
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2022) 13:849–865
https://doi.org/10.1007/s12652-021-02938-y

ORIGINAL RESEARCH

Req‑WSComposer: a novel platform for requirements‑driven
composition of semantic web services

Maha Driss1,2 · Safa Ben Atitallah1 · Amal Albalawi2 · Wadii Boulila1,2

Received: 12 February 2020 / Accepted: 28 January 2021 / Published online: 17 February 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
Service-Oriented Computing (SOC) describes a specific paradigm of computing that utilizes Web services as reusable com-
ponents in order to develop new software applications. SOC allows distributed applications to work together via the Internet
without direct human intervention. In this work, we propose a new SOC-based approach to ensure application development.
This approach ensures the discovery, selection, and composition of the most appropriate Web services. With this approach,
various requirements (both functional and non-functional) are specified by the developer to satisfy QoS, QoE, and QoBiz
parameters and Web services are selected and composed to meet these requirements. Our approach is implemented using
the Req-WSComposer (Requirements-based Web Services Composer) platform, whose functionalities are tested using an
extended and enriched version of the OWLS-TC dataset, which includes around 10,830 semantic Web services descrip-
tions. The results of our experiments demonstrate that the proposed approach enables users to extract the most appropriate
composition solution that satisfies the developer’s pre-determined requirements.

Keywords  Service-oriented computing · Web services composition · Quality of service (QoS) · Quality of experience
(QoE) · Quality of business (QoBiz)

1  Introduction

The emergence of Service-Oriented Computing (SOC)
(Papazoglou and Van Den Heuvel 2007; Papazoglou et al.
2010) characterized a momentous shift in the history of the
Internet. Prior to SOC, the Internet was imagined primarily
as a vector enabling various forms of data exchange. With
SOC, though, the Internet began moving toward an open
platform that supported Web services—software compo-
nents that were self-described, loosely coupled, and easily
integrated with one another. The main goal of Web service
technologies is to permit distributed applications to inter-
operate together using the available standardized Internet
protocols and languages and without direct human inter-
vention (Papazoglou 2012). Through the opportunities for
inter-operability that they offer, Web services are now a

central focus for multiple technological and industrial actors
in different fields ranging from e-commerce to e-learning,
e-government, and more (Papazoglou and Van Den Heuvel
2007; Papazoglou 2012).

To ensure the development of distributed software
applications, SOC depends on the Service Oriented Archi-
tecture (SOA) and its associated standards (Papazoglou
et al. 2010). SOA standardization process is based on three
layers of basic infrastructure: a communication protocol, a
description specification, and ultimately, publication and
location specifications (Curbera et al. 2002). SOA is a
means of structuring and reorganizing distributed software
applications into a set of composed and interactive pre-
existing services. Web services composition (Sheng et al.
2014) is the most attractive opportunity offered by SOC
and SOA, since it presents real competitive advantages for
several technological and industrial actors by offering them
the possibility to ensure quick, and low-cost development
of distributed and collaborative software applications. The
service composition lifecycle (Sheng et al. 2014) consists
of collecting and assembling autonomous Web services to
achieve new functionalities by creating complex, value-
added service-based applications. This lifecycle begins

 *	 Wadii Boulila
	 wadii.boulila@riadi.rnu.tn

1	 RIADI Laboratory, National School of Computer Sciences,
University of Manouba, Manouba, Tunisia

2	 IS Department, College of Computer Science
and Engineering, Taibah University, Medina, Saudi Arabia

http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-021-02938-y&domain=pdf

850	 M. Driss et al.

1 3

with the requirements specification phase, followed by
the discovery and selection of the services that closely
fit the developer’s requirements, and finally concluding
with the orchestration/choreography of the selected ser-
vices. Functional requirements are implemented by the
operations provided by Web services, while non-functional
requirements can be categorized into three categories of
parameters (Metzger et al. 2010): the objective, the sub-
jective, and the business-related. These parameters in turn
influence the Quality of Service (QoS) (Kritikos and Plex-
ousakis 2009; Metzger et al. 2010) Quality of Experience
(QoE) (Van Moorsel 2001; Bocchi et al 2016), and Quality
of Business (QoBiz) (Van Moorsel 2001; Aljazzaf 2015),
respectively.

In the literature, many studies have addressed the prob-
lem of Web service composition by offering different lan-
guages/specifications (e.g., BPEL (Alves et al. 2007), WS-
CDL (Kavantzas et al. 2005), and BPEL4Chor (Decker
et al. 2007)), and formalisms (e.g., Petri nets (Shijie et al.
2020; Zhou et al. 2020), timed automata (Hammal et al.
2020; Siavashi et al. 2016), and process algebras (Rai et al.
2015; Zhu et al. 2017)). Each of these works adopts a func-
tion-centered vision for the composition lifecycle. Con-
cerning non-functional requirements, existing works focus
on the different parameters (i.e., objective, subjective, and
business-related) separately or neglect coupling them with
functional requirements. However, in order to ensure the
efficient development of service-based applications and
to enhance the satisfaction of the various collaborating
actors, it is essential to adopt a coupling approach that
involves both functional and non-functional requirements.

In this work, our goal is to develop a new requirements-
driven approach that will ensure the discovery, selection,
coordination, and execution of the most appropriate Web
services available. The discovery of Web services will
consider functional requirements and the selection will be
based on the three parameters of non-functional require-
ments discussed above (objective, subjective, and busi-
ness-related). The proposed approach will be implemented
using the Req-WSComposer (Requirements-based Web
Services Composer) platform in order to satisfy devel-
oper requirements by building effective and high-quality
service-based applications. Our approach is tested using an
extended and enriched version of the OWLS-TC dataset,
which is composed of thousands of Web services.

The remainder of our paper is organized in the follow-
ing manner. In Sect. 2, the relevant literature is reviewed
and several gaps are identified. Next, in Sect. 3, a synopsis
of the proposed approach is presented. Then, in Sect. 4,
the experimentations and results are discussed. Finally,
Sect. 5 includes our conclusions and thoughts on possible
directions for future work.

2 � Related works

Automatic services composition is considered an open
research field involving various theories, techniques, and
standards (Sheng et al. 2014; Garriga et al. 2015). In the
literature, many attempts have been conducted focusing on
composition lifecycle phases separately [i.e., requirements
specification (Zolotas et al. 2017), discovery (Cheng et al.
2016), selection (Azmeh et al. 2011; Bagga et al. 2019),
and coordination and execution (Fadhlallah et al. 2017)]
without necessarily addressing problems or proposing
solutions related to the implementation of the composition
lifecycle as a whole. Our goal in this work is to provide a
holistic approach ensuring the alignment between the dif-
ferent phases of the Web services composition lifecycle in
order to obtain a new service-based application satisfying
both functional and non-functional requirements as speci-
fied in the first phase of the lifecycle. In the following sec-
tions, we will briefly discuss related research works that
focused on Web services composition.

In (Driss et al. 2010, 2011a), the authors present an
approach using the MAP formalism and the Intentional
Service Model (ISM) to elicit and specify which require-
ments a user would request, both functional and non-func-
tional. In these works, authors adopt a formal framework
called the Formal Concept Analysis (FCA) to ensure that
relevant and high-QoS Web services will be selected.
Compared to our approach, these works focus only on
objective parameters related to the service quality, which
are described in terms of QoS properties, and they neglect
subjective and business-related quality parameters. Also,
the authors, in (Driss et al. 2010, 2011a), test their pro-
posed approach on pure syntactic WSDL-based services
and omit semantically described services, which are more
convenient for ensuring effective discovery and selection
of composable Web services.

In (Aznag et al. 2013), the authors propose a Web
services discovery and recommendation system to help
customers find services that match their various require-
ments, both functional and non-functional. Here, the most
important new concept is the application of Rules-Based
Text Tagging (RBTT) to generate a new Web services rep-
resentation, which omits insignificant information. This
work also proposes another Web service representation,
called Symbolic Reputation (SR), which describes the
service in its context (i.e., relationships with neighbors).
The obtained representations are used to study and discuss
their impact of use on Web service discovery and recom-
mendation. The proposed approach is experimented with
using single WSDL-based Web services to perform simple
operations such as predicting weather conditions, send-
ing/receiving SMS, and providing address information.

851Req‑WSComposer: a novel platform for requirements‑driven composition of semantic web services﻿	

1 3

However, the experimentation conducted in this paper
does not show composition scenarios. Besides, only QoS
and reputation properties are considered by the proposed
discovery and selection algorithm.

In (De Castro et al. 2014), the π-SODM platform is
presented as an extension of the Service-Oriented Devel-
opment Method (SODM) proposed in (De Castro et al.
2009). This platform supports Web services composition
according to both functional and non-functional require-
ments. The π-SODM includes non-functional specifications
through four metamodels: π-UseCase, π-ServiceProcess,
π-ServiceComposition, and π -PEWS (De Castro et al.
2014). Here, non-functional requirements are described as
being constraints that dictate processing and data, particu-
larly as specified by pre-determined rules and conditions that
must be verified during task execution. Two sets of rules are
proposed in this work: the first one is formed by "model-
to-model" rules of transformation, which are used to alter
"platform-independent" models into new "platform-specific"
models, and the second one is used to transform the resulting
"platform-specific" models into workable implementations.
The main limitation of this work is that only QoS parameters
are considered in the composition lifecycle and specifically
constraints related to security and privacy.

In Suchithra and Ramakrishnan (2015), Suchithra and
Ramakrishnan propose a new method allowing the ranking
of Web services by computing a relevancy function. Accord-
ing to this function, the selected Web services are ranked and
ordered. The proposed method allows for finding the best
available Web services for a given user request. Six param-
eters are considered to rank services, which are throughput,
response time, accessibility, availability, interoperability,
and cost. Experiments are conducted using a single Web
service to validate the e-mail address. Furthermore, these
experiments are carried out on pure syntactic WSDL-based
services. The coordination and execution phases of the com-
posed services are not presented in this paper.

Rodriguez-Mier et al. (2015) proposed a semantic Web
service discovery integrated with a composition framework.
The resulting combined framework relies on an analysis of
graph-based service compositions in order to discover the
optimal services that semantically match in terms of input/
output parameters. The proposed framework also integrates
a search algorithm that focuses on optimal compositions,
which allows for the extraction of a graph’s best composi-
tion, thus minimizing both the length and number of Web
services that are composed. Experimental results provided
in this paper demonstrate the strong capabilities and perfor-
mance of the proposed framework. Nevertheless, there are
still limitations, which include: (1) the selection phase is
merged with its discovery counterpart and is performed upon
fine-grained input/output queries, (2) the formulation of non-
functional requirements is missing, all required information

needed to conduct the discovery phase are sets of input and
output parameters, and finally (3) a validation in term of
user’s satisfaction is not provided.

Work (Bekkouche et al. 2017) proposed an integrated
framework for automated semantic Web services compo-
sition, this time with greater QoS awareness. Bekkouche
et al., use a "Harmony Search" (HS) algorithm to select the
optimum solution for a Web services composition. In this
work, the selected solutions are optimized in line with a set
of non-functional parameters, which include cost, availabil-
ity, reliability, reputation, and response time. In this paper,
service discovery is performed by computing a semantic
matching score between the input and output parameters of
services that are involved in the composition solution. This
semantic matching improves the discovery and selection of
relevant services, but it remains insufficient since it is per-
formed on WSDL specifications, which are purely technical
declarations.

In Khanouche et al. (2019), the authors propose a QoS-
aware services composition algorithm based on clustering,
which is able to reduce the composition time while ensur-
ing composition optimality. The algorithm starts by group-
ing the candidate services into different clusters using the
k-means method. Every cluster defines a QoS level as either
high QoS, middle QoS, or low QoS. Five QoS attributes
have been utilized including; response time, throughput,
availability, reliability, and cost. Using a new formulation
of the utility function, the unpromising candidate services
are eliminated. The next step is to filter the candidate ser-
vices and remove the ones with low QoS by exploiting the
lexicographic optimization method. Finally, using the ser-
vices that satisfy the QoS requirements, a search tree is cre-
ated to select the optimal composition. Comparing to other
approaches, the proposed algorithm obtains better results,
by finding an optimal solution in less time. Although the
fast execution time of this algorithm, it does not address the
development of new value-added service-based applications.

In Sangaiah et al. (2019), Sangaiah et al. develop a novel
approach for Web services composition based on the Bio-
geography-based optimization algorithm (BBO) taking into
account the user’s QoS constraints. The proposed algorithm
uses evolutionary optimization to choose the best Web ser-
vices in order to obtain a composition with good efficiency
and high accuracy. The BBO algorithm is employed to opti-
mize the services discovery phase by a repetitive improve-
ment of the candidate composition and with respect to the
QoS features and fitness function. Two different categories
of QoS features are introduced: (1) the positive features
including availability and reliability, and (2) the negative
features including cost and response time. Experiment
results demonstrate the efficiency of the presented algo-
rithm. Compared to other methods, the selected composi-
tion of services achieves the best QoS values. However, the

852	 M. Driss et al.

1 3

limitations of this study include the absence of subjective
non-functional requirements and the absence of validation
in terms of user satisfaction.

In Khanouche et al. (2020), the authors present a Flex-
ible QoS-aware Services Composition (FQSC) algorithm
that helps to increase the services composition feasibility,
reduce the composition time, and ensure the composition
optimality. FQSC algorithm consists of three main phases.
It starts by decomposing the global constraints of QoS, then
discovering the candidate services according to the user’s
QoS requirements, and finally selecting the near-to-optimal
services composition. Using a real dataset, the performance
of the proposed algorithm has been tested in different sce-
narios of service composition. The obtained results demon-
strate how the algorithm reduces the time of getting an opti-
mal service composition. However, only three QoS attributes
for each service are considered in the composition scenarios.

Driss et al. (2020) propose an approach based on Formal
Concept Analysis (FCA) and Relational Concept Analysis
(RCA) to compose semantic Web services. Services-based
applications are built by selecting Web services, which pro-
vide optimal quality properties. These properties are related
to QoS, QoE, and QoBiz. The proposed selection approach
is semi-automated since the construction of contexts serv-
ing the FCA and RCA techniques is performed manually.
This fact doesn’t allow to measure the effectiveness of the
proposed selection approach in terms of the response time
of execution. Also, in this work, no alternative composition
solutions are provided in case there is no matching between
the user’s requirements and the existing discovered services.

In Rodríguez et al. (2020), the authors present an
approach allowing to estimate the values of the missing
QoS attributes of candidate services to ensure an optimal
composition as a result. To this end, the multivariate lin-
ear regression technique is explored. The evaluation of the
proposed approach is carried out by considering 9 QoS
attributes (e.g., response time, compliance, best practices,
documentation, latency, etc.) on a dataset consisting of more
than 2500 services. The missing values of the considered
QoS attributes are calculated using the Soft-Audit tool,
which performs statistical analysis on the service interface
to estimate its quality and complexity. This work focus only
on QoS attributes to ensure the composition of the optimal
services. Moreover, the experiments that are presented in
Rodríguez et al. (2020) are carried out on purely WSDL-
based services, while semantic services are omitted.

Hu et al. (2020) present a trustworthy Web service com-
position and optimization framework called TWSCO. This
framework is proposed to ensure the trust of the composite
services and the efficiency of the composition process. In
this work, the trust-based optimization problem is influenced
by 3 different factors, which are: the trust of the compo-
nent services, the trust of the interacting behaviors, and the

optimal binding schema obtained by composing the opti-
mal candidate services. Different QoS attributes are taken
into consideration to evaluate the trust of composite ser-
vices such as duration, reliability, and availability. Several
limitations can be distinguished in this work: (1) conducted
experiments are focusing on purely syntactic WSDL-based
services that are discovered by using a public search engine,
(2) the proposed framework is tested only on sequential or
simple composition topologies, and finally (3) the sets of
candidate services are relatively small.

Table 1 depicts a comparison of the literature discussed
above. This comparison is conducted based on seven cen-
tral criteria, which include: (1) the consideration of objec-
tive non-functional requirements, (2) the consideration of
subjective non-functional requirements, (3) the considera-
tion of business-related non-functional requirements, 4) the
techniques used to verify user satisfaction, (5) the identifi-
cation of alternative composition paths fulfilling the user’s
functional requirements, (6) the development, if any, of new
value-added service-based applications, and finally, (7) the
platform used to ensure the development of Web services
compositions.

Following the analysis laid out in Table 1, our work aims
to satisfy all of the criteria mentioned here through the
proposal of the Req-WSComposer platform. This platform
allows developing new, optimal, and value-added service-
based applications. Req-WSComposer offers the following
advantages:

1.	 the modeling of functional and non-functional user’s
requirements by using ontological descriptions;

2.	 the discovery of the semantic services that satisfy user’s
functional requirements by applying a four filters-based
matching algorithm;

3.	 the selection of optimal candidate services by consid-
ering various types of non-functional requirements
specified by objective, subjective, and business-related
parameters;

4.	 the suggestion of alternative composition paths by com-
puting the related fitness and penalty scores;

5.	 the verification of the user’s satisfaction by computing
the accuracy, the precision, and the response time of
the discovery algorithm and by providing the optimal
matching degrees of the selected composite services.

3 � Proposed approach

In this section, we present our approach allowing to
developing services-based applications by considering
the user’s requirements, both functional and non-func-
tional. This approach, which is implemented using the
Req-WSComposer platform, consists of four phases: (1)

853Req‑WSComposer: a novel platform for requirements‑driven composition of semantic web services﻿	

1 3

Ta
bl

e 
1  

C
om

pa
ris

on
 o

f t
he

 re
le

va
nt

 li
te

ra
tu

re

C
rit

er
ia

D
ris

s e
t a

l.
(2

01
0)

,
D

ris
s e

t a
l.

(2
01

1a
)

A
zn

ag
 e

t a
l.

(2
01

3)
D

e
C

as
tro

et

 a
l.

(2
01

4)

Su
ch

ith
ra

an

d
R

am
-

ak
ris

hn
an

(2

01
5)

Ro
dr

ig
ue

z-
M

ie
r e

t a
l.

(2
01

5)

B
ek

ko
uc

he

et
 a

l.
(2

01
7)

K
ha

no
uc

he

et
 a

l.
(2

01
9)

Sa
ng

ai
ah

et

 a
l.

(2
01

9)

K
ha

no
uc

he

et
 a

l.
(2

02
0)

D
ris

s e
t a

l.
(2

02
0)

Ro
dr

íg
ue

z
et

 a
l.

(2
02

0)

H
u

et
 a

l.
(2

02
0)

O
ur

 a
pp

ro
ac

h

O
bj

ec
tiv

e
no

n-
fu

nc
tio

na
l

re
qu

ire
-

m
en

ts
:

Q
oS

√
√

√
√

 ×
 

√
√

√
√

√
√

√ Tr
us

t
re

la
te

d
Q

oS

√

Su
bj

ec
tiv

e
no

n-
fu

nc
tio

na
l

re
qu

ire
-

m
en

ts
:

Q
oE

 ×
 

 ×
 

 ×
 

 ×
 

 ×
 

√
 ×

 
 ×

 
 ×

 
√

 ×
 

 ×
 

√

B
us

in
es

s
no

n-
fu

nc
tio

na
l

re
qu

ire
-

m
en

ts
:

Q
oB

iz

 ×
 

 ×
 

 ×
 

√
 ×

 
√

√
√

√
√

 ×
 

 ×
 

√

U
se

r s
at

-
is

fa
ct

io
n

ve
rifi

-
ca

tio
n

te
ch

ni
qu

e

√ re
ca

ll
an

d
pr

ec
is

io
n

fu
nc

tio
ns

,
Q

oS
 m

on
-

ito
rin

g
te

ch
ni

qu
e

√ re
co

m
m

en
-

da
tio

ns
,

W
eb

se

rv
ic

es

ra
nk

in
g

 ×
 

√ re
le

va
nc

y
fu

nc
tio

n

 ×
 

 ×
 

√ ex
ec

ut
io

n
tim

e,

co
m

po
-

si
tio

n
op

tim
al

-
ity

, a
nd

co

m
po

si
-

tio
n

sp
ac

e

 ×
 

√
√ re

ca
ll,

pr

ec
is

io
n,

an

d
Q

oS
m

on
ito

rin
g

 ×
 

 ×
 

√ Re
ca

ll,

pr
ec

is
io

n,

re
sp

on
se

tim

e
of

ex

ec
ut

io
n,

an

d
de

gr
ee

s
of

 m
at

ch
in

g
of

 c
om

po
s-

ite
 se

rv
ic

es
Id

en
tifi

ca
-

tio
n

of

al
te

rn
at

iv
e

co
m

po
si

-
tio

n
pa

th
s

 ×
 

 ×
 

 ×
 

 ×
 

 ×
 

√ C
om

pu
ta

-
tio

n
of

 fi
t-

ne
ss

 a
nd

pe

na
lty

fu

nc
tio

ns

 ×
 

 ×
 

co
m

po
si

-
tio

n
tim

e,

ut
ili

ty

va
lu

e,
 a

nd

PO
C

 si
ze

 ×
 

 ×
 

 ×
 

√ C
om

pu
ta

tio
n

of
 fi

tn
es

s
an

d
pe

na
lty

fu

nc
tio

ns

854	 M. Driss et al.

1 3

requirements specification phase, (2) discovery phase, (3)
selection phase, and (4) coordination and execution phase.
Figure 1 provides an overview of our approach complete
with its different phases.

3.1 � Requirements specification phase

The first phase in our approach is the requirements speci-
fication phase. During this phase, the user identifies a set
of functional and non-functional requirements that the final
product must fulfill. As briefly described above, the desired
non-functional requirements are categorized into three cat-
egories of parameters: objective, subjective, and business-
related, which in turn influence the Quality of Service
(QoS), the Quality of Experience (QoE), and the Quality of
Business (QoBiz) respectively. Considering non-functional
requirements in the composition lifecycle will produce effec-
tive and value-added services-based applications.

QoS (Metzger et al. 2010) is defined as a set of parameters
describing the behavior of Web services in terms of performance
parameters. Among these parameters, we can cite response time,
availability, scalability, and robustness. QoS parameters can be
grouped into two categories: measurable and non-measurable.
In this paper, we consider three measurable QoS parameters:
availability, throughput, and response time.

–	 Availability: describes a Web service capacity in terms of
execution and use (D’Mello and Ananthanarayana 2009).

–	 Response time: describes the total time required to dis-
patch a service request and obtain the service’s response
(D’Mello and Ananthanarayana 2009).

–	 Throughput: describes the maximum number of services
that the client can use in a specified time with a success-
ful response (D’Mello and Ananthanarayana 2009).

QoE (Bocchi et al 2016) is a measure of the end-to-end
performance of a whole system as both resulting and taken
from the user’s point of view. Therefore, QoE is an indicator
of how the system satisfies user needs.

To enhance the composition lifecycle in our approach, we
consider the following QoE parameters:

–	 Friendliness: defines whether and how the service is clear
and easy to use (D’Mello and Ananthanarayana 2009).

–	 Success rate: describes the percentage of attempts with
which a web service completes the requested opera-
tion successfully within the specified processing time
(D’Mello and Ananthanarayana 2009).

–	 Reputation: describes whether the service can be trusted
to fulfill promised functions; this indicator is obtained
from the aggregate of rankings provided by users who
have requested such functions from the service (D’Mello
and Ananthanarayana 2009).Ta

bl
e 

1  
(c

on
tin

ue
d)

C
rit

er
ia

D
ris

s e
t a

l.
(2

01
0)

,
D

ris
s e

t a
l.

(2
01

1a
)

A
zn

ag
 e

t a
l.

(2
01

3)
D

e
C

as
tro

et

 a
l.

(2
01

4)

Su
ch

ith
ra

an

d
R

am
-

ak
ris

hn
an

(2

01
5)

Ro
dr

ig
ue

z-
M

ie
r e

t a
l.

(2
01

5)

B
ek

ko
uc

he

et
 a

l.
(2

01
7)

K
ha

no
uc

he

et
 a

l.
(2

01
9)

Sa
ng

ai
ah

et

 a
l.

(2
01

9)

K
ha

no
uc

he

et
 a

l.
(2

02
0)

D
ris

s e
t a

l.
(2

02
0)

Ro
dr

íg
ue

z
et

 a
l.

(2
02

0)

H
u

et
 a

l.
(2

02
0)

O
ur

 a
pp

ro
ac

h

D
ev

el
op

-
m

en
t

of
 n

ew

va
lu

e-
ad

de
d

se
rv

ic
e-

ba
se

d
ap

pl
ic

a-
tio

ns

 ×
 

 ×
 

√
 ×

 
√

 ×
 

 ×
 

 ×
 

 ×
 

√
√

√
√

Pl
at

fo
rm

en

su
rin

g
th

e
de

ve
l-

op
m

en
t

of
 W

eb

se
rv

ic
es

co

m
po

si
-

tio
ns

 ×
 

√
√

 ×
 

√
 ×

 
 ×

 
 ×

 
 ×

 
 ×

 
 ×

 
 ×

 
Re

q-
W

SC
om

-
po

se
r

855Req‑WSComposer: a novel platform for requirements‑driven composition of semantic web services﻿	

1 3

Finally, QoBiz (Aljazzaf 2015) parameters describe the
financial aspects of service provisioning, such as the price
of service, the costs of service provisioning, the service pro-
visioning revenue, and the revenue per transaction. In our
work, the cost per transaction is deemed a central QoBiz

parameter because it represents the financial requirement(s)
of executing each required operation.

To specify functional and non-functional require-
ments, we use OWL-S, an Ontology Web Language
(OWL)-based service ontology intended to define the

Fig. 1   Proposed approach

856	 M. Driss et al.

1 3

characteristics and functionalities of Web services.
OWL-S is meant to provide a clear description of Web
services that allows them to be machine-interpretable.
Three main components are used to describe Web ser-
vices using OWL-S, which are: (1) service grounding,
(2) service model, and (3) service profile (Martin et al.
2004). The service grounding is responsible for the pro-
tocols, coordinating service usages by mapping with Web
services standards like WSDL and SOAP. The service
model explains the function, processes, and execution of
a Web service. The service profile delineates the service
function (i.e., what actions the service can perform and
what actions can help in the discovery phase).

The discovery of Web services is mainly performed by
considering information in the service profile component.
The latter is composed of human-readable parameters,
functionality description, and profile attributes. However,
non-functional requirements are not considered in this
component. Therefore, in our work, we propose extend-
ing the OWL-S service profile to include QoS, QoE, and
QoBiz parameters. We add a “Non-functional Require-
ments Description” element that includes the QoS, QoE,
and QoBiz parameters and their values. Figure 2 shows an
extended OWL-S profile component.

To ensure the discovery of Web services that satisfy
the specified requirements, we propose to convert the tex-
tual description of initial requirements into a semantic
description to be compared with the service profile in
the OWL-S file. The requirements specification includes
two parts: a functional requirements description and a
non-functional requirements description. The first part
describes the needed service operation, its input, and
its output. The second part includes the required value
and priorities of QoS, QoE, and QoBiz parameters. The
taxonomy of the requirement’s semantic description is
depicted in Fig. 3.

3.2 � Discovery phase

The services discovery phase aims to search for the appro-
priate Web services that match with functional requirements
specified by the developer. During this phase, we suggest a
new semantic matching algorithm to allow for quick and
efficient identification of Web services having high-match-
ing profiles with the developer’s functional requirements,
as specified in the operation name, input parameters, and
output parameters.

Figure 4 illustrates the matching between the require-
ment’s semantic description and the OWL-S specifica-
tions of candidate services. This matching is carried out as
follows:

–	 The operation name instance in the requirement’s description
is compared with the service name in the service profile.

–	 The input instance from the requirement description is
compared with hasInput in the service profile.

–	 The output instance from the requirement description is
compared with hasOutput in the service profile.

To perform this phase, we propose a semantic discov-
ery algorithm, which includes four filters. The first filter
extracts the Web services from the registry according to
the OWL-S file names. The similarity of each word in the
requested Web service name and the available OWL-S files
in the registry is computed. If the resulted value is more
than an empirical threshold, then this OWL-S file will be
added to the first list of matched services, which will be
passed later to the second filter. The second filter checks
the concept names in the domain ontologies described by
OWL files. The similarity between a concept name and
the service name entered by the user is calculated. If it is
greater than the threshold, the Web service will be added
to the second filter list, otherwise, the Web service will be
omitted. The third filter checks Web services names speci-
fied in the profile specification. If it matches the requested
service name, it will be added to the third list of matched
services. If not, it will be deleted from the list. Finally, the
fourth filter compares between desired input and output
parameters and existing ones described in OWL-S specifi-
cations. In our work, we consider five degrees of matching
as commonly explored in the relevant literature (Paolucci
et al. 2002). These degrees are listed below:

–	 Exact: the service input and output perfectly matched
the request, accounting for the logic-based equivalence
of their formal semantics.

–	 Subsume: the input matched with the request, but the
output is more specific than the requested one.

–	 Plug-in: the service output matched with the user
request. However, the service requires more inputs than
what is specified by the user and one of the service inputs
matches the requested input.

–	 Sibling: the service requires more inputs than what
is specified by the user and one of the service inputs
matches with the requested input. The output is more
specific than the requested one.

–	 Fail: there is no relatedness between the service output/
input and the requested ones.

All services in the third filter list will be checked. If the
matching degree is either Exact, Subsume, Plug-in, or
Sibling, the service will be passed. But, if the matching
degree is Fail, the service will be eliminated.

The implementation of our semantic discovery method is
depicted by algorithm 1.

857Req‑WSComposer: a novel platform for requirements‑driven composition of semantic web services﻿	

1 3

The discovered services will be ranked based on their
non-functional parameters in the next phase. In case there
are no services that match the developer’s request after
applying the discovery phase, the developer has to relax/
change his requirements as it is indicated in Fig. 1.

Fig. 2   Extended OWL-S profile integrating non-functional requirements description

Fig. 3   Requirements’ semantic description taxonomy

Fig. 4   Functional requirements matching

858	 M. Driss et al.

1 3

Algorithm 1: Semantic Discovery
Input: u_serv: user service names; serv_file_names: list of services’ file names; serv_names: list of services’ names u_in: user input; u_out: user
output; s_input: service input; s_output: service output; ont_names: class names of domain ontology, th: threshold
Output: Filter4List: list of functional matched services

1. Filter1List, Filter2List, Filter3List, Filter4List: lists of user service names
/* First filter process */

2. for all f_name in serv_file_names
3. sim= d(u_serv, f_name)
4. if (sim >= th) then
5. Filter1List.add(u_serv)
6. end if
7. end for

/* Start the second filter process */
8. for all serv in Filter1List
9. sim=d(serv,ont_names)
10. if (sim >= th) then
11. Filter2List.add(serv)
12. end if
13. end for

/* Start the third filter process */
14. for all serv in Filter2List
15. sim=d(serv, serv_names)
16. if (sim >= th) then
17. Filter3List.add(S)
18. end if
19. end for

/* Start the fourth filter process */
20. for all serv in Filter3List
21. sim_input = d(s_input, u_input)
22. sim_output = d(s_output, u_output)
23. if (count(s_input) =1) then
24. if ((sim_input >=th) and (sim_output >=th)) or ((sim_input >=th) and (u_output ∈ s_output)) then
25. Filter4List.add(serv)
26. end if
27. else if (count(s_input) >1) then
28. if ((sim_input >=th) and (count(s_input)=1) and (sim_output >=th)) or ((sim_input >=th) and (count(s_input)=1) and u_output ∈

s_output)) then
29. Filter4List.add(serv)
30. end if
31. end for

3.3 � Selection phase

The purpose of the services’ selection phase is to select
the optimal Web services from a set of candidate services
returned by the discovery phase. The selection is performed
by considering the developer’s non-functional requirements,
which include QoS (comprised of availability, response
time, and throughput), QoE (comprised of friendliness, suc-
cess rate, and reputation), and QoBiz (comprised of cost per
transaction) parameters. For each parameter, the developer
specifies a required value and sets a priority. The selection
is performed by comparing the required value in the require-
ments’ semantic description with the assigned value in the
non-functional requirements’ specification of each candi-
date service. This comparison allows to rank candidate ser-
vices according to the developer’s non-functional require-
ments requested values and priorities. Figure 5 presents the

non-functional requirements matching applied during the
selection phase.

To perform this matching, we first scale the values of each
quality parameter specified in the non-functional require-
ments specification. As is suggested in (Zeng et al. 2004),
negative parameters (e.g., response time and cost per trans-
action) are scaled according to Eq. (1), and positive parame-
ters (e.g., availability, throughput, friendliness, success rate,
and reputation) are scaled according to Eq. (2).

(1)V
i,j=

⎧
⎪⎨⎪⎩

Qmax
j

−Qi,j

Qmax
j

−Qmin
j

if Qmax
j

− Qmin
j

≠ 0

1 if Qmax
j

− Qmin
j

= 0

(2)V
i,j=

⎧
⎪⎨⎪⎩

Qi,j−Q
min
j

Qmax
j

−Qmin
j

if Qmax
j

− Qmin
j

≠ 0

1 if Qmax
j

− Qmin
j

= 0

859Req‑WSComposer: a novel platform for requirements‑driven composition of semantic web services﻿	

1 3

In the above equations, Qmax
j

 is the maximum value of a
quality parameter, while Qmin

j
 is the minimum value.

After that, we calculate a fitness function, which allows
quantifying the overall quality of each proposed composi-
tion solution according to Eq. (3) (Bekkouche et al. 2017).

where, PQk is the priority for each quality parameter k speci-
fied by the developer, and Qk are the scaled non-functional
requirements values of each parameter.

Composition solutions that do not meet exactly the devel-
oper quality constraints and can substitute the optimal com-
position are penalized using a static function F′ , as adopted
from (Lécué 2009). Equation (4) presents F′.

where gmax
k

 and gmin
k

 are the maximum and minimum values
of quality constraints, respectively, n represents the number
or quantity of non-functional requirements constraints, while
ΔQ (Yu and Bouguettaya 2009) is defined by the formula
(5).

At the end of this phase, the composition that has the
best fitness with the lowest penalty value is returned to the
developer as an optimal solution. In case there are no ser-
vices that match the developer’s request after applying the

(3)F(sol) =

n∑
k=1

PQk ∗ Qk

(4)F�(sol) = F(sol) −

(
n∑

k=1

(
ΔQ

gmax
k

− gmin
k

))2

(5)ΔQ =

⎧⎪⎨⎪⎩

Qk − gmax
k

if Qk > gmax
k

0 if gmin
k

≤ Qk ≤ gmax
k

gmin
k

− QkifQk < gmin
k

selection phase, the developer should relax and/or change
requirements, as indicated in Fig. 1.

3.4 � Composition phase

In this final phase, the services selected to form an optimal
composition solution are coordinated and orchestrated/cho-
reographed utilizing an engine that is able to host, execute,
and run composite services such as ours using the standard-
ized Web Services Business Process Execution Language
(WSBPEL/BPEL) (Alves et al. 2007).

4 � Experimentation and Results

The experimentation of the proposed approach is conducted
using the OWLS-TC dataset,1 which includes descriptions
of 10,000 + Web services specified with the OWL-S lan-
guage. This dataset is intended to support evaluations of
OWL-S semantic Web service matchmaking algorithms and
consists of nine different domains of Web services: educa-
tion, simulation, medical/healthcare, food/food and beverage
services, travel and tourism, communications, finance and
economy, weaponry, and finally geography. In this dataset,
the collected Web services are described using both OWL-S
1.0 and OWL-S 1.1. For the purpose of our experiment, we
selected services that had been described using the most
recent OWL-S version, which is OWL-S 1.1.

In order to consider the non-functional properties of these
services adequately, we have also enriched the OWL-S files
using seven parameters, which include availability (capac-
ity for use), response time (time required for use cycle),

Fig. 5   Non-functional requirements matching

1  http://proje​cts.semwe​bcent​ral.org/proje​cts/owls-tc/.

http://projects.semwebcentral.org/projects/owls-tc/

860	 M. Driss et al.

1 3

throughput (maximum technical usability), friendliness
(user-centric clarity), success rate (percentage of comple-
tion), reputation (ability to fulfill promised functions),
and cost (financial requirement per transaction). As other
researchers have suggested (Yu and Bouguettaya 2009; Driss
et al. 2020), values suggesting cost are best set between $0
and $30, while values regarding response time are best set
between 0 and 300 ms, and all additional parameter values
are best set in the range of 70% and 100%. In addition, we
also applied a manual pre-treatment on each file name, using
the underscore symbol to separate each individual word in
the names of each Web service.

4.1 � Experimental scenario

In this study, the proposed approach is applied to a trip-
planning scenario, which we describe using a UML activ-
ity diagram in Fig. 6. The scenario can be performed by a
customer planning to organize a trip. In this scenario, the
customer might begin by searching for a city that offers the
space and resources for a favorite activity (e.g., swimming).
Once a city is selected, the customer might then check the
weather during the desired travel dates to see whether it
would be suitable for swimming or not. Finally, the customer
might check hotel availability in the selected city. Consider-
ing that these three functions are implemented by different
providers’ Web services, our goal is to search for the best
composition of services and solutions that will satisfy the
customer’s requirements.

In the following subsections, we detail how to perform
our approach phases on the trip-planning scenario, and we
present Req-WSComposer interfaces related to each phase.

4.2 � Experimental results

During the first phase, the developer specifies his functional
and non-functional requirements. In a first step and for the
first requirement in the trip-planning scenario, for example,
the developer needs to enter the service name, input, and
output, as shown in Fig. 7. In a second step, he specifies the
required values and priorities of the QoS, QoE, and QoBiz
parameters, as illustrated in Fig. 8.

The specified functional and non-functional requirements
are converted into an ontological description, which is imple-
mented using Protégé,2 as specified in Fig. 9. This descrip-
tion includes two main classes: functional requirements and
non-functional requirements. The functional requirements
class represents the required Web service operations, which
are expressed through a set of keywords, including service
name, input, and output data. Whereas, the non-functional
requirements class consists of QoS, QoE, and QoBiz classes,
where the developer’s quality preferences and priorities will
be saved. The main purpose of this requirement specification
is to discover and select the most appropriate Web services
that are semantically relevant to the developer’s query. The
elaborated ontological description is then updated by insert-
ing desired preferences and priorities using the JDOM API
of Eclipse. Figure 10 illustrates the ontological description
of the first requirement in our trip-planning scenario, which
is the "Activity to city" requirement.

During the discovery phase, our semantic matching algo-
rithm is based on the WordNet Similarity for Java (WS4J)
library3, which offers a pure Java API that supports numer-
ous algorithms measuring semantic relatedness or similarity.
We use the WuPalmer algorithm (Wu and Palmer 1994) that

Fig. 6   UML activity diagram describing the trip-planning scenario

Fig. 7   Req-WSComposer interface illustrating the specification of the
"Activity to city" functional requirement

2  https​://prote​ge.stanf​ord.edu/.
3  https​://code.googl​e.com/archi​ve/p/ws4j/ws.

https://protege.stanford.edu/
https://code.google.com/archive/p/ws4j/ws

861Req‑WSComposer: a novel platform for requirements‑driven composition of semantic web services﻿	

1 3

computes the similarity between two terms by considering
their depths in the WordNet taxonomies and returns a score
between 0 and 1. In this study, the threshold of empirical

similarity is set to 0.8 (Driss et al. 2011b, 2020). Figure 11
presents the Req-WSComposer interface showing the ser-
vices list obtained after performing the four filters of our
semantic discovery algorithm applied for the "Activity to
city" requirement.

Fig. 8   Req-WSComposer inter-
face illustrating the specifica-
tion of QoS, QoE, and QoBiz
related to the "Activity to city"
requirement

Fig. 9   Requirements ontology
specified with Protégé

Fig. 10   Ontological description of the "Activity to city" requirement
Fig. 11   Req-WSComposer interface illustrating the discovery phase
result for the "Activity to city" requirement

862	 M. Driss et al.

1 3

In order to validate our results, we begin by checking each
returned service manually, assessing whether it can satisfy
the developer’s functional requirements: (1) at all and (2) in
the most accurate and efficient manner possible. Precision
and recall measures (Frakes 1992) are used to transpose this
work with information retrieval, assessing how many true
and relevant services have been returned by the discovery
phase. Precision is used to assess the number of true and rel-
evant services identified among those returned, while recall
is used to assess the overall number of returned services.
This can be formulated according to the following equations:

Table 2 summarizes the results obtained in the discovery
phase for the trip-planning scenario. It also validates these
results according to precision, recall, and response time as
delivered by the Req-WSComposer platform.

As it is shown in Table 2, Req-WSComposer delivers
good results in terms of precision (94.44%), recall (98.33%),
and response time (5625 ms). Within the same scenario, a
previous approach (Driss et al. 2010) had provided 88.89%
precision and just 84.62% recall.

After performing the discovery phase, three lists of can-
didate Web services satisfying the three developer’s require-
ments, respectively, are generated and all possible compo-
sition solutions, which are assembled using services from
these lists, are identified as it is shown in Fig. 12.

These obtained lists are then passed to the selection phase
to identify the best composition solution of Web services by
considering the values and the priorities of non-functional
requirements specified by the developer. For each discov-
ered Web service, a quality vector is computed. After that,
an overall quality score is calculated for each composition
solution and the best solution with the highest score is then
identified.

The previous steps are also performed for the remain-
ing developer’s requirements, which are: "Get weather"
and "Hotel availability". For the trip-planning scenario, the

(6)

Precision =
|{True relevant services} ∩ {Returned services}|

|{Returned services}|

(7)

Recall =
|{True relevant services} ∩ {Returned services}|

|{True relevant services}|

obtained services forming the best composition solution are
shown in Fig. 13.

Tables 3 and 4 show the obtained matchings between the
developer’s functional and non-functional requirements and
the resulting selected composition solution, respectively.

Table 5 shows the fitness and penalty values of the best
composition solution. Obtained fitness and penalty val-
ues are 0.8 and 0.001, respectively. The response time to
get the optimum Web services from the selection phase

Table 2   Discovery phase results
obtained for the trip-planning
scenario

Requirements Filter 1
(#services)

Filter 2
(#services)

Filter 3
(#services)

Filter 4
(#services)

Precision
(%)

Recall
(%)

Response Time
(ms)

Activity to city 33 26 21 6 83.33 100 5445
Get weather 11 9 9 8 100 100 3173
Hotel availability 43 40 23 19 100 95 8258
Average 94.44 98.33 5625

Fig. 12   Req-WSComposer interface illustrating the possible composi-
tion solutions for the trip-planning scenario after performing the dis-
covery phase

Fig. 13   Optimal composition solution for the trip-planning scenario

863Req‑WSComposer: a novel platform for requirements‑driven composition of semantic web services﻿	

1 3

is about 5 s. Within the same trip-planning scenario, our
previous approach (Driss et al. 2011a) provides a different
composition solution with a fitness value of 0.544, a pen-
alty of 0.07, and a response time of 7665 ms. These results
can be justified by the fact that the discovery method in
(Driss et al. 2011a) is performed on pure syntactic WSDL-
based services. Besides, the proposed formal selection

algorithm in (Driss et al. 2011a) considers only two QoS
parameters, which are the response time and availability.

During the last phase, the services that form an optimal
composition solution are organized and orchestrated using
the BPEL 2.0 API of Eclipse, as is shown in Fig. 14.

5 � Conclusion

In this work, we have introduced and explored a new
approach that ensures the discovery, selection, and orches-
tration/choreography of appropriate Web services matching
both functional and different types of non-functional require-
ments, which are specified by the developer. This approach
is implemented using the Req-WSComposer platform to
support software developers to build new and value-added
service-based applications in a more efficient manner. The
proposed approach is tested using an extended and enriched
version of the OWLS-TC dataset. The results of our experi-
mentation demonstrate a successful extraction and optimal
composition that satisfy developer requirements with high
degrees of accuracy and efficiency. For the future, we are
looking to improve our Req-WSComposer platform by pro-
posing adaptation strategies to enhance the quality of the
composition solutions with a high penalty value. Further-
more, the current work can be extended using larger, more
complex cloud-based datasets of microservices in Internet-
of-Things enviroments (Ben Atitallah et al. 2020; Hajjaji
et al. 2021).

Table 3   Obtained matching between the developer’s functional requirements and selected services

Functional requirements Selected web services Degree of matching

Operation Input Output Service name Input Output

Activity to city Activity City activity_city_service Activity City Exact

Weather service City Weather city_weather_season_
service

City Weather season Subsume

Hotel availability service City Hotel city_luxury_hotel_ser-
vice

City Luxury hotel Subsume

Table 4   Obtained matching between developer’s non-functional requirements and selected services

Availability
(%)

Response
time (ms)

Throughput
(%)

Customer
friendly (%)

Success
rate (%)

Reputation
(%)

Cost
($)

Developer specified values 90 200 82 85 85 80 22
activity_city_service 92 150 80 88 90 90 25
city_weather_season_service 90 130 77 89 88 79 17
city_luxury_hotel_service 90 170 91 88 80 85 27

Table 5   Fitness, penalty, and response time values related to the best
composition solution satisfying the trip-planning scenario

Fitness Penalty Response Time

0.814 0.001 4640 ms

Fig. 14   BPEL process for the trip-planning scenario

864	 M. Driss et al.

1 3

References

Aljazzaf ZM (2015) TQoSM: total quality of service model. In: 2015
International Conference on Industrial Engineering and Opera-
tions Management (IEOM). IEEE, pp. 1–8

Alves A, Arkin A, Askary S, Barreto C, Bloch B, Curbera F, Ford
M, Goland Y, Guízar A, Kartha N, Liu CK, Khalaf R, König D,
Marin M, Mehta V, Thatte S, Van der Rijn D, Yendluri P, Yiu A
(2007) OASIS web services business process execution language
(WSBPEL) TC. https​://www.oasis​-open.org/commi​ttees​/wsbpe​l/.
Accessed 12 January 2021

Azmeh Z, Driss M, Hamoui F, Huchard M, Moha N, Tibermacine
C (2011) Selection of composable web services driven by user
requirements. In: 2011 IEEE International Conference on Web
Services. IEEE, pp 395–402 ‏

Aznag M, Quafafou M, Durand N, Jarir Z (2013) Web services dis-
covery and recommendation based on information extraction and
symbolic reputation. Int J Web Serv Comput (IJWSC) 4(1):1–18

Bagga P, Joshi A, Hans R (2019) QoS based web service selection
and multi-criteria decision making methods. Int J Interact Multim
Artif Intell 5(4):113–121

Bekkouche A, Benslimane SM, Huchard M, Tibermacine C, Hadjila
F, Merzoug M (2017) QoS-aware optimal and automated seman-
tic web service composition with user’s constraints. Serv Orient
Comput Appl 11(2):183–201

Ben Atitallah S, Driss M, Boulila W, Ghézala HB (2020) Leveraging
deep learning and IoT big data analytics to support the smart cit-
ies development: review and future directions. Comput Sci Rev
38:100303

Bocchi E, De Cicco L, Rossi D (2016) Measuring the quality of expe-
rience of web users. ACM SIGCOMM Comput Commun Rev
46(4):8–13

Cheng B, Zhao S, Li C, Chen J (2016) A web services discovery
approach based on mining underlying interface semantics. IEEE
Trans Knowl Data Eng 29(5):950–962

Curbera F, Duftler M, Khalaf R, Nagy W, Mukhi N, Weerawarana
S (2002) Unraveling the Web services web: an introduction to
SOAP, WSDL, and UDDI. IEEE Internet Comput 6(2):86–93

D’Mello DA, Ananthanarayana VS (2009) Semantic web service
selection based on service provider’s business offerings. IJSSST
10(2):25–37

De Castro V, Marcos E, Wieringa R (2009) Towards a service-oriented
MDA-based approach to the alignment of business processes with
IT systems: from the business model to a web service composition
model. Int J Cooperat Inform Syst 18(02):225–260

De Castro V, Musicante MA, Da Costa US, de Souza Neto PA, Var-
gas-Solar G (2014) Supporting non-functional requirements in
services software development process: an mdd approach. Inter-
national Conference on Current Trends in Theory and Practice of
Informatics. Springer, Cham, pp 199–210

Decker G, Kopp O, Leymann F, Weske M (2007) BPEL4Chor:
Extending BPEL for modeling choreographies. In IEEE inter-
national conference on web services (ICWS 2007). IEEE, pp
296–303

Driss M, Moha N, Jamoussi Y, Jézéquel JM, Ben Ghézala HH (2010) A
requirement-centric approach to web service modeling, discovery,
and selection. International conference on service-oriented com-
puting. Springer, Berlin, Heidelberg, pp 258–272

Driss M, Jamoussi Y, Moha N, Jézéquel JM, Ben Ghézala HH (2011)
Une approche centrée exigences pour la composition de services
web. Ingénierie des Systèmes d’Information 16(2):97–125

Driss M, Jamoussi Y, Jézéquel JM, Ben Ghézala HH (2011a) A multi-
perspective approach for web service composition. In: Proceed-
ings of the 13th International Conference on Information Integra-
tion and Web-based Applications and Services. ACM, pp 106–111

Driss M, Aljehani A, Boulila W, Ghandorh H, Al-Sarem M (2020) Ser-
vicing your requirements: An FCA and RCA-driven approach for
semantic web services composition. IEEE Access 8:59326–59339

Fadhlallah B, Le Sommer N, Mahéo Y (2017) Choreography-based
vs orchestration-based service composition in opportunistic net-
works. In: 2017 IEEE 13th International Conference on Wire-
less and Mobile Computing, Networking and Communications
(WiMob). IEEE, pp 1–8

Frakes WB (1992) Information retrieval: Data structures and algo-
rithms. Pearson Education India

Garriga M, Flores A, Cechich A, Zunino A (2015) Web services com-
position mechanisms: a review. IETE Tech Rev 32(5):376–383

Hajjaji Y, Boulila W, Farah IR, Romdhani I, Hussain A (2021) Big data
and IoT-based applications in smart environments: a systematic
review. Comput Sci Rev 39:100318

Hammal Y, Mansour KS, Abdelli A, Mokdad L (2020) Formal tech-
niques for consistency checking of orchestrations of semantic web
services. J Comput Sci 44:101165

Hu C, Wu X, Li B (2020) A framework for trustworthy web service
composition and optimization. IEEE Access 8:73508–73522

Kavantzas N, Burdett D, Ritzinger G, Fletcher T, Lafon Y, Barreto C
(2005) Web services choreography description language version
1.0. https​://www.w3.org/TR/ws-cdl-10/. Accessed 12 January
2021

Khanouche ME, Attal F, Amirat Y, Chibani A, Kerkar M (2019) Clus-
tering-based and QoS-aware services composition algorithm for
ambient intelligence. Inf Sci 482:419–439

Khanouche ME, Gadouche H, Farah Z, Tari A (2020) Flexible QoS-
aware services composition for service computing environments.
Comput Netw 166:106982

Kritikos K, Plexousakis D (2009) Requirements for QoS-based web
service description and discovery. IEEE Trans Serv Comput
2(4):320–337

Lécué F (2009) Optimizing QoS-aware semantic web service compo-
sition. International semantic web conference. Springer, Berlin,
Heidelberg, pp 375–391

Martin D, Burstein M, Hobbs J, Lassila O, McDermott D, McIlraith S,
Narayanan S, Paolucci M, Parsia B, Payne T, Sirin E, Srinivasan
N, Sycara K (2004) OWL-S: semantic markup for web services.
https​://www.w3.org/Submi​ssion​/OWL-S/. Accessed 12 January
2021

Metzger A, Benbernou S, Carro M, Driss M, Kecskemeti G, Kazhami-
akin R, Krytikos K, Mocci A, Di Nitto E, Wetzstein B, Silvestri F
(2010) Analytical quality assurance. Service research challenges
and solutions for the future internet. Springer, Berlin, Heidelberg,
pp 209–270

Paolucci M, Kawamura T, Payne TR, Sycara K (2002) Semantic match-
ing of web services capabilities. International semantic web con-
ference. Springer, Berlin, Heidelberg, pp 333–347

Papazoglou M (2012) Web services: principles and technology, 2nd
edn. Pearson Education, Essex

Papazoglou MP, Van Den Heuvel WJ (2007) Service-oriented archi-
tectures: approaches, technologies, and research issues. VLDB J
16(3):389–415

Papazoglou M, Pohl K, Parkin M, Metzger A (Eds) (2010) Service
research challenges and solutions for the future internet: S-cube-
towards engineering, managing and adapting service-based sys-
tems (vol. 6500). Springer

Rai GN, Gangadharan GR, Padmanabhan V (2015) Algebraic modeling
and verification of Web service composition. Procedia Computer
science 52:675–679

Rodríguez G, Mateos C, Misra S (2020) Exploring web service QoS
estimation for web service composition. International Conference
on Information and Software Technologies. Springer, Cham, pp
171–184

https://www.oasis-open.org/committees/wsbpel/
https://www.w3.org/TR/ws-cdl-10/
https://www.w3.org/Submission/OWL-S/

865Req‑WSComposer: a novel platform for requirements‑driven composition of semantic web services﻿	

1 3

Rodriguez-Mier P, Pedrinaci C, Lama M, Mucientes M (2015) An inte-
grated semantic web service discovery and composition frame-
work. IEEE Trans Serv Comput 9(4):537–550

Sangaiah AK, Bian GB, Bozorgi SM, Suraki MY, Hosseinabadi AA,
Shareh MB (2019) A novel quality-of-service-aware web services
composition using biogeography-based optimization algorithm.
Soft Computing, pp 1–13

Sheng QZ, Qiao X, Vasilakos AV, Szabo C, Bourne S, Xu X (2014)
Web services composition: a decade’s overview. Inf Sci
280:218–238

Shijie Z, Xu P, Xu Y (2020) Web service composition verification
based on symbol model checking and Petri nets. In: Developments
of Artificial Intelligence Technologies in Computation and Robot-
ics, Proceedings of the 14th International Flins Conference (Flins
2020). World Scientific, vol 12, p 309

Siavashi F, Truscan D, Vain J (2016) On mutating UPPAAL timed
automata to assess robustness of web services. In ICSOFT-EA,
pp 15–26

Suchithra M, Ramakrishnan M (2015) Efficient discovery and ranking
of web services using non-functional QoS requirements for smart
grid applications. Procedia Technol 21:82–87

Van Moorsel A (2001) Metrics for the internet age: quality of experi-
ence and quality of business. In: Fifth International Workshop
on Performability Modeling of Computer and Communication
Systems, Arbeitsberichte des Instituts für Informatik, Universität
Erlangen-Nürnberg, Germany, vol 34, No 13, pp 26–31

Wu Z, Palmer M (1994) Verbs semantics and lexical selection. In:
Proceedings of the 32nd annual meeting on Association for Com-
putational Linguistics. Association for Computational Linguistics,
pp. 133–138

Yu Q, Bouguettaya A (2009) Foundations for efficient web service
selection. Springer Science & Business Media

Zeng L, Benatallah B, Ngu AH, Dumas M, Kalagnanam J, Chang H
(2004) QoS-aware middleware for web services composition.
IEEE Trans Softw Eng 30(5):311–327

Zhou F, Ma C, Qu J, Song X, Zhang C (2020) A service composition
optimization model based on petri nets and service contracts. In:
2020 IEEE 8th International Conference on Information, Com-
munication and Networks (ICICN). IEEE, pp 177–181

Zhu Y, Huang Z, Zhou H (2017) Modeling and verification of web
services composition based on model transformation. Softw Pract
Exp 47(5):709–730

Zolotas C, Diamantopoulos T, Chatzidimitriou KC, Symeonidis AL
(2017) From requirements to source code: a model-driven engi-
neering approach for RESTful web services. Automat Softw Eng
24(4):791–838

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Req-WSComposer: a novel platform for requirements-driven composition of semantic web services
	Abstract
	1 Introduction
	2 Related works
	3 Proposed approach
	3.1 Requirements specification phase
	3.2 Discovery phase
	3.3 Selection phase
	3.4 Composition phase

	4 Experimentation and Results
	4.1 Experimental scenario
	4.2 Experimental results

	5 Conclusion
	References

