
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2022) 13:1525–1535
https://doi.org/10.1007/s12652-021-03022-1

ORIGINAL RESEARCH

EdgeCRNN: an edge‑computing oriented model of acoustic feature
enhancement for keyword spotting

Yungen Wei1,2 · Zheng Gong1 · Shunzhi Yang1,2,3 · Kai Ye1,2,3 · Yamin Wen3

Received: 12 October 2020 / Accepted: 1 March 2021 / Published online: 14 March 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Keyword Spotting (KWS) is a significant branch of Automatic Speech Recognition (ASR) and has been widely used in
edge computing devices. The goal of KWS is to provide high accuracy with a low False Alarm Rate (FAR), while reducing
the costs of memory, computation, and latency. However, limited resources are challenging for KWS applications on edge
computing devices. Lightweight models and structures for deep learning have achieved good results in the KWS branch
while maintaining efficient performances. In this paper, we present a new Convolutional Recurrent Neural Network (CRNN)
architecture named EdgeCRNN for edge computing devices. EdgeCRNN, which is based on depthwise separable convolution
and residual structure, uses a feature enhanced method. On the Google Speech Commands Dataset, the experimental results
depict that EdgeCRNN can test 11.1 audio data per second on Raspberry Pi 3B+, which is 2.2 times than that of Tpool2.
Compared with Tpool2, the accuracy of EdgeCRNN reaches 98.05% whilst its performance is also competitive.

Keywords  Edge computing · Keyword spotting · Convolutional recurrent neural network · Feature enhancement ·
Lightweight structure

1  Introduction

Keyword Spotting (KWS) is a branch of Automatic Speech
Recognition and focuses on detecting predefined keywords
from a continuous audio stream. The wake-up words are the
critical applications of KWS on edge computing devices,
such as Apple’s “Hey Siri” and Google’s “OK Google”. The
device is awakened to execute the appropriate command if
the KWS system detects a predefined keyword in a dialogue.

Traditional methods of KWS usually use the Keyword/
Filler Hidden Markov Model (HMM) (Wilpon et al. 1991;
Silaghi and Bourlard 1999; Silaghi 2005). However, depend-
ing on an HMM topology, these systems require Viterbi
decoding, which is computationally expensive. These
approaches are not suitable for edge computing with limited
resources. In KWS branch, Deep Neural Networks (DNN)
has been shown to produce an efficient and reliable solution.
DNN (Chen et al. 2014) was the first deep learning model
applied to KWS. Its model parameters are 224M, which is
smaller than the 373M of GMM-HMM model, and its per-
formance also is better than HMM model. However, these
model parameters and computation costs are still relatively
expensive and not suitable for edge computing devices.

A preliminary version of this paper has been published at ML4CS
2020, Springer LNCS, this is the full-length version. This paper is
supported by the National Natural Sciences Foundation of China
(No. 62072192), National Cryptography Development Fund
(No. MMJJ20180206), the Project of Science and Technology of
Guangzhou (No. 201802010044), Guangdong Basic and Applied
Basic Research Foundation (No. 2019A1515011797), the Opening
Project of GuangDong Province Key Laboratory of Information
Security Technology(No. 2020B1212060078), the Project of
Guangdong Province Innovative Team(2020WCXTD011) and the
Research Team of Big Data Audit from Guangdong University of
Finance and Economics.

 *	 Yamin Wen
	 wenyamin@gdufe.edu.cn

1	 School of Computer Science, South China Normal
University, Guangzhou, China

2	 Computer Engineering Technical College, GuangDong
Polytechnic of Science and Technology, Guangzhou, China

3	 School of Statistics and Mathematics, Guangdong University
of Finance and Economics, Guangzhou, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-021-03022-1&domain=pdf

1526	 Y. Wei et al.

1 3

In addition, the KWS system uses a server-client pattern,
where the client collects and uploads data on the terminal
and the cloud server processes it (Fig. 1a). When the cli-
ent receives the result returned by the cloud server, it will
execute related commands and operations. With the rapid
growth of data, pressures of computing and storage at the
server will increase exponentially. Eventually, the user expe-
rience will become very bad. Moreover, there is a problem
of user privacy leakage, which may lead to violations of law
(Gaff et al. 2014; Custers et al. 2019). Consequently, we
adopt a new pattern that the client collects and processes
data on terminal as show in Fig. 1b. The client does not
need to upload data to the cloud server. This pattern not
only diminishes the burden of cloud servers and network
bandwidth, and protects user privacy, but also provides posi-
tioning and high-quality services.

However, the high requirements of model on hardware
and limited resources pose a challenge to the application of
this pattern in edge computing devices. The hardware accel-
eration and designing lightweight models have been used to
solve this problem. Hardware acceleration provides powerful
computational power by adding hardware. In (Benelli et al.
2018), Benelli et al. used a Neural Compute Stick (NCS)
to increase the speed, which reduced the model latency by
50%. Dinelli et al. (2019) proposed a Convolutional Neu-
ral Network (CNN) based on a field-programmable gate
array (FPGA), which is nearly 10 times faster than NCS.
However, these methods based on NCS or FPGA are costly,
which are not used in edge computing devices. The method
of designing lightweight models can reduce calculation
costs and model parameters by designing or automatically
selecting lightweight algorithms, structure, or model cal-
culation methods. So we choose the approach of designing
lightweight model. In other words, the lightweight model
can solve the problem of insufficient resources and is an
edge-computing oriented model.

Various lightweight architectures for deep learning have
been successfully applied to KWS problems, such as Tpool2
(Tang et al. 2018) and CNN (Sainath and Parada 2015).

Compared with DNN (Chen et al. 2014), CNN (Sainath and
Parada 2015) offers between a 27 and 44% relative improve-
ment in false alarm rate (FAR) with a limited number of
multiplications and parameters. However, CNN ignores the
global time and spectral correlation owing to the size of
the convolution kernel. Recurrent Neural Network (RNN)
can leverage a longer temporal context, which makes up for
this question of CNN. Recently, RNN (Sun et al. 2016) and
convolutional recurrent neural network (CRNN) (Arik et al.
2017; Du et al. 2018; Zeng and Xiao 2019) are used in KWS.
CRNN is a hybrid of CNN and RNN. In CRNN, convolution
layer extracts local temporal/spatial correlation and recurrent
layer extracts global temporal features dependency in time
sequence. The accuracy rate reaches 97.71% in the Talk-
Type dataset (Arik et al. 2017). However, the CNN model in
CRNN (Arik et al. 2017) did not use a lightweight structure.

In this paper, we design a new CRNN model called Edge-
CRNN. Its CNN adopts EdgeCRNN Block based on depth-
wise separable convolution and residual structure. Besides,
we propose feature enhancement in EdgeCRNN, which
uses the LFBE-Delta feature instead of the Mel-Frequency
Cepstrum Coefficient (MFCC) as input features. The LFBE-
Delta consists of three features. EdgeCRNN can recognize
12 classes keywords by training on the Google Speech
Commands Dataset (Warden 2018). The experiment results
show that EdgeCRNN not only reduces model parameters
and Floating-point Operations Per Second (FLOPs), but also
decreases latency. The test cases can run normally and test
11.1 audio data per second on edge computing device Rasp-
berry Pi 3B+ without stuttering. Besides, accuracy rate has
also improved and reaches 98.05%.

This paper is organized as follows. Section 2 introduces
the related work of the lightweight KWS model. We describe
our approach and EdgeCRNN architecture in Sect. 3. In
Sect. 4, we explain the experiment steps and results. Sec-
tion 5 gives a conclusion.

Fig. 1   KWS system deployment
pattern

(a) (b)

1527EdgeCRNN: an edge‑computing oriented model of acoustic feature enhancement for keyword…

1 3

2 � Related work

There are three main methods for designing lightweight
KWS models: (1) model compression, (2) automatic neural
network architecture design based on Neural Architecture
Search (NAS), (3) artificial design of lightweight neural
network.

The model compression is to further diminish the
size of the model by removing redundant layers, quan-
tizing high-precision weight parameters, and decompos-
ing complex operations. According to the redundancy of
neural networks in different aspects, it can be divided into
quantizing weight, low rank decomposition, and knowl-
edge distillation (Nakkiran et al. 2015; Mishchenko et al.
2019). In (Tucker et al. 2016), George et al. used low-
rank weight matrice and knowledge distillation through-
out DNN, which obtained a 23.9% relative reduction in
frame error rate. TDNN (Sun et al. 2017) used singular
value decomposition (SVD) to lower model complexity
and obtained a 37.6% reduction in area under the curve
(AUC) compared to the DNN (Chen et al. 2014).

The Neural Architecture Search can automatically
design high-performance neural networks, which are
gradually applied in the fields of computer vision (How-
ard et al. 2019) and speech recognition (Tan et al. 2018).
It consists of search space, search strategy, and perfor-
mance evaluation strategy. Based on the search strategy,
NAS automatically designs a model suitable for specific
applications in a predefined search space (Mazzawi et al.
2019; Anderson et al. 2020). SANAS is able to adapt the
architecture of the neural network on-the-fly at inference
time based on the difficulty of the task with a high rec-
ognition level (Véniat et al. 2019). AUTOKWS adopts
differentiable neural structure search to find more effec-
tive networks and it attains 97.2% top-1 accuracy (Zhang
et al. 2020).

The artificially designed lightweight neural network
mainly reduces the amount of calculation by optimizing
the calculation method of convolution and designing more
efficient convolution operation. The lightweight struc-
ture mainly includes deep residual structure (He et al.
2016), depthwise separable convolution (Sifre and Mal-
lat 2014), dilated convolution (Coucke et al. 2019) and
attention mechanism (Luo et al. 2019). DS-CNN (Zhang
et al. 2017) is a lightweight model based on depthwise
separable convolution, its accuracy rate reaches 95.4%
with limited memory and computational capability. With
maintaining performance, CNNs combine residual learn-
ing and dilated convolution (Coucke et al. 2019; Tang and
Lin 2018). These models can effectively extract speech
features repeatedly and reduce the computational cost

of the model. The accuracy rate reaches 95.8% on paper
(Tang and Lin 2018).

Both model compression and automatic design meth-
ods consume resources and time costly. The artificial
design of lightweight neural network requires designers
to have professional knowledge, but it consumes fewer
resources and is mature in technology. Therefore, we use
the artificial design neural network method to design a
lightweight KWS model for edge computing devices.

3 � EdgeCRNN

In this section, first we propose two feature enhanced
approaches. And then the architecture of EdgeCRNN is
designed based on EdgeCRNN Block.

3.1 � Feature enhancement

In order to extract acoustic features more efficiently, we
propose two enhanced methods Input Feature Enhancement
and First Convolution Layer Feature Enhancement. Table 3
depicts that the accuracy is increased by 3% after adding
feature enhancement.

3.1.1 � Input feature enhancement

The traditional method MFCC only extracts the envelope
information on spectrum and it loses sound details. MFCC is
suitable for voice data longer than 2 s, because the data con-
tains enough envelope features. In the KWS task, the overall
features of speech commands with an average length of 1–2s
are few. If only the envelope features in the frequency spec-
trum are extracted, it is not conducive to the inference of the
neural network. We find that the Log-Mel filterbank ener-
gies (LFBE) contains more features, such as low-frequency
and spectral details. Many proposals had adopted LFBE as
feature extracted method (Sainath and Parada 2015; Coucke
et al. 2019). Besides, the first derivative (Delta) and second
derivative (Delta-Delta) features on the time axis of MFCC
can better represent correlation among frames.

The deep learning model has powerful learning and pres-
entation capabilities and it can extract more robust features
from input features (Abdel-Hamid et al. 2014). We propose a
new feature extraction method LFBE-Delta as input feature.
LFBE-Delta is 39 dimensions and computed every 30 ms
with a 10 ms frame shift by LibROSA package (McFee et al.
2015). It contains three features LFBE, Delta, and Delta-
Delta. The dimension of each feature is 13. Compared with
MFCC, it contains more types of features as illustrates on

1528	 Y. Wei et al.

1 3

Fig. 2, which is helpful for the model to extract more useful
features and improve accuracy.

3.1.2 � First convolution layer feature enhancement

The convolution kernel enhances features by multiply-
ing input signals with sliding, then it outputs a small-size
map feature. The convolution operation parameters include
stride, kernel size, and padding, as described in Table 1.
By setting stride = 1, the size of the output map remains
the same. Therefore, repeating multiple convolution opera-
tion is equivalent to adding features. Compared to large-
size input feature, small-size inputs could relatively save
computational costs.

Compared with the input data dimensions of
3 × 224 × 224 in the computer vision (Zhang et al. 2018;
Howard et al. 2017), the acoustic feature of 39 dimen-
sions LFBE-Delta is too small to effectively extract valid
features. In the convolution layer, maintaining the output
map size unchanged by setting stride could extract more
efficient features. So we maintain the output map size by
setting stride = 1 to achieve feature enhancement. the con-
volutional operation calculates equation as follows:

where t and f represent the input feature dimension in time
and frequency domain, respectively. The m × n , p, and s are
kernel size, padding, and stride of the convolution operation.
The Conv2D output features map is d

2
 dimension(s) with set-

ting stride = 2, while the Conv2D_enhance is d dimension(s)
for stride = 1. This means that the input feature has been
enhanced. As the stride decreases, model calculation will
increase by a corresponding multiple. In the experiment, we
find that this method only once is the best balance between
computational costs and improving performance.

3.2 � The building blocks of EdgeCRNN

In this section, we first describe the core approaches (i.e.,
depthwise separable convolution and residual structure),
on which EdgeCRNN Block is built. We then introduce the
EdgeCRNN Block and RNN.

3.2.1 � Depthwise separable convolution

The idea of depthwise separable convolution is based on
that depth and spatial dimension of a filter can be separated.
Hence, it splits a kernel into two separate parts, Depth-
wise Convolution (DWConv) and Pointwise Convolution
(PConv). The DWConv performs independently over each
channel of input signal, then PConv projects the output chan-
nels by the DWConv onto a new channel space.

According to Howard et al.’s research (Howard et al.
2017), the FLOPs of Depthwise Convolution and Pointwise
Convolution are D2

K
×M × D2

F
 and N ×M × D2

F
 , and the

FLOPs of the depthwise separable convolution is 1
N
+

1

D2

k

times that of the standard convolutional operation, where M
and N are the number of input and output channels, Dk is the

(1)
{

t − m + 2 × p

s
+ 1

}

×

{

f − n + 2 × p

s
+ 1

}

Fig. 2   Input Feature. 39 dimen-
sions (39D) MFCC and 39D
LFBE-Delta (LFBE-Delta
denotes the concatenation of
13D LFBE, 13D Delta and 13D
Delta-Delta)

Table 1   Convolution operation parameters

Conv2D stands for standard convolution, Conv2D_enhance stands for
enhanced convolution with setting Stride = 1

Convolution Kernel size Stride padding

Conv2D 3 × 3 2 × 2 1 × 1

Conv2D_enhance 3 × 3 1 × 1 1 × 1

1529EdgeCRNN: an edge‑computing oriented model of acoustic feature enhancement for keyword…

1 3

kernel size, and DF is the spatial width and height of a square
input feature map. It gradually replaces standard convolution
kernels in many lightweight model studies. Most Edge-
CRNN’s convolution kernel size is 1 × 1 , so the EdgeCRNN
computational cost than full size 3 × 3 convolution layer is
about 9 times less. This proves that the EdgeCRNN model
can reduce computational costs and model parameters.

DWConv cannot change the channels number of input
features (Fig. 3a), and the features cannot be extracted well
if the number of channels is small. The acoustic feature has
only one channel number, the extraction effect will is poor.
However, PConv can change the number of channels, and the
calculation amount and model parameter are relatively small
from above describe. Therefore, we increase the number of
channels by adding a PConv layer before DWConv layer as
describe on Fig. 3b, the model feature extraction effect will
is better.

3.2.2 � Residual structure

In theory, deeper networks are more capable of learning.
However, with the numbers of network layer increases, the
model structure becomes more complicated and requires
expensive computational costs, even has the problem of van-
ishing/exploding gradients. Therefore, He et al. (He et al.
2016) proposed ResNet to solve the above problems. It is
based on the residual structure and uses the shortcut connec-
tions. Shortcut connections are skipping one or more layers
on neural network with an identity mapping function.

The Eq. 2 can be implemented by the Lth
L−1

 feed forward
neural networks with shortcut connections (Fig. 4), where
F(⋅) is a composite function of operations, such as Convolu-
tion (Conv), BN, and ReLU function. The XL denotes the
output of L th layer. In our work, the shortcut connections
simply perform identity mapping, and their input and output
of different layers are added by an element-wise or concat-
enated through the channel. Identity shortcut connections
do not add extra parameters or computational complexity.
The residual structure increases the training speed of model.
In the model design process, we add a residual structure to
improve the efficiency of the model and reduce redundant
hidden layer.

3.2.3 � RNN

The RNN uses a loop structure to connect previous state
information to the current state, which can well extract
sequence data context features. However, standard RNN has
short-term memory problems. The long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber 1997) and gated

(2)XL = F(XL−1) + XL−1

Fig. 3   Convolution block. The
C denotes channel number. a
Is regular form of Depthwise
Separable Convolution. b Is
expansion form which added a
PConv layer before DWConv
layer

Fig. 4   Residual structure of a building block. A basic CNN layer
consists of standard convolution layer of 3 × 3 kernel size, Batch Nor-
malization (BN) (Ioffe and Szegedy 2015), and rectified linear units
(Relu) (Glorot et al. 2011) function

Fig. 5   EdgeCRNN Block. a Is the basic block with the output operate
by “Add”; b Is the downsampling module with the output operate by
“Concat”

1530	 Y. Wei et al.

1 3

recurrent unit (GRU) (Cho et al. 2014) of variant RNN were
created as the solution to this problem. They have internal
mechanisms called memory cells that can store the flow of
information. BiLSTM can obtain time series features well
and achieve the accuracy of 96.6% (Zeng and Xiao 2019).
Hence, we use LSTM on EdgeCRNN model.

3.2.4 � EdgeCRNN Block

We design the EdgeCRNN Block based on depthwise sepa-
rable convolution and residual structure, which is similar to
the paper (Ma et al. 2018). As discussed above, EdgeCRNN
Block uses the expansion layer (Fig. 3b) to increase channel
number, and it includes Base-Block and EdgeCRNN-Block
(Fig. 5). EdgeCRNN Block consists of two PConv layers and
one DWConv layer, and it selects the ReLU non-linearity
and uses BN to normalize input data. Assuming that x is
input data, the input data of the two branches is the same as
x in EdgeCRNN-Block, and the x is divided into two halves
as the input of the two branches in Base-Block. EdgeCRNN-
Block is used for downsampling to halve the input signal
size by setting Stride = 2 on the DWConv layer, and then
it uses the Concat operation to double the number of chan-
nels. The Concat denotes combining multiple data sources
together. Base-Block is the basic block and adding features
by Add operation, the input signal size and channels remain
unchanged with setting Stride = 1. EdgeCRNN-Block is on
the first unit of each Stage (see more detail in Sect. 3.3), and
Base-Block follows it.

3.3 � The architecture of EdgeCRNN

The EdgeCRNN architecture is a hybrid model of CNN
and RNN, where CNN is mainly composed of a stack of
EdgeCRNN Block and RNN selects the LSTM model
which consists of one hidden layer with 64 nodes.
Besides, CNN is divided into one first convolution layer
feature enhancement layer called Conv1, three Stage, and
one standard convolution layer named Conv5. Conv1
and Conv5 contain the variant Pool operator which is
a sample-based discretization process with the goal of
downsampling the input representation (Sun et al. 2016).
Conv1 is MaxPool and Conv5 uses GlobalPool. The Fig. 6

Table 2   EdgeCRNN
architecture

Stage* is EdgeCRNN Block, K and S are the size and stride of the convolutions kernel, R represents the
number of module and padding = 1

Layer Output K S R Output channels

0.5× 1.0× 1.5× 2.0×

Audio 39 × 101 – – – 1
Conv1 39 × 101 3 × 3 1 1 16 24 24 24
MaxPool 20 × 51 3 × 3 2
Stage2 10 × 26 3 × 3 2 1 32 72 116 160

10 × 26 3 × 3 1 1
Stage3 5 × 13 3 × 3 2 1 64 144 232 320

5 × 13 3 × 3 1 2
Stage4 3 × 7 3 × 3 2 1 128 288 464 640

3 × 7 3 × 3 1 1
Conv5 3 × 7 1 × 1 1 1 256 512 1024 1024
GlobalPool 1 × 7 3 × 1 1
RNN – – – – 64
FC – – – – 12
MFLOPs 4.10 14.54 34.89 57.65
MWeights 0.15 0.59 1.15 1.68

Fig. 6   EdgeCRNN 1.0× model. Where 20 × 51 denotes output map
size, 24 represents channel number

1531EdgeCRNN: an edge‑computing oriented model of acoustic feature enhancement for keyword…

1 3

illustrates that each Stage are two units in EdgeCRNN. The
first unit consists of a downsampling block EdgeCRNN-
Block with a convolution kernel stride of 2. The second
unit consists of the Base-Block module, which is located
behind the EdgeCRNN-Block and its number is deter-
mined by R in Table 2.

CNN and LSTM cell are used to extract frequency and
time domain features on spectrogram respectively, and
fully connected layers (FC) is used for posterior probabil-
ity classification. The EdgeCRNN uses Width Multiplier
� similar to (Howard et al. 2017). The role of the � is to
thin a network uniformly at each layer. For example, the
0.5× denotes � = 0.5 and the number of output channels N
becomes 0.5 × N in Table 2.

4 � Experiments on EdgeCRNN

In this section, we introduce the datasets, experiment steps,
and how to train the model. We then investigate the effects
of feature enhancement and EdgeCRNN Block and com-
pare results to the full convolution model. Finally, we com-
pare performances between EdgeCRNN and popular KWS
models.

4.1 � Experimental step on EdgeCRNN

We evaluate our model by using Google Speech Commands
Dataset (Warden 2018), which consists of 65,000 1-s utter-
ances of 30 words by thousands of different people. The
sampling frequency is 16KHz. Our task is to discrimi-
nate among 12 classes “yes”, “no”, “up”, “down”, “left”,
“right”, “on”, “off”, “stop”, “go”, unknown, and silence.
The unknown class is used to simulate the model to learn
the difference between keywords and non-keywords. The
silence class represents low loudness audio. Under the SNR
of random sampling between [ −5 db, + 10 dB], we manu-
ally add car noise and cafeteria to the dataset. It can improve
the performance of the KWS system in practice, which gets
closer to the background of continuous noise. The dataset is
then randomly split into training, validation, and test set in
the ratio of 80:10:10. EdgeCRNN is trained in the training
and validation set, and the experimental results are obtained
from the test set.

We use the Tpool2 (Tang et al. 2018) as the baseline
model, which consists of two convolutional layers followed
by two linear layers and one DNN layer. In our experiment,
the input features are 39 dimensions LFBE-Delta. The
EdgeCRNN uses the Relu activation function, the Adam
optimizer, and Cross Entropy (CE) loss function on each
of the convolution layers. In Equation 3, the learning rate is
decayed every 50 rounds. The initial learning rate LR_init

is 1E−3, the end learning rate LR_end equals 1E−4, total
epochs total_epoch are 500, current_epoch denotes the cur-
rent epoch, and batch sets 128.

4.2 � Model training on EdgeCRNN

Accuracy, FLOPs, and model parameters are our primary
metric of quality, which are measured as the fraction of cor-
rect classification decisions. We also plot receiver operating
characteristic (ROC) curves, where the x and y axes denote
FAR and false reject rate (FRR), respectively. Curves for
each of the keywords are computed and then averaged verti-
cally to produce the overall ROC. The lower the curve, the
better the model performance.

4.2.1 � Training based on feature enhancement

We compare the model performances that adopt feature
enhancement and non-use. The accuracy of EdgeCRNN-
Mel is 3% higher than EdgeCRNN-M for LFBE-Delta con-
taining three features in Table 3. Meanwhile, EdgeCRNN-
Mel-F and EdgeCRNN-M-F also have a similar relationship
in accuracy. The Fig. 7b illustrates the EdgeCRNN-Mel-F
gives a 69.5% relative improvement over the EdgeCRNN-M-
F at the operating point of 0.1 FAR. Compared with one fea-
ture, input features including three feature types can improve
the accuracy of the model.

The first convolution layer feature enhancement can
repeatedly extract features and improve accuracy. The Edge-
CRNN-Mel-F is 0.8% higher than EdgeCRNN-Mel. How-
ever, FLOPs of the EdgeCRNN-Mel-F is almost 10M more
than that of EdgeCRNN-Mel. We have find that it is most
appropriate to reuse it only once. So EdgeCRNN uses the
first convolution layer feature enhancement only once. The

(3)LR = LR_init −
current_epoch

total_epoch
× (LR_init − LR_end)

Table 3   Accuracy of features enhancement

Where M and Mel denote MFCC as feature extraction and LFBE-
Delta, respectively. F represents first convolution layer feature
enhancement, the � defaults to 1.0×

Model FLOPs Parameter Accuracy (%)

EdgeCRNN-M 4.60M 0.59M 94.15
EdgeCRNN-M-F 14.54M 0.59M 94.97
EdgeCRNN-Mel 4.60M 0.59M 97.05
EdgeCRNN-Mel-F 14.54M 0.59M 97.89

1532	 Y. Wei et al.

1 3

FRR of EdgeCRNN-Mel-F has a 34.2% relative improve-
ment over the EdgeCRNN-Mel at the operating point of 0.1
FAR from Fig. 7a, which depicts that EdgeCRNN extracts
feature more robust by feature enhancement.

4.2.2 � Training based on RNN

In addition to standard RNN, RNN also has variant models
LSTM and GRU. We test the performance of EdgeCRNN
combined with the variant RNN model. Due to the differ-
ent internal mechanism of the variant RNNs, the param-
eter calculation method is different, which is why the

Parameter values are different in Table 4. CSANN LAB
(Dey and Salemt 2017) proposed the calculate method of
parameter, the methods of RNN, LSTM, GRU are Eqs. 4–6,
respectively.

where n and m denote the output dimension and input. The
Equation shows that the standard RNN has the least number

(4)PRNN = n2 + nm + n

(5)PLSTM = 4 × (n2 + nm + n)

(6)PGRU = 3 × (n2 + nm + n)

Fig. 7   ROC curves for feature
enhancement

Table 4   Table caption

RNN model FLOPs Parameter Accuracy (%)

RNN 14.54M 0.38M 97.77
GRU​ 14.54M 0.53M 97.78
LSTM 14.54M 0.59M 97.89

Fig. 8   ROC curves for others
model

(a) ROC curves of full convolution model. (b) ROC curves of lightweight model.

Table 5   EdgeCRNN block vs full convolution

Model FLOPs Parameter Accuracy (%)

Conv EdgeCRNN 1.0× 104.19M 2.28M 96.96
EdgeCRNN 1.0× 14.54M 0.59M 97.89

1533EdgeCRNN: an edge‑computing oriented model of acoustic feature enhancement for keyword…

1 3

of model parameters and the LSTM has the largest. LSTM
is 4 times that of RNN, and GRU is 3 times that of RNN.

The FLOPs of RNN are more complicated, so the FLOPs
of RNN only roughly calculated in our work. The feature
extraction uses LFBE-Delta and � is 1.0 multiple. The
Table 4 shows that LSTM has the most parameters and the
highest accuracy for its three gates, RNN has the fewest
parameters. So we choose the LSTM as the RNN of Edge-
CRNN in this paper.

4.3 � Result on EdgeCRNN

First, we test the performance of the EdgeCRNN with the
EdgeCRNN Block and compare it with the fully convolu-
tional model. Table 5 illustrates that compared with the full
convolution model, the FLOPs based on the EdgeCRNN
Block is reduced by 6.2 times and the model parameters are
2.9 times few. Meanwhile, the accuracy rate is improved by
0.93%. Even with fewer FLOPs and parameters, the perfor-
mance of EdgeCRNN 1.0× is better than Conv EdgeCRNN
1.0× . For example, Fig. 8a shows that the improvement of
over 47% relative compared to the Conv EdgeCRNN 1.0×
at the operating point of 0.01 FAR, where the Conv Edge-
CRNN 1.0× represents full convolutions model. This dem-
onstrates that the EdgeCRNN model is lighter than the full
convolution model while maintaining better performance.

To further detect which keyword recognizes good or bad,
we delve into the confusion matrix of 12 classes (see more
12 classes detail in Session 4.1) on Google Speech Com-
mands Dataset. Most misclassified situations are caused
by real commands predicted as an unknown class. The
diagonal is the accuracy of each keyword on the confusion
matrix, Fig. 9 illustrates that most of keywords accuracy

exceeds 96%. Due to the increased noise, the silence class
is ignored. Due to the similar pronunciation of keywords,
there are many misidentified classification, such as unknown
and “go”, unknown and “no”. Besides, on the basis of 12
keyword tasks, we test the performance of EdgeCRNN 1.0×
in 22 keyword tasks (added new keywords “dog”, “zero”,
“one”, “bed”, “two”, “three”, “four”, “five”, “bird”, “six”).
Table 6 shows that model parameters added about 0.1M,
while accuracy reaches 95.77% and is still competitive. It
means that EdgeCRNN is efficient at the KWS task.

Table 7 compares accuracy between previous lightweight
KWS models (Tang et al. 2018; Sun et al. 2016; Arik et al.
2017; Zeng and Xiao 2019; Zhang et al. 2017) and Edge-
CRNN, these models are trained on the Google Speech
Commands Dataset (Warden 2018) (except CRNN (Arik
et al. 2017), which uses a private TalkType dataset, and
the data of LSTM from literature (Zhang et al. 2017). The
parameter of EdgeCRNN 1.0× is not the smallest, while it
is relatively lightweight and less than 0.6 M. Besides, the
accuracy of EdgeCRNN is higher than other KWS models
from Table 7, which reaches 97.89% with limited computa-
tional cost (only 14.54M). This indicates that EdgeCRNN
can almost achieve the state of art accuracy in KWS task and
is a lightweight model.

We evaluate the performance of EdgeCRNN on edge
computing device, which is depicted in Table 8. EdgeCRNN
0.5× can read 11.1 audio data per second on the Raspberry
Pi 3B+, which is much faster than Tpool2 that is 5/s . It
demonstrates that EdgeCRNN reduces latency and compu-
tational costs with an accuracy of 97.09%. From the key-
word audio length of 1 second on Google Speech Commands
Dataset, we know the speed of human speech is nearly one
keyword per second. It means that EdgeCRNN processing

Fig. 9   Confusion Matrix of EdgeCRNN 1.0×

Table 6   Performance based on 22 keyword tasks

Model keyword MFLOPs Parameter Accuracy (%)

EdgeCRNN 1.0× 12 14.54M 0.59M 97.89
EdgeCRNN 1.0× 22 14.54M 0.60M 95.77

Table 7   Accuracy of the related KWS models

Model FLOPs Parameter Accuracy (%)

Tpool2 (Tang et al. 2018) 103M 1.09M 91.97
LSTM (Sun et al. 2016) 48.4M 0.26M 94.81
CRNN (Arik et al. 2017) 19.3M 0.22M 97.71
DenseNet-BiLSTM (Zeng

and Xiao 2019)
– 0.24M 97.50

DS-CNN (Zhang et al. 2017) 56.9M 0.47M 95.38
EdgeCRNN 1.0× 14.54M 0.59M 97.89

1534	 Y. Wei et al.

1 3

speed can keep up with the speed of human speech in a
resource-limited environment.

To verify that EdgeCRNN is suitable for KWS, we com-
pare the performance of ShuffleNetV2 (Ma et al. 2018) and
MobileNetV2 (Sandler et al. 2018), which are the light-
weight model in the field of computer vision. The experi-
ment finds that the speed of EdgeCRNN 0.5x is 12.2 times
and 74 times faster than them, and FLOPs is less than 1

5

and 1
9
 on Raspberry Pi 3B+ from Table 8. ShuffleNetV2-M

denotes input feature uses MFCC in Table 8, other mod-
els use LFBE-Delta. The accuracy rate of ShufflenetV2 is
96.91%, higher than ShuffleNetV2-M’s 93.28%. This also
proves that the LFBE-Delta feature can enhance features and
improve accuracy on other models.

Table 9 compares the effects of different Width Multi-
plier models, which have four multiples 0.5× , 1.0× , 1.5× ,
2.0× from Table 2. The 2.0× model has the highest accuracy
98.05%, and the 0.5x model processes 11.1 audio per second
which is the fastest speed on Raspberry Pi 3B +. In practi-
cal applications, we should consider the trade-off between
FLOPs and accuracy to choose the most appropriate mul-
tiplier model.

5 � Conclusion

In the paper, we designed a new EdgeCRNN model for
edge computing devices applied to KWS. We demonstrated
how to improve EdgeCRNN’s performance by using fea-
ture enhanced methods with repeatedly extracting features
and extracting three types of features. The result shows that
EdgeCRNN can process 11.1 audio per second on Rasp-
berry Pi 3B+, and its accuracy rate reaches 98.05%. How-
ever, FLOPs are still relatively large on variant EdgeCRNN
1.0× , and there is still room for improvement in accuracy.
Moreover, the model test platform is only on ARM CPU.
In the future, we will continue to reduce the computational
costs, improve the accuracy, and apply the KWS system to
different environments.

References

Abdel-Hamid O, Ar Mohamed, Jiang H, Deng L, Penn G, Yu D (2014)
Convolutional neural networks for speech recognition. IEEE/ACM
Trans Audio Speech Lang Process 22(10):1533–1545

Anderson A, Su J, Dahyot R, Gregg D (2020) Performance-oriented
neural architecture search. arXiv preprint arXiv:​20010​2976

Arik SO, Kliegl M, Child R, Hestness J, Gibiansky A, Fougner C,
Prenger R, Coates A (2017) Convolutional recurrent neural
networks for small-footprint keyword spotting. arXiv preprint
arXiv:​17030​5390

Benelli G, Meoni G, Fanucci L (2018) A low power keyword spot-
ting algorithm for memory constrained embedded systems. In:
2018 IFIP/IEEE international conference on very large scale
integration (VLSI-SoC). IEEE, pp 267–272

Chen G, Parada C, Heigold G (2014) Small-footprint keyword
spotting using deep neural networks. In: 2014 IEEE interna-
tional conference on acoustics. speech and signal processing
(ICASSP). IEEE, pp 4087–4091

Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F,
Schwenk H, Bengio Y (2014) Learning phrase representations
using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:​14061​078

Coucke A, Chlieh M, Gisselbrecht T, Leroy D, Poumeyrol M, Lavril
T (2019) Efficient keyword spotting using dilated convolutions
and gating. In: ICASSP 2019–2019 IEEE international con-
ference on acoustics. speech and signal processing (ICASSP).
IEEE, pp 6351–6355

Table 8   Performances of
related KWS model on different
platforms in terms of accuracy
and speed

The CPU denotes the test speed on a platform with a CPU of 3.6 GHz Intel(R) Core(TM) I3-8100 Proces-
sor Base Frequency. The ARM is the Raspberry Pi 3B+ of 1.2 GHz Processor Base Frequency and 1 GB
memory

Model MFLOPs Accuracy (%) CPU/s ARM/s

Tpool2 (Tang et al. 2018) 103 91.97 27.6 5.0
ShuffleNetV2-M (Ma et al. 2018) 22.11 93.28 11.6 0.91
ShuffleNetV2 (Ma et al. 2018) 22.11 96.91 11.6 0.91
MobilNetV2 (Sandler et al. 2018) 36.69 96.80 3.6 0.15
EdgeCRNN 0.5× 4.10 97.09 49.9 11.1

Table 9   Performances of different Width Multiplier

Model MFLOPs Parameters Accuracy
(%)

CPU/s ARM/s

EdgeCRNN
0.5×

4.10 0.29M 97.09 49.9 11.1

EdgeCRNN
1.0×

14.54 0.59M 97.89 25.6 5.0

EdgeCRNN
1.5×

34.89 1.29M 97.92 17.3 3.1

EdgeCRNN
2.0×

57.65 1.72M 98.05 13.5 2.3

http://arxiv.org/abs/200102976
http://arxiv.org/abs/170305390
http://arxiv.org/abs/14061078

1535EdgeCRNN: an edge‑computing oriented model of acoustic feature enhancement for keyword…

1 3

Custers B, Sears AM, Dechesne F, Georgieva I, Tani T, van der Hof
S (2019) EU personal data protection in policy and practice.
Springer, Berlin

Dey R, Salemt FM (2017) Gate-variants of gated recurrent unit
(GRU) neural networks. In: 2017 IEEE 60th international mid-
west symposium on circuits and systems (MWSCAS). IEEE,
pp 1597–1600

Dinelli G, Meoni G, Rapuano E, Benelli G, Fanucci L (2019) An
FPGA-based hardware accelerator for CNNS using on-chip
memories only: design and benchmarking with intel movidius
neural compute stick. Int J Reconfigurable Comput 2019:7218758

Du H, Li R, Kim D, Hirota K, Dai Y (2018) Low-latency convolutional
recurrent neural network for keyword spotting. In: 2018 Joint 10th
international conference on soft computing and intelligent systems
(SCIS) and 19th International Symposium on Advanced Intel-
ligent Systems (ISIS). IEEE, pp 802–807

Gaff BM, Sussman HE, Geetter J (2014) Privacy and big data. Com-
puter 47(6):7–9

Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural net-
works. In: Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pp 315–323

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image
recognition. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp 770–778

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural
Comput 9(8):1735–1780

Howard A, Sandler M, Chu G, Chen LC, Chen B, Tan M, Wang W, Zhu
Y, Pang R, Vasudevan V et al (2019) Searching for mobilenetv3.
In: Proceedings of the IEEE international conference on computer
vision, pp 1314–1324

Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T,
Andreetto M, Adam H (2017) Mobilenets: efficient convolutional
neural networks for mobile vision applications. arXiv preprint
arXiv:​17040​4861

Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep net-
work training by reducing internal covariate shift. arXiv preprint
arXiv:​15020​3167

Luo R, Sun T, Wang C, Du M, Tang Z, Zhou K, Gong X, Yang X
(2019) Multi-layer attention mechanism for speech keyword rec-
ognition. arXiv preprint arXiv:​19070​4536

Ma N, Zhang X, Zheng HT, Sun J (2018) Shufflenet v2: practical guide-
lines for efficient CNN architecture design. In: Proceedings of the
European conference on computer vision (ECCV), pp 116–131

Mazzawi H, Gonzalvo X, Kracun A, Sridhar P, Subrahmanya N,
Moreno IL, Park HJ, Violette P (2019) Improving keyword spot-
ting and language identification via neural architecture search at
scale. In: Proc Interspeech, vol 2019, pp 1278–1282

McFee B, Raffel C, Liang D, Ellis DP, McVicar M, Battenberg E, Nieto
O (2015) Librosa: audio and music signal analysis in python. In:
Proceedings of the 14th python in science conference, vol 8

Mishchenko Y, Goren Y, Sun M, Beauchene C, Matsoukas S, Ryba-
kov O, Vitaladevuni SNP (2019) Low-bit quantization and quan-
tization-aware training for small-footprint keyword spotting. In:
2019 18th IEEE international conference on machine learning and
applications (ICMLA). IEEE, pp 706–711

Nakkiran P, Alvarez R, Prabhavalkar R and Parada C (2015) Compress-
ing deep neural networks using a rank-constrained topology, In:
Proceedings of annual conference of the international speech com-
munication association (Interspeech). pp 1473–1477

Sainath TN, Parada C (2015) Convolutional neural networks for
small-footprint keyword spotting. In: Proceeding of the Sixteenth
Annual Conference of the International Speech Communication
Association (Interspeech). pp 1478–1482

Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC (2018) Mobile-
netv2: Inverted residuals and linear bottlenecks. In: Proceedings
of the IEEE conference on computer vision and pattern recogni-
tion, pp 4510–4520

Sifre L, Mallat S (2014) Rigid-motion scattering for image classifica-
tion. Ph.D. Thesis

Silaghi MC (2005) Spotting subsequences matching an hmm using
the average observation probability criteria with application to
keyword spotting. In: AAAI, pp 1118–1123

Silaghi MC, Bourlard H (1999) Iterative posterior-based keyword spot-
ting without filler models. In: Proceedings of the IEEE automatic
speech recognition and understanding workshop. Citeseer, pp
213–216

Sun M, Raju A, Tucker G, Panchapagesan S, Fu G, Mandal A, Mat-
soukas S, Strom N, Vitaladevuni S (2016) Max-pooling loss
training of long short-term memory networks for small-footprint
keyword spotting. In: 2016 IEEE spoken language technology
workshop (SLT). IEEE, pp 474–480

Sun M, Snyder D, Gao Y, Nagaraja VK, Rodehorst M, Panchapagesan
S, Strom N, Matsoukas S, Vitaladevuni S (2017) Compressed
time delay neural network for small-footprint keyword spotting.
In: INTERSPEECH, pp 3607–3611

Tan M, Chen B, Pang R, Vasudevan V, Sandler M, Howard A, Le QV
(2018) Resource-efficient neural architect. arXiv preprint arXiv:​
18060​7912

Tang R, Lin J (2018) Deep residual learning for small-footprint key-
word spotting. 2018 IEEE International Conference on Acoustics.
Speech and Signal Processing (ICASSP). IEEE, pp 5484–5488

Tang R, Wang W, Tu Z, Lin J (2018) An experimental analysis of the
power consumption of convolutional neural networks for keyword
spotting. In: 2018 IEEE international conference on acoustics.
speech and signal processing (ICASSP). IEEE, pp 5479–5483

Tucker G, Wu M, Sun M, Panchapagesan S, Fu G, Vitaladevuni S
(2016) Model compression applied to small-footprint keyword
spotting. In: INTERSPEECH, pp 1878–1882

Véniat T, Schwander O, Denoyer L (2019) Stochastic adaptive neural
architecture search for keyword spotting. In: ICASSP 2019–2019
IEEE international conference on acoustics. speech and signal
processing (ICASSP). IEEE, pp 2842–2846

Warden P (2018) Speech commands: A dataset for limited-vocabulary
speech recognition. arXiv preprint arXiv:​18040​3209

Wilpon J, Miller L, Modi P (1991) Improvements and applications for
key word recognition using hidden markov modeling techniques.
In: 1991 international conference on acoustics, speech, and signal
processing. IEEE, pp 309–312

Zeng M, Xiao N (2019) Effective combination of DenseNet and BiL-
STM for keyword spotting. IEEE Access 7:10767–10775

Zhang B, Li W, Li Q, Zhuang W, Chu X, Wang Y (2020) Autokws:
keyword spotting with differentiable architecture search. arXiv
preprint arXiv:​20090​3658

Zhang X, Zhou X, Lin M, Sun J (2018) Shufflenet: An extremely effi-
cient convolutional neural network for mobile devices. In: Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition, pp 6848–6856

Zhang Y, Suda N, Lai L, Chandra V (2017) Hello edge: keyword spot-
ting on microcontrollers. arXiv preprint arXiv:​17110​7128

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/170404861
http://arxiv.org/abs/150203167
http://arxiv.org/abs/190704536
http://arxiv.org/abs/180607912
http://arxiv.org/abs/180607912
http://arxiv.org/abs/180403209
http://arxiv.org/abs/200903658
http://arxiv.org/abs/171107128

	EdgeCRNN: an edge-computing oriented model of acoustic feature enhancement for keyword spotting
	Abstract
	1 Introduction
	2 Related work
	3 EdgeCRNN
	3.1 Feature enhancement
	3.1.1 Input feature enhancement
	3.1.2 First convolution layer feature enhancement

	3.2 The building blocks of EdgeCRNN
	3.2.1 Depthwise separable convolution
	3.2.2 Residual structure
	3.2.3 RNN
	3.2.4 EdgeCRNN Block

	3.3 The architecture of EdgeCRNN

	4 Experiments on EdgeCRNN
	4.1 Experimental step on EdgeCRNN
	4.2 Model training on EdgeCRNN
	4.2.1 Training based on feature enhancement
	4.2.2 Training based on RNN

	4.3 Result on EdgeCRNN

	5 Conclusion
	References

