv (3,3) 10 × 10 × 32 1344
Batch norm. 10 × 10 × 32 128 Batch norm. 10 × 10 × 32 128
Max-pooling (3,3) 4 × 4 × 32 – Max-pooling (3,3) 4 × 4 × 32 –
Flatten 1 × 1 × 512 – Flatten 1 × 1 × 512 –
Dropout 0.5 – Dropout 0.5 –
Fully-connected 1 × 1 × 100 51,300 Fully-connected 1 × 1 × 100 51,300
Softmax 1 × 1 × 30 3030 Softmax 1 × 1 × 30 3030

303,546 76,576

Fig. 6  Images from the diseased and healthy classes of leaves
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vertically, and rotating images right or left on an axis from 
1 ◦ to 359◦ , and shifting images up, down, left or right have 
been used in the study to boost the number of images for 
classes with fewer images.

A k-fold cross-validation strategy with k=4 has been per-
formed for further analysis of the classification performance. 
The entire dataset has been randomly divided by 4 subsets. 
One of these subsets has been used for testing and the other 
3 subsets have been used for training. Although the dataset is 
large, considering 30 different classes, the number of images 
per class is small. The more the number of k-fold cross-
validation is chosen, the less the number of test images used 
after each training. In this regard, the k number of cross-
validation has been taken as 4 in the study. The increase in 
the test data reveals the performance of the model more. 
The validation accuracy of the proposed approach reaches 
the best 99.27% and an average of 99%. The test procedure 
of the proposed model has been repeated 4 times with dif-
ferent subsets. With 4-fold, 75% of the dataset has been used 
as training and 25% as test data at every different training 
phase. As can be seen from the results of performance met-
rics given in Fig. 7, although the proposed model uses very 
few parameters, it succeeds like the other methods which 
are experimented on the PlantVillage dataset. A confusion 
matrix has been created to calculate the performance of the 
model. Accuracy and loss graphics with 4-fold cross-valida-
tion for training and validation of the proposed architecture 
is shown in Fig. 8, respectively.

Furthermore, the receiver operating characteristic (ROC) 
curve and the area under the curve (AUC) have been used 
in the testing dataset for 30 classes as given in Fig. 9. 
ROC curve is one of the popular metrics that shows the 

performance of a model graphically. AUC values are in a 
range [0,1], and a larger AUC specifies better performance. 
An AUC value of 1 indicates that the prediction is 100% cor-
rect. The result from the ROC curve shows that the proposed 
hybrid model reached a high performance with a micro aver-
age AUC value of 0.994 and a macro average AUC value 
of 0.993.

5  Conclusion

The major contribution of this study is to present a deep 
learning model that requires less computation cost and 
time for embedded and mobile devices with limited 
resources. To do this, a new hybrid model by combin-
ing the Inception architecture and depthwise separable 
convolutions has been proposed. The model reduces the 
number of parameters by approximately 75%; therefore, 
it operates faster than the standard CNN. With the reduc-
tion of the number of parameters of the hybrid model, it is 
clearly seen that the computation cost and time decrease 
compared to the standard CNN. The training and testing 
for detection have been carried out on the PlantVillage 
dataset of 50,136 images containing 30 classes from 14 
different leaves, including healthy and diseased ones. 
The experimental results demonstrate that the proposed 
approach is also effective and has a high level of detection 
accuracy. The average accuracy of the proposed hybrid 
model is the best 99.27% and an average of 99% with a 
4-fold cross-validation process. In addition to accuracy, 
the performance of the model has been evaluated in terms 
of precision, recall, f1 score metrics, and ROC curves. The 

Fig. 7  The performance metric results of the proposed hybrid model with 4-fold cross-validation
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average values of these metrics are 98.88%, 98.84%, and 
98.86%, respectively, which shows a good prediction capa-
bility of the proposed method. The decrease in the number 
of parameters and the increasing speed of operation show 

that the proposed approach can be used effectively to real-
ize real-time object detection applications, especially in 
mobile devices with limited resources.

Fig. 8  Accuracy and loss graphics with 4-fold cross-validation of the proposed hybrid model
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