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Abstract
Intelligent fault diagnosis of bearings is an essential issue in the field of health management and the prediction of rotating 
machinery systems. The traditional bearing intelligent diagnosis algorithms based on the combination of feature extraction 
and classification for signal processing require high expert experience, which are time-consuming and lack universality. 
Compared with traditional methods, the convolutional neural network(CNN) can extract features automatically from the 
original vibration time-domain signal without any preprocessing. The accuracy of intelligent fault diagnosis can be improved 
by utilizing the multi-layer nonlinear mapping capability of deep convolutional neural networks. In order to realize the intel-
ligent diagnosis and improve the recognition rate, this paper adopts the strategy of widening convolution kernels to obtain a 
larger receptive field and proposes a network design process pattern based on this idea, in addition, obtains the convolutional 
neural network with wide convolution kernels (WKCNN) model through experiments. Based on the time-domain vibration 
signal, this paper generates more input data through expansion and adopts the wide kernels of the first two convolutional 
layers to quickly extract features to improve efficiency. The smaller convolution kernels are used for multi-layer nonlinear 
mapping to deepen the network and improve detection accuracy. The results show that WKCNN performs well in accuracy, 
anti-noise, and timeliness compared with other diagnostic methods.

Keywords Bearing intelligent fault diagnosis · Wide convolution kernels · Network design process pattern · WKCNN

1 Introduction

Rolling bearings are one of the most important parts of 
rotating machinery and equipment, but rolling bearings are 
easily damaged by the working environment during work, 
resulting in mechanical failure. According to statistics, 
40% of motor failures are bearing failures (Frosini et al. 
2015). As a result of the complex working environment, 
failure is inevitable for rolling element bearings, and the 
circumstances under which failure occurs are unpredict-
able (Chen et al. 2018). The most common way to prevent 
possible damage is to implement real-time monitoring of 
vibration when the rotating mechanism is in operation 
(Zhang et al. 2017b). Use the status signals collected by 

the sensors to apply intelligent fault diagnosis methods 
to identify fault types (Zhang et al. 2017b; Jayaswal et al. 
2011; Yiakopoulos et al. 2011; Li et al. 2016) . The tra-
ditional intelligent fault diagnosis method can be divided 
into two steps: feature extraction and classification. In the 
field of bearing fault diagnosis, common feature extrac-
tion methods include wavelet transform (Wan and Zhang 
2018), fast Fourier transform(FFT) (Safin et al. 2016), 
empirical pattern decomposition (Xiao et al. 2017), and 
so on. Common pattern classification algorithms include 
BP neural network (Nie et  al. 2019), support vector 
machine(SVM) (Islam and Kim 2017; Ziani et al. 2017; Fu 
et al. 2020), Multi-Layer Perceptron (MLP) (Almeida et al. 
2014), Deep Neural Networks(DNN) (Feng et al. 2016), 
Bayes classifier (Manish et al. 2018), k-nearest neighbor 
classifier (Kim et al. 2016), Random Forest (Xue et al. 
2019) etc. Such machine learning methods are widely used 
to predict the type of failure. FFT-SVM (Islam and Kim 
2017), FFT-MLP (Almeida et al. 2014) and FFT-DNN 
(Feng et al. 2016) are commonly used in fault diagnosis. 
FFT is a method to quickly calculate the discrete Fourier 
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Transform (DFT) of a sequence or its inverse transform. 
Fourier analysis converts a signal from its original domain 
(usually time or space) to a representation in the frequency 
domain or vice versa. SVM is a kind of generalized linear 
classifier which classifies data according to supervised 
learning. Its decision boundary is the maximum margin 
hyperplane to solve the learning samples. MLP is known 
for its ability to learn complex and nonlinear pattern fea-
tures, and it is also a very commonly used classifier in 
fault diagnosis. The neural network is an extension of 
perceptron, and DNN can be understood as a neural net-
work with many hidden layers. These three methods will 
be compared with our method in Sect. 5.

However, with the mechanical health monitoring enter-
ing the “big data era”, the traditional intelligent diagnosis 
algorithm based on signal processing feature extraction and 
classifier needed high requirements for expert experience, 
which is time-consuming to design and cannot guarantee 
universality, and it has been unable to meet the requirements 
of mechanical big data.

In recent years, the convolutional neural network has 
achieved great success in the field of pattern recognition. 
The characteristic of this kind of technology is that it can 
automatically extract features from signals and images, 
replacing the cumbersome feature engineering of traditional 
algorithms. Deep convolutional neural networks require 
more training data for training than conventional algorithms 
due to a large number of parameters to suppress overfitting. 
This is also the reason why the convolutional neural network 
gradually stands out in the era of big data. The convolutional 
neural network has two main features: weights sharing and 
spatial pooling, which makes it very suitable for computer 
vision applications whose inputs are usually 2D data, but 
it has also been used to address natural language process-
ing and speech recognition tasks whose inputs are 1D data 
(Abdel-hamid et al. 2012; Kim 2014). CNN has achieved 
great success in the field of image recognition. Meanwhile, 
CNN can also directly act on speech recognition and original 
time-domain vibration signals.

Zhang et al. (2017a) proposed a CNN model with two 
convolutional layers to diagnose the faults of bearings with 
a huge number of training data. In ?, firstly, the data is pro-
cessed by fast Fourier transform, then the self-encoder is 
used for unsupervised layer by layer training, and finally, the 
supervised training is carried out. The algorithm can achieve 
a recognition accuracy of 99.68±0.22%. Feng et al. (2016) 
proposed an FFT-DNN fault diagnosis method, which used 
the preprocessed FFT spectrum image as the input of the 
DNN. Xu et al. (2019) proposed a novel bearing fault diag-
nosis method based on deep convolutional neural network 
(CNN) and random forest (RF) ensemble learning, which 
uses time-domain vibration signals are converted into two 
dimensional (2D) gray-scale images as the input signals.

However, the conversion of the one-dimensional signal to 
the two-dimensional signal will affect the spatial structure 
and the information related to the failure may be lost. Zhang 
et al. (2017b) proposed WDCNN, which can directly pro-
cess one-dimensional time-domain vibration signals through 
the convolutional neural network, and can achieve 100% 
accuracy under certain conditions, and performs well under 
noise. Li et al. (2018)proposed a novel deep learning method 
for rotating machinery fault diagnosis which manages to 
achieve high diagnosis accuracy with small original training 
dataset. Jian et al. (2019) proposed a one-dimensional fusion 
neural network (OFNN), which combines CNN with D–S 
evidence theory. The method can effectively improve the 
cross-domain adaptive ability of the model. Although these 
neural network models have achieved good results in the 
CWRU data set, they do not mention the discussion on the 
selection process of the one-dimensional model structure. 
The contributions of this paper can be summarized below. 

1. In order to further improve the accuracy and efficiency 
of bearing fault diagnosis, we propose the WKCNN 
model which is based on the characteristics of one-
dimensional signals. The model performs well in the 
aspects of fault diagnosis accuracy, timeliness, and anti-
noise interference without any pre-processing.

2. Combining the first point and experiments, a design pro-
cess model of one-dimensional convolutional neural net-
work for one-dimensional vibration signal and a model 
construction algorithm of WKCNN are proposed.

The remainder of this paper is as follows: Sect. 2 intro-
duces the related work. Section 3 describes the construc-
tion process, modeling algorithm and optimization strategy 
of WKCNN model. In Sect. 4, we determine the structure 
of WKCNN model by experiments. Experiments in Sect. 5 
illustrate the evaluation and analysis of WKCNN. Section 6 
is the conclusion.

2  Related work

Because of the diversity of fault types that can occur in bear-
ings, feature engineering may face limitations in designing 
a set of characteristic features to describe the differences 
between all possible fault types. Handcrafted features do 
not necessarily provide generalization capability and port-
ability from one system to another or even to other failure 
types. They also have limited scalability due to an expert-
driven manual approach. In addition, the performance of 
feature engineering is highly dependent on the experi-
ence and expertise of the domain experts performing the 
task. The quality of feature extraction greatly influences 
the performance of the machine learning approach to 



4043A bearing fault diagnosis model based on CNN with wide convolution kernels  

1 3

feature extraction. As the number of monitored parameters 
increases, the difficulty of feature engineering for diagnostic 
engineers is also increasing, so people are interested in auto-
mating this process (Yan and Yu 2019), or avoiding the need 
for feature engineering in the first time. Deep learning has 
the potential to incorporate feature engineering (or at least 
some of it) into the end-to-end learning processes.

As a breakthrough in the field of artificial intelligence, 
deep learning allows automatically processing of data, with 
highly nonlinear and complex feature abstracting through 
layers of layers, rather than using domain knowledge to 
hand-craft the best feature representation of data. With 
automatic feature learning and high-capacity modeling 
capabilities, deep learning provides an advanced analytical 
tool for intelligent manufacturing in the era of big data. It 
uses a cascade of nonlinear processing layers to learn the 
representation of data corresponding to different levels of 
abstraction. The hidden patterns underneath each other are 
then identified and predicted through end-to-end optimiza-
tion. Deep learning offers great potential for promoting data-
driven manufacturing applications, especially in the era of 
big data (Teti et al. 2010; Wu et al. 2017).

CNN is an important part of deep learning. As CNN was 
originally developed for image analysis, different approaches 
are investigated to construct two dimensional input from 
time series data. Time series to image encoding. Due to the 
success of CNN in image representation learning (Deng 
et al. 2009; He et al. 2016), the trend of understanding time 
series by translating time series into images is on the rise. 
By doing so, existing knowledge of image understanding 
and image representation learning can be directly used for 
Prognostics and Health Management(PHM) applications. An 
intuitive approach (Krummenacher et al. 2018) is to simply 
use the natural plot of one-dimensional time series data, 
signal vs time, as two-dimensional image. Alternatively, 
Gramian Angular Fields (GAF), Markov Transition Fields 
(MTF) and Recurrence Plots (RP) have been introduced in 
Wang and Oates (2015) and Hatami et al. (2017) as encod-
ing approaches to translate signals to images. In addition, 
the time-frequency analysis can also obtain two-dimensional 
signal representations. The spectrum of multichannel vibra-
tion data is also studied in Janssens et al. (2016) to fit the 
model requirement. Park et al. (2016), the time series data is 
converted to a matrix for arrangement and then normalized 
to an image. In Wang et al. (2016), time frequency spec-
trum is used as the image input of the CNN model when 
the wavelet transform vibration signal is used. However, as 
we have mentioned in the introduction, converting a one-
dimensional vibration signal to a two-dimensional image 
may result the spatial correlation in the original sequence 
will be destroyed and the important feature information may 
be lost. Therefore, our model will be built through a one-
dimensional convolutional neural network.

In fact, sensor data is usually one-dimensional data by 
nature rather than two-dimensional images. In order to still 
benefit from recent progress in convolutional operations and 
avoid loss of important feature information, one-dimensional 
CNN kernels, instead of two-dimensional kernels, can be 
used for time series classification, anomaly detection in time 
series or RUL prediction. The same idea has been widely 
adopted for motor fault diagnosis (Ince et al. 2016), and 
broader PHM applications (Babu et al. 2016; Jing et al. 2017; 
Zhang et al. 2017a, b; Xiang et al. 2018; Jian et al. 2019). 
Here we mainly discuss the classification of time series. The 
WDCNN model proposed by Zhang et al. (2017b) is a very 
intelligent model using deep learning technology. WDCNN 
works directly on the original vibration signal without any 
time-consuming handmade features. Excellent diagnostic 
results have been obtained from the case Western Reserve 
University bearing data set. However, there are still some 
problems in this model, such as overfitting of test dataset 
and some details still need to be optimized. In addition, for 
the selection of model parameters, the theoretical descrip-
tion of the algorithm is also slightly inadequate. Jian et al. 
(2019) proposed OFNN. Experimental results show that this 
method can effectively improve the cross-domain adaptive 
capacity of the model and has a better diagnostic accuracy 
than other existing experimental methods. The method also 
uses one-dimensional convolutional neural network to estab-
lish algorithm model, and the innovation point is to realize 
bearing fault detection with Softmax classifier by using the 
class vector output synthetically determined by D–S evi-
dence theory. However, the efficiency of this algorithm still 
needs to be improved in practice, and it takes a lot of time 
to improve the accuracy is very limited. In order to improve 
the accuracy and ensure the high efficiency, we proposed 
the WKCNN model. Moreover, the WKCNN construction 
algorithm is provided. In order to further verify our model, 
WKCNN will be compared with three traditional models 
FFT-SVM (Islam and Kim 2017), FFT-MPL (Almeida et al. 
2014), FFT-DNN (Feng et al. 2016) and the deep learning 
algorithm WDCNN (Zhang et al. 2017b) without feature 
extraction in Sect. 5.

3  The construction method of WKCNN 
model

The network design process pattern of the WKCNN model 
is shown in Fig. 1. In order to obtain more accurate experi-
mental results by using deep learning, we need to enhance 
the original experimental data to obtain more data. When 
determining the length of the input signal, the field size of 
the last pooling layer should cover the length of the input 
signal as much as possible so that the network can obtain 
more comprehensive data characteristics.
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The design of the network structure starts from the overall 
widening of the convolution kernel. The wide kernels can 
better suppress high-frequency noise compared with small 
kernels (Zhang et al. 2017b). Multilayer small wide kernels 
can better suppress high-frequency noise and inhibit over-
fitting compared with small kernels. We use Kl

i
 to represent 

the i-th convolution kernel of the l-th layer, bl
i
 represents the 

bias of the i-th convolution kernel of the l-th layer, xl(j) to 
represent the local region of the j-th convolution in the l-th 
layer. The specific convolution operation formula is shown 
as follows:

where the * symbol represents the dot product of the calcula-
tion kernel and the local area, yl+1

i
(j) is the value of the j-th 

local area calculated from the input of the (l+1)-th layer.
In the selection of activation function, the traditional Sig-

moid activation function is faced with the problem that the 
deep network structure is prone to gradient disappearance 
and the training time is too long. Therefore, the linear rec-
tifying function (ReLU) is used in this paper. The formula 
is as follows:

we use yl+1
i

(j) to represent the output value of the convolu-
tion operation and zl+1

i
(j) is the activation function of yl+1

i
(j) .

(1)yl+1
i

(j) = Kl
i
∗ xl(j) + bl

i
,

(2)zl+1
i

(j) = max
{

0, yl+1
i

(j)
}

,

After obtaining the features through convolution, in order 
to reduce the computation, the model chooses to use the 
maximum pooling function to process the feature mapping 
results obtained from the convolution operation. When the 
multi-layer convolution calculation and pooling calculation 
are completed, the extracted features are firstly expanded 
smoothly and processed into a vector that can be output. 
After that, the full connection layer is usually used to realize 
random feature combination and classification. Each neuron 
in the full connection layer is cross-connected with the neu-
ron representing the output feature vector of the previous 
layer after smooth expansion to realize the classification of 
local information with category distinction after convolution 
calculation. The calculation method of full connection layer 
is the same as that of ANN. The details are as follows:

let yl+1
j

 be the logits of the j-th output neuron in the (l+1)-th 
layer; Wl

ij
 represents the weight between the i-th neuron in 

layer l and the j-th neuron in layer l+1.bj
i
 is the bias value of 

all neurons in layer l to the j-th neuron in layer l+1. Finally, 
the test results were output by Softmax function:

during the experiment, the parameters such as the size of 
convolution kernel, step size in the model are constantly 
improved and adjusted. If the size of the sensing field 
changes, the length of the input signal needs to be rede-
signed to make the sensing field cover the length of the input 
signal as much as possible. Experiments were carried out in 
the aspects of accuracy, time and anti-interference, and the 
optimal model was approximated continuously.

Combined with the above process, we proposed the 
modeling algorithm of WKCNN as shown in algorithm 1. 
Since we adopt deep learning technology and the strategy of 
broadening convolution kernels, we need to generate a large 
amount of experimental data through data augmentation to 
obtain accurate diagnosis results. Deep learning is an end-
to-end algorithm based on statistics and can discover com-
plex structures in large data sets by using back-propagation 
algorithms. However, its learning process is like a black box 
to us, and it is difficult for us to understand its internal struc-
ture. The core work of algorithm 1 is to help us determine 
the optimal value of each parameter and hyper-parameter 
based on the experiments. The breakthrough of this algo-
rithm is a comparison between the size of the receptive field 
and the length of the input signal. Our theoretical basis is 
that in order to obtain more data feature information, the size 
of the receptive field should cover the length of the input 

(3)yl+1
j

=

n
∑

i=1

Wl
ij
al(i) + bl

j
,

(4)qj = softmax
(

yl+1
j

)

=
e
yl+1
j

Σ10
k
e
yl+1
j

,

Fig. 1  Network design process pattern
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data as much as possible. The size of the receptive field is 
determined by the sizes of the convolution kernels. Just as 
the example mentioned in the following Sect. 3.2, broaden-
ing the convolution kernel is a very appropriate strategy for 
a one-dimensional convolutional neural network, and it can 
also suppress the problem of data overfitting. Therefore, we 
will constantly adjust the sizes of the convolution kernels 
and the length of the input signal in the experiment to find a 
model that keeps approaching perfection, which is the mod-
eling algorithm of WKCNN.

Fig. 2  Data augmentation 
through overlap sampling

Algorithm 1 WKCNN modeling algorithm
Input:
One-dimensional bearing vibration signal
Output:
The classification and model evaluation results of WKCNN
Require:
L is the length of the input signal, the shift is w, the number of sample groups is G, N is

the total amount of data.
R(k) is the perceptive field size of the k-th layer, and the value of R(0) is 1, f(k) is the size

of the current convolution kernel, S(i) is the step size of the i-th layer .
T is the number of data points recorded by the bearing rotation.
Method:
1. Data augmentation
G = n−L

w ,
N = G× L
2. The hyper-parameter and parameter of the model are determined by the experimental
results
while results on test dataset can still be improved do

Design the size of convolution kernels and the number of layers of the network.
Design the values of parameters including the size of mini-batch, the value of epochs,
etc.
Design the length of the input single L:

R(k) = R(k−1) + f(k) − 1 × k−1
i=1 S(i),

The scope of the R(n): T ≤ R(n) ≤ L
The length of L is determined by the above formula.

program runs the WKCNN model and gets the classification results.
return results

3.1  Time complexity of WKCNN

The training time of the model is determined by the time 
complexity. If the time complexity is too high, the model 

training will consume a lot of time. In WKCNN, the total 
time complexity of all convolutional layers is:

Here i is the index of a convolution layer, and d is the depth 
of convolutional layers. Li is the length of the output feature 
map in the i-th layer, Ki is also as know as the length of the 
kernels. Ci−1 is the number of input channels of the i-th layer, 
and Ci is the number of kernels in the i-th layer.

(5)���� ∼ O

(

d
∑

i=1

Li ⋅ Ki ⋅ Ci−1 ⋅ Ci

)

The time complexity of FC layers and pooling layers is 
not included in the above formulation. These layers usu-
ally take 5-10% of the calculation time (He and Sun 2015). 
As mentioned in Sect. 3.3, widening convolution kernels is 
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the basic strategy for WKCNN to improve accuracy, that 
is, K value and receptive field increase, so L also increases 
accordingly. In order to reduce the time complexity, we 
should reduce the number of channels C on the premise 
of ensuring the accuracy of the model. The structure of 
WKCNN is shown in Table 6.

3.2  Data augmentation–data augmentation 
strategy

The best way to enhance the generalization of machine 
learning models is to use more training samples (Goodfellow 
et al. 2016). The purpose of data augmentation is to improve 
the generalization performance of deep neural network by 
increasing training samples.

As shown in Fig. 2, for the one-dimensional time-domain 
vibration signal, this paper adopts the data augmentation 
method of overlapping sampling, that is, when the data is 
sampled from the original signal, each segment of the signal 
overlaps with the next segment of the offset signal, which is 
the part of data augmentation.

Let the number of data sampling points in a file is n, the 
length of each training sample collected is L, and the shift 
is w. The number of sample groups is G and the total data 
quantity N can be obtained are as follows:

for example, we can assume that n=10000, L=2000, and 
w=20. According to formula (5) and formula (6), A total of 
400 sets of samples (each containing 2,000 sample points) 
and 800,000 sample points can be obtained, the number of 
points has increased by 80 times.

In the WKCNN model data augmentation experiment, 
there are 10 categories, in each category n is equal to 120000 
and L is equal to 5200, the load is 1hp. According to the 
experiment and formula (5) and (6), we can get the accuracy 
rate, maximum sample number and maximum number of 
points under different shifts in Table 1. In order to avoid 

(6)G =
n − L

w
,

(7)N =G × L,

random sampling errors, the experiment was repeated 20 
times to average. It can be seen from the Table 1 that for the 
training set without data augmentation, the accuracy rate 
was only 41.18%, due to insufficient data and inadequate 
fitting. Through data augmentation, the offset parameter was 
controlled to be between 1–5200, and the accuracy rate was 
between 41.18% and 99.90%. In the following experiment, 
we selected shift is equal to 20 with the highest accuracy. In 
Sect. 5.1, we proved the importance of data augmentation 
again through experiments which can well meet the training 
needs of deep neural network.

3.3  Wide Kernel—one‑dimensional data processing 
strategy

The traditional convolutional neural network can also be 
used for fault diagnosis, but it is not suitable for fault diag-
nosis of bearing. For a two-dimensional convolutional neural 
network, 3 × 3 is the smallest size that can capture the infor-
mation of pixel 8 neighborhood. Using two 3 × 3 convolution 
kernels can get the same size of the perception field as one 
5 × 5 convolution kernel, and the number of parameters is 
less. In this way, not only can the depth of the network be 
deepened, but also a larger receptive field can be obtained 
with fewer parameters, and inhibiting overfitting.

However, for the one-dimensional neural network struc-
ture, the two-layer 3 × 1 convolution structure only gets 
5 × 1 receptive field at the cost of 6 weights, which turns the 
advantage into disadvantage. Therefore, widening convolu-
tion kernel can be used as an effective strategy to improve 
one-dimensional convolutional neural network. In 3.1, this 
paper will also prove the advantages of wide convolution 
kernel through experiments.

3.4  Receptive field—input length selection 
strategy

One of the most important design basis of convolutional 
neural network is the receptive field, that is, the percep-
tion ranges of a neuron in its next layer. The size of the 
receptive field directly affects the level of the network 

Table 1  Data augmentation experiment information under different shifts

Tag 1 2 3 4 5 6 7 8 9

Shift None 1 20 50 100 200 500 1000 5200
MaxSampleNums 230 1148000 57400 22960 11480 5740 2296 1148 230
MaxPointNums 120000 5969600000 298480000 119392000 59696000 29848000 11939200 5969600 120000
TrainNums 161 7000 7000 7000 7000 3500 1400 700 161
TestNums 23 1000 1000 1000 1000 500 200 100 23
Accuracy 41.18% 99.68% 99.90% 99.81% 99.39% 94.98% 77.49% 65.25% 41.18%
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layer’s perception of the features of the input image, that is, 
whether the features acquired by a certain layer are global, 
or local and detailed. When the receptive field is smaller, the 
response is more detail-oriented. When the receptive field 
becomes larger, the reflected features are more holistic and 
global. The formula of receptive field is as follows:

R(k) is the perceptive field size of the k-th layer, f (k) is the 
size of the current convolution kernel, and S(i) is the step size 
of the i-th layer, and the value of R(0) is 1.

After determining the convolution kernel size and the step 
size of each layer, we can calculate the size of the recep-
tive field of each layer. Because the vibration signal is peri-
odic, and the phase value of each input signal may not be 
the same. Therefore, the field size of the last pooling layer 
should be at least greater than the number of sampling points 
recorded in one cycle. Let the field size of the last pooling 
layer at the input layer is R(n) ,T is the number of data points 
recorded by the bearing rotation, and L is the length of the 
input signal.Therefore, T ≤ R(n)

≤ L should be used as the 
design criterion.

3.5  Batch normalization—inhibit overfitting 
strategy

The normalization layer of batch processing is to reduce the 
displacement of internal covariance, inhibit overfitting, and 
enable rapid learning (increase the learning rate). The BN layer 
is usually added after the convolution layer or the fully con-
nected layer and before the activation function. In this paper, 
a batch normalization layer is added between the convolution 
layer and the activation layer. Specifically, the mean value of 
the data distribution is 0 and the variance is 1. In mathematical 
terms, as shown below.

(8)R(k) = R(k−1) +
(

f(k) − 1
)

×

k−1
∏

i=1

S(i),

(9)�B =
1

m

m
∑

i=1

xi,

(10)�2
B
=
1

m

m
∑

i=1

(

xi − �B

)2
,

(11)
�̂i =

�i − 𝜇B
√

𝜎2
B
+ 𝜀

,

(12)yi =𝛾 x̂i + 𝛽,

here for the set of m input data B= { x1, x2,… , xm } to find 
the mean �B and the variance �2

B
 . Where � is a small value, 

(for example, 10e−7, etc.), � and � are parameters.

3.6  Adam—avoid local optimality strategy

For shallow neural networks, SGD (Stochastic Gradient 
Descent) can converge to the global optimum. However, for 
WKCNN, due to the deep layers and too many parameters, it 
is easy to fall into local optimization if the parameters are not 
selected well. Therefore, this paper adopts Adam (adaptive 
moments) algorithm (Kingma and Ba 2014). Adam is an adap-
tive learning rate optimization algorithm, which dynamically 
adjusts the learning rate of each parameter by using the first-
order moment estimation and second-order moment estima-
tion of the gradient. The main advantage of Adam is that after 
bias correction, the estimation of the first moment (momentum 
term) and second moment (non-central) initialized from the 
origin is modified, so that the learning rate of each iteration is 
within a certain range. Adam is usually robust to the selection 
of parameters, so it is very helpful to the parameter adjustment 
of neural network.

4  Determine the structure of WKCNN model 
by experiments

This section introduces the experimental data and experi-
mental environment, in addition determines the size of 
WKCNN’s wide convolution kernel and the number of 
model layers through two experiments.

4.1  Data source

The experimental data used in this paper is from the roll-
ing bearing database center of Case Western Reserve 
University(CWRU) in the United States. The CWRU bear-
ing data sampling system is shown in Fig. 3(Fig. 3 cited 

Fig. 3  CWRU data sampling system
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from https:// csegr oups. case. edu/ beari ngdat acent er/ pages/ 
appar atus- proce dures).

The data used in the experimental tests is the fan bearing 
failure data of model SKF6205 in the CWRU database. The 
sampling frequency is 12 kHz, and the load characteristics 
are 1HP, 2HP, 3HP (HP, Horsepower). The bearings diag-
nosed have three types of defect positions, namely ball dam-
age, outer race damage and inner race damage. The diam-
eters of the damage are 0.007 inch, 0.014 inch and 0.021 
inch respectively, and there are a total of 9 damage states.

From the analysis of a single data file in CWRU, it can be 
seen that the data volume of each file is about 120000 sam-
pling points. That is, according to the sampling frequency 
of the sampling system of 12 kHz and the speed of 1800 r/
min, the data collection duration can be calculated to be 
about 10 seconds, and it can also be calculated that about 
400 sampling points are collected for each rotation of the 
bearing. Therefore, in order to avoid the influence of uncer-
tainty caused by accidental factors, this paper used 5200 
sampling points of data, that is, the data generated by 13 
rounds of bearing rotation, to make a single sample for train-
ing. Since the data collected by the bearing is periodic, in 
order to make full use of the data and avoid overfitting in the 
training process the data enhancement method mentioned in 
2.1 is used to expand the data.

4.2  Model determination experiments

Using Tensorflow and Keras framework to build WKCNN 
fault diagnosis model in Python3.7 environments. As shown 
in Table 2, during training, the size of mini-batch is 256 in a 
range from 32 to 1024, the learning rate of Adam algorithm 
is 0.001 ranging from 0.0001 to 1, and epochs is 20, and the 
test restult under different epochs are shown in Fig. 8. The 
length of input data in each group is 5200, the training data 

set is 7000, and the test data set is 1000. The fault diagnosis 
classification involved in this experiment is divided into 10 
types, 9 types of fault bearings and one fault-free bearing. 
The specific label classification is shown in Table 3.

The whole process includes data augmentation, model 
training (feature extraction and classification) and model 
diagnosis. The flow of WKCNN model determination is 
shown in Fig. 4, the model of WKCNN is shown in Fig. 6 
and the structure of the WKCNN is shown in Table 6.

4.2.1  The test results under different size of kernels 
to prove the importance of wide convolution kernel

Only 1HP load is used in this experiment. The network 
model contains five convolution layers, five pooling layers. 

Table 2  The optimal value and ranges of experimental parameters

Parameters Scope Accuracy Optimal value

Mini-batch 32 ∼ 1024 96.20% ∼ 99.90% 256
Adam 0.0001 ∼ 1 63.80% ∼ 99.90% 0.01
epochs 1 ∼ 100 28.60% ∼ 99.90% 20
Training data set 70 ∼ 14000 40.00% ∼ 99.90% 7000
Test data set 10 ∼ 2000 40.00% ∼ 99.90% 1000

Table 3  Description of 12 kHz 
rolling element bearing datasets

Fault location none Inner race Outer race Ball

Tag 0 1 2 3 4 5 6 7 8 9
Loss of diameter(inch) None 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021
Train(group) 700 700 700 700 700 700 700 700 700 700
Test(group) 100 100 100 100 100 100 100 100 100 100

Fig. 4  Fault diagnosis flow

https://csegroups.case.edu/bearingdatacenter/pages/apparatus-procedures
https://csegroups.case.edu/bearingdatacenter/pages/apparatus-procedures
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The width of convolution kernels of the last three layers 
are 5, and the width of pooling layers are all 2. The neces-
sity of using wide convolution kernels is proved by chang-
ing the size of kernels in the first two convolution layers. 
It can be seen from Table 4 that the accuracy rate is higher 
when the width of the first two layers of convolution kernel 
becomes large. For example, when the width of the first 
two-layer convolution kernel is both 5, the accuracy rate 
is only 79.29%. When the first-layer convolution kernel 
size is 128 and the second-layer size is 32, the accuracy 
rate can reach 97.50%. However, it is not that the wider 

the convolution kernel is, the higher the accuracy will be. 
When the width of the convolution kernel is too large, the 
time domain resolution will be reduced, resulting in the 
loss of some details. When the convolution kernel is too 
small, it is difficult to capture the medium-low frequency 
features, which may be interfered by high-frequency noise 
in industry. It can be seen from the experiment that when 
the size of the first two layers of convolution kernels is 64 
and 16 respectively, the diagnostic accuracy is the highest, 
which can reach 99.90%.

4.2.2  The test results under different numbers of layers 
to determine the optimal number of layers

This experiment illustrates the optimality of the five-lay-
ers structure (five convolutional layers, five pooling layers 
and a fully connected layer) by changing the number of 
WKCNN layers. In this experiment, single-layer structure 
to seven-layer structure are used for comparison. As shown 
in Fig. 5, five-layer structure can reach 99.90% accuracy, 
which is higher than other structures. In Table 5, the time 
for WKCNN to diagnose a signal is 0.442ms, which can 
well meet the real-time demand. Through this experiment, it 
can be concluded that appropriately deepening the network 
layer of WKCNN can obtain stronger feature extraction abil-
ity than the shallow layer, but excessive layers will lead to 
overfitting.

4.3  Structure of the WKCNN Model

In this paper, the model WKCNN (Wide Kernel Convolu-
tional Neural Networks) is proposed by the experiments of 
3.2.1 and 3.2.2, as shown in Fig. 6. The network consists of 
five convolutional layers, five pooling layers, one fully con-
nected layer and one Softmax layer. The time-domain vibra-
tion signal (after data augmentation) passes through the first 
convolution layer and then enters the Batch Normalization 
layer (BN layer) and the ReLU activation layer, becoming a 
set of feature maps, and then performs the down-sampling 
operation through the maximum pooling. As the number of 
layer increases, the width of output signal decreases. The 
signal classification operation is completed by the fully con-
nected layer. Flatten expands all the data features obtained 
in the last pooling layer, and the Dense layer performs non-
linear transformation to extract the correlation among these 
features. Finally, use the Softmax function to output 10 dif-
ferent health states that meet the experimental requirements.

Table 4  Results of the first two convolution layers with different sizes

First layer Second layer Accuracy (%)

5 5 79.29
16 5 83.30
32 5 86.89
64 5 88.50
128 5 89.29
5 16 86.89
16 16 89.80
32 16 95.20
64 16 99.90
128 16 97.69
5 32 88.89
16 32 91.89
32 32 95.10
64 32 98.50
128 32 97.50

Fig. 5  Accuracy under different layer structure

Table 5  The processing time of 
single signal

Layers Single layer Double layer Three layer Four layer Five layer Six layer Seven layer

Time(ms) 0.367 0.403 0.420 0.432 0.442 0.454 0.476
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As shown in Table 6, the size of the first convolution 
kernel is 64*8 (width, depth, the height is none), the second 
layer is 16*16, the third and fourth layers are 5*32, and the 
fifth layer is 5*64. The area size (width) of the pooling layer 
is all selected as 2. The number of hidden neurons in the 
fully connected layer is 64. In the process of back propaga-
tion, Adam optimization algorithm is selected to update the 
weight, so as to minimize the value of the loss function.

The first two layers of WKCNN are large convolution 
kernels, the purpose of which is to extract short-time fea-
tures, and its function is similar to that of short-time Fourier 
transform. The difference is that the window of the short-
time Fourier transform is the sine function, while the first 
two layers of the large convolution kernel of WKCNN are 
trained by the optimization algorithm. The advantage is that 
it can automatically learn the features that are diagnostic 

oriented, and automatically remove the features that are not 
helpful for diagnosis. There is not only high accuracy but 
also greatly improves the learning speed of the model. In 
order to enhance the expressive power of WKCNN, except 
for the first two layers, the convolution kernel of the other 
convolution layers adopts a small convolution kernel with 
width of 5. Since there are few parameters in the small con-
volution kernel, it is beneficial to deepen the network and 
inhibit overfitting.

Fig. 6  The model of WKCNN
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5  Validation of the WKCNN model

5.1  The test results under different number 
of training datasets

WKCNN adopts the strategy of deep learning and broaden-
ing convolution kernels. To train a large number of param-
eters, sufficient training sample data is the prerequisite in 
WKCNN. In order to investigate how much training data is 
sufficient and how well does WKCNN perform in different 
data volumes, different sizes of training data are fed to train 
the network. In this experiment, the WKCNN model was 
trained on the training samples of 70, 350, 700, 1400, 3500, 
5600, 7000, 10500, 14000 groups(The samples are randomly 
selected). In the training process, the load is 1hp, the size 
of mini-batch is 256, the learning rate of Adam algorithm is 
0.001, and the epochs is 20.

The experimental results are shown in Fig. 7. When the 
training sample is 14000, the recognition accuracy rate is 
up to 99%, while when the training sample is 70 times, 
the accuracy rate is only 40%. The experimental results 
illustrate the influence of the number of training samples 
on the diagnostic accuracy. When the number of training 
samples exceeds 3500, the accuracy can reach more than 
95.6%, and it is not difficult to find that with the increase 
of sample size, the accuracy rate increases significantly at 
the beginning, but after reaching a certain threshold, the 
improvement rate of accuracy begins to slow down, and 
then slowly declines after reaching the peak. With 7000 
sample size, the accuracy is 99.90% which is the peek of 
the curve, while the number of samples exceeds 7000, the 
accuracy drops slightly, remaining around 99%. Through 
this experiment, it is not difficult to draw a conclusion that 
7000 sets of training data is an ideal value. Not only has 
the highest accuracy rate, but also meets the requirements 
of WKCNN in terms of quantity and scale. When the train-
ing sample data exceeds 7000, the accuracy of the training 
sample will increase, and the overfitting problem leads 
to the decrease of the accuracy of the test set sample. In 
other words, underfitting occurs when the training dataset 
is too small, and overfitting may occur when the training 
dataset is too large. Thus, in the following experiments, 
the WKCNN model is trained with 7000 samples.

5.2  The test results under different epochs

One epoch means that the whole data set is passed forward 
and backward only once in the neural network. For a large 
training dataset in a neural network, only one transmission 
is not enough to obtain accurate experimental results. The 
complete dataset needs to be transmitted multiple times 

Table 6  The structure of WKCNN

No. Layer type Kernel 
size/
stride

Kernel number Output size 
(width×
depth)

Padding

1 Conv1 64/8 8 650 × 8 Yes
2 Pooling1 2/2 8 325 × 8 No
3 Conv2 16/4 16 82 × 16 Yes
4 Pooling2 2/2 16 41 × 16 No
5 Conv3 5/1 32 41 × 32 Yes
6 Pooling3 2/2 16 20 × 32 No
7 Conv4 5/1 32 20 × 32 Yes
8 Pooling4 2/2 64 5 × 64 No
9 Conv5 5/1 64 5 × 64 Yes
10 Pooling5 2/2 64 5 × 64 No
11 Flatten 320
12 Dense 64
13 Softmax 10

Fig. 7  The recognition rate of WKCNN under different training sam-
ples

Fig. 8  The recognition rate of WKCNN under different epochs
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in the same neural network, with the number of epochs 
increases, more number of times the weight are changed in 
the neural network and the test dataset goes from underfit-
ting to optimal to overfitting. Therefore, we need to deter-
mine the optimal epochs under the given parameters which 
the number of the training dataset is 7000, the test data set 
is 1000, the load is 1hp, the size of mini-batch is 256, the 
learning rate of Adam algorithm is 0.001.

In this experiment, the values of epochs in the WKCNN 
model were adjusted to 1, 5, 10, 15, 20, 50, 100. In Fig. 8, 
it shows that the accuracy increases by 68.90% when the 
epochs rise from 1 to 15. With 20 epochs, the accuracy 
peaks at 99.90% . When the epochs go up to 50, the recog-
nition rate is 98.90%, while the epochs is 100, the accuracy 
is only 96.50%.

Obviously, the experimental results well confirm our 
previous conclusions. When epochs is between 1 and 20 
times, the model is still underfitting. After more than 20 
times, the error of the training dataset decreases and that 
of the test dataset increases which is overfitting. There-
fore, we can determine that 20 is the optimal number of 
epochs. If the number of epochs is too small, it will lead 
to underfitting, but if the number of epochs is too high, 
it will lead to overfitting. Compared with Li et al. (2018)
(1000 epochs), WKCNN can achieve a high recognition 
rate with less epochs. It can be inferred that WKCNN can 
learn features in one-dimensional data faster.

5.3  The test results under different loads 
and variable loads conditions

In this experiment, we studied the accuracy of WKCNN 
under different loads and variable loads conditions. In the 
training process, the number of the training dataset is 7000, 

the test dataset is 1000, the size of mini-batch is 256, the 
learning rate of Adam algorithm is 0.001, and the epochs 
is 20.

The fault recognition rate of WKCNN was tested under 
loads of 0HP, 1HP, 2HP and 3HP respectively. As shown in 
Table 6, it can be seen that the recognition rate of convolu-
tional neural network on each data set reached over 99.90%, 
and the accuracy of test results of this model on 2HP and 
3HP could reach 100%.

Next, training set A, B and C represents the training data 
under the load of 1-3HP respectively. The variable load 
capacity of WKCNN is compared with three traditional clas-
sification methods and a new deep learning method which 
do not need feature extraction. The classification methods 
of SVM (Islam and Kim 2017; Ziani et al. 2017; Fu et al. 
2020), MLP (Almeida et al. 2014) and DNN (Feng et al. 
2016) that need pretreatment are compared. The data is 
transformed fast Fourier transform(FFT). The last choice of 
comparison method is WDCNN (Zhang et al. 2017b), which 
also does not need preprocessing. There are two comparison 
points for the variable load problem in this experiment. The 
first is the advantages of deep learning methods compared 
with traditional methods, and the second is the advantages 
of WKCNN compared with another efficient deep learning 
algorithm.

According to Fig. 9, we can find that the accuracy of 
the three traditional intelligent diagnosis methods under 
different load conditions is lower than the adaptive feature 
extraction method based on convolutional neural network, 
which is mainly due to the poor applicability of the manu-
ally designed extracted features and the non-linear expres-
sion ability of SVM, which limits the recognition rate 
under different load conditions. Although MLP and DNN 
have relatively strong fitting ability, their generalization 

Fig. 9  Comparison of different methods under variable load condition
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ability is low, so the diagnostic accuracy under differ-
ent loads needs to be further improved. WKCNN relies 
entirely on the one-dimensional convolutional neural net-
work to automatically extract and classify features in an 
end-to-end manner without excessive manual intervention. 
Compared to traditional methods, the process of feature 
extraction is eliminated, and the hidden features retained 
in the sample can be better discovered. Compared to 
WDCNN, each convolution kernel of WKCNN is wider. 
So we can get a larger receptive field which the features 
obtained by WKCNN are more global, thus the overfitting 
can be suppressed more effectively. From the change of 
working conditions, the diagnostic accuracy between 1 HP 
and 3 HP was significantly lower than that between 2 HP. 
This shows that the greater the load change, the greater the 
signal difference in the same health state.

5.4  The test results under white noise

In the actual operation of bearing, there is external inter-
ference noises usually. The noise of the diagnosed signal 
is generally additive Gaussian white noise (Gondal et al. 
2014), and the signal-to-noise ratio(SNR) is the stand-
ard of evaluating the strength of the noise. Let PS and PN 
represent the energy of signal and noise respectively, the 
definition of SNR is as follows:

according to formula (12), the larger the noise, the smaller 
the SNR. When the signal and the noise energy are the same, 
the SNR is 0. Therefore, in this experiment, the training set 
was added with Gaussian additive white noise with SNR 
value of 0-10db to detect the noise resistance of WKCNN. 
As shown in Table  7, WKCNN was compared with 

(13)SNR(dB) = 10 log10

(

PS

PN

)

,

FFT-SVM (Islam and Kim 2017), FFT-MLP (Almeida et al. 
2014) and FFT-DNN (Feng et al. 2016) and WDCNN(Zhang 
et al. 2017b). In this experiment, the training data set is 
7000, the test data set is 1000, the size of mini-batch is 256 
and epochs is 20.

We compare the accuracy of FFT-MLP and FFT-DNN 
in the traditional methods in the case of the highest noise of 
0dB, which is only 41.50% and 58.52% respectively, and the 
accuracy of FFT-SVM is 89.50%. However, the two meth-
ods of deep learning achieve more than 98% recognition 
accuracy without any denoising pre-processing which proves 
again that compared with traditional methods deep learning 
methods learn more hidden features through an end-to-end 
approach and more powerful learning ability. Compared 
with WDCNN, the performances of WKCNN from 0–10 
dB are slightly higher than WDCNN. The reason is that 
its overall wider convolution kernels can effectively avoid 
overfitting.

5.5  Performance evaluation of WKCNN

When considering whether a model is appropriate, it is 
not sufficient to rely solely on accuracy rate (Hamori et al. 
2018). We usually use Precision, Recall, F1-Measure and 
receiver operating characteristic(ROC) curve to evaluate a 
model. We set the training data set to 7000, the test data set 
to 1000. The size of the small batch is 256 and the epochs 
is 20.

As we mentioned in 3.1, the bearings diagnosed have 
three types of defect positions, namely ball damage, outer 
race damage and inner race damage. The diameters of the 
damage are 0.007 inch, 0.014 inch and 0.021 inch respec-
tively, and there are a total of 9 damage states with a normal 
state that correspond exactly to the 10 categories of states 
in Table 8. As shown in Table 7, we can find that the val-
ues of Precision, Recall and F1-measure of each type. All 
values except B021 and IR007 reached 100%. In the bottom 
half of Table 7, the two averages of Macro Avg and Weight 
Avg are given. Macro Avg means to average each category’s 
Precision, Recall and F1-Measure sum. Weight Avg is an 
improvement on Macro Avg, considering the proportion of 
samples for each category in the total sample. The experi-
mental result shows that the average values of Precision, 

Table 7  The recognition rate of WKCNN under different loads

Load 0HP 1HP 2HP 3HP

Accuracy 99.90% 99.90% 100% 100%

Table 8  Comparison of noise 
resistance of different methods

SNR

Model methods 0 dB (%) 2 dB (%) 4 dB (%) 6 dB (%) 8 dB (%) 10 dB (%)

FFT-MLP 41.50 50.34 78.65 92.35 97.24 99.38
FFT-DNN 58.52 70.24 85.34 95.78 98.20 99.50
FFT-SVM 89.50 96.38 97.23 98.52 99.00 99.52
WDCNN 98.77 99.49 99.67 99.80 99.81 99.88
WKCNN 98.90 99.52 99.77 99.82 99.86 99.89
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Recall rate and F1-Measure are all up to 99% under two 
average methods.

Figure  10 displays ROC curve with area under the 
curve(AUC) for the WKCNN, the vertical axis corresponds 
to the true positive ratio, whereas horizontal axis corre-
sponds to the false positive ratio. The blue line is the random 
50%/50% classification. A good model is one that shows a 
high true positive rate value and low false positive value. 
When one curve is completely enveloped by another, it can 
be asserted that the latter performs better than the former. 
It is found that, in the ten classifications, the AUC of class 
2 is 0.9987 and that of class 3 is 0.9974. The rest of the 

classifications reached 1, thus proving the high performance 
of WKCNN in diagnosing bearing faults (Table 9).

6  Conclusions

In order to improve the accuracy and efficiency of bearing 
fault diagnosis, we use the most popular deep learning tech-
nology and combine the characteristics of one-dimensional 
vibration signal to propose the WKCNN model. At the same 
time, we summarize the generation algorithm of WKCNN 
model and the design process of one-dimensional convolu-
tional neural network.

Table 9  Bearing performance 
diagnosis with precison, recall 
and F1-measure

Bearing classification Precision (%) Recall (%) F1-measure (%) Support

B007 100 100 100 100
B014 100 100 100 100
B021 96 93 94 100
IR007 93 96 95 100
IR014 100 100 100 100
IR021 100 100 100 100
OR007 100 100 100 100
OR014 100 100 100 100
OR021 100 100 100 100
Normal 100 100 100 100
Avg
Macro avg 99 99 99 1000
Weight avg 99 99 99 1000

Fig. 10  ROC curve for 
WKCNN
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The core idea of WKCNN model is to widen the con-
volution kernels. On this basis, deep learning and other 
optimization algorithms are combined, which will be the 
most suitable optimization algorithm for one-dimensional 
convolution network.

In order to verify the superiority of WKCNN algorithm, 
firstly, we compared the accuracy changes of WKCNN 
in different training samples and epochs. We draw a con-
clusion that, for deep learning training, a relatively large 
amount of training data is needed. However, if the amount 
of training data is too large, overfitting will occur; if the 
amount of training data is too small, underfitting will 
occur. Epochs is also the same, the appropriate value is 
very important. In these two experiments, 99.90% accu-
racy of fault diagnosis can be achieved under appropriate 
parameters.

Secondly, we compare WKCNN with three tradi-
tional and efficient classification algorithms SVM, MLP, 
DNN(feature extraction technology uses fast Fourier trans-
form) and WDCNN algorithm, which also uses deep learn-
ing technology and does not require feature extraction. Next, 
we compare the accuracy of five algorithms under variable 
loads and noise conditions respectively, and draw two con-
clusions. The first one is that, compared with traditional 
methods, WKCNN automatically extracts and classifies 
features end-to-end through one-dimensional convolutional 
neural network, without too much manual intervention. 
Compared with the traditional methods, this method elimi-
nates the process of feature extraction and better reveals the 
hidden features retained in the sample. The second point is 
compared to other convolutional neural network, each con-
volution kernel of WKCNN is wider. In this way, a larger 
receptive field can be obtained, and the features obtained by 
WKCNN are more global, thus inhibiting overfitting more 
effectively.

Finally, in terms of the efficiency of the model, compared 
with the traditional method, the feature extraction of data is 
not required, and the end-to-end method is directly used to 
classify the data. The processing time of a single signal is 
0.442 ms, which provides real-time guarantee for the arrival 
of the era of big data.

In the future research, this method will be combined 
with other methods and extended to the complex classifica-
tion and regression problems such as health status assess-
ment and residual life prediction of rotating machinery. In 
addition, parallel computing technology will be studied to 
improve the efficiency of the method.
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