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Abstract
Accidental fall is one of the most prevalent causes of loss of autonomy, deaths and injuries among the elderly people. Fall 
detection and rescue systems with the advancement of technology help reduce the loss of lives and injuries, as well as the 
cost of healthcare systems by providing immediate emergency services to the victims of accidental falls. The aim of this 
paper is to perform a systematic review of the existing sensor-based fall detection and rescue systems and to facilitate further 
research in this field. The systems are reviewed based on their architecture, used sensors, performance metrics, limitations, 
etc. This review also provides a taxonomy for classifying the fall detection systems. The systems have been divided into 
two main categories: single sensor-based fall detection systems, and multiple sensor-based fall detection systems. Although 
single sensor-based systems are very accurate in detecting falls, multiple sensor-based systems are more efficient. The low 
power consumption of most single sensor-based systems especially those which are based on the accelerometer is perfect 
for wearable solutions, while most multiple sensor-based systems are perfect for indoor monitoring.
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1  Introduction

Accidental fall is one of the predominant causes of injury 
and death for the general population, particularly the elderly. 
The elderly people make up a significant part of the world 

population. In 2017, 13% of the world population (962 mil-
lion people) were aged 60 or above, according to a United 
Nations prediction (Sugawara and Nikaido 2014). This is 
expected to about double to 2.1 billion by 2050, and about 
triple to 3.1 billion by 2100 (Sugawara and Nikaido 2014). 
According to the World Health Organization (WHO) (Verma 
et al. 2016), accidental falls are the second leading cause 
of premature death from injury. Every year, an estimated 
646,000 falls result in fatalities over the world and 37.3 mil-
lion falls require immediate medical attention (Verma et al. 
2016). Adults over 60 years of age have the highest fall-
related death rates and adults over 65 years of age suffer 
the highest number of fatal falls (Verma et al. 2016). These 
fall events result in a loss of 17 million disability-adjusted 
life years. Disability-adjusted life years denote the potential 
years of “healthy” life lost due to premature death or dis-
abilities caused by unfortunate events. Fall events also result 
in significant monetary loss for both the individual and the 
state. The average cost of the health care system per fall 
injury for people over 65 years of age is US$ 1049 and US$ 
3611 in Australia and the Republic of Finland, respectively 
(Verma et al. 2016).

In general, most fall events occur at home due to an abun-
dance of potential fall hazards (Hamm et al. 2016). Common 
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hazards include but not limited to slippery floors, obstructed 
ways, clutter, pets, unstable furniture, and poor lighting con-
ditions (Lord et al. 2006). The average elderly population is 
less prone to falls than older people suffering from severe 
neurological diseases, e.g., dementia and epilepsy (Homann 
et al. 2013), (Wang et al. 2016), (Rawashdeh et al. 2012), 
(Rahaman et al. 2019). Risk of falls also increases due to sol-
itary living arrangements (Bergen et al. 2016), (O’Loughlin 
et al. 1993). However, in most cases, the falls do not result 
in loss of lives. Life-threatening complications arise when 
the affected person does not get the necessary treatment in 
time and remains on the floor for a prolonged period without 
others’ notice (Vallabh and Malekian 2018), (Sterling et al. 
2001), (Islam et al. 2020), (Parkkari et al. 1999), (Jager et al. 
2000), (Florence et al. 2018).

Making the entire home environment fall-proof is not a 
feasible solution (Pynoos et al. 2010), (Pynoos et al. 2012). 
However, the advancement of fall detection technologies 
enables automated systems to detect falls in an environment 
and minimizes both the damage and the response time by 
notifying the emergency services and caregivers of the fall 
event (Doulamis 2010), (Mukhopadhyay 2015), (Delahoz 
and Labrador 2014), (Chaudhuri et al. 2014), (Noury et al. 
2007), (Igual et al. 2013), (Mubashir et al. 2013).

Modern fall detection systems involve the following 
stages: data collection stage, feature extraction stage, detec-
tion stage or learning stage (Noury et al. 2007), (Igual et al. 
2013), (Mubashir et al. 2013), (Nooruddin et al. 2020). Rel-
evant fall and Activities of Daily Living (ADL) motion data 
of users are collected via sensors in the data collection stage. 
Many types of sensors can be used to acquire the motion 
data. Meaningful features are extracted from the raw sensor 
data in the feature extraction stage. The systems that use 
machine learning algorithms to classify the motion data use 
the extracted features to train the model. The trained model 
is then deployed and used to classify future motion data. The 
threshold-based systems compare the extracted features with 
predetermined values to classify the motion data (Rahman 
et al. 2020, Islam et al. 2019, Buke et al. 2015, Bagalà et al. 
2012.

Many monitoring and fall detection systems were 
reviewed in (Mukhopadhyay 2015), (Delahoz and Labra-
dor 2014), (Chaudhuri et al. 2014), (Noury et al. 2007), 
(Igual et al. 2013), (Mubashir et al. 2013), (Bet et al. 2019). 
Mubashir et al. (2013) classified fall detection systems into 
three types: wearable, vision-based, and ambient/fusion. 
Typically, the sensors that are used to develop wearable fall 
detection systems comprise accelerometer, gyroscope, depth 
sensor, infrared sensor, acoustic sensor and vibration sensor. 
Video surveillance and Doppler radars are used for real-time 
monitoring-based fall detection systems (Mubashir et al. 
2013), (Islam et al. 2019). A combination of monitoring 

systems and wearable sensors are used in ambient/fusion 
based systems.

Mukhopadhyay et al. (2015) reviewed the wearable solu-
tions used in fall detection and rescue systems. The types 
of sensors, the wireless protocols used in the applications, 
the monitored activities, design challenges of the solutions 
and energy consumption of the sensors, as well as current 
market situation and future trends were reviewed. Delahoz 
and Labrador (2014) reviewed machine learning based fall 
detection and fall prevention systems. The general structure 
of fall detection systems was presented as a collection of 
three modules: data collection module, feature extraction 
module and learning module. The design issues such as 
occlusion, multiple people, obtrusion, privacy, aging, com-
putational cost, energy consumption, noise and difficulty 
in choosing thresholds were considered. The fall detection 
systems were reviewed based on the overall position of the 
sensors. The reviewed sensors were divided into two types: 
external sensors and wearable sensors. The external sensors 
were divided into camera-based sensors and ambient sen-
sors. The authors also discussed the various environmental, 
psychological, and physical factors of falls. Chaudhuri et al. 
(2014) reviewed fall detection systems systematically and 
provided quality scoring based on a condensed version of 
the Statement of Reporting of Evaluation Studies in Health 
Informatics (STARE-HI). The reviewed fall detection sys-
tems were divided into two main categories: wearable and 
non-wearable systems. The categorization was based on the 
position of the detecting sensor. If the sensors were worn by 
the monitored person, the respective system was categorized 
as a wearable system. If the sensors were mounted on a sta-
tionary platform, the respective system was categorized as 
a non-wearable system. The used sensors were grouped into 
general types such as motion sensors, floor sensors, cameras, 
etc. The systems that used a combination of multiple systems 
for accurate fall detection were also reviewed.

Noury et al. (2007) reviewed the fall detection systems 
and grouped them into two main categories: analytical meth-
ods and machine learning methods. Analytical methods 
mainly detect the lying position from various sensors, such 
as horizontal inclination sensors and floor sensors. Machine 
learning methods leverage large datasets and machine learn-
ing classifier models detect falls from sensor data. Igual 
et al. (2013) categorized the reviewed fall detection systems 
into two main types: context-aware systems and wearable 
devices. In context-aware systems, the sensors are deployed 
in the environment. In this case, the sensors are stationary 
and overlook a fixed environment. On the other hand, in 
wearable systems, the sensors are placed on different posi-
tions, e.g., chest, waist, and wrist of the monitored person. 
The methods of the context-aware systems can be broadly 
categorized into three main stages: data collection and pro-
cessing, feature extraction, and inference stage. Smartphone 
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based fall detection systems were also reviewed. The cur-
rent and future trends of computer vision-based detectors 
and machine learning based approaches were discussed. 
Various design challenges such as performance of usabil-
ity, acceptance, and social stigma related to such devices 
were discussed. Various issues related to fall detection tech-
nology such as smartphone limitations, privacy concerns, 
availability of public datasets, and real-life falls were also 
considered in the review. Bet et al. (2019) reviewed wearable 
sensor-based fall detection systems and explored the types 
of commonly used sensors, their sampling rate, the type of 
the signal acquisition and data processing method used, the 
functional tests performed on the system, and the types of 
application. Four main types of sensors, namely: accelerom-
eter, gyroscope, magnetometer, and barometer were mostly 
used in the reviewed systems. The systems developed in 
(Safi et al. 2015), (Hu et al. 2018), (Buke et al. 2015) also 
reviewed inertial wearable sensors. Some computer vision-
based fall detection systems were reviewed in (Zhang et al. 
2015), (Erden et al. 2016). Various available public fall 
detection datasets and the performance of various systems 
on those datasets were discussed in (Khan and Hoey 2017), 
(Igual et al. 2015), and (Casilari et al. 2017).

It is evident from the current review works that in cur-
rent literature, fall detection systems are divided into two 
broad categories: wearable systems and non-wearable sys-
tems based on the “wearability” perspective. The categoriza-
tion of the systems in existing literature into two groups—
context-aware and wearable systems—is also based on a 
similar perspective. The categorization of the systems into 
two types—analytical methods and machine learning meth-
ods—is based on the “classification methodology” perspec-
tive. The categorization of the systems by existing literature 
into three categories—wearable, vision-based and ambient 
or fusion—is based on the “used sensor type” perspective. 
In this case, the non-wearable systems are further divided 
into the vision-based and ambient-based categories. Many 
other reviews are conducted on a specific sub-category of 
fall-detection systems, such as inertial sensors-based wear-
able systems, computer vision-based systems, etc. Most of 
the review works till now have categorized fall detection 
systems based on whether the system is wearable or not. 
However, the number of sensors used and their type is a 
major specification of any fall detection system. While some 
systems only employ a single sensor for data collection pur-
poses, other systems use multiple sensors. Both kinds of 
systems have achieved state-of-the-art results.

The purpose of this review work is the systematic assess-
ment of recent fall detection systems. We provide a tax-
onomy categorizing the developed fall detection systems 
based on the number of used sensors. We reviewed the sys-
tems considering the following issues: system type (single/
multiple sensors), system technologies, system working 

principles, and the merits and demerits of the system. The 
research was limited to peer reviewed articles which were 
written in English and published between the years 2014 and 
early 2019 in scientific journals or magazines or presented 
in conferences. The research was restricted to a number 
of sources, namely: Google Scholar, PubMed, EMBASE, 
CINAHL, and NCBI. Additionally, to acquire fall statistics, 
a manual search was carried out on books and publications 
by organizations that focus on statistics of accidental falls 
and their consequences, such as the World Health Organiza-
tion (WHO). The keywords used, for searching the databases 
or for manual web searches, were the following: “fall detec-
tion”, “fall detection and rescue systems”, “fall statistics”, 
“fall prevention”, “sensor-based fall detection”, and “fall 
monitoring”. The titles and abstracts from the search results 
were analyzed to eliminate duplicates and publications that 
were beyond the scope of this review work. After thoroughly 
reading and evaluating the remaining publications, specific 
topics of interest in the review articles were identified and 
quantified. Our main focus was on fall detection systems 
that employ some kind of sensors for data acquisition and 
detection.

The remaining part of the paper is organized as follows: 
Sect. 2 describes the fall detection systems with two catego-
ries: single sensor-based and multiple sensor-based systems. 
The results and detailed discussion of the review are pre-
sented in Sect. 3. Section 4 concludes the review.

2 � Literature review on fall detection 
systems

Many organizations have been working for a long time to 
make cost-effective and well-organized fall detection sys-
tems for the elderly. The work associated with this field is 
reviewed as follows.

All the systems that are reviewed in this paper are cat-
egorized into two groups: single sensor-based systems and 
multiple sensor-based systems. The categorization is done 
based on how many sensors for the system have been used to 
capture the real-world scenario. Single sensor-based systems 
use the data from only one sensor for feature extraction and 
classification. Multiple sensor-based systems use data from 
multiple sensors for feature extraction and classification. The 
sensors such as Wi-Fi or Bluetooth modules (communica-
tion purpose) which are not used for feature extraction or 
classification purposes are not considered during categoriza-
tion. The taxonomy of the reviewed fall detection systems is 
depicted in Fig. 1.
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2.1 � Single sensor‑based fall detection systems

Single sensor-based systems rely on a single sensor or a sin-
gle module for data collection. Single sensor-based systems 
use one of the sensors or modules, e.g., accelerometer, gyro-
scope or depth camera for data collection. The collected data 
is then processed and passed to a detection technique, e.g., 
threshold-based algorithm (Chen et al. 2019), (Mehmood 
et al. 2019), machine learning model or statistical model 
(Sanchez and Muñoz 2019), (Yhdego et al. 2019), (Yac-
chirema et al. 2019). Systems that employ a threshold-based 
algorithm test the collected data against preset data for 
detection. Systems that employ machine learning or statis-
tical models pass the collected data to a pre-trained model 
that was trained on a similar dataset. Various open-access 
datasets are available for single sensor-based ADL and fall 
detection (Igual et al. 2015), (Casilari et al. 2017), (Khan 
and Hoey 2017).

2.1.1 � Fall detection using accelerometer

An accelerometer is a device that measures the acceleration 
or rate of change of velocity of a body in its instantaneous 
rest frame. Single-axis and multi-axis models of the accel-
erometer are available to detect the magnitude and direction 
of the proper acceleration, as a vector quantity. Sense orien-
tation, vibration, shock, falling in a resistive environment, 
etc. are popular applications of accelerometers (Rand et al. 
2009), (Ward et al. 2005). Almost all of the modern portable 
devices contain Microelectromechanical systems (MEMS) 
accelerometers. These accelerometers are used for detecting 
screen orientation, position, etc. However, they are perfectly 
capable of detecting fall events (Lee and Tseng 2019), (San-
tos et al. 2019), (Thanh et al. 2019), (Ranakoti et al. 2019). 
Data from accelerometers can be used in machine learning, 
statistical models (Santos et al. 2019) or threshold-based 
algorithms (Lee and Tseng 2019) for fall detection.

Chen et al. (2019) proposed a wrist-worn accelerator-
based fall detection system by combining ensemble stacked 
auto-encoders (ESAEs) and one class classification based 
on the convex hull (OCCCH). ESAEs were used to over-
come the disadvantages of ANNs and unsupervised feature 
extraction was done. The pattern recognition task was per-
formed by the OCCCH. The strategies such as majority vot-
ing and weight adaptive adjustment were used to improve 
the overall performance of the system. Two experiments 
were performed to validate the overall performance of the 
system. Experiment I involved fall and ADL data from 6 
volunteers. Experiment II involved fall and ADL data from 
11 volunteers from a different group. All fall data was reg-
istered while falling on a yoga mat, whereas, all ADL data 
are real-world data. In experiment I, the system achieved 
accuracy, sensitivity, and specificity of 97.45, 96.09, and 
98.92%, respectively. The system achieved accuracy, sensi-
tivity, and specificity of 97.82, 99.30, and 96.36%, respec-
tively in experiment II. Mehmood et al. (2019) proposed a 
tri-axial accelerometer based fall detection system that uses 
Mahalanobis distance for detecting falls in real-time data. 
Mahalanobis distance is used to calculate distances between 
two points. However, Mahalanobis distance does not require 
the points to be of the same data group, thus enabling cal-
culating distance between points of groups of different 
sizes. Three types of ADLs: walking, standing posture, get-
ting up, and sitting on chair were recorder. Four volunteers 
recorded the fall motions in a laboratory environment. The 
calculated Mahalanobis distance was compared against a 
threshold value for determining whether a fall occurred or 
not. However, the prototype used Bluetooth technology to 
communicate with the main computer which processes the 
data, constraining the versatility of the device. The devel-
oped system achieved 96% accuracy from the experiment.

Yhdego et  al. (2019) developed an accelerometer-
based fall detection system that used transfer learning with 
AlexNet and continuous wavelet transform for fall detection. 
The URFD public dataset was used as the main data source. 

Fig. 1   Taxonomy of the 
reviewed fall detection systems Reviewable Fall Detection Systems 

Single Sensor-Based Systems 

Accelerometer 

Depth Camera 

Infrared Sensor 

Radar 

802.11n NIC 

Multiple Sensor-Based Systems 

Accelerometer and Camera 

Accelerometer and Gyroscope 

Accelerometer, Gyroscope, and Depth 

Accelerometer, Cardiotachometer, and Smart 

Accelerometer, Gyroscope, and UWB Location Tags 
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A continuous wavelet transform was performed on the data 
in the data processing stage. AlexNet was trained on the data 
using transfer learning. ImageNet weights were used in the 
pre-trained model. The deep convolutional neural network 
based system achieved 96.43% accuracy, 95.83% sensitivity, 
and 96.875% specificity. Yacchirema et al. (2019) proposed a 
tri-axial accelerometer based wearable fall detection system 
that used a random forest algorithm to properly distinguish 
between ADL and fall events. The system is waist-mounted. 
The system also has a rescue component to monitor the 
persons. The random forest algorithm outperformed other 
logistic regression and convolutional neural network based 
models. The system achieved 98.72% accuracy, 94.60% 
specificity, and 96.22% sensitivity.

Cao et al. (2016) proposed a fall detection system that 
collects acceleration data of the human chest using a weara-
ble device containing a triaxial accelerometer. The collected 
data from the sensor is used for fall detection using Hid-
den Markov Model (HMM). The Feature Sequences (FSs) 
extracted from the accelerometer are used to train the HMM. 
The framework achieved the accuracy, sensitivity, and speci-
ficity of 97.2, 91.7, and 100%, respectively. The parameters 
of HMM in this literature might not be optimal as the train-
ing samples used are collected from the simulated motion 
process, not from real practice falls. Aguiar et al. (2014) 
developed an unobtrusive smartphone-based fall detection 
system. The accelerometer data of the smartphone placed in 
the user’s belt or pocket is continuously monitored. 14 differ-
ent signal components are computed from the acceleration 
vectors and passed through a Butterworth digital filter. The 
computed signal components are x, y, z projections, angles 
and magnitude value along the three axes of the phone. A 
decision tree is used to select the most significant features 
and calculate the thresholds. These thresholds are then used 
in a state machine to classify fall events. The system also 
incorporates a rescue system. In case of a fall scenario, 
it sends the location info of the patient to the emergency 
services and caregivers, thus ensuring immediate medical 
assistance. The system was tested in two positions: belt and 
pocket. The specificity and sensitivity of the system are 
close to 99% and 97%, respectively, for both usage positions. 
Power consumption is a major concern for the system as it 
continuously monitors the accelerometer data of the device.

Lim et al. (2014) proposed a highly efficient activity 
monitoring system. To filter possible fall events, the system 
uses simple thresholds from fall-feature parameters calcu-
lated from a single triaxial accelerometer. A Hidden Markov 
Model (HMM) is then used on the possible fall events to dis-
tinguish between actual fall events and fall-like events. Thus, 
this system conserves computational cost and resources by 
using the Hidden Markov Model (HMM) only for classi-
fying possible fall events. The system is chest-mounted as 
the chest is the closest to the body’s center of gravity. The 

best results were obtained when the threshold parameters 
were set as ASVM = 2.5 g and θ = 55°. The system achieved 
99.5% accuracy, 99.69% specificity, and 99.17% sensitivity, 
respectively.

2.1.2 � Fall detection using depth camera

Depth cameras are used to produce a 2D image represent-
ing the distance to points in a scene from a specific point. 
The pixel values of the resultant image correspond to the 
depth or distance of the points. Images from generated 
from RGB cameras do not contain depth information. 
Pixels in normal images correspond to intensities of the 
corresponding points. Depth cameras and their generated 
depth images can be used to properly determine the posi-
tion of an object or a person in an environment (Xu et al. 
2019). Depth images can be used for detecting fall events 
(Xu et al. 2019), (Kong et al. 2019). Depth camera-based 
systems almost exclusively employ machine learning mod-
els for detection and classification of fall and ADL events.

Ding et al. (2017) introduced a detection algorithm 
employing depth images collected from a Kinect sensor 
using wavelet moment. At first, the algorithm normal-
izes the depth image according to each pixel in the image 
relative to the distance from the centroid and polar coor-
dinates. The feature vectors are extracted after perform-
ing Fast Fourier Transform (FFT) of the image. Wavelet 
transform is used in the extraction process. Finally, Sup-
port Vector Machine (SVM) classification methods and 
the minimum distance are used to detect the fall. The algo-
rithm was tested on 100 images (non-fall 58 images and 
42 fall images). The accuracy of detecting fall images is 
about 88% and the accuracy of detecting non-fall images 
is about 90%. The algorithm currently monitors only one 
user. The effectiveness of the algorithm on multiple users 
can be checked in the future. Kong et al. (2017) proposed 
an algorithm for fall detection. The system relies on a 
depth camera. The RGB-D camera is placed at 2 m from 
the ground. The binary images found through the depth 
camera are passed through a canny filter for getting the 
outline of the images. Then 15° groups were created by 
dividing the calculated tangent vector angles of all the 
white angles in the outline image. The value of the tangent 
angles (in most of the cases) below 45° considered a fall. 
The system appraised the accuracy, sensitivity, specific-
ity of 97.1, 94.9, and 100%, respectively. As the system 
uses an RGB-D camera, it can work perfectly even in dark 
conditions. The system also works on environments where 
more than one person is present. Tran et al. (2014) pro-
posed a novel approach that defines and computes three 
distinct features (angle, distance, velocity) of 8 upper body 
joints (Head, Shoulder_Right, Shoulder_Center, Shoul-
der_Left, Spine, Hip_Right, Hip_center, Hip_Left). The 
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activities are represented as a set of three values (angle, 
distance, velocity) of several joints of the human skeleton 
that are known as feature vectors in the prototype. These 
feature vectors are provided as inputs for training or test-
ing SVM classifiers. Using a combination of two joints: 
head and spine with two features: distance and velocity 
provided the best results. The transition time should also 
be taken into account for reducing the number of fall posi-
tives of the proposed system in the future.

2.1.3 � Fall detection using infrared sensor

An infrared sensor is an electronic sensor that measures 
infrared light radiating from the objects in the field of view. 
IR sensors can detect general movement but cannot provide 
information on the moving subject itself. As humans mostly 
give off infrared radiation, IR sensors can be used to monitor 
human movement (Martínez-Villaseñor et al. 2019), (Mou-
lik and Majumdar 2019). Infrared based systems are also 
mostly surveillance oriented. IR sensor-generated data are 
normally used to create 3D images or blocks representing 
environmental infrared radiation information (Mastorakis 
and Makris 2014). After feature extraction, various machine 
learning or statistical models are used to detect the fall and 
ADL events (Martínez-Villaseñor et al. 2019), (Moulik and 
Majumdar 2019), (Mastorakis and Makris 2014).

Chen and Ma (2015) adopted an infrared sensor array 
composed of a 16 × 4 thermopile array with corresponding 
60° × 16.4° field of view. Two sensors attached to different 
places in the wall that capture the three-dimensional image 
information. The temperature difference characteristic is 
then used to subtract the image from the background model 
to determine the foreground of the human body. The Angle 
of Arrival (AOA) from each sensor is obtained by using the 
foreground temperature. An AOA based positioning algo-
rithm is used to estimate the location and the location is 
then passed to a regression model to reduce the positioning 
error. As the two sensors capture any action simultaneously, 
the fall detection algorithm extracts feature from the sensor 
with the larger foreground region. The extracted features 
are then applied to the k-Nearest Neighbor (k-NN) classi-
fication model which classifies them into fall and non-fall 
events. This system managed to distinguish fall event with 
93% total accuracy, 95.25% sensitivity, and 90.75% specific-
ity. Jankowski et al. (2015) proposed a system based on IR 
depth sensor measurements. A feature selection block by 
Gram-Schmidt orthogonalization and a Nonlinear Principal 
Component Analysis (NPCA) block is used to improve the 
effectiveness of discriminative statistical classifiers (multi-
layer perceptron). The feature selection block determines the 
ranking of the features. NPCA block transforms the raw data 
into a nonlinear manifold, thus reducing the dimensional-
ity of the data to two dimensions. The system obtained an 

accuracy of 93% and a sensitivity of 92%. The deep learn-
ing classifier structure used 5 hidden neurons, whereas, the 
neural networks used 15 hidden neurons.

2.1.4 � Fall detection using radar

Radars are devices for tracking objects using radio waves 
to determine their position, size and velocity. A radar sys-
tem normally consists of a transmitter capable of generating 
electromagnetic waves in the radio and microwave spectrum, 
a receiving antenna, a receiver, a transmitting antenna and 
a processor to determine the characteristics of the objects. 
The transmitter transmits radio waves. These waves reflect 
off the objects. The object’s location and speed can be cal-
culated from the reflected waves (Rana et al. 2019). Doppler 
radars have been extensively used in fall detection systems 
(Yoshino et al. 2019), (Su et al. 2015). Doppler radars are 
specialized radars that employ the Doppler effect. Doppler 
radars emit microwave signals and analyze how the objects 
alter the frequencies of the returned signal. Various signal 
processing techniques are generally used to detect falls from 
radar data (Yoshino et al. 2019), (Sadreazami et al. 2019), 
(Sadreazami et al. 2020), (Ding et al. 2019), (Erol and Amin 
2019).

Jokanovic et al. (2016) used a monostatic Continuous 
Wave (CW) Radar for fall detection. In the proposed system, 
radar returns nonstationary-natured signals corresponding 
to normal human motions. Thus, constant and higher-order 
velocity components of various parts of the human body 
under motion can be revealed using time–frequency (TF) 
analysis can be used to extract the higher-order and con-
stant velocity components of various parts of the human 
body. This system uses a TF-based deep learning approach 
for detecting fall events. The proposed approach in the sys-
tem captures the TF signature properties automatically and 
applies the features to the softmax regression classifier. 
The system uses stacked auto-encoders for feature extrac-
tion. The system achieved 87% success rate in detection 
fall events. Su et al. (2015) developed a detection system 
that employed a Doppler range control radar. The radar is 
ceiling mounted. The radar senses the falls and non-falls 
from the Doppler Effect. The Wavelet Transform is used to 
distinguish among the activity events. The system at first 
uses the coefficients of wavelet decomposition at a given 
scale for identifying the time locations of the possible fall 
events. Then the time–frequency content is extracted from 
the wave coefficients at many scales and a feature vector is 
formed for classification. Out of the different wavelet func-
tions tested in the system, higher detection accuracy was 
reached using “bior2.2”, “db3”, “rbio1.3”, “rbio3.3”, and 
“sym3,” for the prescreening stage and “bior2.6”, “coif4”, 
“db10”, “db11”, and “rbio3.3” for the classification stage. 
This system can be used in any indoor scenarios including 
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bathrooms as this system does not compromise the privacy 
of the user. With the use of the WT pre-screener and clas-
sifier, the system achieved 93% accuracy, 97.1% sensitivity, 
and 92.2% specificity.

2.1.5 � Fall detection using 802.11n NIC

The wireless medium consists of electromagnetic signals 
in the radio or microwave spectrum. These signals contain 
binary data. The channel data resulting from humans affect-
ing the wireless medium can be used in machine learning 
or statistical models for fall detection (Fung et al. 2019), 
(Wang et al. 2017).

Wang et al. (2017) developed a system named WiFall. 
Human activities affect the wireless medium. WiFall takes 
the time variability and special diversity of Channel State 
Information (CSI) as an indication of human activities. As 
CSI is available in almost all of the current wireless infra-
structure, WiFall does not require any hardware modifi-
cation or wearable devices or any kind of environmental 
modifications. The system used WiFall on laptops equipped 
with commercial 802.11n NICs. The channel properties of a 
communication link can be estimated by CSI. It can also be 
used to detect human motion because human motion affects 
wireless propagation space, creating different patterns in the 
received signal. A one-class SVM was used to distinguish 
human fall based on the features extracted from the anomaly 
patterns. WiFall achieved 87% positive detection rate and 
18% false detection rate in laboratory experiments.

It can be observed from the reviewed single sensor-based 
works that there are three major distinct stages in single sen-
sor-based fall detection systems. The first distinct stage is the 
data collection stage. In this stage, single sensor modalities 
are used to collect raw data. The reviewed systems used vari-
ous sensing modalities, e.g., tri-axial accelerometer, depth 
camera, infrared sensor, radar, 802.11n NIC, etc. to collect 
data from the patients. The second major distinct stage is the 
feature extraction stage. In this stage, various methods are 

used to extract meaningful information and features from 
the data collected in the previous stage. The majority of 
the reviewed works used various feature extraction methods, 
such as ESAE, FFT, wavelet transform and stacked auto-
encoders to extract features from the collected data. The 
third distinct stage is the classification stage. The extracted 
features from the previous stage are classified using vari-
ous methods in this stage. The reviewed single sensor-based 
fall detection systems used various threshold and artificial 
intelligence-based methods to classify the extracted features. 
Considering these three stages, a general architecture of sin-
gle sensor-based fall detection systems which are found from 
the reviewed works is presented in Fig. 2.

Table 1 summarizes the above described single sensor-
based systems considering the following issues: sensor 
type, location of the used sensor, portability of the system, 
indoor-outdoor use, user privacy, accuracy, sensitivity, and 
specificity.

2.2 � Multiple sensor‑based fall detection systems

Multiple sensor-based systems depend on multiple sensors 
for capturing the real-world scenario. The systems normally 
rely on a fusion of sensors, such as gyroscope, accelerometer 
and depth camera for data collection purposes. The data col-
lected from multiple sensors are processed differently and 
then used in threshold-based algorithms (Cillis et al. 2015) 
or machine learning models for detection (Boutellaa et al. 
2019), (Wu et al. 2019).

2.2.1 � Fall detection using accelerometer and camera

Accelerometers are used to determine the acceleration of a 
body along several axes. Cameras provide information about 
the movement of the patient, as well as the environment 
around the patient. Both still images and video sequences 
can be used for fall detection. Still images are normally 
multidimensional matrices where an entry implying a pixel 

Fig. 2   General architecture of 
single sensor-based fall detec-
tion systems
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represents the intensity of the light on that location. Vid-
eos are sequences of still images. Various image processing 
techniques employing shape information and segmentation 
techniques can be used on video sequences for fall detection 
(Ozcan and Velipasalar 2016), (Zerrouki et al. 2016).

Zerrouki et al. (2016) used the Exponentially Weighted 
Moving Average (EWMA) monitoring scheme on the accel-
erometric data to detect potential falls. Only the features 
corresponding to detected falls were then classified using 
SVM into true falls and fall like events. A background sub-
traction technique was used to extract the body silhouette 
from the input image sequence. Thus, unchanged pixels in 
the frame sequence were eliminated by using the background 
image as a reference. This EWMA-SVM classification sys-
tem outperformed Neural Network, k-NN, and Naive Bayes 
classifiers (AUCNN = 0.94, AUCKNN = 0.93, AUCNaive-
Bayes = 0.95 and AUCEWMA-SVM = 0.97). The system 
achieved an overall accuracy of 96.77%. But the system has 
still some shortcomings. The RGB camera used in this sys-
tem is not capable of extracting the human silhouette in dark 
conditions. The dataset used in the system is collected from 
the University of Rzeszow named as fall detection dataset 

(URFD) (Kwolek and Kepski 2014) to test the system. The 
dataset contained the fall events and ADL from volunteers 
who are normally over the age of 26. The volunteers used in 
the dataset do not reflect the elderly community.

Ozcan and Velipasalar (2016) proposed a system employ-
ing camera and accelerometer sensors of smartphones to 
assist the elderly. The system uses histograms of edge orients 
with gradient local binary patterns as the main features. For 
the accelerometer-based part of fall detection, the system 
checks if the magnitude of the 3-axis vector is greater than 
the empirically determined threshold. The 3-axis vector is 
obtained by observing the magnitude of linear acceleration 
with the gravity component extracted from the correspond-
ing direction. This system performed better than other sys-
tems which used Histograms of Oriented Gradients (HOG) 
and its variants for feature extraction. The system achieved 
96.36% sensitivity and 92.45% specificity in detecting falls 
from standing and 90.91% sensitivity and 66.04% specificity 
in detecting falls from sitting.

Table 1   Summary of the single sensor-based fall detection systems

*N/A not appropriately defined, I indoor use only, B both indoor and outdoor use

Authors Used Sensor Location of 
Sensor

Portability Indoor/
Outdoor 
Use

User Privacy Accuracy (%) Sensitivity (%) Specificity (%)

Chen et al. 
(2019)

Accelerometer Wrist 2 B 2 97.82 99.30 96.36

Mehmood et al. 
(2019)

Accelerometer Waist 2 B 2 96.00 N/A N/A

Yhdego et al. 
(2019)

Accelerometer N/A 2 B 2 96.43 95.83 96.87

Yacchirema et al. 
(2019)

Accelerometer Waist 2 B 2 98.72 96.22 94.60

Cao et al. (2016) Accelerometer Chest 1 B 2 97.20 91.70 100
Aguiar et al. 

(2014)
Accelerometer Belt/pocket 2 B 2 N/A 97.00 99.00

Lim et al. (2014) Accelerometer Chest 1 B 2 99.50 99.17 99.69
Ding et al. (2017) Depth camera N/A 0 I 1 89.00 N/A N/A
Kong et al. 

(2017)
RGB-D camera 2 m from ground 0 I 1 97.10 94.90 100

Tran et al. (2014) Depth camera N/A 0 I 1 N/A N/A N/A
Chen and Ma 

(2015)
Infrared sensor 

array
Wall 0 I 1 93.00 95.25 90.75

Jankowski et al. 
(2015)

Infrared depth 
sensor

N/A 0 I 1 93.00 92.00 N/A

Jokanovic et al. 
(2016)

Monostatic CW 
radar

N/A 0 I 1 87.00 N/A N/A

Su et al. (2015) Doppler radar Ceiling 0 I 1 93.00 97.10 92.20
Wang et al. 

(2017)
802.11n NIC N/A 0 I 2 87.00 N/A N/A
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2.2.2 � Fall detection using accelerometer and gyroscope

While accelerometers provide an overall motion of a body 
along several axes, gyroscopes provide information about 
the orientation and angular velocity of the body. Acceler-
ometers and gyroscopes can be combined to create highly 
accurate fall detection systems (Bet et al. 2019), (Kwon et al. 
2019).

Wu et al. (2019) proposed a multiple sensor-based fall 
detection system that used a novel threshold derived from 
a multivariate control chart to detect falls in motion data. 
Two types of sensors namely: accelerometer and gyroscope 
are used in the system. The sensors are fixed on the waist, 
arm, and thigh location of the monitored person. In the data 
processing stage, the Autoregressive Integrated Moving 
Average (ARIMA) technique is used to remove autocorre-
lation, and PCA is used to reduce dimensionality from the 
multidimensional data. In the classification stage, falls and 
ADLs are differentiated by using a multivariate statistical 
process control chart. The system is person-specific as the 
threshold value is calculated from individual historical data. 
The developed system achieved 95.2% specificity and 94.8% 
sensitivity.

Cillis et al. (2015) introduced a smartphone-based fall 
detection that used accelerometer and gyroscope to collect 
the data from the real-time environment (Inertial Measure-
ment Units and/or Smartphones). The system combined the 
user’s heading with the instantaneous acceleration magni-
tude vector in a Threshold Based Algorithm (TBA). The 
best performance was achieved using a threshold-based 
algorithm combining gyroscope and accelerometer informa-
tion. The system achieved 100% accuracy in discriminating 
between falls and ADLs using this approach. Huynh et al. 
(2015) developed an approach using a combination of accel-
erometer and gyroscope sensors for robust fall detection. 
The system implemented an optimization schema using the 
Receiver Operating Characteristic (ROC) curve and itera-
tive analysis of sensitivity and specificity and determined 
critical thresholds for LFTacc, UFTacc, and UFTgyro to be 
0.30 g–0.35 g, 2.4 g, and 240°/s, respectively. The system 
achieved 96.3% sensitivity and 96.2% specificity, respec-
tively, using an accelerometer, gyroscope, and a ROC opti-
mization strategy. While the system is very effective for 
detecting falls, it might be less effective in determining near 
fall detection scenarios. For testing, the sensors were worn 
in the chest.

2.2.3 � Fall detection using accelerometer, gyroscope 
and depth camera

Still images generated from RGB cameras do not contain 
any depth information about the subject or the environ-
ment. Depth cameras generate images that contain the depth 

information of the environment. This depth information can 
be used to accurately track a subject’s location in the envi-
ronment (Xu et al. 2019), (Kong et al. 2019), (Kwolek and 
Kepski 2014).

Kwolek and Kepski (2014) used a tri-axial accelerom-
eter and a gyroscope to observe and detect potential falls 
as well as the motion of the user. If the calculated accelera-
tion passes a set threshold, the person is extracted from the 
depth images taken from the Kinect, features are calculated 
and finally, SVM classifier is used to classify the action 
and initialize the fall alarm. The system achieved accu-
racy, sensitivity, and specificity of 98.33, 100, and 96.67% 
when SVM was used to classify based on depth images 
and accelerometer data. The dataset developed and used in 
this system is named University of Rzeszow Fall Detection 
dataset (URFD) (Kwolek and Kepski 2014) and is publicly 
available. However, as this system relies heavily on depth 
images from the Kinect sensor, this system is most suitable 
for indoor uses as the sunlight interferes with the depth esti-
mation of the Kinect device in an outdoor scenario.

2.2.4 � Fall detection using accelerometer, cardiotachometer 
and smart sensors

Cardiotachometer is a device that is used for a prolonged 
graphical recording of the heartbeat. Fall events result in 
accelerated heart rates. Thus, cardiotachometer readings are 
useful in detecting fall events (Gia et al. 2018).

A multi-functional data acquisition board was proposed 
by Wang et al. (2014) which incorporated temperature and 
humidity sensors, a low power 3-axis accelerometer, a GPS 
module, a cardiotachometer, and a wireless communication 
module. The threshold-based algorithm used in this system 
relies on three features for accurate fall detection such as 
impact magnitude, trunk angle, and after-event heart rate. 
The system achieved 97.5% total accuracy, 96.8% sensitivity, 
and 98.1% specificity.

2.2.5 � Fall detection using accelerometer, gyroscope 
and UWB location tags

UWB location tags provide continuous location informa-
tion to the receiver. This location information can be used 
to determine the real-time location of a patient in a closed 
environment. Several other sensors can be combined with 
the location information to detect fall events (Gjoreski et al. 
2014).

A system named CoFDILS using body-worn inertial and 
location sensors proposed by Gjoreski et al. (2014). Three 
context components such as the user’s activity, body accel-
erations, and location information are used to determine the 
occurrence of a fall. A context-based reasoning schema is 
used in the system. Each of the three components uses the 
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information from the other two components as context and 
determines the user’s situation. Each component is assigned 
a context variable. The context variable contains the value 
of the component at each point in time. A total of six iner-
tial sensors were placed on the user body. The positions of 
the inertial sensors were: chest, waist, left thigh, left ankle, 
right thigh, and right ankle. Only the sensors in the user’s 
legs and waist were studied. A total of four location tags 
were placed on the user’s body. The positions of the location 
tags were: chest, waist, left and right ankle. Their detected 
UWB (Ultra-Wide Band) radio signals were tracked by sen-
sors fixed in the corners of the room. After processing the 
acquired data, various machine learning classification meth-
ods (Decision trees, k-NN, Naive Bayes, Random Forest and 
SVM) were used to classify the data. A single sensor enclo-
sure including one inertial sensor and one location sensor 
placed on the chest achieved 96.6% success in fall detection 
and 93.3% success in activity recognition. The Random For-
est technique also provided the best classification results.

2.2.6 � Fall detection using accelerometer, gyroscope 
and magnetometer

Sanchez and Muñoz (2019) introduced a multiple sensor-
based wrist-worn fall detection system that used an artifi-
cial neural network (ANNs) for differentiating between falls 
and ADLs. Three types of sensors namely: accelerometer, 
gyroscope, and magnetometer were used in the prototype. 
The used neural network was very simple having only 1 hid-
den layer with 8 neurons. The system achieved accuracy, 
sensitivity, and specificity of 98.10%, 98.10%, and 98.10%, 
respectively. All the tests were performed in laboratory con-
ditions. The prototype was also bulky in size. Boutellaa et al. 
(2019) proposed a multiple wearable sensor-based fall detec-
tion system that used the covariance matrix as a means to 
fuse signals from sensors and the nearest neighbor classifier 
to differentiate between falls and ADLs. In the data collec-
tion stage, three sensors, namely: accelerometer, gyroscope, 

and magnetometer are used. In the feature extraction stage, 
the covariance matrix is used to fuse the multiple signals. 
In the detection stage, Riemannian metrics and K-NN are 
used to classify activities into three types: falls, risk-falls, 
and ADLs. Two available public datasets were used as main 
data sources, no prototypes were made. The system achieved 
92.5% accuracy.

A similar observation to the single sensor-based fall 
detection systems is made for the reviewed multiple sen-
sor-based works. Three major distinct stages are involved 
with multiple sensor-based fall detection systems. The first 
distinct stage is the data collection stage, where a combi-
nation of sensing modalities is used to collect raw data 
from patients. The reviewed works used various combina-
tions of sensing modalities, such as tri-axial accelerom-
eter, gyroscope, magnetometer, UWB location tag, etc. to 
collect data from the patients. The second major distinct 
stage comprises the feature extraction stage, where vari-
ous methods are used to extract meaningful information 
from raw sensor data. The majority of the reviewed mul-
tiple sensor-based works used various feature extraction 
methods, such as EWMA, context-based reasoning, his-
togram of oriented gradients, etc. to extract features from 
the collected data. The third major distinct stage consists 
of the classification, where extracted features are classified 
into various classes. The reviewed multiple sensor-based 
fall detection systems used threshold and artificial intel-
ligence-based methods for classification. Thus, a general 
architecture as illustrated in Fig. 3 is derived from the 
reviewed multiple sensor-based fall detection systems.

Table 2 summarizes the above-described multiple sen-
sor-based systems considering the following issues: sensor 
type, location of the used sensor, portability of the system, 
indoor-outdoor use, user privacy, accuracy, sensitivity, and 
specificity.

Fig. 3   General architecture of 
multiple sensor-based fall detec-
tion systems
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3 � Results and discussion

Several performance metrics are used for comparing the 
effectiveness of systems. Accuracy, specificity, and sensi-
tivity are such metrics used for evaluating and differentiat-
ing different systems. In the context of fall detection, True 
Positives (TP) are correctly identified “fall” instances. False 
Positives (FP) are incorrectly classified “non-fall” instances. 
True Negatives (TN) are correctly identified “non-fall” 
instances. False Negatives (FN) are incorrectly classified 
“fall” instances. A reliable system should strive for a low 
False Positive and False Negative rate.

Accuracy can be described as the proportion of accurate 
instances to total number of instances. Accuracy can be cal-
culated as follows.

Sensitivity also termed as Recall or True Positive Rate 
(TPR) can be expressed as the ratio of actual positives that 
have been correctly classified as positives. Sensitivity can 
be calculated as follows.

Specificity also termed as Selectivity or True Negative 
Rate (TNR) can be expressed as the ratio of actual negatives 
that have been correctly classified as negatives. Specificity 
can be calculated as follows.

(1)Accuracy =
TP + TN

TP + TN + FP + FN

(2)Sensitivity =
TP

TP + FN

Table 2   Summary of the multiple sensor-based fall detection systems

*N/A not appropriately defined, I indoor use only, B both indoor and outdoor use

Authors Used sensors Location of Sensors Portability Indoor/
Outdoor 
Use

User Privacy Accuracy (%) Sensitivity (%) Specificity (%)

Zerrouki et al. 
(2016)

Accelerom-
eter + Camera

N/A 0 I 0 96.77 N/A N/A

Ozcan and 
Velipasalar 
(2016)

Accelerom-
eter + Camera

Pocket 0 I 0 N/A 96.36 92.45

Wu et al. 
(2019)

Accelerom-
eter + Gyro-
scope

Waist + Arm + Thigh 1 B 2 N/A 94.80 95.20

Cillis et al. 
(2015)

Accelerom-
eter + Gyro-
scope

Pocket 2 B 2 100 N/A N/A

Huynh et al. 
(2015)

Accelerom-
eter + Gyro-
scope

Chest 1 B 2 N/A 96.30 96.20

Kwolek and 
Kepski 
(2014)

Accelerom-
eter + Gyro-
scope + Depth 
Camera

N/A 0 I 1 98.33 100 96.67

Wang et al. 
(2014)

Accelerom-
eter + Car-
diotachom-
eter + Smart 
sensors

N/A 0 I 2 97.50 96.80 98.10

Gjoreski et al. 
(2014)

Accelerom-
eter + Gyro-
scope + UWB 
location tags

Chest 1 I 1 96.60 N/A N/A

Sanchez and 
Muñoz 
(2019)

Accelerom-
eter + Gyro-
scope + Mag-
netometer

Wrist 2 B 2 98.10 98.10 98.10

Boutellaa et al. 
(2019)

Accelerom-
eter + Gyro-
scope + Mag-
netometer

N/A N/A N/A 2 92.50 N/A N/A
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Accuracy of all the reviewed systems is presented in 
Fig. 4. Single sensor-based systems and multiple sensor-
based systems have been separated by using two different 
colors. Among single sensor-based systems, the accelerom-
eter-based system proposed in (Lim et al. 2014) achieved 
the highest accuracy of 99.50%. The waist mounted accel-
erometer based system proposed in (Yacchirema et al. 2019) 
achieved 98.72% accuracy. The accelerometer-based system 
introduced in (Cao et al. 2016) and RGB-D camera-based 
system introduced in (Kong et al. 2017) achieved accuracy 

(3)Specificity =
TN

TN + FP

of 97.20% and 97.10%, respectively. The monostatic CW 
radar-based system developed in (Jokanovic et al. 2016) 
and 802.11n NIC based system developed in (Wang et al. 
2017) both achieved 87.0% accuracy, which is the lowest in 
all the reviewed systems. Among the multiple sensor-based 
systems, the system employing both accelerometer and gyro-
scope in (De Cillis et al. 2015) achieved the highest accu-
racy of 100.0%. The system employing an accelerometer, 
gyroscope, and depth camera in (Kwolek and Kepski 2014) 
achieved an accuracy of 98.33%. Among all the reviewed 
systems, the multiple sensor-based system proposed in (De 
Cillis et al. 2015) achieved the highest accuracy (100.0%). 
The second highest accuracy (99.50%) was achieved by the 

Fig. 4   The accuracy of the 
reviewed systems
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Fig. 5   The sensitivity of the 
reviewed systems
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single sensor-based system developed in (Lim et al. 2014). 
The lowest accuracy (87.0%) was achieved by the systems 
described in (Jokanovic et al. 2016) and (Wang et al. 2017) 
where both are single sensor-based systems. The systems 
developed in (Aguiar et al. 2014), (Tran et al. 2014), (Ozcan 
and Velipasalar 2016), (Huynh et al. 2015) did not provide 
accuracy metrics, making their systems harder to compare 
to other systems.

Sensitivity of all the reviewed systems is presented in 
Fig. 5. Single sensor-based systems and multiple sensor-
based systems have been separated by using two differ-
ent colors. Among the single sensor-based systems, the 
accelerometer-based system proposed in (Chen et al. 2019) 
achieved the highest sensitivity of 99.30%. The accelerom-
eter based systems designed in (Lim et al. 2014) achieved 
99.7% sensitivity. The Doppler radar-based system intro-
duced in (Su et al. 2015) and the accelerometer-based system 
introduced in (Aguiar et al. 2014) achieved the sensitivity of 
97.1% and 97.0%, respectively. Among the reviewed mul-
tiple sensor-based systems, the accelerometer, gyroscope, 
and depth camera-based system developed in (Kwolek and 
Kepski 2014) achieved the highest sensitivity of 100.0%. 
The accelerometer, gyroscope and magnetometer based 
system proposed by (Sanchez and Muñoz 2019) achieved 
98.10% sensitivity. The accelerometer and camera-based 
system proposed in (Ozcan and Velipasalar 2016), accel-
erometer and gyroscope-based system described in (Huynh 
et al. 2015), and the accelerometer, cardiotachometer, smart 
sensors-based system introduced in (Jin Wang et al. 2014) 
achieved sensitivity scores as 96.36%, 96.30%, and 96.80%, 

respectively. Among all the reviewed systems, the multi-
ple sensor-based systems proposed in (Kwolek and Kepski 
2014) achieved the highest sensitivity (100.0%). The system 
introduced in (Chen et al. 2019) achieved the second-highest 
sensitivity (99.30%). The systems proposed in (Ding et al. 
2017), ( Tran et al. 2014), (Jokanovic et al. 2016), (Wang 
et al. 2017), (Zerrouki et al. 2016), (De Cillis et al. 2015), 
(Gjoreski et al. 2014) did not provide any sensitivity metric.

The specificity of all the reviewed systems is presented in 
Fig. 6. Two colors were used to differentiate between single 
sensor-based systems and multiple sensor-based systems. 
Among the reviewed single sensor-based systems, the accel-
erometer-based system proposed in (Cao et al. 2016) and 
the RGB-D camera-based system introduced in (Kong et al. 
2017) achieved the highest specificity (100%). The accel-
erometer-based systems proposed in (Aguiar et al. 2014) 
and (Lim et al. 2014) achieved almost similar specificity 
of 99.0%, and 99.69%, respectively. Among the reviewed 
multiple sensor-based systems, the accelerometer, cardiota-
chometer, and smart sensor-based system proposed in (Jin 
Wang et al. 2014) and the accelerometer, gyroscope, mag-
netometer based system proposed in (Sanchez and Muñoz 
2019) achieved the highest specificity of 98.1%. The accel-
erometer and gyroscope-based system introduced in (Huynh 
et al. 2015), and the accelerometer, gyroscope, and depth 
camera-based system introduced in (Kwolek and Kepski 
2014) achieved 96.2% and 96.67% specificity scores, respec-
tively. Among all the reviewed systems, the systems pro-
posed in (Cao et al. 2016) and (Kong et al. 2017) achieved 
the highest specificity, and they are both single sensor-based 

Fig. 6   The specificity of the 
reviewed systems
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systems. The system described in (Lim et al. 2014) achieved 
the second-highest specificity as 99.69%. The systems pro-
posed in (Ding et al. 2017), (Tran et al. 2014), (Jankowski 
et al. 2015), (Jokanovic et al. 2016), (Wang et al. 2017), 
(Zerrouki et al. 2016), (De Cillis et al. 2015), (Gjoreski et al. 
2014) did not provide any specificity metrics.

In most of the developed systems, the researchers only 
measured one or two out of the three performance metrics. 
In single sensor-based systems, only the systems proposed 
in (Chen et al. 2019), (Yhdego et al. 2019), and (Lim et al. 
2014) have scored greater than 95% in all three perfor-
mance metrics. Out of the three, the system developed in 
(Lim et al. 2014) achieved the highest accuracy, sensitivity, 
and specificity values of 99.5, 99.17, 99.69%, respectively. 
In multiple sensor-based systems, only the systems devel-
oped in (Kwolek and Kepski 2014), (Jin Wang et al. 2014), 
and (Sanchez and Muñoz 2019) achieved greater than 95% 
scores in all three performance metrics.

Both single sensor and multiple sensors-based fall detec-
tion systems achieve higher accuracy, sensitivity, and speci-
ficity. The multiple sensors, however, increase the overall 
accuracy, sensitivity, and specificity, but not by leaps and 
bounds. Accelerometers are the most used sensors in our 
review. Gyroscopes are a close second.

We evaluated the systems based on three criteria: port-
ability, indoor/outdoor use and user’s privacy. The portabil-
ity score represents the ease of carrying the system with 
the monitored person. The portability score is provided on 
a scale of 0–2. A score of 0 meaning the relevant system is 
not portable; 1 meaning, somewhat portable; and 2 meaning, 
highly portable.

The attribute—indoor/outdoor use—represents the adapt-
ability of the system with the environment where the sys-
tem can be used. This attribute can have a character symbol 
from I, O, and B. “I” represents that the relevant system can 
only be used indoors, “O” represents the relevant system 
can only be used outdoors, while “B” represents that the 
relevant system can be used both indoors and outdoors. The 
privacy score represents the degree of privacy violation of 
the monitored person through the system. While all data 
leaks are harmful in one way or another, leaks of raw data 
from one type of sensor might be relatively less harmful than 
leaks from another type of sensor, depending on the capacity 
of data access by a third party. The privacy score is provided 
on a scale of 0–2. A score of 0 represents that the relevant 
system does not protect the user’s privacy i.e., it poses a high 
risk to the user’s privacy. A score of 1 represents that the 
relevant system moderately protects the user’s privacy, while 
a score of 2 represents that the relevant system protects the 
user’s privacy.

Out of the reviewed systems, single or multiple sensor-
based wrist-mounted solutions such as smart watches are the 
most versatile. They can be used both indoor and outdoor 

environments. However, power efficiency and network con-
nectivity are big issues for such devices. The network con-
nectivity issues for the devices make them difficult to embed 
fall rescue services. Other waist-mounted, thigh-mounted 
or chest-mounted solutions might be uncomfortable for the 
users. But a combination of these mounts increases the over-
all effectiveness of the fall detection system.

Smartphone based fall detection and rescue systems are 
good alternatives to embedded-system-based solutions. 
Availability of all types of motion sensors in smartphones, 
easy to use APIs, network connectivity, good battery life, 
the widespread availability and affordability of smartphones 
makes them a very good choice for developing fall detection 
systems. Most multiple sensors-based wearable fall detection 
systems are chest or waist mounted. Multiple sensors-based 
solutions combining wearable sensors and stationary sensors 
can only be used indoor but might be more applicable for 
mass monitoring in nursing homes, hospitals, care centers, 
etc. Fall detection systems employing floor sensors, Dop-
pler radars, different types of cameras, etc. can only be used 
indoors and are applicable for use in the aforementioned 
scenarios. No such system is found that could only be used 
outdoors.

User privacy is also a huge concern for fall detection sys-
tems. Fall detection systems employing various cameras do 
not protect the users’ privacy. Accelerometer, gyroscope, 
magnetometer, and cardiotachometer based solutions pro-
tect the privacy of the users relatively better. Portability is a 
huge consideration for fall detection systems. Fall detection 
systems that use different types of cameras, IR sensors, floor 
sensors, and radars are not portable at all. On the other hand, 
body-mounted systems employing various motion sensors, 
such as accelerometers, gyroscopes, barometers, and mag-
netometers are highly portable and adaptable.

4 � Conclusion

The paper reviews the various automatic fall detection sys-
tems which use various types of sensors to capture the real-
world environment. The reviewed fall detection systems 
use either single or multiple sensors for data acquisition 
related to falls. The number of sensors used does not nor-
mally dictate the system’s accuracy. However, accuracy is 
more dependent on the features used for classification in the 
system. Accelerometer based single sensor systems are the 
best for wearable solutions. Kinect sensor-based fall detec-
tion systems cannot be used for outdoor monitoring as the 
sunlight affects the accuracy of the depth estimation. Most 
of the monitoring systems do not protect the users’ privacy. 
Depth camera, Wi-Fi Channel State Information (CSI), Dop-
pler radar, Infrared Sensor Array based monitoring systems 
are great for maintaining the users’ privacy. They can even 
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be deployed in bathrooms. But most of these systems are 
limited by their range and need multiple sensors deployed 
throughout the environment for providing accurate fall moni-
toring. Most of the network-reliant systems are also suscepti-
ble to hackers. The overall security of the patients should be 
considered while developing fall detection systems. As most 
of the fall detection systems are tested on their custom data-
sets, it becomes difficult to compare different fall detection 
systems based on their performance metrics. Therefore, fall 
detection systems should be tested on similar open-access 
datasets for future comparison. Similar open-access data-
sets can be merged to generate larger benchmark datasets. 
Computer vision or surveillance-based fall detection sys-
tems need huge amounts of processing power. They also stop 
working when a power failure occurs. Hence, failsafe sys-
tems should be proposed that would work when the primary 
systems cease to work for some reason. Most fall detection 
systems face problems in differentiating the activity of lying 
down and falling. Depth image and radar-based fall detection 
systems face problems when furniture is present in the sys-
tem and the user falls behind furniture. The most important 
aspects while designing fall detection systems are compu-
tational cost, classifiers, energy consumption, environment, 
the presence of multiple people, privacy, threshold values, 
etc. We hope that this review will aid the researchers to 
design better sensor-based fall detection systems.
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