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Abstract
Nowadays, most of the researchers have focused on collecting the used products to carry out the recovery process. This paper 
deals with the repair process to improve the virtual age of used products and integrate to forward flow as a closed-loop supply 
chain (CLSC). The products can be returned to the chain several times until they have the required quality to be repaired. 
Here the optimal number of returning and repairing the used products for maximization of the profits are calculated. Also, 
the price of selling the products, the acquisition cost, and the warranty period are determined to motivate the customers to 
bring back their used products and increase the demand for products. For our proposed multi-period problem, an appropri-
ate inventory control policy is taken, and in case of increasing the production amount, additional capacity can be installed 
by extra cost. The proposed mixed-integer non-linear model has been solved by three metaheuristic algorithms: Particle 
Swarm Optimization Algorithm (PSO), Genetic Algorithm (GA), Invasive Weeds Optimization algorithm (IWO). Numerical 
problems depicted model efficiency and by the use of the Taguchi method, qualitative parameters of proposed algorithms are 
calibrated. Then, the performance comparison of the methods has been done by Relative Performance Deviation.

Keywords Acquisition cost · Pricing · Closed-loop supply chain · Multi-period · Warranty period · Metaheuristic 
algorithms

1 Introduction

Recovery is a process of adding significant value to old or 
repairable products. Hence, it contributes to enterprises and 
governments to save costs and natural resources. In fact, 
innovation in the production of diverse products has led to 
a shorter life span, and to save energy for the future gen-
eration, the recovery process is an economic and environ-
mentalist approach (Guide 2000). In reverse logistics, all 
activities are done to return the used products by users and 
reuse them (Fleischmann et al. 1997). The value of reusing 
the returned products can be more than hundreds of millions 
of dollars for one retailer (R Jr and Van Wassenhove 2009). 
Therefore, integrating the forward and reverse logistics as 
a closed-loop supply chain (CLSC) increases system value 

throughout the life cycle of products (Guide and Van Was-
senhove 2009). On the other hand, this creates complications 
compared to its traditional forward state (Melo et al. 2009).

In terms of the quality of the products after recovery 
processes, it should be considered that the value added by 
restoring out of returned products can be as good as the new 
ones or not. For the lower quality, customers are willing to 
pay less in comparison with the new products. From this 
point of view, some researchers assume the quality of recov-
ered products is the same as the new products as (Ijomah 
et al. 2004; Shi et al. 2011; Jing Wang et al. 2011; Kim et al. 
2013; Giri and Sharma 2015; Polotski et al. 2017; As’ad 
et al. 2019). While others distinguish between them such 
as Debo et al. (2005), Ferguson and Toktay (2006), Jaber 
and El Saadany (2009), Hasanov et al. (2012), Gan et al. 
(2017). So depending on the industry and the way to reuse 
the returned products, the quality can be an important factor 
to distinguish the recovered products and also pricing deci-
sions. It is obvious that the quality of returned products can 
be highly variable, illustrating the need for quality assess-
ment procedures. For this purpose, segmentation policies for 
returned products with different quality grades have drawn 
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attention in the recent decade. By compiling a proper seg-
mentation policy, returned products might undergo differ-
ent recovery policies or be disposed of. However, it can be 
found a general problem by reviewing the related literature 
that clarifies the need for the current investigation. Indeed, 
a classification program to head the different quality grades 
of returns is determined by predefined proportions which 
are obtained from historical data, experts’ opinions, etc. In 
the case of uncertainty with less available data, probability 
theory can be utilized to appropriately classify the returns. 
In this study, we bridge this gap by proposing age-dependent 
quality levels of used products which are uniformly distrib-
uted at multiple periods.

Based on the above discussion, the quality of returns 
depends on their age (when they are returned) that can be 
estimated from forms and registration logs/books, e-ser-
vices, etc. (Chattopadhyay and Murthy 2000). Accordingly, 
products are collected from consumers to be sent for the 
recovery processes. Under an upgrade action, a reliabil-
ity growth program is conducted to a certain extent. This 
approach was introduced by Kijima et al. (1988), and to 
clearly demonstrate upgrade action, Fig. 1 was adopted from 
Naini and Shafiee (2011) as follows:

With regard to the above figure, the basic observations 
incorporate the lifetime of products and their failure rate. 
Through restoring out the products by an upgrade action, 
the age of them decreases. This implies age-dependent qual-
ity levels of products. In this paper, age-dependent quality 
levels of products are considered in a multi-period CLSC 
problem in which an upgrade action improves the reliabil-
ity of used products in each period. Although the recovery 
process makes some discarded products reusable, they are 
not as good as new products. Therefore, it is necessary to 
determine a proper strategy as a key for motivating custom-
ers to buy second-hand products. To this end, this paper 
deals with pricing, warranty period, and acquisition costs 

decisions along with forward-flow decisions in a supply 
chain. In order to fill the gaps, first, relevant literature has 
been presented.

In recent years, comprehensive reviews in the CLSC 
context are done by Govindan et al. (2015), Coenen et al. 
(2018), and Islam and Huda (2018) to investigate the val-
ues of numerous studies for meeting the environmental and 
social needs. However, this paper is provided to close the 
gaps in the literature via proposing a mathematical model 
dealing with streams in the field of price-sensitive demand, 
acquisition costs and warranty costs in CLSC models which 
are as follows:

The first stream is the tendency of researchers on topics 
related to price-dependent demand and acquisition costs 
management in the CLSC problems. In these fields, Maiti 
and Giri (2015) discussed different policies in a CLSC 
model considering the importance of the quality of prod-
ucts and price-dependent demand to find out the best result. 
Gao et al. (2016) studied a price-dependent demand in 
multi-structure channels to explore the low price and best 
performance in a CLSC model under the optimal coordina-
tion strategy. Christy et al. (2017) addressed a CLSC prob-
lem with two acceptance quality grades in the recovery pro-
cess. Indeed, after the recovery process, the products may 
have the quality same as new ones or not. In their model, 
demands for products linearly depends on the quality and 
price of products. Masoudipour et al. (2017) investigated 
a multi-objective CLSC model with different recovery 
options for reusing the returned products and making deci-
sions on the acquisition price. Alamdar et al. (2018) exam-
ined the performance of the price-dependent demand in a 
Fuzzy CLSC problem to obtain the optimal values of sev-
eral presented scenarios by considering the profitability. Xu 
and Wang (2018) analyzed the relation between consum-
ers and supply chain performances to tackle the price and 
carbon emission decision problems in two periods. They 
investigated the multiple structure scenarios for improving 
member profits. Ghomi-Avili et al. (2018) presented a new 
CLSC model with accounting for two objective functions 
attempting to maximize the total CLSC profits and mini-
mize the carbon emissions in a fuzzy environmental and 
price-dependent demand. Duan et al. (2018) investigated a 
closed-loop policy for deteriorating products considering 
the inventory management to reach the maximum system 
profits. In their model, demand depends on the price of 
products with stochastic changes over the period interval. 
Zand et al. (2019) considered governmental limitations on 
the green activities for collecting and reusing the returned 
products. In their model, a linear function of price-depend-
ent demand has been given to maximize the system profits. 
Wu et al. (2020) studied a two-echelon CLSC model to 
provide a structure optimizing the environmental issues in 
which demand is sensitive to the price decisions, and the 

Fig. 1  Effects of upgrade actions on the age of products and failure 
rate (Naini and Shafiee 2011)
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objective function maximizes the total profits. Jian Wang 
et al. (2020) provided a dual-channel CLSC model with 
one manufacturer and one retailer. In their model, prod-
ucts can be purchased in an online manner from the manu-
facturer or purchased from the retailer in an online or a 
traditional way. In that, demand is sensitive to the price of 
products. Gu et al. (2019) proposed a multi-stage CLSC 
problem with recycling, repair, and refurbishing processes 
for reusing the returned products. In their model, optimum 
values of acquisition costs should be determined with the 
aim of maximizing the total profits wherein demand for 
products depends on the price of selling. Xu et al. (2019) 
investigated a CLSC problem for determining the optimum 
value of prices in terms of the retailer and the collector 
with available big data. Taleizadeh et al. (2019) worked 
on a CLSC problem with price decisions and offered a 
quantity discount. They studied social and environmental 
issues in a real case study with respect to their correspond-
ing costs. Taleizadeh and Moshtagh (2019) investigated a 
multi-level CLSC problem with a focus on a consignment 
stock scheme. They proposed a non-linear expression to 
estimate the quality-dependent return rate and considered 
a minimum acceptance quality level to collect the used 
products which are good enough for the recovery process. 
Hassanpour et al. (2019) proposed a robust approach for 
a CLSC model in which the used products were collected 
with different quality grades. Therefore, a recovery process 
on the returned products was applied according to their 
quality grades. To solve their proposed model, metaheuris-
tic algorithms have been utilized.

Another stream of the literature is related to the warranty 
in CLSC problems which is comprehensively discussed by 
Bhakthavatchalam et al. (2015). Afterward, Ashayeri et al. 
(2015) provided a distribution network for a CLSC problem 
considering several recovery options and warranty deci-
sions. Gan et al. (2017) proposed a warranty contract for 
remanufactured products to ensure the quality of them to be 
upgraded to the same as the new products. Giri et al. (2018) 
proposed two CLSC models; in the first model, demand is 
sensitive to price and warranty period. In the second model, 
the green level is also considered. They attempted to maxi-
mize the profits regarding the revenue sharing contract in a 
single period. Tang et al. (2020) developed a CLSC model 
in which the impact of the warranty period was analyzed on 
customer willingness to buy both new and manufactured 
products. Also, a discount was offered to the customer for 
remanufactured products.

In this paper, a multi-period CLSC problem is proposed 
wherein inventory decisions, pricing and acquisition costs 
management for age-dependent quality levels of products 
are considered. Under this circumstance, a warranty con-
tract plays a significant role in motivating the customer to 
buy repaired products through protection and promotion 

(Emons (1989)). In this regard, Table 1 is provided to 
illustrate the related gaps.

In summary, the most contributions of the presented 
research are:

• Owing to the fact that we have a multi-period problem, 
the optimal number for the repair process to upgrade the 
quality of the used products would be calculated.

• Demand for products is a function of the length of the 
warranty period and the selling price. Also, the return 
rate of used products is a function of the acquisition cost 
of used products and the age of returns.

• The acquisition cost for the returned products, the selling 
price of products, inventory costs, and the cost of install-
ing the additional capacity for production planning are 
addressed and optimized.

• We provide Genetic algorithm, Particle Swarm optimi-
zation algorithm, and Invasive Weed Optimization algo-
rithm to solve the proposed mixed-integer non-linear 
(MINLP) model.

In the rest of the paper, in Sect. 2, assumptions and 
notations are presented. A MINLP model of a closed-loop 
supply chain relying on all contributions is described in 
Sect. 3. In Sect. 4, solution procedures are presented by 
three metaheuristic algorithms. Numerical examples are 
proposed in Sect. 5 which are solved with the aforemen-
tioned algorithms and the main parameters of them are 
calibrated with the Taguchi method. In Sect. 6, managerial 
insights are provided. Finally, the conclusion and future 
directions will be presented in Sect. 7.

2  Problem definition

In this proposed model, a multi-period closed-loop supply 
chain for a single product is investigated, in which the used 
products are collected from consumers to be repaired. In 
each period, the percentage of used products to be collected 
depends on the age of returned products and acquisition 
costs. The initial age of used products ( x ) is a stochastic 
variable and follows uniform distribution between the inter-
val ( a, b ). After passing a period of time, returned products 
would be recovered in weaker quality compared to newly 
manufactured products. From this point, the initial age of the 
used products degrades to (x − xm) . Hence, repaired products 
retrieve over and over within the next periods if customers 
are willing to return them. Nevertheless, the initial age of the 
returned products decreases to (x − itxm) when consumers 
return products for it times from period i to period t . On the 
other hand, the second variable that has a significant effect 
on the percentage of returned products is the acquisition cost 
offered to customers to motivate them to bring back their 
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used products. In addition to collecting the used products 
and doing recovery operation, appropriate decisions on the 
price of selling and the length of warranty period lead to 
more demands for products. The lower selling price leads 
to more demands, however, this may not be profitable for 
the system. Besides, longer warranty periods may incur 
additional service costs to the system, while short warranty 
periods may lead to dissatisfaction and lose the customers. 
That’s why the selling price and the warranty period should 
be determined appropriately. Considering these two vari-
ables, demands for manufactured and repaired products are 
modeled as nonlinear functions. The main innovation of this 
paper is to make decisions on the number of times that the 
used products can be restored so the investments on the war-
ranty contracts are affordable. To develop the model, the 
following notations are considered in Table 2.

2.1  Assumption

• A multi-period single product model is considered.
• Products have a limited age that follows the uniform 

distribution within the interval [a − itxm, b − itxm] . That 
means, newly manufactured products have an initial age 
in the interval [a, b] which degrades in the amount of itxm 
after it times retrieving.

• The quality of used products depends on the age of 
returns.

• Warranty length period ( w ) and selling price ( prt ) affect 
the demand for repaired products in a non-linear form 
which is equal to Drt

(
prt,w

)
= dp−�

rt
w�.

• Warranty length period ( w ) and selling price ( pmt ) affect 
the demand for new products in a non-linear form which 
is equal to Dt

(
pmt,w

)
= Dmtp

−�
mt
w�.

• Shortages are not allowed and all types of demands 
should be satisfied.

• Used products are directly collected by the manufacturer.
• All products are used in the same pattern in which 

failures occur based on the Weibull distribution 
(g(t) = ��(�t)�−1e−��t) with parameters � and � . Where 
� indicates the scale parameter and � is the shape param-
eter.

• Failures are independent.
• Repairing time during the warranty period ( w ) is negli-

gible.
• The selling price of repaired products should be less than 

the selling price of new products ( prt ≤ pmt).

3  Model formulation

In this proposed model, there are two types of customer 
demands. The first type is the demands for new products in 
each period, and the second type is for repaired products. 

Demands are as a function of the selling price and warranty 
length period. This non-linear formulation is obtained from 
related research such as Lee and Kim (1993), Glickman and 
Berger (1976), and Jung and Klein (2006). Moreover, Yaz-
dian et al. (2016) have developed an optimization model 
with linear and non-linear formulas of demand for remanu-
factured products. In this paper, we suggested the non-linear 
formulation of demand in a CLSC problem due to its greater 
adaptation to reality, which is equal to Drt

(
prt,w

)
= dp−�

rt
w� 

for recovered products and Dt

(
pmt,w

)
= Dmtp

−�
mt
w� for manu-

factured products, where � and � are positive scaling param-
eters. In these cases, whatever the length of the warranty 
period increases, it motivates customers to increase their 
demands while increasing selling price leads to decreases 
in demand for products.

The quantity of returned products for a single-period 
model is proposed by Yazdian et al. (2016). In this paper, the 
quantity of returned products from the previous periods is 
obtained by R

(
vt, x

)
= kv�

t
xy , where k is a base return quan-

tity of used products; � and y are positive scaling parameters. 
Accordingly, the return quantity depends on the acquisition 
cost of used products in each period ( vt ) and the age of them 
( x ). As upgrading the age affects the quality of the products, 
it would be completely cleared in this section that the repair-
ing will be permissible only for the qualified products.

In order to calculate the total returned products for this 
multi-period model, Eqs. (1) and (2) are presented, in which 
the initial age of new products is a stochastic variable ( x ) 
with uniform distribution in the interval [a, b] . During the 
recovery process, the age of the used products has changed 
to the ( x − itxm) , where it represents the returned products 
from period i to period t  for it times. In this regard, if the 
quality of returned products reaches the new condition, xm 
becomes zero. Whereas, xm = x indicates the recovery pro-
cess is not able to upgrade the quality of used products. (See 
appendix A)

3.1  Objective function

From Eq. (3), the total acquisition costs are obtained as 
follows:

(1)Rtotal =

T∑
t(t>1)

It∑
it

{
∫

b−itxm

a−itxm

R
(
vt, x

)
f (x)dx

}
,

(2)

Rtotal =

T∑
t(t>1)

(
It∑
it

kv𝜕
it

{
(b − itxm)

y+1 − (a − itxm)
y+1

(y + 1)(b − a)

})
.

(3)

TCr = Rtotal =

T∑
t(t>1)

(
It∑
it

kv𝜕+1
it

{
(b − itxm)

y+1 − (a − itxm)
y+1

(y + 1)(b − a)

})
.



2065Modeling and optimizing a multi‑period closed‑loop supply chain for pricing, warranty period,…

1 3

The failure time distribution function is Weibull ( �, � ), 
and after upgrading the age of repaired products, the failure 
rate function becomes r(t) = r(t − (x − itxm) . Accordingly, 
the expected number of failures during the warranty period 
is given in Eq. (4).

From Eq. (5), the total expected warranty costs for all 
demands for manufactured and repaired products can be 
obtained as follows:

Equation (6) represents the total costs of the manufactur-
ing process.

To obtain more profits and prevent deficiency, additional 
capacity can be installed on the plant with respect to their 

(4)E(N) = ∫
x+w

x

r
(
t −

(
x − itxm

))
dt = ∫

itxm+w

itxm

r(t)d(t).

(5)

TCw =

T∑
t

Dt

(
pmt,w

)
w

+

T∑
t(t>1)

It−1∑
it

Dit

(
prit ,w

){
C[

(
itxm + w

)𝛽
+ i

𝛽

t x
𝛽

m

}
.

(6)TCp =

T∑
t

AtQt.

related costs imposed on the system. These installation costs 
are derived from Eq. (7).

3.1.1  Inventory holding cost

Inventory holding cost is one of the main costs of the sup-
ply chain and should be taken into account, especially when 
all demands should be met in each period. Since in this 
paper, the shortage is not allowed and all demands of new or 
repaired products should be satisfied, determining an appro-
priate inventory control policy plays an important role in the 
proper management of the supply chain. The stock holding 
procedure in this model is shown in Fig. 2:

Equations (8) present the equality of the inventory level at 
the end of period t − 1 and the inventory level at the begin-
ning of period t.

The inventory remained at the end of period t is obtained 
from Eqs. (9), and the inventory holding cost is calculated 
according to Eq. (10).

(7)TCad =

T∑
t

J∑
j

Cjtyjt.

(8)IFt−1 = ISt;∀t where t > 1,

(9)
IFt = ISt + Qt + Rt

(
vt, x

)
− Dt

(
pmt,w

)
− Drt

(
prt,w

)
;∀t,

(10)TCIN =

T∑
t=1

ht

{
(IFt + Dt

(
pmt,w

)
− D

(
pt,w

)
+ ISt)Tt

2
+ (b − Tt)IFt

}
,

Fig. 2  Inventory planning over the multiple periods
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In Eq. (10), Tt is the time elapsed to produce Qt products, 
and is equal to Qt

pr
 . Where pr is the production rate.

Equations (11) determine the total revenue earned from 
selling new products and repaired products.

Finally, the objective function is presented in Eq. (12) to 
maximize the total profits of the proposed CLSC model.

3.2  Constraints

Constraints (13) show that all demands for recovered products 
should be satisfied. The right term of these constraints contains 
the total amount of the returned products in period t in addi-
tion to repaired products remained from the previous periods.

Constraints (14) prevent the occurrence of deficiency in sat-
isfying new product demands. The right term of these inequali-
ties is the total products produced in period t in addition to the 
products remained from the previous periods.

Constraints (15) ensure that the total capacity required to 
produce Qt products within period t should be less than the 
available capacity, and additional capacity can be installed if 
it is required.

Constraints (16) guarantee that returned products must have 
the required quality for restoration and reuse. Constraints (17) 
ensure that the remaining life of products should be at least 
greater than the warranty period to be repaired.

Constraint (18) relates to the types of variables.

(11)RE =

T∑
t

pmtDt +

T∑
t>1

prtDrt

(
prt,w

)
;∀t.

(12)PR = RE − TCr − TCw − TCp − TCad − TCIN .

(13)

Drt

(
prt,w

) ≤ Rt

(
vt, x

)

+

t−1∑
t
�
=1

(
Rt

�

(
vt� , x

)
− Drt

�

(
prt� ,w

))
; ∀t where t > 1.

(14)Dt ≤ Qt +

t−1∑
t
�
=1

(
Qt

� − Dt
�

)
; ∀t where t > 1.

(15)Qt ≤
J∑
j

Acjyjt +M; ∀t.

(16)a −
(
It + 1

)
xm ≥ 0; ∀t,

(17)b −
(
It + 1

)
xm ≥ w; ∀t.

(18)
IFt, ISt,Qt, Tt, vt, prt, pmt,w, It, yjt ≥ 0; I

t
�integer, yjt�binary.

In short, the complete mathematical model for the proposed 
CLSC is given as follows:

4  Solution approaches

The proposed model in this study is a direct extension of 
the non-linear form of the proposed model by Yazdian et al. 
(2016). According to their investigation, the non-linear form 
of their model is one type of geometric program that becomes 
daunting to solve by increasing the size of the problem. 
Since this study improved their assumptions to adapt for real 

Max Z =

T∑
t

pmtDt

(
pmt ,w

)
+

T∑
t>1

prtDrt(Prt ,w)

−

T∑
t(t>1)

(
It∑
it

kv𝜕+1
it

{(
b − itxm

)y+1
−
(
a − itxm

)y+1
(y + 1)(b − a)

})

−

T∑
t

Dt

(
pmt ,w

)
w +

T∑
t(t>1)

It−1∑
it

Dit

(
prit ,w

){
C[

(
itxm + w

)𝛽
+ i

𝛽

t x
𝛽

m

}

−

T∑
t

AtQt −

T∑
t

J∑
j

Cjtyjt

−

T∑
t=1

ht

{(
IFt + Dt

(
pmt ,w

)
− Drt

(
prt ,w

)
+ ISt

)
Tt

2
+
(
b − Tt

)
IFt

}

SubjectTo ∶

IFt−1 = ISt ∀t(t>1)

IFt = ISt + Qt +

T∑
t>1

R(vt, x) − Dt

(
pmt,w

)
− Drt

(
prt,w

)
∀t

Drt

(
prt,w

) ≤ Rt

(
vt, x

)
+

t−1∑
t
�
=1

(
Rt

�

(
vt, x

)
− Drt

�

(
prt� ,w

))
∀t(t > 1)(19)

Dt

(
pmt,w

) ≤ Qt +

t−1∑
t
�
=1

(
Qt

� − Dt
�

(
pmt� ,w

))
∀t

Qt ≤
J∑
j

Acjyjt +M ∀t

a −
(
It + 1

)
xm ≥ 0 ∀t

b −
(
It + 1

)
xm ≥ w ∀t

IFt, ISt,Qt, Tt, vt, prt, pmt,w, It, yjt ≥ 0; I
t
�integer, yjt�binary
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applications, it increases the inherent complexity making the 
problem difficult to solve. Moreover, most integer non-linear 
programming problems are called NP-complete with compu-
tational complexity (Tian et al. (1998)). In these problems, 
whatever the size of the problem increases, exact solutions 
become computationally intractable (D’Ambrosio (2010)). 
In this respect, since the proposed model is a mixed-integer 
non-linear non-convex mathematical problem with inherent 
complexity, metaheuristic algorithms are required to deal with 
NP-hardness. For this purpose, three metaheuristic algorithms 
have been suggested which were known as efficient algo-
rithms in dealing with tough optimization problems namely 
genetic algorithm (GA), particle swarm optimization (PSO) 
algorithm, and Invasive Weed Optimization (IWO). The steps 
of proposed algorithms are described in detail as follows:

4.1  Solution representation

4.1.1  Encoding strategy for initialization

To promote the efficiency of three proposed algorithms, an 
encoding strategy is expressed as follows:

Step 1. Binary variable yjt is randomly generated to ini-
tialize the population of the problem. Besides, variable Pmt 
is randomly generated in the intervals presented in Tables 3 
and 4, and is considered as an upper bound for variable Prt.

Step 2. Variable It is generated in such a way to meet the 
following conditions.

Step 3. In this step, demands for manufactured and 
repaired products are generated based on the following con-
ditions. By applying these conditions, constraints (13)–(14) 
can be met.

Step 4. In this step, the quantity of production, the begin-
ning inventory level, and the inventory at the end of periods 
are initialized.

(20)
Dt

(
pmt,w

)
= Max

(
Min

(
Dmtp

−�
mt

(
w�

)
,Dt−1

(
pmt−1,w

))
, 0
)
,

(21)
Drt

(
prt,w

)
= Max

(
Min

(
dp−�

rt

(
w�

)
,Drt−1

(
prt−1,w

))
, 0
)
;,

Step 4.1. The production quantity in the first period is 
generated in the interval (Dt(pmt,w),

∑J

j
Acjyjt +M) (where 

t  is equal to 1). This approach prevents deficiency and 
meets the constraint (15).

Step 4.2. After calculating the total production in the 
first period, the demand of the customer should be satis-
fied. Thereafter, the extra amount of the products should 
be calculated as inventory at the beginning of the next 
period. Production quantity for other periods is generated 
between demand rate and total capacity with deduction 
of the inventory. Then, the amount of inventory for each 
period is updated.

Step 4.3. The time elapsed to produce Qt products is 
calculated from Qt

pr
.

Step 5. First, the variable Vt is generated based on the 
Eqs. (22), (23), then Rt

(
vt, x

)
 is calculated.

4.2  Genetic algorithm (GA)

GA is a metaheuristic optimization algorithm developed 
by Holland (1975) and emanated from population genetics 
including heredity, gene frequencies, and evolution. GA is 
known as a powerful metaheuristic algorithm to find near-
optimal solutions for many non-linear problems (He et al. 
(2013)) and is used to solve many engineering problems 
(Azimi et al. (2018)). GA superiorly performs to solve 
CLSC models (Guo et al. (2019)). In consideration of GA’s 
profitability to cope with complex problems, it has been 
applied in many papers in the supply chain context that 
some of which are Ma and Li (2018), Hassanpour et al. 
(2019), Chan et al. (2020), Chouhan et al. (2020), Guo et al. 
(2020), Mohtashami et al. (2020), Liao et al. (2020), Ren 
et al. (2020), Son et al. (2020), Hemmati and Pasandideh 
(2020).

Base on the above discussion, GA is employed in this 
paper as a baseline method. The steps of GA are provided 
and briefly explained as follows:

4.2.1  Initial population generation

Generally, each solution in this algorithm is a chromosome 
generated with a size of Npop to create a population.

(22)r = k
by + ay+1

(b − a)(y + 1)
,

(23)Vt = unifrnd

⎛⎜⎜⎝

�
Drt

�
prt,w

�
r

� 1

�

,

�
Dt−1

r

� 1

�
⎞⎟⎟⎠
.
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4.2.1.1 Selection strategy There are several strategies to 
select parents, some of which are rank selection strategy, 
random selection strategy, tournament selection strategy, 
and roulette wheel selection strategy. According to the 
investigation done by Jebari and Madiafi (2013), the limita-
tions and advantages of these approaches are as follows.

• Roulette wheel selection strategy is a linear search 
method that can be easily implemented with less com-
putational time, however, it may be trapped into local 
optimal.

• Rank selection strategy is similar to Roulette wheel selec-
tion strategy with robust performance. However, this 
strategy has a lower convergence.

• Tournament selection strategy selected parents by pre-
serving diversity in population, implying the low speed 
of convergence.

• Random selection is an easy implemented strategy to 
select the parent by preserving diversity.

In this paper, the roulette wheel selection strategy 
for crossover operators outperforms others in small size 
instances with less computational time. Therefore, we 
applied it to select parents in all instances.

4.2.2  Crossover operators

4.2.2.1 Single point crossover operator In this step, parents 
are selected via a roulette wheel selection strategy. In this 
strategy, a proportion of each wheel is assigned according 

to its fitness. In maximization problems, fitness has a direct 
relationship with the objective function value. After spin-
ning the roulette wheel, a parent is selected.

For the discrete variables of the proposed model, the 
single-point crossover is applied shown in Fig. 3. The basis 
of this operator is to select a single point along with the 
parent genes. Then the genes of the right hand of one parent 
are replaced with the other. As a result, two offspring would 
be generated.

4.2.2.2 Arithmetic crossover For the continuous variables 
of the proposed model, we handle the arithmetic crosso-
ver where a uniform random number like � is generated 
between (0, 1), and then the offspring are obtained as fol-
lows:

4.2.3  Mutation operators

4.2.3.1 Swap mutation In the mutation operator for select-
ing the parent, the random selection method is used. Then 
for the discrete variables, the swap operator is applied as 
shown in Fig. 4. Indeed, two points are selected along with 
the genes of chromosomes, then they are replaced with each 
other.

(24)Offspring1 = (parent1 × � + parent2 × (1 − �),

(25)Offspring2 = (parent2 × � + parent1 × (1 − �).

Fig. 3  Single point crossover 
operator for discrete chromo-
somes
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4.2.3.2 Arithmetic mutation To do the mutation operation 
on the continuous variables, first, a uniform random num-
ber is generated ( p ). Then the standard deviation is obtained 
from Eq. (26). In this equation, MaxV  is the upper bound 
and MinV  is the lower bound of the parent.

Then, new offspring is obtained as follows:

where randn is a parameter generated based on the normal 
distribution.

4.2.4  Stopping criteria

The algorithm continues until it reaches a specified maxi-
mum iteration denoted by Maxiteration.

4.3  Particle swarm optimization (PSO) algorithm

PSO is a powerful metaheuristic algorithm initially pro-
posed by Eberhart and Kennedy (1995) to solve the problem 
in a continuous search space, relying on the movement and 
intelligence of swarms. According to Harifi et al. (2020) and 
Alejo-Reyes et al. (2021) PSO is known as one of the most 
widely used metaheuristic algorithms to solve complex 
problems. PSO has been successfully used in many NP-hard 
problems and applied in many engineering problem due to 
its special characteristics such as Mojtahedi et al. (2019). 
PSO has quick and accurate search, fast convergence, the 
balance between exploration and exploitation, and compe-
tent performance (Yu et al. 2017; Tirkolaee et al. 2019). To 

(26)� = p ∗ (MaxV −MinV).

(27)offspring = parent + � ∗ (randn),

confirm these, it can be found in research done by Yaseen 
et al. (2019) that they used several metaheuristic algorithms 
among which PSO leads to better performance. Moreover, 
Guo and Ya (2015), Yazdian et al. (2016), Guo et al. (2017), 
Guo et al. (2019), and Guo et al. (2020) have utilized PSO 
algorithm to solve reverse logistics problem.

The essential intention of PSO is to accelerate each par-
ticle toward its local best position ( xibest ) and the global 
best position of the swarm ( xgbest ) with a random weighted 
acceleration at each step. Since the proposed model is a 
mixed-integer non-linear problem, for discrete variables an 
Integer particle swarm optimization is applied (Del Valle 
et al. 2008). In this situation, discrete variables should be 
generated. To do this, the particles round off to the nearest 
discrete values.

The basic principle for PSO: we assume that 
Xi = (xi1, xi2, xi3,… , xin) is the current position of particlei , 
Vi = (vi1, vi2, vi3,… , vin) is the current velocity of particlei , 
Pi =

(
pi1, pi2, pi3,… , pin

)
 is the best position of particlei . 

Indeed, Pi is the personal best position of particle i in the 
current iteration ( k ) and based on the Eq. (28), it will be 
updated in each iteration.

For the best group position, the best objective function 
between particles is selected in each iteration ( gk ) and will 
be updated based on Eq. (29).

The particle velocity will be updated according to the 
Eq. (30).

(28)iff
(
pk−1
i

)
< f

(
xk
i

)
→ pk

i
= xk

i
.

(29)iff
(
gk−1

)
< f

(
xk
i

)
→ gk = xk

i
.

Fig. 4  Swap mutation operator for discrete chromosomes
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where Vk
i
 represents the velocity of particle i in iteration k 

that should be generated within the interval 
[
−Vmax,Vmax

]
 

to prevent moving outside of the solution space, and w is 
the inertia weight affecting the balance between exploitation 
and exploration of the PSO algorithm. In addition, c1 and c2 
are cognitive acceleration and social acceleration factors, 
r1 and r2 are random numbers between (0, 1). By the use of 
Eq. (31), the new location of each particle will be updated 
in each iteration.

It is clear the proposed algorithm is not appropriate for 
solving the binary particles. Thus, we used the procedure 
proposed by Jordehi (2019). This is the extended version 
of binary PSO presented by Kennedy and Eberhart (1997). 
In this binary PSO algorithm, a strategy is used to switch 
between 0 and 1. Therefore, Eq. (32) is used for this purpose.

Then the binary particle’s position is updated as 
follows:

where rand is a parameter randomly generated between 0 
and 1, and 

−

xk
i
 represents the complement of binary particle 

xk
i
 . In this paper, the optimal value of the model is to maxi-

mize the total profit of the proposed CLSC model. Hence, 
after each iteration, the particle’s velocity and position 
should be controlled to verify and the solution procedure 
will continue until it reaches the stop criterion. Figures 5 
and 6 represent the pseudocode and the flowchart of the 
proposed PSO algorithm, respectively.

4.4  Invasive weed optimization (IWO) algorithm

IWO was introduced by Mehrabian and Lucas (2006), and 
inspired by the colonization behavior of weeds. The perfor-
mance of IWO in solving many optimization problems has 
been taken into consideration by many researchers due to 
its specific characteristics such as spatial dispersal of plants, 
reproductive traits, and competitive exclusion (Abu-Al-Nadi 
et al. 2013). Besides, the efficiency and effectiveness of IWO 
have been measured in many recent works. For example, 
Niknamfar and Niaki (2018) solved their proposed model by 
the use of GA and IWO algorithms, concluding IWO accom-
plishes better than GA. Jahangir et al. (2019) applied both GA 

(30)Vk+1
i

= wVk
i
+ c1r1

(
pk
i
− xk

i

)
+ c2r2

(
gk − xk

i

)
,

(31)xk+1
i

= xk
i
+ Vk+1

i
.

(32)TF
(
Vk
i

)
=

{
(

Vk
i

0.5Vmax

)
2

if Vk
i
< 0.5Vmax

1ifVk
i
> 0.5Vmax

.

(33)xk+1
i

=

{ −

xk
i
if rand < TF

(
Vk
i

)
xk
i
otherwise

,

and IWO to solve their MINLP model that results indicate 
IWO has better convergence than GA. Goli et al. (2019) have 
proposed IWO algorithm for solving a multi-objective prob-
lem, and compared the obtained results from IWO with a non-
dominated sorting genetic algorithm. The results in IWO are 
more favorable in terms of computational time and accuracy. 
Rahmani et al. (2020) utilized several metaheuristic algorithms 
among which IWO Performs better than others.

According to the above investigation, IWO algorithm is 
applied to solve the proposed MINLP model in this paper. 
The steps of IWO algorithm will be described in detail in the 
following and the related pseudocode is given in Fig. 7.

4.4.1  Initialization

First, a certain number of seeds are randomly generated to 
spread out over the search area in the feasible solution space.

4.4.2  Reproduction

Each weed reproduces a certain number of seeds based on its 
fitness. The number of seeds ( wi ) is calculated with respect to 
the best obtained fitness ( Fbest ), worst obtained fitness ( Fworst ), 
minimum allowed number of seeds ( Smin) , maximum allowed 
number of seeds ( Smax) , and its fitness value (Fi) . That is pre-
sented in Eq. (34).

4.4.3  Spatial dispersal

In this step, each newly generated seed should be dispersed 
over the feasible search space which is near the current 
weed using a normal distribution (N(0, �2 ). In this context, 
moves start from the initial standard deviation ( �init ) and 
reduce to the final value ( �final ). This non-linear motion is 
calculated based on Eq. (35) to perform the current stand-
ard deviation in each iteration ( �current).

where itermax is the maximum number of iterations, and n is 
the nonlinear modulation index.

4.4.4  Competitive exclusion

Finally, the abovementioned steps are repeated for building 
a union colony of weeds and eliminate undesirable solu-
tions until the maximum number of iteration is reached. 
Besides, to generate discrete solutions by IWO algorithm, 
obtained solutions should round off to the nearest discrete 

(34)wi =
Fi − Fworst

Fbest − Fworst

(
Smax − Smin

)
+ Smin.

(35)�current =
(itermax − iter)n

(itermax)
n (�init − �final) + �final,
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values. For the binary invasive weed optimization, we uti-
lized the procedure proposed by Veenhuis (2010). Figure 8 
shows the flowchart of IWO algorithm.

5  Numerical experiments

In this section, numerical test problems are presented with 
different sizes to depict the performance of the proposed 
algorithms and the application of the new CLSC model. 
Parameters are randomly generated in a predefined interval 
based on the experience of experts and related papers such 
as Yazdian et al. (2016) that can be seen in Tables 3 and 4. 
Two sets of test problems are proposed to evaluate the per-
formance of the model under the different parameters of the 

Weibull distribution function, and the interval of uncertainty 
for the average product lifetime.

For the small size in both sets, the model is executed 
by GAMS 27.2.0 software using BARON solver proposed 
for MINLP model to validate solutions obtained by IWO, 
PSO, and GA algorithms (See Appendix 2). The small size 
instances include {(4, 4), (4, 5), (5, 5), (5, 6)} for installation 
capacity, and time period indices. Then for the medium and 
large sizes of instances, the model is executed ten times for 
each test problem by MATLAB 2016 software and used a 
computer with Core i7 CPU and 8 GB RAM. The medium 
and large sizes of the test problems include {(6, 6), (6, 7), 
(6, 8), (6, 9), (7, 9), (7, 10), (7, 10), (7, 11), (7, 12), (7, 15), 
(7, 16), (7, 17)} for the installation capacity and time period 
indices.

Fig. 5  Pseudocode for the proposed PSO algorithm
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Fig. 6  Flowchart of PSO algorithm
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The validation procedure is designed for the small scale 
and results are summarized in Table 5.

In these cases, the optimal objective values are obtained 
from BARON solver with increasing computational time and 
an average of 656.17 s, while for three GA, PSO, and IWO 
are 19.49, 9.45, and 42.71 s, respectively. Furthermore, the 
percentage relative error (PRE) is used to compare the solu-
tion quality of applied aforementioned metaheuristic algo-
rithms with their corresponding optimal values.

where SOLM and SOLO are objective function values 
obtained from solving each test problem by any metaheuris-
tic algorithm, and its corresponding optimal values obtained 
from BARON solver. In this regard, the results show the 
average PRE values for GA, PSO, and IWO are 0.04, 0.07, 
and 0.04, respectively. There are no significant differences 
between applied algorithms and their corresponding opti-
mal values. Therefore, it can be confirmed that good quality 

(36)PRE = 100 ×
SOLO − SOLM

SOLO
,

solutions are obtained from each algorithm in small size test 
problems. Since the problem cannot be solved in reason-
able computational time for the medium and large sizes of 
instances, metaheuristic algorithms are used, and compared 
in terms of objective function values and required CPU-
times. For this purpose, the RPD values are calculated from 
Eq. (37) for each algorithm.

where SOLM denotes the objective function value obtained 
from solving each test problem by each proposed metaheuris-
tic algorithm and SOLbest is the best of them. Also,COMM 
and COMbest are the computational times for each algorithm 
and the minimum computational time among them.

5.1  Parameter setting and calibration

The Taguchi method is applied for calibration of the main 
parameters in metaheuristic algorithms and was used in 

(37)

RPD = 70%

(
SOLbes − SOLM

)
SOLbest

+ 30%

(
COMM − COMbest

)
COMbest

,

Fig. 7  Pseudocode for the proposed IWO algorithm
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Fig. 8  Flowchart of IWO algorithm
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many recent research papers. This method designs based 
on orthogonal arrays to deal with noise and control factors 
with less number of experiments compared to full experi-
ments. Therefore, signal to noise (S∕N) ratio is applied 
to applicably calibrate the parameters of suggested algo-
rithms and is calculated from Eq. (38) with the aim of 
maximizing the (S/N) ratio.

where Y is the response variable and n is the number of 
orthogonal arrays.

(38)(S∕N) = −10log

(
S
(
Y2

)
n

)
,

Thereafter, (S/N) ratios are calculated by Minitab soft-
ware for GA, PSO and IWO algorithms. Based on the 
obtained results, L9,L9 , and L27 designs are performed 
for GA, PSO and IWO algorithms, respectively. (See 
Appendix 3).

Figures 9, 10 and 11 show S/N ratio plots for GA, PSO, 
and IWO algorithms, respectively. The optimal levels of all 
parameters are reported in Table 6.

Table 7 illustrates the average values of the objective 
function and computational time obtained from solving ten 
times each instance employing the metaheuristic algorithms. 
The results are graphically compared and can be seen in 

Table 5  Description of the notations

Indices Description

t Index of the periods, where t = {1, 2,… ,T}

i Index of periods, where i = {1, 2,… ,T}

j Index of the additional capacity that can be installed in the production line, where 
j = {1, 2,… , J}

Parameters Description

d Base demand for repaired products
k Base return rate of used products
y Positive real number for the non-linear function of return rate
� Scale parameter of Weibull distribution
� Shape parameter of Weibull distribution
� Positive real number for the non-linear function of demand
� Positive real number for the non-linear function of demand
� Positive real number for the non-linear function of return rate
a Parameter of the uniform distribution related to the age of products
b Parameter of the uniform distribution related to the age of products
At Cost of manufacturing the new products in period t
xm A parameter related to upgrading the age of returned products after the repair process
Cjt Cost of installing the additional capacity j in period t
ht Inventory holding cost in period t
Dmt Demand for new products in period t
Acj The quantity of additional capacity that can be installed in the production line
M Maximum available capacity

Variables Description

Qt Production quantity in period t
yjt Binary variable equals one if the additional capacity j is installed in period t
vt Acquisition cost of the used products in period t
pmt Price of selling the new products in period t
prt Selling price of the repaired products in period t
It Number of returning the used products from period t
ISt The total inventory of new and repaired products at the beginning of period t  (IS1 = 0)

IFt The total inventory of new and repaired products at the end of period t
Tt The length of the production process in period t
w The length of the warranty period
x Stochastic variable denoting the initial age of products
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Figs. 12 and 13. In this respect, the computational time takes 
28.11, 13.8, and 87.13 s for GA, PSO, and IWO, respec-
tively. That indicates PSO outperforms GA and IWO in 
terms of computational time. While average objective func-
tion values for GA, PSO, and IWO are equal to 1,483,763, 
1,464,912, and 1,486,073, respectively. The results illustrate 
that IWO performs better than others in terms of objective 
function values.

Table 8 shows the average values of RPDs based on the 
objective function values and computational times under the 
weights of 0.7 and 0.3, respectively. The results return the 

average RPDs for GA, PSO, and IWO which are 78.76, 3.59, 
and 154.21, respectively.

To evaluate the performances of the proposed algorithms 
and compare them in terms of both objective function values 
and computational times, first, the normality of all RPDs 
were checked by the Anderson–Darling test. In all cases, 
at the 0.05 significance level, the normality of metrics 
was not rejected. Then “One-Way Analysis of Variance” 
(ANOVA) was applied. The results were summarized in 
Table 9, wherein the null hypothesis of equality of the mean 
of RPDs was investigated at the 0.95 confidence level. The 

Fig. 9  S/N ratio plots of GA

Fig. 10  S/N ratio plots of PSO
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results indicate that P-Value was obtained zero which was 
less than the significance level (0.05). That means there are 
significant differences between the obtained results from 
used algorithms.

In order to compare the algorithms pairwise, Tukey’s 
comparison test was utilized. The results are reported in 
Table 10 showing significant differences. Accordingly, PSO 
superiorly performed better than IWO and GA.

5.2  Sensitivity analysis

The results in Table 10 indicate that the PSO outperformed 
GA and IWO in terms of objective function values and 
required CPU-times. Hence, PSO is used for sensitivity 
analysis of the main parameters for an instance with 6 avail-
able installation capacities and 9 time periods. Therefore, 
20% decreasing and increasing are performed on the param-
eters at one time when the others remain constant. These 
parameters are the lower and upper bounds of product’s age 
( a and b ), parameter to upgrade the age of returned products 

Fig. 11  S/N ratio plots of IWO

Table 6  The first set of the 
numerical test problems

Instances � = 1� = 2� = 1y = 0.8� = 2xm = 0.9� = 0.3a = 5b = 10

(j, t) At Cjt ht Pmt Acj

1 (4, 4) [100, 200] [150,800] [100, 200] [200,400] [200,250]
2 (4, 5) [100, 200] [150,800] [100, 200] [200,400] [200,250]
3 (5, 5) [100, 200] [150,800] [100, 200] [200,400] [200,250]
4 (5, 6) [100, 200] [150,800] [100, 200] [200,400] [200,250]
5 (6, 6) [100, 200] [150,800] [100, 200] [200,400] [200,250]
6 (6, 7) [100, 200] [150,800] [100, 200] [200,400] [200,250]
7 (6, 8) [100, 200] [150,800] [100, 200] [200,600] [200,250]
8 (6, 9) [100, 200] [150,800] [100, 200] [200,600] [200,250]
9 (7, 9) [100, 200] [200,1000] [100, 200] [200,600] [200,250]
10 (7, 10) [100, 200] [200,1000] [100, 200] [200,600] [200,250]
11 (7, 11) [100, 200] [200,1000] [100, 200] [200,600] [250,300]
12 (7, 12) [100, 200] [200,1000] [100, 200] [200,600] [250,300]
13 (7, 15) [100, 200] [200,1000] [100, 200] [200,600] [250,300]
14 (7, 17) [100, 200] [200,1000] [100, 200] [200,600] [250,300]
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Table 7  The second set of the 
numerical test problems

Instances � = 2� = 2� = 1y = 0.5� = 2.6xm = 0.6� = 0.215a = 5b = 10

(j, t) At Cjt ht Pmt Acj

15 (5, 5) [100, 200] [100,250] [100,150] [100,200] [50,150]
16 (5, 6) [100, 200] [100,250] [100,150] [100,200] [50,150]
17 (6, 6) [100, 200] [100,250] [100,150] [100,200] [50,150]
18 (6, 7) [100, 200] [100,250] [100,150] [100,200] [50,150]
19 (6, 8) [100, 200] [100,250] [100,150] [100,200] [50,150]
20 (6, 9) [100, 200] [150,300] [100,150] [100,300] [50,150]
21 (7, 9) [100, 200] [150,300] [100,200] [100,300] [100,200]
22 (7, 10) [100, 200] [150,300] [100,200] [100,300] [100,200]
23 (7, 11) [100, 200] [150,300] [100,200] [100,300] [150,300]
24 (7, 12) [100, 200] [150,300] [100,200] [100,300] [150,300]
25 (7, 15) [100, 200] [200,300] [100,200] [100,300] [150,300]
26 (7, 16) [100, 200] [200,300] [100,200] [100,300] [150,300]
27 (7, 17) [100, 200] [200,300] [100,200] [100,300] [150,300]

Fig. 12  Comparison of the 
values of the objective function 
between three metaheuristic 
algorithms

Fig. 13  Comparison of required 
CPU-time between three 
metaheuristic algorithms
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( xm ), maximum available capacity ( M ), cost of manufactur-
ing new products ( At ), inventory holding cost ( ht ). Figure 14 
illustrates how the changes in parameters affect objective 
function values.

In the following, observations are derived from sensitiv-
ity analysis:

• Lower bound of products age ( a ): A 20% decrease in 
parameter a affects the profits from the repair process and 
total warranty costs. Decreasing in parameter a causes a 
29% increase in profits obtained by the repair process and 
a 35% increase in total warranty costs. Besides, a change 
in parameter a can indirectly affect the acquisition costs 
with significant changes.

• Upper bound of products age ( b ): The efficiency of a 
20% increase in the parameter b is more evident in prof-
its obtained from the repair process and total inventory 
costs. Wherein, this increase leads to a 7% decrease in 
total inventory holding costs and a 3% increase in profits 
from the repair process. Moreover, a 20% decrease in 
parameter b can lead to a significant reduction in total 
warranty costs which is approximately 43%, and also a 
59% reduction in acquisition costs.

• The parameter of upgrading the returned products ( xm ): 
A 20% decrease in xm would increase profits obtained 
from the repair process and increase the acquisition costs 
and warranty costs.

• Maximum available capacity ( M ): Changes in parameter 
M have significantly direct effects on the inventory hold-
ing costs. Also, a 20% increase in M affects manufac-
turing costs, installation; wherein, installation costs are 
reduced, and total manufacturing costs are increased.

• Cost of manufacturing new products ( At ): Changes in 
At have significant effects on inventory holding costs. A 
20% increase in At leads to a 29% decrease in inventory 
holding costs. Also a 20% increase in At leads to a 18% 
increase in total manufacturing costs.

• Inventory holding cost ( ht ): A 20% increase in ht leads 
to a 42% decrease in total inventory holding costs.

The sensitive parameters regarding the proposed model 
are the inventory holding cost and the acquisition cost 
and the least sensitive parameter is the production cost. 
Finally, the changes in the objective function values are 
evaluated and presented in Tables 11 and 12.

The objective values are moderately sensitive by 
changing the parameters b , a , and xm . Furthermore, the 
other changes slightly affect the objective function values.
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Table 9  Optimal levels of all parameters for GA, PSO and IWO algorithms

Algorithms Abbreviations of 
parameters

Full names of parameters Level of parameter Optimal Level

Level 1 Level 2 Level 3

GA Pc

Pm

Npop

Max iteration

Percentage of crossover
Percentage of mutation
Number of population
Maximum iteration

0.65
0.1
30
1.2*N

0.75
0.15
60
1.5*N

0.8
0.25
90
2*N

0.8
0.15
90
1.2*N

PSO C1

C2

W

N − pop

Max iteration

Cognitive acceleration coefficient
Social acceleration coefficient
Inertia weight
Number of particles
Maximum iteration

1
1
0.6
100
N/5

1.49
1.49
0.73
150
N/4

2
2
0.9
250
N/3

1.49
2
0.6
150
N/3

IWO N − pop

N − pop0
Smax

Smin

Max iteration

Number of population
Initial population size
Maximum number of seeds
Minimum number of seeds
Maximum iteration

80
60
10
1
Npop0∕4

100
70
15
3
Npop0∕3

120
90
20
5
Npop0∕2

80
60
20
3
Npop0∕2

Table 10  Comparative results to assess the performance of GA, PSO, and IWO

problem no GA PSO IWO

Objective value CPU-time(s) Objective value CPU-time(s) Objective value CPU-time(s)

1 231,670 16.789 231,678 8.128 231,670 29.766
2 280,960 19.304 280,952 9.161 281,012 34.019
3 485,088 20.725 484,991 10.065 485,019 27.919
4 461,468 22.096 461,419 10.468 461,610 37.969
5 703,522 22.848 708,444 11.577 709,720 41.584
6 805,982 23.704 788,810 8.245 828,958 38.087
7 855,060 24.646 862,529 11.774 842,900 46.916
8 1,005,020 27.436 1,006,769 10.928 1,009,261 49.482
9 1,024,549 27.582 1,016,821 11.16 1,026,897 60.902
10 1,179,038 29.085 1,167,032 14.099 1,176,644 75.915
11 1,327,583 31.092 1,329,313 15.418 1,331,346 81.493
12 1,341,744 33.261 1,317,601 16.224 1,318,040 93.952
13 3,989,886 38.239 4,058,850 19.862 3,671,282 79.955
14 5,010,856 44.844 5,032,503 21.962 4,976,582 290.988
15 158,956 17.571 158,693 8.904 158,715 60.183
16 234,574 20.441 234,663 9.983 234,870 66.426
17 254,567 19.735 237,759 11.995 293,516 72.677
18 363,988 23.762 316,177 10.552 385,829 76.238
19 437,974 23.155 415,559 12.029 410,913 77.466
20 639,265 26.809 511,698 13.129 620,746 67.478
21 557,537 28.783 510,632 13.178 580,666 79.35
22 749,519 29.494 620,208 14.445 695,903 131.977
23 756,231 32.06 643,402 15.232 841,141 134.245
24 731,067 33.996 721,981 16.896 741,198 145.126
25 4,549,646 36.178 4,265,848 18.456 4,302,758 146.623
26 5,436,489 40.3 5,911,458 19.721 5,952,444 149.245
27 6,489,376 45.133 6,256,835 17.608 6,554,320 156.646
Average 1,483,763 28.11 1,464,912 13.38 1,486,073 87.13
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6  Managerial insights

In manufacturing industries, the increasing amount of 
waste of used products with different types and quality has 
been a concern for companies. Broadly, many discarded 
products are of satisfactory quality throughout their return 
life cycle that can be reused after some recovery process. 
Repairing products is a process to transform products 
into the working condition that may bring profitability 
and sustainability for supply chains. There are several 
approaches carried out to upgrade the repairable prod-
ucts and put them into the functional states, among which 

the virtual age approach can be used to extend the life of 
products (Pérez Ramírez and Utne 2013). By applying this 
approach, the age of products decreases after each upgrade 
action. That means the repair process can extend the dura-
bility of defective products even with quality degradations. 
This approach can be applied in electronic industries espe-
cially for wearing-out systems (Dijoux 2009). Although 
the repair process makes some discarded products reus-
able, they are not as good as new products. Therefore, 
it is necessary to determine a proper strategy as a key 
for motivating customers to buy second-hand products. 
Offering a proper warranty policy and product price can be 

Fig. 14  The changes in the 
different terms of the objective 
function values obtained from 
the sensitivity analysis of the 
main parameters
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considered as effective strategies to increase demands and 
bring profits to the system, simultaneously (Tables 13, 14).

On the other hand, there are some other critical fac-
tors affecting the performance of a CLSC problem. Inven-
tory management is one of the critical challenges owing 
to increasing obsolete products and declining values of 
them that can efficiently control the flows of the forward 
and backward chain (Gan et al. 2017). To obtain optimal 
flows in a CLSC, not only a proper control and manage-
ment of inventories should contribute to this aim, but also 
the production capacity planning needs to be optimized.

All these raised issues have been investigated in this 
paper. To do this, a multi-period CLSC problem has been 
proposed with the aim of maximizing the system prof-
its considering inventory management and production 
capacity planning. Besides, a warranty period and price-
dependent demand were suggested in a non-linear formula 
to be more adapted to real situations. To model the return 
rate of used products, a nonlinear expression was proposed 
depending on the acquisition costs and age of returns. In 
this paper, a virtual age approach was utilized to approxi-
mate the age of returns after each upgrade action. These 
would be valuable for managing a CLSC problem by 
recovering used products under satisfactory quality.

7  Conclusion and future directions

In this paper, a multi-period closed-loop supply chain is 
proposed with the aim of maximizing the total profit of the 
system. It is assumed that the reused products will be recov-
ered until they pass the desired qualification.

Owing to the virtual age of the product, a new product has 
an initial age by uniform distribution, and if it breaks down 
in this period of time, it will be repaired to upgrade its age. 
In this case, the company has the ability to meet customer 
demands for the repaired products.

Moreover, in this paper, demands are defined as a nonlinear 
function of the selling price and the warranty length period, 
and the rate of returns is as a nonlinear function of acqui-
sition cost and age of products. The aim of this paper is to 
make appropriate decisions on the number of times that used 

Table 11  Comparative RPDs to assess the performance of GA, PSO, 
and IWO

Problem No GA PSO IWO
RPD RPD RPD

1 74.591 0 79.867
2 77.509 0.0149 81.404
3 74.138 0.014 53.226
4 77.766 0.029 78.814
5 68.412 0.1259 77.758
6 132.078 3.3902 108.582
7 76.788 0 91.134
8 105.869 0.1728 105.84
9 103.074 0.6868 133.715
10 74.404 0.7128 131.675
11 71.247 0.1069 128.567
12 73.508 1.2596 144.964
13 65.276 0 97.45
14 73.061 0 368.266
15 68.137 0.1158 172.879
16 73.368 0.0617 169.617
17 49.15 13.2974 151.768
18 89.331 12.6368 186.749
19 64.745 3.5825 167.523
20 72.938 13.9687 126.216
21 84.087 8.4427 150.642
22 72.927 12.0768 249.103
23 80.363 16.4559 234.401
24 71.255 1.8149 227.681
25 67.216 4.3665 212.132
26 75.646 0.482 197.035
27 109.722 3.1771 236.889
Average 78.7632 3.59228 154.219

Table 12  Results of One-Way Analysis of Variance (ANOVA) to 
compare GA, PSO, and IWO

Source DF Adj SS Adj MS F-Value P-Value

Algorithm 2 306,292 153,146 88.42 0.000
Error 78 135,103 1732
Total 80 441,395

Table 13  Results of Tukey’s 
comparison test

Difference of levels Difference 
of means

SE of difference 95% CI T-value Adjusted P-value

PSO–GA − 75.2 11.3 (− 102.2, − 48.1) − 6.64 0.000
IWO–GA 75.5 11.3 (48.4, 102.5) 6.66 0.000
IWO–PSO 150.6 11.3 (123.6, 177.7) 13.30 0.000
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products can be returned to the system, the warranty contract 
for products, selling prices, and production quantity. For this 
purpose, additional capacity can be installed to maximize the 
production capacity of the plant. Owing to the complexity of 
the proposed MINLP model, we applied three metaheuristic 
algorithms GA, PSO, and IWO. Afterward, numerical exam-
ples are executed by using MATLAB software. The results of 
methods are compared in terms of the objective function val-
ues and required CPU-time. By applying the RPDs, the results 
of the objective function and CPU-time are normalized and 
weighted. Then, ANOVA is used to evaluate the best perform-
ing methods by testing the null hypothesis which is equality 
of the mean of RPDs for methods. In this problem, PSO has 
the best performance compared with other applied methods. 
Finally, sensitivity analysis is done to show the effects of the 
main parameters of the problem on the value of the objective 
function to obtain some managerial insights. The results in 
the sensitivity analysis revealed that the objective values are 
moderately sensitive by changing the lower and upper bounds 
of the age of products and their upgrading level.

For future directions, the following suggestions can be 
undertaken:

• Considering discounts to motivate customers to bring back 
their used products.

• Extending multi-level CLSC problem including collector, 
retailers, etc.

• Considering the environmental and social impacts of the 
proposed CLSC problem.

• Considering uncertain conditions in some parameters of 
the model such as the capacity of production.

• Modeling the shortages can be considered as an interesting 
modification to more adapt to different situations.
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Table 14  The obtained results from sensitivity analysis

Parameters Change rate Objective function value GAP%

Changed values Before the 
changes

b 20% 1,080,677 1,063,754 1.59
− 20% 1,034,105 1,063,754 − 2.78

a 20% 1,036,866 1,063,754 − 2.52
− 20% 1,086,057 1,063,754 2.09

xm 20% 1,049,254 1,063,754 − 1.36
− 20% 1,082,709 1,063,754 1.78

M 20% 1,066,400 1,063,754 0.248
− 20% 1,045,796 1,063,754 − 1.68

At 20% 1,054,094 1,063,754 − 0.90
− 20% 1,075,185 1,063,754 1.07

ht 20% 1,061,629 1,063,754 − 0.19
− 20% 1,077,662 1,063,754 1.30
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Appendix 2

In order to solve the model by GAMS software using 
BARON solver, it should be noted that It is an integer vari-
able and must be transformed into a parameter. For that, we 
proposed the following procedure:

where xit is an auxiliary variable; equals 1 if produced prod-
ucts in period i can be returned and repaired in period t.

t − i − 1 ≤ It + Bigxit∀i, t

kv�
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Appendix 3

Tables 1, 2 and 3 express the obtained results from imple-
menting L9 , L9 and L27 designs GA, PSO and IWO algo-
rithms, respectively.

Table 1  Detailed information about S/N ratios for GA

Run order Pc Pm NPop Max-
iteration

Response(RPD) 
(S/N)

1 1 1 1 1 3.326
2 1 2 2 2 0.239
3 1 3 3 3 0.285
4 2 1 2 3 2.528
5 2 2 3 1 0.096
6 2 3 1 2 3.193
7 3 1 3 2 0.357
8 3 2 1 3 0.898
9 3 3 2 1 0.000

Table 2  Detailed information 
about S/N ratios for PSO

Run Order C1 C2 W Max-iteration Npop Response(RPD) 
(S/N)

1 1 1 1 1 1 0.0290
2 1 1 1 1 2 0.1046
3 1 1 1 1 3 0.0107
4 1 2 2 2 1 0.0407
5 1 2 2 2 2 0.0145
6 1 2 2 2 3 0.0094
7 1 3 3 3 1 0.1593
8 1 3 3 3 2 0.0240
9 1 3 3 3 3 0.0000
10 2 1 2 3 1 0.0714
11 2 1 2 3 2 0.0135
12 2 1 2 3 3 0.0094
13 2 2 3 1 1 0.3194
14 2 2 3 1 2 0.0404
15 2 2 3 1 3 0.0117
16 2 3 1 2 1 0.0309
17 2 3 1 2 2 0.0006
18 2 3 1 2 3 0.0098
19 3 1 3 2 1 0.1397
20 3 1 3 2 2 0.0477
21 3 1 3 2 3 0.0135
22 3 2 1 3 1 0.0499
23 3 2 1 3 2 0.0107
24 3 2 1 3 3 0.0094
25 3 3 2 1 1 0.0483
26 3 3 2 1 2 0.0698
27 3 3 2 1 3 0.0101
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