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Abstract
Distributed generation units (DGUs) as auxiliary sources of power generation can play an effective role in meeting the load 
consumption of the distribution network, also have positive effects such as reducing loss and improving voltage. Moreover, 
capacitors by reactive power compensation produce positive effects similar to DGUs in the distribution networks. The idea of 
joint operation of DGUs and shunt capacitors (SCs) in the presence of demand response program (DRP) to derive maximum 
benefits from their installation is proposed in this paper. The time of use (TOU) mechanism is used as one of the demand 
response programs (DRPs) to alter the consumption pattern of subscribers and improve the performance of the distribu-
tion system. Objective functions include minimization of energy loss, operational cost, and energy not supplied (ENS). In 
general, the problem of determining the optimal capacity of DGUs and SCs is complex due to the demand variation. Also, 
considering the effect of uncertainty sources complicate the optimization problem. Hence, a modified shuffled frog leaping 
algorithm (MSFLA) is proposed to overcome the complexities of this problem. The proposed approach is tested on two 95, 
and 136-node test networks, and the results are compared with other evolutionary algorithms. According to the obtained 
results, after using the proposed approach in determining the optimal capacity of DGUs and SCs in the first system, the 
amount of energy loss, operational cost and ENS dropped by 11, 25.5 and 5% compared to baseline values. After applying 
the TOU mechanism in allocation of DGUs and SCs simultaneously in the second system by proposed method, the values 
obtained for the mentioned objectives reduced by 29, 65 and 7% compared to initial values.

Keywords Energy not supplied · Shunt capacitors · Distributed generation units · Uncertainty source · Modified shuffled 
frog leaping algorithm · Demand response program

List of symbols
�Pd�Ep  Occurrence probability of load demand 

and electricity price
CEp CEp  Numerical values extracted from proba-

bilistic distributions for load demand and 
electricity purchase price

PMDF
t,i

  Modified demand of the ith feeder at time 
t

Ns  Number of scenarios

PTOU
t,i

 PINI
t,i

  Surge or drop in the demand for this 
mechanism and the initial demand values 
in ith feeder at time t without TOU 
mechanism

TOU max  Maximum speed of demand surge or drop 
in the TOU mechanism

μ  Mean value
σ  Standard deviation
XwXb  Worst and best frogs
PDG,j  Active power of jth DG unit
PSub,s  Active power of sth sub-station
PriceDG,j  Purchase price of electricity from jth DG 

unit
PriceSub,s  Purchase price of electricity from sth 

sub-station
Ui,j U

′
i,j

  Repair time (hours per year) and the com-
pensation time for the branches related to 
bus i
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λi,j di,j  Failure rate and line length
NSub  Number of sub-stations
C  Constant value
Yij�ij  Magnitude and branch admittance angle 

between buses i and j
KKmax  Number of current iteration and maxi-

mum iteration number
W  Inertia weight
fmin
i

fmax
i

  Lower and upper limits of ith objective 
function

μi  Fuzzy membership function of ith objec-
tive function

βk  kTh weight of objective function
Epr  Distribution function parameter
Ri  Resistance of the ith line
Ii  Current of ith line
Nbrch  Number of branches
X  Vector of decision variables
XG  Best frog between all memblexes
rand  Random number in [0,1]
Dmin Dmax  Minimum and Maximum displacement of 

ith frog
VminVmax  Minimum and maximum allowable values   

of ith bus voltage
QC,iQd If ,iI

Max
f ,i

  Current amplitude at time t and the maxi-
mum current of ith feeder

Pmin
DG

Pmax
DG

  Minimum and maximum output power of 
ith DG unit

NCap  Number of capacitors
ti,jt

′
i,j

  Average repair time and the average line 
recovery time between the ith and jth 
buses

Pj Qj  Active and reactive power injected by the 
network in the ith bus

NBus  Number of buses
Viδi  Voltage magnitude and Voltage angel of 

the ith bus
m n  Number of non-dominated solution and 

objective functions
WminWmax  Boundaries of inertia weight
NDG  Number of DG units
N�j  Normalized membership function of each 

for each member

1 Introduction

Distribution systems’ operation strategies have changed dra-
matically in recent years due to the proliferation of DGUs. 
Development and integration of these units in distribution 
systems have exerted positive effects on voltage profile of 
buses, line current profile, and reliability. Hence, a great 

number of studies have explored the effect of DGUs to 
optimally operation distribution systems (Azizivahed et al. 
2017, 2018). In addition, shunt capacitors (SCs) are used in 
distribution systems to improve network performance for 
a variety of purposes, such as enhancing the power quality 
and decreasing loss by injecting reactive power (Askarzadeh 
2016). Hence, some studies have explored the separate effect 
of DGUs and SCs on the network’s operation to augment the 
performance of the distribution systems.

The distribution network reconfiguration and DGUs allo-
cation was solved using a genetic algorithm (GA) to reduce 
loss and harmonic distortion (Din et al. 2019). Taguchi per-
formance analysis method was proposed for optimal DGUs 
allocation to diminish loss (Galgali et al. 2019). A particle 
swarm optimization (PSO) algorithm was proposed for opti-
mal sizing of DGUs to decrease loss (Kumari et al. 2017). 
A new analytical method was presented to determine the 
optimal capacity and location of distributed generation units 
to decrease loss (Tah and Das 2016); this model obviates the 
need to consider the impedance matrix. A biogeography-
based algorithm was presented for optimal sizing and place-
ment of DGUs using the effective power factor model to 
minimize loss (Ravindran and Victoire 2018). A two-step 
method based on combination of sensitivity analysis and 
cuckoo optimization algorithm was used for optimal locating 
and sizing of SCs to reduce loss (Reddy and Prasad 2014). 
An artificial bee colony (ABC) method was proposed to 
allocate shunt capacitors in radial test system to enhance 
the voltage stability considering load variable (El-Fergany 
and Abdelaziz 2014). Two hybrid evolutionary methods 
were used for placement and sizing of SCs to minimize loss 
(Abdelaziz et al. 2016; Lotfi et al. 2016). A crow search 
optimization algorithm was introduced to determine the size 
and location of SCs in the network to reduce active loss and 
modifying the voltage profile (Askarzadeh 2016). Most of 
the above studies have considered the power loss and volt-
age profile as objective functions in solving the optimization 
problem in 33 and 69 bus test networks, and good results 
have achieved in reducing loss and improving the voltage 
profile. Also, they have been able to provide practical opti-
mization algorithms to solve the considered optimization 
problem. But, these studies have neglected to consider the 
objective function of reliability in solving the optimization 
problem, which is very critical in the distribution network, 
failure to account for this point will result in frequent black-
outs in the network and the distribution system instability. 
There is also no trace of the operational cost objective func-
tion related to the cost of grid power generation and distrib-
uted generation units. Moreover, these studies have consid-
ered the problem as a single-objective problem and have not 
presented a strategy for solving the multi-objective problem. 
In fact, the simultaneous effect of two objective functions 
in solving the problem is not seen. In the following, the 
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references that have modeled the considered optimization 
problem in a Multi-objective framework, are examined.

A Multi-objective fire butterfly optimization was pre-
sented for optimal DGUs allocation to reduce loss, volt-
age deviation and pollution of DGUs (Elattar and ElSayed 
2020). A hybrid PSO-incremental learning algorithm was 
suggested for placement and sizing of DGUs to reduce 
loss and improve the voltage profile (Grisales-Noreña et al. 
2018). Two state-art-of methods including Non-dominated 
sorting genetic and ant lion optimization were proposed 
for locating and sizing of DGUs to reduce loss and voltage 
deviation (Liu et al. 2019; VC 2018). A population-based 
algorithm was proposed for the placement and sizing of SCs 
to decrease loss and enhance voltage stability (Al-Ammar 
et al. 2021). Honey-Bee mating (HBM) method was pro-
posed to determine the capacity and optimal location of SCs 
in the distribution system to diminish loss and voltage devia-
tion (Kavousi-Fard and Samet 2013). A two-step method 
that combines sensitivity analysis and ant colony optimiza-
tion algorithm was suggested to determine the capacity and 
placement of SCs in the distribution network in an attempt 
to diminish loss and voltage deviation (Abou El-Ela et al. 
2018). These studies have solved the multi-objective opti-
mization problem using Pareto fronts and weighting factor 
methods. In addition to presenting novel and state-of-art 
algorithms in these studies, the presence of several new 
objective functions such as voltage stability and pollution is 
also seen in these studies. But similar to the studies exam-
ined in the previous paragraph, changes in electrical load 
and electricity price are not considered in solving the prob-
lem. Since the electrical load in real distribution systems 
is variable, dynamic planning is required for the optimal 
operation of the distribution network considering DGUs 
and capacitors. Moreover, some objective functions such as 
operational costs and energy loss must be calculated under 
the time-varying electrical load and electricity price.

Using DGUs and SCs simultaneously has additional 
advantages and capabilities for the distribution system than 
the separate presence of these units in the network. Hence, 
another group of studies has focused on the simultaneous 
effect of DGUs and SCs in the optimal operation of dis-
tribution network. An improved PSO-Simulated anneal-
ing algorithm was introduced to determine the capacity 
and placement of DGUs and SCs to reduce network loss 
and operational cost (Su 2019). The GA was proposed 
to determine the capacity and optimal location of DGUs 
and SCs with variable electrical load to diminish active 
loss (Das et al. 2019). An evolutionary algorithm based 
on decomposition was utilized for placement and sizing of 
DGUs and SCs in the network to reduce active and reac-
tive loss (Biswas et al. 2017). The water cycle evolution-
ary algorithm was suggested for placement and sizing of 
DGUs and SCs to reduce network loss (Abou El-Ela et al. 

2016). The PSO algorithm was presented for placement 
and sizing DGUs and SCs in the distribution network by 
considering the uncertainty of the electrical load in order 
to reduce active loss and strengthen voltage stability (Zein-
alzadeh et al. 2015). Given the valuable work discussed 
above on the problem of optimal placement and sizing of 
capacitors and distributed generation sources, acceptable 
results are observed in reducing loss and operational cost 
in the simultaneous presence of DGUs and SCBs com-
pared to the separate presence of these units in the dis-
tribution network. However, in most of these studies, the 
effect of uncertainty resources on solving the optimization 
problem has not been considered. As a result, the solu-
tion found for the problem could be far from the actual 
operating point of the system. Therefore, considering the 
effect of these resources on the optimal use of the network 
enables the network operator to have correct and accurate 
planning based on the real situation of the system. Another 
noteworthy point derived from the review of the above 
studies in this field is the inadequate attention allocated 
to the issue of demand response programs (DRPs). DRPs 
are usually implemented at the lowest cost and with the 
participation of consumers to improve the performance 
and reliability of the distribution network at certain times.

As far as the solution method is concerned, it should be 
noted that optimal placement and sizing of DGUs and SCs 
in distribution systems is not linear and convex. Therefore, 
mathematical algorithms are not suited for solving this 
complex optimization problem due to their limitations. 
Evolutionary methods are used for solving engineering 
optimization problems due to their features such as simple 
implementation and low computational volume. Most of 
the research examined in this study have used evolutionary 
methods including NSGA II (Liu et al. 2019), GA (Din 
et al. 2019), and PSO (Kumari et al. 2017) for solving 
optimal placement and sizing DGUs and SCs in the dis-
tribution network. However, due to the random nature of 
these methods, they may encounter initial convergence in 
solving some complex optimization problems. Therefore, 
finding a suitable and practical optimization method is of 
paramount importance.

The main ideas presented in the paper are as follows:

• Providing a novel approach for optimal sizing of DGUs 
and SCs in the distribution network by considering the 
variable electrical load.

• Presenting a TOU mechanism as one of the DRPs for 
optimal sizing of DGUs and SCs in the network to 
modify the consumption pattern of subscribers.

• Considering the ENS index as a function of the reli-
ability objective in this study and improving this index 
by allocating DGUs and SCs in the distribution system.
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• Considering sources of uncertainty, including con-
sumption power demand and electricity purchase price, 
for solving the considered optimization problem.

• Presenting a MSFLA to address the complexity of the 
optimization problem and to provide a new type of 
mutation operator in the proposed algorithm to enhance 
search-ability and population diversity.

• Utilizing the Pareto optimization approach based on the 
domination concept in the proposed algorithm to solve 
the multi-objective optimization problem and introduc-
ing two various criteria, Generational Distance (GD), 
Diversity Metric (DM) to evaluate Pareto solutions.

The primary goal of this study is to introduce an effi-
cient approach to obtain the optimal sizing of DGUs and 
SCs, considering the resources of uncertainty and DRPs. 
Energy loss, operational cost, and ENS index are consid-
ered as objective functions in this research. Also, to dem-
onstrate the capability of the proposed approach, two 95 
and 136-bus test networks are utilized. Given the different 
objective functions in this study, the proposed algorithm 
uses a fuzzy strategy to save the set of non-dominated 
solutions in an external repository. This study is organized 
as follows. In Sect. 2, the problem formulation, including 
objective functions, constraints, uncertainty modeling and 
time of mechanism are presented. The optimization meth-
odology and simulation results are described in Sects. 3 
and 4. The Pareto solution analysis and conclusions are 
presented in Sects. 5 and 6.

2  Problem formulation

The optimization problem addressed in this paper is to find 
the optimal size of DGs and SCs for installation in radial 
distribution systems taking into account variable load and 
uncertainty of load and electricity price. The objective func-
tions adopted in this study are to minimize energy loss, ENS, 
and operational cost. Objective functions are bounded by 
equality and inequality constraints. In the following, uncer-
tainty sources modeling and time of use mechanism are pre-
sented in this section.

2.1  Objective function

In this study, the objective functions include minimization 
of energy loss, operational cost, and ENS index.

• Energy loss
  Distribution system energy loss is obtained from 

Eq. (1) (Lotfi et al. 2019)

• Operational cost
  The operational cost in this study is derived from the 

following equation:

• Energy not supplied

The ENS of the reliability objective function is derived 
from Eq. (4):

where, v = {0.1.… .(n − 1)} is the set of the nodes in the 
distribution network. The final equation to calculate the ENS 
of the network without considering the reference node is 
calculated from Eq. (5):

2.2  Constraints

In this section, some equality and inequality limitations 
for the optimization problem are provided that should be 
satisfied.

• Load flow equations

• Bus voltage range

• Feeder current

(1)f1(X) =

Nbrch∑
i=1

Ri
||Ii||2

(2)
X =

[
PDG1, PDG2,… .PDG,NDG, QCap1, QCap2,… .QCap,NCap

]

(3)f2(X) =

NDG∑
j=1

PriceDG,j PDG,j +

Nsub∑
s=1

PriceSub,s PSub,s

(4)ENSi = Pi

∑
i,j∈V, i≠j

(Ui,j + Ui,j)

(5)f3(x) =

NBus∑
i=2

ENSi

(6)Pj =

NBus∑
i=1

ViVjYijcos
(
�ij − δi + δj

)

(7)Qj =

NBus∑
i=1

ViVjYijsin(�ij − δi + δj)

(8)Vmin ≤ Vi ≤ Vmax i = 1, 2,… , NBus



4743Optimal sizing of distributed generation units and shunt capacitors in the distribution system…

1 3

• DGs constraint

• Shunt capacitor limit

2.3  Uncertainty sources modeling

In this study, power demand and electricity purchase price 
are considered as uncertainty resources in the optimization 
problem. Uncertainty in the projected power demand and the 
purchase price of electricity formulated by the normal and 
log-normal distribution functions are expressed as follows:

In this study, the scenario generation method is utilized 
to account for the uncertainty of system design parameters. 
In this method, using Monte Carlo simulation, a number of 
random modes are developed for the system variables using 
the probabilistic distribution function of system variables, 
then the occurrence probability of each mode is computed 
(Barani et al. 2018; Niknam et al. 2012). Equations (14, 15) 
reveal the samples extracted from the probabilistic distribu-
tions for power demand and the purchase price of electricity, 
respectively. The sum of probabilities must be equal to one, 
Eq. (16) shows how samples are combined to generate sce-
narios in which the sum of the probabilities of the generated 
scenarios is always equal to one (17).

It should be noted that in this paper, to reduce compu-
tational complexities and accelerate program execution, 

(9)
|||If ,i

||| ≤ IMax
f ,i

i = 1, 2,… , Nfeeder

(10)Pmin
DG

≤ PDG,i ≤ Pmax
DG

i = 1, 2,… , NDG

(11)QCap,i ≤ Qd i = 1, 2,… ,NCap

(12)f (x) =
1

�
√
2�

e
−

(x−�)2

2�2

(13)fp(E
pr
,�,�) =

1

Epr�
√
2�

exp(−
(lnEpr − �)2

2�2

(14)δPd =
{(

C1
Pd
,�1

Pd

)
,
(
C2
Pd
,�2

Pd

)
,… .

(
Cn
Pd
,�n

Pd

)}
,�1

Pd
+ �2

Pd
+⋯ + �n

Pd
= 1

(15)δEp =
{(

C1
Ep
,�1

Ep

)
,
(
C2
Ep
,�2

Ep

)
,… .

(
Cn
Ep
,�n

Ep

)}
,�1

Ep
+ �2

Ep
+⋯ + �n

Ep
= 1

(16)S = �Pd × �Ep

(17)
∑
S∈Ns

δPd + δEp = 1

the scenario reduction is employed using the backward 
technique (Barani et al. 2018; Niknam et al. 2012). This 
method, in addition to reducing the computational com-
plexities of the problem and improving its speed, ensures 
the accuracy required for problem solving. Scenario reduc-
tion is a method for optimal selection of useful scenarios 
from a set of generated scenarios that not only shortens 
the execution time of the algorithm, but also consider-
ably reduces the computational complexity of the problem. 
For this purpose, the backward reduction technic is used 
to reduce the number of scenarios. Suppose that the ini-
tial probability distribution Q is defined on the scenario 
set Ω . The problem of optimal reduction of set Ω can be 
expressed as follows:

Define a subset of scenarios Ωs ⊂ Ω and assign a new 
distribution to remaining scenarios so that the reduced 
probability distribution Q′ defined on Ωs set is the nearest 
distribution to the main distribution Q in terms of proba-
bility distance. The Kantorovich distance can be expressed 
as follows:

In the above equation, S is a string scenario that has 
H subsets of si , d (S, S

��) is the distance between the two 
scenarios S and S″.

The scenario reduction algorithm is as follows:

• Collect the generated scenarios and determine the 
obtained scenarios probabilities so that the sum of 
scenario probabilities in each step is one.

• Calculate the vector distance matrix for each scenario 
pair, and compute the Kantorovich distance matrix by 
multiplying the probabilities of scenarios.

• Find the scenario with the lowest Kantorovich distance 

and mark it in the Kantorovich matrix.
• Choose a scenario with minimum Kantorovich distance 

and the scenario with the closest Kantorovich distance 
from that scenario.

• Eliminate the scenario with the lowest Kantorovich 
distance due to its low probability and closeness to the 
other scenario, and add its probability to the closest 

(18)KD

(
S,S��

)
= Πs × d (S, S��)

(19)d (S, S��) =

( H∑
i=1

(si − s��
i
)
2

)1∕2
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scenario. By doing so, the sum of the remaining sce-
narios will always be one.

• Update the probability matrix with the new matrix.

2.4  Time of use mechanism

Demand response programs (DRPs) refer to a set of measures 
taken to modify energy usage pattern to boost system stabil-
ity and hamper price rise, particularly at peak network loads. 
Participants in the DRPs are subscribers who, instead of reduc-
ing consumption, are responsible for modifying their energy 
usage patterns to diminish their costs, which ultimately results 
in lower electricity usage. In general, DRPs can be split into 
two sections: incentive programs and price-based programs 
(Azizivahed et al. 2019; Jahani et al. 2019).

In this paper, one of the DRPs called time of use mech-
anism (TOU) is used to alter the consumers’ usage pattern 
to improve system performance. Mathematical modeling of 
the TOU mechanism is presented in (20)–(22). Based on this 
mechanism, the total modified energy cannot exceed a fixed 
value (assuming 15% of the base demand). Also, a balance 
must be struck between the increase and drop of overall power 
over a particular period.

3  Multi‑objective optimization strategy

In this section, original shuffled frog leaping algorithm 
(SFLA), modified shuffled frog leaping algorithm (MSFLA) 
and fuzzy clustering strategy are briefly presented.

3.1  Shuffled frog leaping algorithm

The SFLA was first introduced in 2003 by Eusuff et al. (2006). 
In this algorithm, each frog possesses information about a 
solution to a problem. The SFLA consists of the initial popu-
lation of possible solutions to the problem. These solutions 
are actually a set of virtual frogs that are further divided into 
several groups. Each group of frogs has characteristics that can 
be influenced by the characteristics of frogs in other groups. In 
each group, the worst and best frogs are shown by Xw and Xb , 
respectively. The best frog between the groups is indicated by 

(20)PMDF
t,i

= PTOU
t,i

+ PINI
t,i

(21)
|||P

TOU
t,i

||| ≤ TOU max × PINI
t,i

(22)
T∑
t=1

PTOU
t,i

= 0

XG . The evolutionary process is performed by changing the 
position of the worst frog Xw in each group as follows:

After applying Eqs. (23, 24), if the new position of 
the worst frog is not improved, the evolutionary pro-
cess is conducted by replacing XG with Xb in Eq. (24). 
If the position of frogs cannot be enhanced, a new frog is 
randomly generated in the place of the worst frog in the 

(23)Xnew
w

= Xw + Di

(24)Di = rand × (Xb − Xw)

(25)−Dmax ≤ Di ≤ Dmax

Fig. 1  Improvement of frog’s position

Fig. 2  The pseudo-code of SFLA
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above equations. Figures 1 and 2 show the movement of 
the worst frog toward the optimal position and the pseudo-
code of the SFLA, respectively.

3.2  Modified shuffled frog leaping algorithm

The classic SFLA, where frogs with the worst fit adjust their 
position relative to the group or the best frog, deploy them 
along a line between Xb and Xw . This may lead the algorithm 
towards the wrong answers. For this reason, we present a 
new strategy to improve the performance of the MSFLA. 
Equation (26) is suggested for the kth repetition due to the 
limited search score.

In the above equation C is a search acceleration factor that 
prevents algorithm to stagnate at a local optimum leading to 
its premature convergence (Elbeltagi et al. 2007). A review 
of previous studies reveals that the range of acceleration 
values between 1.3 and 2.1 (1.3 < C < 2.1) (Elbeltagi et al. 
2007) provides the MSFLA with the best opportunity to find 
the global optimal with a minimum number of iterations. 
To have more control over Eq. (26), a weight W is added. 
It expresses the relationship between the local optimum 
point and the global optimum point in the frog leap process 
according to Eq. (27):

(26)Di = rand × C × (Xb − Xw)

In the above equation, parameter W has a huge effect on 
the convergence behavior of the algorithm. A higher value of 
parameter W boosts the algorithm’s ability to find the global 
point in the search space and undermines the ability to find 
the local point. The effect of the previous speed on the cur-
rent speed of the algorithm can be controlled by modifying 
W according to Eq. (28).

Thus, the value of W will gradually decrease from Wmax 
to the minimum value Wmin in a linear iterative process. The 
search capacity in an algorithm iteration process is high 
and the algorithm will be able to search a large solution 
space and new areas will be constantly explored to find the 
solution. From the perspective of intermittent iteration, the 
algorithm progressively shrinks its search range to one area, 
thus increasing the convergence rate. The flowchart of the 
MSFLA is depicted in Fig. 3.

(27)Di = W × rand × C × (Xb − Xw)

(28)W = Wmin +
(Kmax − K) × (Wmax −Wmin)

Kmax

Fig. 3  Flowchart of the MSFLA
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3.3  Fuzzy clustering strategy

In this study, the problem of Multi-objective optimization 
where there are contradictory objective functions is per-
formed using a fuzzy optimization tool (Lotfi et al. 2019). 
The membership function is applied to have the same range 
for all objective function as follows:

The normalized objective function (Lotfi 2020; Lotfi et al. 
2019) is calculated for each individual as follows:

βk is chosen based on the degree of priority from the point 
of view of operator. In this study, ( B1 = B2 = B3 = 0.33) for 
three-objective optimization and ( B1 = B2 = 0.5) for two-
objective optimization.

4  Simulation result

In this section, 95 and 136-node test systems are employed 
to assess the ability of the MSFLA for solving the problem 
of determining the optimal capacity of DGUs and SCs in 
the distribution network. All simulations are done in MAT-
LAB (ver. 2016a). The scenario reduction strategy with 
50 scenarios is used to model the sources of uncertainty. 
Also, the sources of uncertainty in solving the optimiza-
tion problem include consumption demand and electricity 
purchase price. The TOU mechanism as one of the DRPs is 
executed in all nodes of the two test networks, the idea of 
using TOU is to reduce the operational cost and improve 
the system performance by shifting the electrical loads from 
peak times to off-peak times. To compare and validate the 
results of the proposed method, gravitational search algo-
rithm (GSA), Imperialist competitive algorithm (ICA), Non-
dominated sort genetic algorithm II (NSGA II), and SFLA 
are utilized to solve the considered optimization problem. 
After the introduction of the first version of the Genetic 
Algorithm in 1993, in 2002, the proponents of this algo-
rithm introduced an elitist mechanism based on the impor-
tance of defective queues called the NSGA II to provide 
diversity in Pareto-optimal solutions (Liu et al. 2019; Parvizi 
and Rezvani 2020). In order to shown the mechanism and 
ability of the proposed algorithms to solve the optimiza-
tion problem, the values of the parameters related to these 
algorithms are depicted in Table 1. Moreover, three cases 

(29)μi(x) =

⎧
⎪⎨⎪⎩

1 fi(X) ≤ fmin
i

0 fi(X) ≥ fmax
i

fmax
i

−fi(X)

fmax
i

−fmin
i

fmin
i

≤ fi(X) ≤ fmax
i

(30)N�j =

∑n

k=1
βk × μjk(x)∑m

j=1

∑n

k=1
βk × μjk(x)

are simulated to solve the optimal sizing of DGs and SCs in 
each test network:

1- Only installation of SCs.
2- Only installation of DGs.
3- Installation of both DGs and SCs simultaneously.

4.1  95‑node test system

This test system is depicted in Fig. 4, and the demand 
characteristic of this system is depicted in Fig. 5 (Lotfi 
et al. 2019). Five 1000 kW DGUs (diesel generators) are 
installed in buses # 6, # 10, # 25, # 34 and # 45 along with 
four 100 kVAr capacitors in buses # 10, # 24, # 34 and 
# 70. The cost of purchasing electricity from DGUs is $ 
0.042 per kW. The cost of energy purchased from substa-
tions at high and low demand periods is $ 0.04465 per 
kWh and $ 0.0401 per kWh, respectively. The energy loss, 
operational cost, and ENS before installing DGUs and SCs 
are 31,869.54 kWh, $ 140,651.91, and 345.56 kWh/ year, 
respectively.

In this section, the optimization problem in the pres-
ence of separate and simultaneous DGUs and SCs in the 
single-objective framework is solved by various algorithms. 
The best, worst and average results along with the standard 
deviation (STD) of MSFLA, SFLA, ICA, GSA, and NSGA 
II algorithms for optimization cases 1 and 2 in 20 differ-
ent experiments are depicted in Table 2. In order to provide 
more details of the results of methods used in 20 different 
experiments, Tables 3, 4, and 5 compares the single-objec-
tive optimization results obtained by different methods in 20 
experiments for cases 1 and 2, respectively.

According to Table 2, it is clear that the proposed MSFLA 
converges to better results than other methods. Moreover, 
DGUs allocation has a significant role in reducing the objec-
tive functions compared to SCs allocation in the distribution 
test system. For example, the values of ENS and energy loss 
obtained by the MSFLA for case 1 are 304.46 kWh/year and 
30,075.35 kWh, respectively. In case 2, these values have 

Table 1  Parameters of the proposed algorithms

Parameters MSFLA SFLA ICA NSGAII GSA

Population size 1100 1100 1100 1100 1100
Number of group 5 5 – – –
Maximum iteration 100 100 100 100 100
Acceleration rate (C) 1.6 – – – –
Mutation – – – 0.9 –
Crossover – – – 0.01 –
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reached 294.31 kWh/year and 29,889.35 kWh, respectively. 
Also, the values of ENS, energy loss, and operational cost 
obtained from the MSLA for case 2 dropped by about 17%, 
6.5%, and 5.5% compared to the initial values.

To illustrate the impact of DRP on objective functions 
assessment, the results of different objective function opti-
mization attained by several algorithms for case 3 without 
and applying the TOU mechanism are listed in Table 6. 
Moreover, the optimal shame of active and reactive power 
generation of DGUs and SCs for optimizing energy loss is 

depicted in Table 7. According to Tables 2, 3, 4, 5 and 6, the 
following points can be taken.

Firstly, the solution found by the MSFLA outperforms 
than other evolutionary methods. Secondly, the amount 
of objective functions including energy loss, ENS, and 
operational cost obtained from the MSLA have dropped 
by 11%, 25.5%, and 5% compared to the initial values, 
which shows the effectiveness of the simultaneous allo-
cation of DGUs and SCs than the separate allocation of 
these units in the test network. Thirdly, applying the TOU 

Fig. 4  Topology of the 95-node test system

Fig. 5  Active demand for the 
24-h interval
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program has reduced the objective functions in this study. 
For instance, values of energy loss, ENS, and operational 
cost dropped by 12.5%, 30%, and 5.5% compared to the 
initial values, respectively. Also, comparing the results of 
the objective functions between non-execution and execu-
tion of the TOU program reveals the effect of the DRP 
on improving the results of the objective functions. For 

example, the value of objective functions for energy loss, 
ENS, and operational cost dropped from 28,563.21 kW, 
276.51 kWh/year, and $ 133,661.31 to 28,365.21 kW, 
262.13 kWh/year and $ 133,586.15, respectively.

Finally, the highest and lowest total active power gen-
eration of DGUs is at 6 pm, and 11 am with 4368.72 kW 
and 1006.47 kW, respectively. Also, the highest and lowest 
active power generation of these units in 24 h belong to units 
1 and 5 at 8 pm and 3 am with 979.74 kW and 103.54 kW, 
respectively. Moreover, the highest and lowest values of the 
total reactive power generation of SCs are observed at 4 pm, 
and 3 am with 347.94 kVAr and 67.78 kVAr, respectively. 
Similarly, the highest and lowest reactive power generation 
of SCs in 24 h are observed in units 4 and 1 at 3 pm, and 3 
am with 93.79 kVAr and 10.13 kVAr, respectively.

Figures 6 depicts the convergence curve of the opera-
tional cost objective function gained by utilizing the five 
algorithms including MSFLA, NSGA II, SFLA, GSA, and 
ICA for 95-node test system. Given this figure, it is clear 

Table 2  Results of Cases 1 
and 2 for different objective 
functions

Objective function Algorithms DGs installation Capacitors installation

Best solution Standard 
deviation

Best solution Standard 
deviation

Energy loss (kWh) ICA 30,209.65 38.69 30,451.31 38.25
SFLA 30,129.95 37.89 30,339.56 36.59
NSGA II 30,078.65 37.15 30,319.89 36.45
GSA 30,059.45 36.46 30,289.56 35.69
MSFLA 29,889.35 35.15 30,075.45 34.89

Operational cost ($) ICA 133,746.56 44.96 133,541.46 45.36
SFLA 133,729.54 43.65 133,509.33 44.96
NSGA II 133,701.25 43.15 133,491.25 44.85
GSA 133,686.54 42.89 133,479.15 44.15
MSFLA 133,669.26 42.16 133,445.45 43.65

ENS (kWh/year) ICA 310.35 4.36 317.25 4.69
SFLA 306.45 4.19 313.65 4.39
NSGA II 303.25 3.89 314.32 4.28
GSA 299.35 3.68 309.35 3.96
MSFLA 294.31 3.25 306.46 3.65

Table 3  Results of minimizing ENS by different methods for case 1

Algorithms ENS (kWh/year)

Best solution Mean Worst solution Standard 
deviation

ICA 310.35 314.23 319.86 4.36
SFLA 306.45 309.37 314.79 4.19
NSGA II 303.25 306.68 311.51 3.89
GSA 299.35 302.79 308.41 3.68
MSFLA 294.31 296.54 301.39 3.25

Table 4  Results of minimizing energy loss by different methods for 
case 2

Algorithms Energy loss (kWh)

Best solution Mean Worst solution Standard 
deviation

ICA 30,209.65 30,244.52 30,291.25 38.69
SFLA 30,129.95 30,174.56 30,229.14 37.89
NSGA II 30,078.65 30,128.56 30,165.25 37.15
GSA 30,059.45 30,904.87 30,141.56 36.46
MSFLA 29,889.35 29,939.51 29,979.45 35.15

Table 5  Results of minimizing ENS by different methods for case 2

Algorithms Energy loss (kWh)

Best solution Mean Worst solution Standard 
deviation

ICA 317.25 321.68 327.48 4.69
SFLA 313.65 317.89 322.39 4.39
NSGA II 313.32 317.15 321.74 4.28
GSA 309.35 312.56 317.25 3.96
MSFLA 306.46 309.35 313.85 3.65
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that the MSFLA is converged to the optimal solution earlier 
compared to other methods.

Comparing the values of the objective functions in 
Table 2 exhibits that the objective functions of this study 
are inconsistent with each other. In other words, not all 

Table 6  Results of Case 3 for 
different objective functions

Methods Objective functions Before applying TOU After applying TOU

ICA Energy Loss (kWh) 29,395.65 28,785.65
ENS (kWh/year) 282.45 279.45
Operational cost ($) 133,749.83 133,681.52

SFLA Energy Loss (kWh) 29,115.65 28,689.65
ENS (kWh/year) 279.89 274.89
Operational cost ($) 133,725.41 133,667.45

NSGA II Energy Loss (kWh) 28,869.56 28,450.22
ENS (kWh/year) 279.35 273.25
Operational cost ($) 133,695.56 133,641.25

GSA Energy Loss (kWh) 28,826.54 28,566.54
ENS (kWh/year) 278.54 271.54
Operational cost ($) 133,689.25 133,635.45

MSFLA Energy Loss (kWh) 28,563.21 28,365.21
ENS (kWh/year) 276.51 262.13
Operational cost ($) 133,661.26 133,586.15

Table 7  The optimal output 
of DGUs and SCs obtained 
by MSFLA for energy loss 
optimization

L.L. load level

L.L DGUs output (kW) SCs output (kVAr)

DG1 DG2 DG3 DG4 DG5 Cap1 Cap2 Cap3 Cap4

1 344.417 303.621 312.809 344.285 270.647 13.200 22.054 27.256 24.604
2 371.738 327.322 326.406 173.057 240.817 38.857 12.279 11.793 23.076
3 138.096 322.940 182.808 378.779 103.571 10.139 17.197 17.043 23.404
4 374.013 217.668 303.911 204.995 201.137 33.247 13.700 20.595 19.190
5 289.708 296.643 296.529 158.979 148.655 34.519 15.517 34.636 25.255
6 329.262 351.356 348.784 375.325 538.285 56.061 37.199 30.462 45.323
7 383.549 511.814 335.699 484.813 393.365 32.533 42.518 31.291 54.529
8 464.064 309.550 449.509 441.987 458.560 41.993 31.490 35.070 53.845
9 387.252 183.077 387.923 205.498 149.695 17.796 37.081 29.473 29.330
10 389.467 113.851 202.116 349.249 280.595 34.002 38.344 31.952 21.358
11 147.284 129.140 275.580 275.579 178.891 22.942 24.726 29.432 34.347
12 391.178 347.037 167.144 264.917 296.224 37.319 24.678 23.528 25.985
13 387.150 308.449 325.380 375.158 306.764 15.455 20.132 26.410 20.522
14 245.613 195.130 176.529 185.752 324.445 17.914 37.002 18.890 38.170
15 900.140 975.111 752.979 878.600 725.271 57.277 68.462 87.235 93.797
16 570.943 517.223 849.538 876.865 541.911 56.803 55.560 59.448 77.508
17 710.881 719.372 945.452 690.223 614.488 93.465 89.013 84.339 81.124
18 957.868 690.779 979.646 783.911 956.669 78.985 69.487 59.176 79.352
19 896.104 882.758 773.608 537.927 576.189 77.493 62.085 68.424 60.387
20 979.746 897.600 569.312 526.975 912.908 57.248 70.196 81.281 65.062
21 827.870 593.436 574.647 765.399 769.171 92.652 54.823 89.011 73.546
22 110.714 246.929 177.252 333.750 398.840 28.662 13.959 12.434 16.915
23 354.739 233.676 352.215 380.203 123.453 20.529 38.262 37.882 35.329
24 380.198 293.894 176.285 138.972 232.803 25.397 38.684 33.271 15.843
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three objective functions improved at the same time. As a 
result, the problem of Multi-objective optimization cannot 
be solved with the concept of single-objective. Therefore, 
we use Pareto optimization strategy to satisfy all objective 
functions. Figures 7 and 8 show the Pareto optimal fronts 
related to the optimization of two and three-objective 
obtained from the MSFLA. Moreover, the best compro-
mise solution of each front is shown in red.

According to Figs. 7 and 8, it can be concluded that the 
difference between value of objective functions in best com-
promise response with their optimal values is not much dif-
ferent, which it shows the ability of the proposed method to 
solve the Multi-objective optimization problem. Besides, the 
value of objective functions in best compromise response 
related to Fig. 8, including loss, ENS, and operational cost 

Fig. 6  Convergence curve of 
the operational cost for case 3 
related to 95-node system

Fig. 7  Pareto-front for optimiz-
ing energy loss, and operational 
cost

Fig. 8  Pareto-front for optimiz-
ing ENS, energy loss, and 
operational cost
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declined by 11.5%, 24%, and 5% compared to the initial 
values.

Figure 9 exhibit the effects of DGUs, SCs, and DRP on 
the profiles of voltage in the distribution test system at 6 pm. 
To this end, three scenarios are defined to illustrate the effect 
of DGUs, SCs, and DRP on the voltage profiles of the two 
test systems. Scenario 1 is defined based on the initial net-
work conditions, and scenarios 2 and 3 are based on the 
simultaneous presence of DGUs, SCs, and TOU mechanism, 
as well as the simultaneous presence of DGUs and SCs in 
both test networks, respectively. Voltage profile improve-
ment in Fig. 9 indicates that the simultaneous presence 
of DGUs, SCs, and DRP exerts more significant effect on 
improving the voltage profile than the simultaneous pres-
ence of DGUs and SCs in solving the optimization problem.

4.2  136‑node test system

This test system (López et al. 2016; Lotfi and Ghazi 2020) 
covers ten distributed units of 300 kW (diesel generator) in 
buses # 5, # 22, # 24, # 5, # 79, # 81, # 99, # 102, # 114 and 

# 126. Also, four 100 kVAr capacitors have been installed 
in buses # 10, # 20, # 34, # 70. Load profile and electricity 
price in 24 h are shown in Figs. 10 and 11. The purchase 
price of electricity from DGUs is $ 0.0425 per kWh. The 
energy loss, operational cost, and ENS before installing 
DGUs and SCs are 2155.64 kW, $ 14,549.91, and 43.53 
kWh /year, respectively.

In this section, the problem of optimal sizing of DGUs 
and SCs in a single-objective form is solved by different 
evolution algorithms. Table 8 lists the results of objec-
tive functions optimization obtained from the MSFLA and 
other methods for cases 1 and 2, the optimization results 
are obtained from 20 separate experiments. Also, to fur-
ther explain the results of the optimization methods in 20 
different experiments, Tables 9, 10 and 11 compares the 
single-objective optimization results obtained by different 
methods for cases 1 and 2, respectively. Table 12 draws a 
comparison between the results of the different objective 
functions by several methods for case 3 in the absence and 
presence of DRPs. The optimal scheme of reactive and 

Fig. 9  Voltage profile of 
95-node test system at 6 pm

Fig. 10  Active demand profile 
of the136-node system
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active power generation of SCs and DGUs for optimizing 
the operational cost are depicted in Tables 13 and 14.

According to Tables 8, 9, 10, 11 and 12, it is clear 
that the solution yielded by the MSFLA excels other 
algorithms. Moreover, the allocation of DGUs and SCs 

Fig. 11  Electricity price profile 
of the136-node system

Table 8  Results of Cases 1 
and 2 for different objective 
functions

Objective function Algorithms DGs installation Capacitors installation

Best solution Standard 
deviation

Best solution Standard 
deviation

Energy loss (kWh) ICA 2079.49 39.85 2099.31 39.25
SFLA 1991.32 37.66 2039.56 36.89
NSGA II 1959.56 36.23 2019.89 36.45
GSA 1929.69 34.85 1968.19 33.65
MSFLA 1871.15 32.15 1899.21 32.84

Operational cost ($) ICA 14,165.46 36.25 14,105.53 35.75
SFLA 14,105.33 33.86 13,945.65 32.96
NSGA II 14,069.56 32.69 13,925.25 32.16
GSA 14,025.15 31.56 13,889.26 31.36
MSFLA 13,951.45 28.12 13,845.13 28.65

ENS (kWh/year) ICA 36.25 3.32 38.19 4.29
SFLA 35.65 3.15 37.17 4.15
NSGA II 34.69 2.96 36.31 4.89
GSA 33.35 2.89 35.45 3.65
MSFLA 31.52 2.65 34.49 3.15

Table 9  Results of minimizing energy loss by different methods for 
case 1

Algorithms Energy Loss (kWh)

Best solution Mean Worst solution Standard 
deviation

ICA 2079.49 2118.68 2159.46 39.85
SFLA 1991.32 2031.24 2069.36 37.66
NSGA II 1959.56 1996.25 2034.65 36.23
GSA 1929.69 1971.36 2012.42 34.85
MSFLA 1871.15 1907.45 1939.56 32.15

Table 10  Results of minimizing operational cost by different methods 
for case 1

Algorithms Operational cost ($)

Best solution Mean Worst solution Standard 
Deviation

ICA 14,165.46 14,201.14 14,239.21 36.25
SFLA 14,105.33 14,138.79 14,175.36 33.86
NSGA II 14,069.56 14,102.39 14,133.29 32.69
GSA 14,025.15 14,053.25 14,088.56 31.56
MSFLA 13,951.45 13,984.23 14,019.52 28.12
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separately in the distribution network plays an important 
role in reducing the objective functions. The values of 
ENS, energy loss, and operational cost obtained from the 
MSLA for case 1 dropped by about 30%, 13%, and 5% 
compared to their initial values. These values obtained 
from the MSLA for case 2 decrease by about 38%, 15%, 
and 4.3% compared to their baseline values.

A comparison of the optimization results in the three 
cases indicates that the simultaneous allocation of DGUs 
and SCs has changed the value of objective functions of 
energy loss, operational cost, and ENS from 2155.64 kWh 
and $ 14,549.91 and 43.53 kWh/year to 1821.49 kWh, $ 
13,958.45 and 28.46 kWh/year. Also, considering the TOU 
program and the effect of DGUs and SCS decreased the 
value of objective functions of energy loss, operational cost, 
and ENS by 29%, 7% and, 65% compared to the initial val-
ues. According to Tables 13 and 14, it is obvious that when 
optimizing the operational cost function, DGUs do not oper-
ate at their maximum power and the output power genera-
tion of these units has increased by 100 kW from 3 to 9 pm. 
Also, at 9 pm, the total maximum active power generation 

of DGUs reached its peak of 11,514.33 kW and the lowest 
total active power generation of DGUs belonging to 12 pm 
with 514.18 kW. Moreover, the highest and lowest reactive 
power generation of SCs have observed in units 4 and 2 at 
8 pm, and 2 am with 97.62 kVAr and 26.94 kVAr, respec-
tively. Also, the highest and lowest total reactive power of 
SCs have observed at 8 pm and 2 pm with 287.97 kVAr and 
117.34 kVAr, respectively.

The convergence plot of MSFLA and other methods is 
shown in Fig. 12 for the energy loss objective function. This 
figure demonstrates that the proposed algorithm converges 
to the better results in less time with respect to other evolu-
tionary algorithms.

To meet all the objectives of the problem simultaneously, 
the Pareto fronts related to the optimization of two and three-
objective obtained from the MSFLA are shown in Figs. 13 
and 14. According to Fig. 14, the value of objective functions 
of energy loss, operational cost, and ENS in best compromise 
response dropped by 16%, 7%, and 20% compared to the initial 
values. Another important point is that expanding the scale of 
the test network and increasing decision variables does not 
reduce the performance of the MSFLA.

Figure 15 displays the effect of DGUs, SCs, and DRP on 
voltage profiles in the 136-bus network at 6 pm. According to 
Fig. 15, it is clear that the improvement of the voltage profile 
in the simultaneous presence of DGUs, SCs, and TOU mecha-
nism is more obvious than the simultaneous presence of DGUs 
and SCs in the test network.

5  Pareto solution analysis

The optimal Pareto fronts obtained should be evaluated to 
demonstrate the performance of the proposed method. For this 
purpose, two different criteria Generational Distance (GD) and 

Table 11  Results of minimizing energy loss by different methods for 
case 2

Algorithms Energy Loss (kWh)

Best solution Mean Worst solution Standard 
deviation

ICA 2099.31 2136.49 2176.25 39.25
SFLA 2039.56 2074.76 2112.39 36.89
NSGA II 2019.89 2140.68 2092.45 36.45
GSA 1968.19 1999.86 2033.65 33.65
MSFLA 1899.21 1974.65 2051.53 32.84

Table 12  Results of Case 3 for 
different objective functions

Methods Objective functions Before applying TOU After applying TOU

ICA Energy Loss (kWh) 1946.56 1819.12
ENS (kWh/year) 38.69 34.21
Operational cost ($) 14,165.46 13,789.64

SFLA Energy Loss (kWh) 1898.54 1769.56
ENS (kWh/year) 34.45 32.19
Operational cost ($) 14,129.33 13,708.45

NSGA II Energy Loss (kWh) 1876.59 1750.35
ENS (kWh/year) 32.75 29.32
Operational cost ($) 14,075.56 13,655.41

GSA Energy Loss (kWh) 1861.29 1711.21
ENS (kWh/year) 31.35 28.89
Operational cost ($) 14,058.15 13,659.25

MSFLA Energy Loss (kWh) 1821.49 1670.49
ENS (kWh/year) 27.46 23.65
Operational cost ($) 13,958.45 13,556.15
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Diversity Metric (D-Metric) (Lotfi et al. 2019) are presented 
as follows:

The ideal numerical value for GD criterion is zero, which 
indicates that all components are on the optimal Pareto front 
and are also close to each other. Moreover, a higher value for 
(D-Metric) criterion indicates that many of the components in 
the Pareto front are close together.

Table  15 tabulates the best values of GD and DM 
indicators which helps readers to learn more about the 
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k
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powerful performance of the proposed algorithm for man-
aging these cases. These values are achieved from solv-
ing multi-objective optimal allocation of DG sources and 
capacitors for two test systems. According to Table 15, it 
is obvious that the proposed MSFLA algorithm are able 
to handle Multi-objective optimization problems. Also, as 
shown by Table 15, it is clear that the criterions provided 
by the proposed MSFLA demonstrates the MSFLA algo-
rithm’s ability in solving the multi-objective problem.

6  Conclusion

Increasing the high penetration rate of distributed genera-
tion units (DGUs) in distribution networks and also con-
sidering the simultaneous effect of these units with shunt 
capacitors (SCs) in order to improve the performance of the 
distribution system, has created challenges such as reliabil-
ity and economic issues for system operator. In this study, 
a novel approach called MSFLA is provided to obtain the 
optimal sizing of DGUs and SCs, considering the sources 
of uncertainty and demand response program. Compared 
with original SFLA, it expands local exploration scope and 
enhances the population diversity. Reduction of energy loss, 
operational cost, and ENS are defined as objectives in this 
study. The problem limitations include buses voltage, lines 
current and DGUs generation boundaries. The MSFLA uses 
the concept of dominance to obtain the Pareto-optimal solu-
tion in solving the presented Multi-objective optimization 
problem. The proposed method is tested on two 95 and 136-
node test systems. The results which are achieved from the 
proposed method in comparison with the results of other 
evolutionary and state-of-art methods including SFLA, 
ICA, NSGA II, and GSA prove the claim that the proposed 
method has high accuracy and efficiency to solve single and 
Multi-objective problems regardless of the complexities and 
dimensions of the problem.

Simultaneous allocation of DGUs and SCs in the distribu-
tion network reduces energy loss, ENS, and operational cost. 
For example, the values energy loss, ENS, and operational 
cost obtained by MSFLA in the first system are dropped by 
11%, 25.5%, and 5% compared to initial values. Consider-
ing the TOU program as one of the DRPs in allocation of 
DGUs and SCs simultaneously in the distribution network, 
while changing the consumption pattern of subscribers, 
improved the performance of the distribution system due to 
diminished energy loss and operational cost. Moreover, the 
values energy loss, ENS, and operational cost obtained by 
MSFLA in the second system are reduced by 29%, 65%, and 
7% compared to the initial values. Also, the voltage profile in 

Table 13  The optimal output of SCs obtained by MSFLA for opera-
tional cost optimization

L.L. load level

L.L Capacitors Output (kVAr)

Cap1 Cap2 Cap3 Cap4

1 35.04 26.943 27.821 28.756
2 39.71 27.04 40.964 29.826
3 27.707 27.543 28.842 28.513
4 27.654 29.22 29.858 29.103
5 30.149 28.294 29.641 30.345
6 51.354 37.193 46.181 38.583
7 41.59 37.195 29.265 35.423
8 34.76 27.979 58.949 35.108
9 29.528 37.685 32.451 27.173
10 28.139 28.631 33.173 39.313
11 27.724 28.091 27.983 42.459
12 34.065 29.351 27.037 29.833
13 28.372 28.03 33.595 28.001
14 26.804 33.809 28.877 27.86
15 59.432 94.449 58.452 57.808
16 64.377 57.087 72.61 52.442
17 50.952 47.877 58.766 53.512
18 55.238 36.448 70.002 51.505
19 43.276 80.714 42.907 38.796
20 67.468 70.876 51.932 97.621
21 46.858 57.933 68.668 46.688
22 27.365 35.829 29.076 29.81
23 29.741 28.717 29.465 38.434
24 30.557 29.548 28.547 28.078
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both test networks, considering DGUs, SCs, and DRP, has a 
more noticeable improvement compared to the presence of 
only DGUs and SCs in the distribution network.

Some suggestions for future studies of this research are 
as follows:

• Simultaneous scheduling of distributed generation units 
or shunt capacitors and FACTS taking into account the 
actual model of the electric load as well as its uncer-
tainty.

Table 14  The optimal output of 
DGUs obtained by MSFLA for 
operational cost optimization

L.L. load level

L.L DGUs output (kW)

DG1 DG2 DG3 DG4 DG5 DG6 DG7 DG8 DG9 DG10

1 76.293 45.230 45.440 46.426 64.908 62.625 71.940 71.759 79.629 72.901
2 47.970 77.188 46.560 63.066 65.034 53.871 47.643 46.495 49.520 73.753
3 57.729 71.840 45.550 45.956 49.245 45.703 46.016 47.065 77.481 41.840
4 46.650 46.250 62.260 75.532 53.375 45.695 67.539 48.304 49.529 23.409
5 45.750 45.680 46.888 67.034 46.422 49.664 68.369 64.648 67.371 75.505
6 79.727 67.687 89.848 111.305 84.537 119.863 104.749 86.903 71.339 63.064
7 78.875 110.156 113.074 85.844 91.192 90.457 118.524 93.369 84.446 63.056
8 67.670 101.250 89.518 107.370 113.081 86.350 76.879 110.509 69.626 66.593
9 45.350 64.577 45.250 65.429 62.326 53.008 47.431 73.350 45.939 66.299
10 55.702 245.880 54.397 75.413 69.432 75.981 46.783 62.363 46.891 70.882
11 49.960 49.950 47.087 45.170 46.636 49.726 58.003 49.728 57.950 76.241
12 49.960 64.201 61.527 45.388 51.951 45.429 45.284 56.162 45.877 49.164
13 48.870 30.535 65.692 74.773 64.491 50.958 49.501 57.235 51.303 45.830
14 45.560 45.590 55.863 52.511 61.564 57.822 46.320 62.015 46.087 45.659
15 127.299 109.684 139.562 120.969 140.257 176.225 199.625 147.185 126.062 178.977
16 119.259 193.282 175.762 143.537 135.202 102.199 139.531 109.824 173.312 127.928
17 139.414 106.398 183.417 114.544 152.897 195.233 155.857 179.345 148.501 126.430
18 110.599 178.009 112.995 188.524 195.269 165.561 139.803 109.739 186.194 109.108
19 192.153 162.842 126.682 110.442 160.417 143.316 183.273 100.233 141.772 151.367
20 125.183 111.881 181.418 105.646 188.515 112.649 156.495 110.026 111.594 145.086
21 132.615 199.441 154.055 122.033 179.527 113.329 135.517 115.127 179.599 183.097
22 49.980 57.547 63.235 61.347 49.994 58.515 49.201 47.262 72.075 49.845
23 48.850 46.650 49.249 48.184 48.682 47.991 72.024 48.861 47.892 78.986
24 72.897 53.504 51.283 77.693 45.489 45.665 45.759 72.424 49.650 47.004

Fig. 12  Convergence curve 
of the energy loss for case 3 
related to the 136-node system
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Fig. 13  Pareto-front for 
optimizing energy loss and 
operational cost

Fig. 14  Pareto-front for opti-
mizing ENS, energy loss, and 
operational cost

Fig. 15  Voltage profile of 136-
node test system at 6 pm
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• Integrating battery storage system with distributed gen-
eration units in the distribution network considering 
technical and operational constraints.

• Stochastic optimal planning of the distribution network 
with the sporadic nature of distributed generation units 
and electrical vehicles according to the optimal loca-
tion of charging stations.

• Coordinated planning in the distribution network by 
simultaneously performing strategies of capacitor 
placement, dispatchable distributed generation units 
and distributed feeder reconfiguration.
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