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Abstract
Keyword Spotting (KWS) is a significant branch of Automatic Speech Recognition (ASR) and has been widely used in 
edge computing devices. The goal of KWS is to provide high accuracy with a low False Alarm Rate (FAR), while reducing 
the costs of memory, computation, and latency. However, limited resources are challenging for KWS applications on edge 
computing devices. Lightweight models and structures for deep learning have achieved good results in the KWS branch 
while maintaining efficient performances. In this paper, we present a new Convolutional Recurrent Neural Network (CRNN) 
architecture named EdgeCRNN for edge computing devices. EdgeCRNN, which is based on depthwise separable convolution 
and residual structure, uses a feature enhanced method. On the Google Speech Commands Dataset, the experimental results 
depict that EdgeCRNN can test 11.1 audio data per second on Raspberry Pi 3B+, which is 2.2 times than that of Tpool2. 
Compared with Tpool2, the accuracy of EdgeCRNN reaches 98.05% whilst its performance is also competitive.

Keywords  Edge computing · Keyword spotting · Convolutional recurrent neural network · Feature enhancement · 
Lightweight structure

1  Introduction

Keyword Spotting (KWS) is a branch of Automatic Speech 
Recognition and focuses on detecting predefined keywords 
from a continuous audio stream. The wake-up words are the 
critical applications of KWS on edge computing devices, 
such as Apple’s “Hey Siri” and Google’s “OK Google”. The 
device is awakened to execute the appropriate command if 
the KWS system detects a predefined keyword in a dialogue.

Traditional methods of KWS usually use the Keyword/
Filler Hidden Markov Model (HMM) (Wilpon et al. 1991; 
Silaghi and Bourlard 1999; Silaghi 2005). However, depend-
ing on an HMM topology, these systems require Viterbi 
decoding, which is computationally expensive. These 
approaches are not suitable for edge computing with limited 
resources. In KWS branch, Deep Neural Networks (DNN) 
has been shown to produce an efficient and reliable solution. 
DNN (Chen et al. 2014) was the first deep learning model 
applied to KWS. Its model parameters are 224M, which is 
smaller than the 373M of GMM-HMM model, and its per-
formance also is better than HMM model. However, these 
model parameters and computation costs are still relatively 
expensive and not suitable for edge computing devices.
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In addition, the KWS system uses a server-client pattern, 
where the client collects and uploads data on the terminal 
and the cloud server processes it (Fig. 1a). When the cli-
ent receives the result returned by the cloud server, it will 
execute related commands and operations. With the rapid 
growth of data, pressures of computing and storage at the 
server will increase exponentially. Eventually, the user expe-
rience will become very bad. Moreover, there is a problem 
of user privacy leakage, which may lead to violations of law 
(Gaff et al. 2014; Custers et al. 2019). Consequently, we 
adopt a new pattern that the client collects and processes 
data on terminal as show in Fig. 1b. The client does not 
need to upload data to the cloud server. This pattern not 
only diminishes the burden of cloud servers and network 
bandwidth, and protects user privacy, but also provides posi-
tioning and high-quality services.

However, the high requirements of model on hardware 
and limited resources pose a challenge to the application of 
this pattern in edge computing devices. The hardware accel-
eration and designing lightweight models have been used to 
solve this problem. Hardware acceleration provides powerful 
computational power by adding hardware. In (Benelli et al. 
2018), Benelli et al. used a Neural Compute Stick (NCS) 
to increase the speed, which reduced the model latency by 
50%. Dinelli et al. (2019) proposed a Convolutional Neu-
ral Network (CNN) based on a field-programmable gate 
array (FPGA), which is nearly 10 times faster than NCS. 
However, these methods based on NCS or FPGA are costly, 
which are not used in edge computing devices. The method 
of designing lightweight models can reduce calculation 
costs and model parameters by designing or automatically 
selecting lightweight algorithms, structure, or model cal-
culation methods. So we choose the approach of designing 
lightweight model. In other words, the lightweight model 
can solve the problem of insufficient resources and is an 
edge-computing oriented model.

Various lightweight architectures for deep learning have 
been successfully applied to KWS problems, such as Tpool2 
(Tang et al. 2018) and CNN (Sainath and Parada 2015). 

Compared with DNN (Chen et al. 2014), CNN (Sainath and 
Parada 2015) offers between a 27 and 44% relative improve-
ment in false alarm rate (FAR) with a limited number of 
multiplications and parameters. However, CNN ignores the 
global time and spectral correlation owing to the size of 
the convolution kernel. Recurrent Neural Network (RNN) 
can leverage a longer temporal context, which makes up for 
this question of CNN. Recently, RNN (Sun et al. 2016) and 
convolutional recurrent neural network (CRNN) (Arik et al. 
2017; Du et al. 2018; Zeng and Xiao 2019) are used in KWS. 
CRNN is a hybrid of CNN and RNN. In CRNN, convolution 
layer extracts local temporal/spatial correlation and recurrent 
layer extracts global temporal features dependency in time 
sequence. The accuracy rate reaches 97.71% in the Talk-
Type dataset (Arik et al. 2017). However, the CNN model in 
CRNN (Arik et al. 2017) did not use a lightweight structure.

In this paper, we design a new CRNN model called Edge-
CRNN. Its CNN adopts EdgeCRNN Block based on depth-
wise separable convolution and residual structure. Besides, 
we propose feature enhancement in EdgeCRNN, which 
uses the LFBE-Delta feature instead of the Mel-Frequency 
Cepstrum Coefficient (MFCC) as input features. The LFBE-
Delta consists of three features. EdgeCRNN can recognize 
12 classes keywords by training on the Google Speech 
Commands Dataset (Warden 2018). The experiment results 
show that EdgeCRNN not only reduces model parameters 
and Floating-point Operations Per Second (FLOPs), but also 
decreases latency. The test cases can run normally and test 
11.1 audio data per second on edge computing device Rasp-
berry Pi 3B+ without stuttering. Besides, accuracy rate has 
also improved and reaches 98.05%.

This paper is organized as follows. Section 2 introduces 
the related work of the lightweight KWS model. We describe 
our approach and EdgeCRNN architecture in Sect. 3. In 
Sect. 4, we explain the experiment steps and results. Sec-
tion 5 gives a conclusion.

Fig. 1   KWS system deployment 
pattern

(a) (b)
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2 � Related work

There are three main methods for designing lightweight 
KWS models: (1) model compression, (2) automatic neural 
network architecture design based on Neural Architecture 
Search (NAS), (3) artificial design of lightweight neural 
network.

The model compression is to further diminish the 
size of the model by removing redundant layers, quan-
tizing high-precision weight parameters, and decompos-
ing complex operations. According to the redundancy of 
neural networks in different aspects, it can be divided into 
quantizing weight, low rank decomposition, and knowl-
edge distillation (Nakkiran et al. 2015; Mishchenko et al. 
2019). In (Tucker et al. 2016), George et al. used low-
rank weight matrice and knowledge distillation through-
out DNN, which obtained a 23.9% relative reduction in 
frame error rate. TDNN (Sun et al. 2017) used singular 
value decomposition (SVD) to lower model complexity 
and obtained a 37.6% reduction in area under the curve 
(AUC) compared to the DNN (Chen et al. 2014).

The Neural Architecture Search can automatically 
design high-performance neural networks, which are 
gradually applied in the fields of computer vision (How-
ard et al. 2019) and speech recognition (Tan et al. 2018). 
It consists of search space, search strategy, and perfor-
mance evaluation strategy. Based on the search strategy, 
NAS automatically designs a model suitable for specific 
applications in a predefined search space (Mazzawi et al. 
2019; Anderson et al. 2020). SANAS is able to adapt the 
architecture of the neural network on-the-fly at inference 
time based on the difficulty of the task with a high rec-
ognition level (Véniat et al. 2019). AUTOKWS adopts 
differentiable neural structure search to find more effec-
tive networks and it attains 97.2% top-1 accuracy (Zhang 
et al. 2020).

The artificially designed lightweight neural network 
mainly reduces the amount of calculation by optimizing 
the calculation method of convolution and designing more 
efficient convolution operation. The lightweight struc-
ture mainly includes deep residual structure (He et al. 
2016), depthwise separable convolution (Sifre and Mal-
lat 2014), dilated convolution (Coucke et al. 2019) and 
attention mechanism (Luo et al. 2019). DS-CNN (Zhang 
et al. 2017) is a lightweight model based on depthwise 
separable convolution, its accuracy rate reaches 95.4% 
with limited memory and computational capability. With 
maintaining performance, CNNs combine residual learn-
ing and dilated convolution (Coucke et al. 2019; Tang and 
Lin 2018). These models can effectively extract speech 
features repeatedly and reduce the computational cost 

of the model. The accuracy rate reaches 95.8% on paper 
(Tang and Lin 2018).

Both model compression and automatic design meth-
ods consume resources and time costly. The artificial 
design of lightweight neural network requires designers 
to have professional knowledge, but it consumes fewer 
resources and is mature in technology. Therefore, we use 
the artificial design neural network method to design a 
lightweight KWS model for edge computing devices.

3 � EdgeCRNN

In this section, first we propose two feature enhanced 
approaches. And then the architecture of EdgeCRNN is 
designed based on EdgeCRNN Block.

3.1 � Feature enhancement

In order to extract acoustic features more efficiently, we 
propose two enhanced methods Input Feature Enhancement 
and First Convolution Layer Feature Enhancement. Table 3 
depicts that the accuracy is increased by 3% after adding 
feature enhancement.

3.1.1 � Input feature enhancement

The traditional method MFCC only extracts the envelope 
information on spectrum and it loses sound details. MFCC is 
suitable for voice data longer than 2 s, because the data con-
tains enough envelope features. In the KWS task, the overall 
features of speech commands with an average length of 1–2s 
are few. If only the envelope features in the frequency spec-
trum are extracted, it is not conducive to the inference of the 
neural network. We find that the Log-Mel filterbank ener-
gies (LFBE) contains more features, such as low-frequency 
and spectral details. Many proposals had adopted LFBE as 
feature extracted method (Sainath and Parada 2015; Coucke 
et al. 2019). Besides, the first derivative (Delta) and second 
derivative (Delta-Delta) features on the time axis of MFCC 
can better represent correlation among frames.

The deep learning model has powerful learning and pres-
entation capabilities and it can extract more robust features 
from input features (Abdel-Hamid et al. 2014). We propose a 
new feature extraction method LFBE-Delta as input feature. 
LFBE-Delta is 39 dimensions and computed every 30 ms 
with a 10 ms frame shift by LibROSA package (McFee et al. 
2015). It contains three features LFBE, Delta, and Delta-
Delta. The dimension of each feature is 13. Compared with 
MFCC, it contains more types of features as illustrates on 
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Fig. 2, which is helpful for the model to extract more useful 
features and improve accuracy.

3.1.2 � First convolution layer feature enhancement

The convolution kernel enhances features by multiply-
ing input signals with sliding, then it outputs a small-size 
map feature. The convolution operation parameters include 
stride, kernel size, and padding, as described in Table 1. 
By setting stride = 1, the size of the output map remains 
the same. Therefore, repeating multiple convolution opera-
tion is equivalent to adding features. Compared to large-
size input feature, small-size inputs could relatively save 
computational costs.

Compared with the input data dimensions of 
3 × 224 × 224 in the computer vision (Zhang et al. 2018; 
Howard et al. 2017), the acoustic feature of 39 dimen-
sions LFBE-Delta is too small to effectively extract valid 
features. In the convolution layer, maintaining the output 
map size unchanged by setting stride could extract more 
efficient features. So we maintain the output map size by 
setting stride = 1 to achieve feature enhancement. the con-
volutional operation calculates equation as follows:

where t and f represent the input feature dimension in time 
and frequency domain, respectively. The m × n , p, and s are 
kernel size, padding, and stride of the convolution operation. 
The Conv2D output features map is d

2
 dimension(s) with set-

ting stride = 2, while the Conv2D_enhance is d dimension(s) 
for stride = 1. This means that the input feature has been 
enhanced. As the stride decreases, model calculation will 
increase by a corresponding multiple. In the experiment, we 
find that this method only once is the best balance between 
computational costs and improving performance.

3.2 � The building blocks of EdgeCRNN

In this section, we first describe the core approaches (i.e., 
depthwise separable convolution and residual structure), 
on which EdgeCRNN Block is built. We then introduce the 
EdgeCRNN Block and RNN.

3.2.1 � Depthwise separable convolution

The idea of depthwise separable convolution is based on 
that depth and spatial dimension of a filter can be separated. 
Hence, it splits a kernel into two separate parts, Depth-
wise Convolution (DWConv) and Pointwise Convolution 
(PConv). The DWConv performs independently over each 
channel of input signal, then PConv projects the output chan-
nels by the DWConv onto a new channel space.

According to Howard et al.’s research (Howard et al. 
2017), the FLOPs of Depthwise Convolution and Pointwise 
Convolution are D2

K
×M × D2

F
 and N ×M × D2

F
 , and the 

FLOPs of the depthwise separable convolution is 1
N
+

1

D2

k

 
times that of the standard convolutional operation, where M 
and N are the number of input and output channels, Dk is the 

(1)
{

t − m + 2 × p

s
+ 1

}

×

{

f − n + 2 × p

s
+ 1

}

Fig. 2   Input Feature. 39 dimen-
sions (39D) MFCC and 39D 
LFBE-Delta (LFBE-Delta 
denotes the concatenation of 
13D LFBE, 13D Delta and 13D 
Delta-Delta)

Table 1   Convolution operation parameters

Conv2D stands for standard convolution, Conv2D_enhance stands for 
enhanced convolution with setting Stride = 1

Convolution Kernel size Stride padding

Conv2D 3 × 3 2 × 2 1 × 1

Conv2D_enhance 3 × 3 1 × 1 1 × 1
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kernel size, and DF is the spatial width and height of a square 
input feature map. It gradually replaces standard convolution 
kernels in many lightweight model studies. Most Edge-
CRNN’s convolution kernel size is 1 × 1 , so the EdgeCRNN 
computational cost than full size 3 × 3 convolution layer is 
about 9 times less. This proves that the EdgeCRNN model 
can reduce computational costs and model parameters.

DWConv cannot change the channels number of input 
features (Fig. 3a), and the features cannot be extracted well 
if the number of channels is small. The acoustic feature has 
only one channel number, the extraction effect will is poor. 
However, PConv can change the number of channels, and the 
calculation amount and model parameter are relatively small 
from above describe. Therefore, we increase the number of 
channels by adding a PConv layer before DWConv layer as 
describe on Fig. 3b, the model feature extraction effect will 
is better.

3.2.2 � Residual structure

In theory, deeper networks are more capable of learning. 
However, with the numbers of network layer increases, the 
model structure becomes more complicated and requires 
expensive computational costs, even has the problem of van-
ishing/exploding gradients. Therefore, He et al. (He et al. 
2016) proposed ResNet to solve the above problems. It is 
based on the residual structure and uses the shortcut connec-
tions. Shortcut connections are skipping one or more layers 
on neural network with an identity mapping function.

The Eq. 2 can be implemented by the Lth
L−1

 feed forward 
neural networks with shortcut connections (Fig. 4), where 
F(⋅) is a composite function of operations, such as Convolu-
tion (Conv), BN, and ReLU function. The XL denotes the 
output of L th layer. In our work, the shortcut connections 
simply perform identity mapping, and their input and output 
of different layers are added by an element-wise or concat-
enated through the channel. Identity shortcut connections 
do not add extra parameters or computational complexity. 
The residual structure increases the training speed of model. 
In the model design process, we add a residual structure to 
improve the efficiency of the model and reduce redundant 
hidden layer.

3.2.3 � RNN

The RNN uses a loop structure to connect previous state 
information to the current state, which can well extract 
sequence data context features. However, standard RNN has 
short-term memory problems. The long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber 1997) and gated 

(2)XL = F(XL−1) + XL−1

Fig. 3   Convolution block. The 
C denotes channel number. a 
Is regular form of Depthwise 
Separable Convolution. b Is 
expansion form which added a 
PConv layer before DWConv 
layer

Fig. 4   Residual structure of a building block. A basic CNN layer 
consists of standard convolution layer of 3 × 3 kernel size, Batch Nor-
malization (BN) (Ioffe and Szegedy 2015), and rectified linear units 
(Relu) (Glorot et al. 2011) function

Fig. 5   EdgeCRNN Block. a Is the basic block with the output operate 
by “Add”; b Is the downsampling module with the output operate by 
“Concat”
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recurrent unit (GRU) (Cho et al. 2014) of variant RNN were 
created as the solution to this problem. They have internal 
mechanisms called memory cells that can store the flow of 
information. BiLSTM can obtain time series features well 
and achieve the accuracy of 96.6% (Zeng and Xiao 2019). 
Hence, we use LSTM on EdgeCRNN model.

3.2.4 � EdgeCRNN Block

We design the EdgeCRNN Block based on depthwise sepa-
rable convolution and residual structure, which is similar to 
the paper (Ma et al. 2018). As discussed above, EdgeCRNN 
Block uses the expansion layer (Fig. 3b) to increase channel 
number, and it includes Base-Block and EdgeCRNN-Block 
(Fig. 5). EdgeCRNN Block consists of two PConv layers and 
one DWConv layer, and it selects the ReLU non-linearity 
and uses BN to normalize input data. Assuming that x is 
input data, the input data of the two branches is the same as 
x in EdgeCRNN-Block, and the x is divided into two halves 
as the input of the two branches in Base-Block. EdgeCRNN-
Block is used for downsampling to halve the input signal 
size by setting Stride = 2 on the DWConv layer, and then 
it uses the Concat operation to double the number of chan-
nels. The Concat denotes combining multiple data sources 
together. Base-Block is the basic block and adding features 
by Add operation, the input signal size and channels remain 
unchanged with setting Stride = 1. EdgeCRNN-Block is on 
the first unit of each Stage (see more detail in Sect. 3.3), and 
Base-Block follows it.

3.3 � The architecture of EdgeCRNN

The EdgeCRNN architecture is a hybrid model of CNN 
and RNN, where CNN is mainly composed of a stack of 
EdgeCRNN Block and RNN selects the LSTM model 
which consists of one hidden layer with 64 nodes. 
Besides, CNN is divided into one first convolution layer 
feature enhancement layer called Conv1, three Stage, and 
one standard convolution layer named Conv5. Conv1 
and Conv5 contain the variant Pool operator which is 
a sample-based discretization process with the goal of 
downsampling the input representation (Sun et al. 2016). 
Conv1 is MaxPool and Conv5 uses GlobalPool. The Fig. 6 

Table 2   EdgeCRNN 
architecture

Stage* is EdgeCRNN Block, K and S are the size and stride of the convolutions kernel, R represents the 
number of module and padding = 1

Layer Output K S R Output channels

0.5× 1.0× 1.5× 2.0×

Audio 39 × 101 – – – 1
Conv1 39 × 101 3 × 3 1 1 16 24 24 24
MaxPool 20 × 51 3 × 3 2
Stage2 10 × 26 3 × 3 2 1 32 72 116 160

10 × 26 3 × 3 1 1
Stage3 5 × 13 3 × 3 2 1 64 144 232 320

5 × 13 3 × 3 1 2
Stage4 3 × 7 3 × 3 2 1 128 288 464 640

3 × 7 3 × 3 1 1
Conv5 3 × 7 1 × 1 1 1 256 512 1024 1024
GlobalPool 1 × 7 3 × 1 1
RNN – – – – 64
FC – – – – 12
MFLOPs 4.10 14.54 34.89 57.65
MWeights 0.15 0.59 1.15 1.68

Fig. 6   EdgeCRNN 1.0× model. Where 20 × 51 denotes output map 
size, 24 represents channel number
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illustrates that each Stage are two units in EdgeCRNN. The 
first unit consists of a downsampling block EdgeCRNN-
Block with a convolution kernel stride of 2. The second 
unit consists of the Base-Block module, which is located 
behind the EdgeCRNN-Block and its number is deter-
mined by R in Table 2.

CNN and LSTM cell are used to extract frequency and 
time domain features on spectrogram respectively, and 
fully connected layers (FC) is used for posterior probabil-
ity classification. The EdgeCRNN uses Width Multiplier 
� similar to (Howard et al. 2017). The role of the � is to 
thin a network uniformly at each layer. For example, the 
0.5× denotes � = 0.5 and the number of output channels N 
becomes 0.5 × N  in Table 2.

4 � Experiments on EdgeCRNN

In this section, we introduce the datasets, experiment steps, 
and how to train the model. We then investigate the effects 
of feature enhancement and EdgeCRNN Block and com-
pare results to the full convolution model. Finally, we com-
pare performances between EdgeCRNN and popular KWS 
models.

4.1 � Experimental step on EdgeCRNN

We evaluate our model by using Google Speech Commands 
Dataset (Warden 2018), which consists of 65,000 1-s utter-
ances of 30 words by thousands of different people. The 
sampling frequency is 16KHz. Our task is to discrimi-
nate among 12 classes “yes”, “no”, “up”, “down”, “left”, 
“right”, “on”, “off”, “stop”, “go”, unknown, and silence. 
The unknown class is used to simulate the model to learn 
the difference between keywords and non-keywords. The 
silence class represents low loudness audio. Under the SNR 
of random sampling between [ −5 db, + 10 dB], we manu-
ally add car noise and cafeteria to the dataset. It can improve 
the performance of the KWS system in practice, which gets 
closer to the background of continuous noise. The dataset is 
then randomly split into training, validation, and test set in 
the ratio of 80:10:10. EdgeCRNN is trained in the training 
and validation set, and the experimental results are obtained 
from the test set.

We use the Tpool2 (Tang et al. 2018) as the baseline 
model, which consists of two convolutional layers followed 
by two linear layers and one DNN layer. In our experiment, 
the input features are 39 dimensions LFBE-Delta. The 
EdgeCRNN uses the Relu activation function, the Adam 
optimizer, and Cross Entropy (CE) loss function on each 
of the convolution layers. In Equation 3, the learning rate is 
decayed every 50 rounds. The initial learning rate LR_init 

is 1E−3, the end learning rate LR_end equals 1E−4, total 
epochs total_epoch are 500, current_epoch denotes the cur-
rent epoch, and batch sets 128.

4.2 � Model training on EdgeCRNN

Accuracy, FLOPs, and model parameters are our primary 
metric of quality, which are measured as the fraction of cor-
rect classification decisions. We also plot receiver operating 
characteristic (ROC) curves, where the x and y axes denote 
FAR and false reject rate (FRR), respectively. Curves for 
each of the keywords are computed and then averaged verti-
cally to produce the overall ROC. The lower the curve, the 
better the model performance.

4.2.1 � Training based on feature enhancement

We compare the model performances that adopt feature 
enhancement and non-use. The accuracy of EdgeCRNN-
Mel is 3% higher than EdgeCRNN-M for LFBE-Delta con-
taining three features in Table 3. Meanwhile, EdgeCRNN-
Mel-F and EdgeCRNN-M-F also have a similar relationship 
in accuracy. The Fig. 7b illustrates the EdgeCRNN-Mel-F 
gives a 69.5% relative improvement over the EdgeCRNN-M-
F at the operating point of 0.1 FAR. Compared with one fea-
ture, input features including three feature types can improve 
the accuracy of the model.

The first convolution layer feature enhancement can 
repeatedly extract features and improve accuracy. The Edge-
CRNN-Mel-F is 0.8% higher than EdgeCRNN-Mel. How-
ever, FLOPs of the EdgeCRNN-Mel-F is almost 10M more 
than that of EdgeCRNN-Mel. We have find that it is most 
appropriate to reuse it only once. So EdgeCRNN uses the 
first convolution layer feature enhancement only once. The 

(3)LR = LR_init −
current_epoch

total_epoch
× (LR_init − LR_end)

Table 3   Accuracy of features enhancement

Where M and Mel denote MFCC as feature extraction and LFBE-
Delta, respectively. F represents first convolution layer feature 
enhancement, the � defaults to 1.0×

Model FLOPs Parameter Accuracy (%)

EdgeCRNN-M 4.60M 0.59M 94.15
EdgeCRNN-M-F 14.54M 0.59M 94.97
EdgeCRNN-Mel 4.60M 0.59M 97.05
EdgeCRNN-Mel-F 14.54M 0.59M 97.89
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FRR of EdgeCRNN-Mel-F has a 34.2% relative improve-
ment over the EdgeCRNN-Mel at the operating point of 0.1 
FAR from Fig. 7a, which depicts that EdgeCRNN extracts 
feature more robust by feature enhancement.

4.2.2 � Training based on RNN

In addition to standard RNN, RNN also has variant models 
LSTM and GRU. We test the performance of EdgeCRNN 
combined with the variant RNN model. Due to the differ-
ent internal mechanism of the variant RNNs, the param-
eter calculation method is different, which is why the 

Parameter values are different in Table 4. CSANN LAB 
(Dey and Salemt 2017) proposed the calculate method of 
parameter, the methods of RNN, LSTM, GRU are Eqs. 4–6, 
respectively.

where n and m denote the output dimension and input. The 
Equation shows that the standard RNN has the least number 

(4)PRNN = n2 + nm + n

(5)PLSTM = 4 × (n2 + nm + n)

(6)PGRU = 3 × (n2 + nm + n)

Fig. 7   ROC curves for feature 
enhancement

Table 4   Table caption

RNN model FLOPs Parameter Accuracy (%)

RNN 14.54M 0.38M 97.77
GRU​ 14.54M 0.53M 97.78
LSTM 14.54M 0.59M 97.89

Fig. 8   ROC curves for others 
model

(a) ROC curves of full convolution model. (b) ROC curves of lightweight model.

Table 5   EdgeCRNN block vs full convolution

Model FLOPs Parameter Accuracy (%)

Conv EdgeCRNN 1.0× 104.19M 2.28M 96.96
EdgeCRNN 1.0× 14.54M 0.59M 97.89



1533EdgeCRNN: an edge‑computing oriented model of acoustic feature enhancement for keyword…

1 3

of model parameters and the LSTM has the largest. LSTM 
is 4 times that of RNN, and GRU is 3 times that of RNN.

The FLOPs of RNN are more complicated, so the FLOPs 
of RNN only roughly calculated in our work. The feature 
extraction uses LFBE-Delta and � is 1.0 multiple. The 
Table 4 shows that LSTM has the most parameters and the 
highest accuracy for its three gates, RNN has the fewest 
parameters. So we choose the LSTM as the RNN of Edge-
CRNN in this paper.

4.3 � Result on EdgeCRNN

First, we test the performance of the EdgeCRNN with the 
EdgeCRNN Block and compare it with the fully convolu-
tional model. Table 5 illustrates that compared with the full 
convolution model, the FLOPs based on the EdgeCRNN 
Block is reduced by 6.2 times and the model parameters are 
2.9 times few. Meanwhile, the accuracy rate is improved by 
0.93%. Even with fewer FLOPs and parameters, the perfor-
mance of EdgeCRNN 1.0× is better than Conv EdgeCRNN 
1.0× . For example, Fig. 8a shows that the improvement of 
over 47% relative compared to the Conv EdgeCRNN 1.0× 
at the operating point of 0.01 FAR, where the Conv Edge-
CRNN 1.0× represents full convolutions model. This dem-
onstrates that the EdgeCRNN model is lighter than the full 
convolution model while maintaining better performance.

To further detect which keyword recognizes good or bad, 
we delve into the confusion matrix of 12 classes (see more 
12 classes detail in Session 4.1) on Google Speech Com-
mands Dataset. Most misclassified situations are caused 
by real commands predicted as an unknown class. The 
diagonal is the accuracy of each keyword on the confusion 
matrix, Fig. 9 illustrates that most of keywords accuracy 

exceeds 96%. Due to the increased noise, the silence class 
is ignored. Due to the similar pronunciation of keywords, 
there are many misidentified classification, such as unknown 
and “go”, unknown and “no”. Besides, on the basis of 12 
keyword tasks, we test the performance of EdgeCRNN 1.0× 
in 22 keyword tasks (added new keywords “dog”, “zero”, 
“one”, “bed”, “two”, “three”, “four”, “five”, “bird”, “six”). 
Table 6 shows that model parameters added about 0.1M, 
while accuracy reaches 95.77% and is still competitive. It 
means that EdgeCRNN is efficient at the KWS task.

Table 7 compares accuracy between previous lightweight 
KWS models (Tang et al. 2018; Sun et al. 2016; Arik et al. 
2017; Zeng and Xiao 2019; Zhang et al. 2017) and Edge-
CRNN, these models are trained on the Google Speech 
Commands Dataset (Warden 2018) (except CRNN (Arik 
et al. 2017), which uses a private TalkType dataset, and 
the data of LSTM from literature (Zhang et al. 2017). The 
parameter of EdgeCRNN 1.0× is not the smallest, while it 
is relatively lightweight and less than 0.6 M. Besides, the 
accuracy of EdgeCRNN is higher than other KWS models 
from Table 7, which reaches 97.89% with limited computa-
tional cost (only 14.54M). This indicates that EdgeCRNN 
can almost achieve the state of art accuracy in KWS task and 
is a lightweight model.

We evaluate the performance of EdgeCRNN on edge 
computing device, which is depicted in Table 8. EdgeCRNN 
0.5× can read 11.1 audio data per second on the Raspberry 
Pi 3B+, which is much faster than Tpool2 that is 5/s . It 
demonstrates that EdgeCRNN reduces latency and compu-
tational costs with an accuracy of 97.09%. From the key-
word audio length of 1 second on Google Speech Commands 
Dataset, we know the speed of human speech is nearly one 
keyword per second. It means that EdgeCRNN processing 

Fig. 9   Confusion Matrix of EdgeCRNN 1.0×

Table 6   Performance based on 22 keyword tasks

Model keyword MFLOPs Parameter Accuracy (%)

EdgeCRNN 1.0× 12 14.54M 0.59M 97.89
EdgeCRNN 1.0× 22 14.54M 0.60M 95.77

Table 7   Accuracy of the related KWS models

Model FLOPs Parameter Accuracy (%)

Tpool2 (Tang et al. 2018) 103M 1.09M 91.97
LSTM (Sun et al. 2016) 48.4M 0.26M 94.81
CRNN (Arik et al. 2017) 19.3M 0.22M 97.71
DenseNet-BiLSTM (Zeng 

and Xiao 2019)
– 0.24M 97.50

DS-CNN (Zhang et al. 2017) 56.9M 0.47M 95.38
EdgeCRNN 1.0× 14.54M 0.59M 97.89
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speed can keep up with the speed of human speech in a 
resource-limited environment.

To verify that EdgeCRNN is suitable for KWS, we com-
pare the performance of ShuffleNetV2 (Ma et al. 2018) and 
MobileNetV2 (Sandler et al. 2018), which are the light-
weight model in the field of computer vision. The experi-
ment finds that the speed of EdgeCRNN 0.5x is 12.2 times 
and 74 times faster than them, and FLOPs is less than 1

5
 

and 1
9
 on Raspberry Pi 3B+ from Table 8. ShuffleNetV2-M 

denotes input feature uses MFCC in Table 8, other mod-
els use LFBE-Delta. The accuracy rate of ShufflenetV2 is 
96.91%, higher than ShuffleNetV2-M’s 93.28%. This also 
proves that the LFBE-Delta feature can enhance features and 
improve accuracy on other models.

Table 9 compares the effects of different Width Multi-
plier models, which have four multiples 0.5× , 1.0× , 1.5× , 
2.0× from Table 2. The 2.0× model has the highest accuracy 
98.05%, and the 0.5x model processes 11.1 audio per second 
which is the fastest speed on Raspberry Pi 3B +. In practi-
cal applications, we should consider the trade-off between 
FLOPs and accuracy to choose the most appropriate mul-
tiplier model.

5 � Conclusion

In the paper, we designed a new EdgeCRNN model for 
edge computing devices applied to KWS. We demonstrated 
how to improve EdgeCRNN’s performance by using fea-
ture enhanced methods with repeatedly extracting features 
and extracting three types of features. The result shows that 
EdgeCRNN can process 11.1 audio per second on Rasp-
berry Pi 3B+, and its accuracy rate reaches 98.05%. How-
ever, FLOPs are still relatively large on variant EdgeCRNN 
1.0× , and there is still room for improvement in accuracy. 
Moreover, the model test platform is only on ARM CPU. 
In the future, we will continue to reduce the computational 
costs, improve the accuracy, and apply the KWS system to 
different environments.
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