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Abstract
Driving at night becomes risky due to the lack of sufficient light. Drivers are unable to notice objects, potholes, pedestri-
ans on road prominently using headlights. Low light at night causes many road accidents and road fatalities. This article 
presents a real-time fast, low-light vision enhancement technique for drivers. By the proposed technique a driver can have 
a prominent real-time bright vision of the road and surrounding view at night which appears the same during the daytime. 
Drivers can easily differentiate objects, potholes, and pedestrians on the road. The proposed approach is based on the modi-
fied bright channel prior, and adaptive gamma correction. The proposed approach aims to provide a real-time bright vision 
for drivers during the night within a minimum computation time using a low-cost 2D camera. Many real-time experiments 
which are conducted reveal that the proposed approach accomplishes auspiciously against state-of-the-art low-light image 
enhancement algorithms.
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1  Introduction

Driving at night is comparatively harsher than daytime due 
to insufficient light. In low light, it is very tough for any 
driver to detect pedestrians, potholes, or any other object 
on the road in real-time. As a result, driving becomes risky 
and the chances of road accidents become high. Fifty percent 
of road accidents happen at night due to low light (Organi-
zation 2018). Therefore, the vision of the driver at night 
needs to be enhanced. Early approaches of low-light image 
enhancement lead to high computation time and applicable 
only for a single input image. Most of the existing methods 
are having unnatural results, over-enhanced results, contrast 
mismatch, expensive, or huge computation time, which are 
not suitable for real-time driving scenarios. A tropical road 
at night is shown in Fig. 1.

To tackle the above aforesaid drawbacks, a novel real-
time and very fast low-light vision enhancement technique 
is proposed for drivers. The proposed approach is completely 
based on a modified bright channel prior with a tactic to 

reduce huge computation time, followed by adaptive gamma 
correction as a post-processing step for final contrast adjust-
ment. Main contributions are summarized as follows.

•	 The proposed method can provide a real-time bright 
vision for drivers at night within a minimum computa-
tion time.

•	 It provides a prominent enhanced vision using a low-cost 
2D camera to avoid high expenditure.

•	 To reduce the huge processing time, frames are classi-
fied into two states. The value of atmospheric light (A) 
is recalculated only when a new state starts.

•	 A concept of dynamic-patch is used to avoid over 
enhancement for the darker region of frames. Smaller 
patch size is provided to darker pixels and vice versa. The 
use of dynamic-patch provides prominent bright output 
for the road and surrounding area.

•	 Use of the adaptive gamma correction as a post-process-
ing step uplifts the quality of the output frame to a pleas-
ant level with perfect contrast.

•	 The proposed method outperforms state-of-the-art mod-
els for all types of frames in real-time at night.

The residual of the article is arranged as follows. Sec-
tion 2 describes some research work in literature which 
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are closely associated with the proposed approach. Sec-
tion 3 presents a step-by-step explanation of the proposed 
approach. Section 4 represents an assessment of real-time 
experiential performance. Lastly, Sect. 5 represents the con-
clusion and describes the next stage in future research.

2 � Literature review

Early approaches of low-light image enhancement lead to 
high computation time and applicable only for a single input 
image. A low-light enhancement method is introduced (Ying 
et al. 2017; Ren et al. 2019b) using the response character-
istics of cameras. Two images with diverse exposures are 
inspected to find an accurate camera response model. Then, 
the illumination approximation methods are used to evalu-
ate the exposure ratio map. Lastly, the desired exposure is 
adapted from the exposure ratio map.

The multi-branch low-light enhancement network 
(MBLLEN) (Lv et al. 2018, 2019) is defined by using a deep 
learning technique. The main logic is to extract the rich fea-
tures in different levels so that enhancement can be applied 
via multiple subnets. Finally, the output image is produced 
by multi-branch fusion. However, this method requires large-
scale training data.

Another low-light image enhancement algorithm is 
established (Tanaka et al. 2019) based on gradient. As the 
gradients are more sensitive than absolute values for any 
human vision, this method improves the gradients of the 
dark region. Besides, the intensity-range constraints are 
involved for image integration. According to the intensity-
range constraints, the resulting output image can be inte-
grated with enhanced gradients preserving the specified 
gradient information.

A real-time low light enhancement algorithm is intro-
duced (Bhat et al. 2019) with detail preservation for low-
cost embedded platforms. The method is integrated into 
the image signal processing pipeline of the TI’s TDA3x 

and it achieved ~ 50 fps on the c66x DSP for any HD reso-
lution video acquired from Omnivision’s OV10640 the 
Bayer image sensor.

Low-light images are enhanced (Sun et al. 2017) using 
the illumination-reflection model. Based on the illumina-
tion-reflection model, a guided filter is used to evaluate the 
illumination components of the original image. Then, the 
reflection component is obtained and enhanced by sigmoid 
and gamma (nonlinear functions) respectively. Finally, the 
high contrast output images are generated.

Another low-light single image degradation model 
(Gu et al. 2018) is introduced built on the atmospheric-
scattering-model. A pure pixel ratio prior is presented 
to enhance low-light images. First, the input image is 
segmented into regions according to similar brightness 
and utilized a scene-based transmission approximation 
approach instead of the traditional pixel-based fashion. 
Next, the rough transmission map is refined by using a 
total variation smooth operator and obtain the enhanced 
output image accordingly.

A low-illumination image enhancement technique (Shi 
et al. 2018) is proposed for night-time based on dual chan-
nel-prior. It builds upon two existing image-priors: bright 
channel prior and dark channel prior. The bright channel 
prior is applied to obtain a primary transmission map. Then, 
the dark channel is used as a complementary matching chan-
nel to precise inaccurate transmission estimates achieved 
from the bright channel prior.

The maximum diffusion value is used in another method 
(Kim et al. 2019) for low-light image enhancement. The 
assessed illumination component can be precisely detached 
from the scene reactance by choosing the maximum value at 
each pixel position. Thus, the visual quality of the image is 
enhanced. However, the method often causes a color-incon-
sistency problem due to an incorrectly estimated illumina-
tion map and suffers from low-visibility.

An unsupervised learning method (Lee et al. 2020) for 
single low-light image enhancement is proposed by using 
the bright-channel-prior with a small patch (close to 1). A 
loss function (unsupervised) is also defined. An enhanced 
network that consists of a simple encoder and decoder, is 
trained by using the predefined unsupervised loss function. 
Furthermore, a saturation loss and a self-attention map are 
introduced to preserve image details with natural effect in 
the enhanced output. However, sometimes it produces unnat-
ural results after consuming huge processing time.

An adaptive model for contrast enhancement is intro-
duced (Hsieh et al. 2020) for partially shaded low-light 
images. The bright pixels are preserved while the dim pixels 
are boosted. The split Bregman process is used to achieve 
effective numerical implementation of the introduced adap-
tive-variational model. But, it produces a resultant image 
with over enhancement.

Fig. 1   Insufficient light on the road at night
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Another low-light image enhancement (LIME) method 
is introduced (Guo et al. 2017) where the radiance of each 
pixel is first assessed by finding the extreme value in the 
RGB channels. Further, the primary illumination map is pol-
ished by including a structure prior, as an ultimate illumina-
tion map. The enhanced output is achieved for the well-built 
illumination map.

A dark video restoration procedure is presented (Ko et al. 
2017) using the same patches among the adjacent frames. 
This procedure consists of three phases: (1) brightness 
enhancement by using the same patches among the adjacent 
frames and the adaptive accumulation, (2) improved color 
assignment to reduce color distortion, and (3) image fusion 
for saturation reduction using the guide map. This approach 
does not produce any unwanted artifacts for the similar 
patches among the adjacent frames. Fully automatic color 
preservation and average brightness control are empowered 
by the color assignment and the fusion steps. But, the time 
complexity of this method is high.

The robust-Retinex-model (Li et al. 2018) is used to 
enhance low-light images. It additionally considers a noise 
map associated with the conventional Retinex model. An 
optimization function is introduced which includes new 
regularization terms for reflectance and illumination.

The absorption-light-scattering-model (ALSM) (Wang 
et al. 2019) is used to describe the absorbed light for low-
light images. The minimum channel of ALSM is identified. 
Finally, a novel low-light image enhancement technique is 
identified by observing the monotonicity between atmos-
pheric light and scene reflection. However, it consumes a 
huge computation time.

A trainable hybrid network followed by a spatially variant 
recurrent neural network (RNN) is introduced (Ren et al. 
2019a) to enhance the visibility of an image. The network 
comprises two different streams to instantaneously study 
the global content followed by the relevant structures of an 
image in a unified network. The content stream evaluates the 
relevant global content of the low-light input image by using 
an encoder-decoder network. Yet, a new spatially different 

recurrent neural network (RNN) is introduced to prevent the 
loss of structural details. Nevertheless, the resultant image 
is not as natural as the actual ground truth.

However, all the above approaches are designed for the 
low-light enhancement of a single image, not for real-time 
video. The approaches consume huge processing time, high 
cost, and produce unnatural and over-enhanced results, 
which is not suitable for any real-time application, espe-
cially for driving.

3 � Proposed approach

The proposed approach is based on the modified bright 
channel prior to the atmospheric light scattering model. 
This approach includes atmospheric light estimation with 
dynamic patch size, frame inversion, and transmission map 
estimation, bright scene recovery followed by gamma cor-
rection for prominent contrast adjustment. The proposed 
framework of real-time low-light vision enhancement is 
presented in Fig. 2. Stepwise visualization of the overall 
framework is shown in Fig. 3.

3.1 � Atmospheric light estimation using maximum 
filtering technique with dynamic patch

In computer vision, the atmospheric light scattering model 
(Shi et al. 2018; Kim et al. 2019; Lee et al. 2020) is defined 
as:

where (A) is the atmospheric light, R(p) is the intensity of 
pixel p, J(p) is the output image, I(p) indicates the input 
image, and t(p) describes the transmission map. The low-
light vision enhancement process aims to compute J from I 
with the help of A and t. A frame is split into multiple small 
patches of size Ω.

(1)I(p) = J(p)t(p) + A(1 − t(p))

Fig. 2   The proposed framework 
of real-time low-light vision 
enhancement approach
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The local patch Ω(p) size is provided dynamically 
depending upon the intensity of the local pixels as follows:

Here, the regions or pixels of a frame, where the intensity 
is comparatively higher, are given less importance. There-
fore, if the intensity of a pixel is greater than 170, then 
9 × 9 pixels (bigger patch size) are considered as a single 
local patch. Similarly, if the intensity of a certain region/
pixel is very low (less than 85), then it indicates a compara-
tively darker area of the frame, which needs special care 
for enhancement. Therefore, the darker areas are split into 
smaller patch size of 3 × 3 to pay close attention. In this way, 
the patch sizes are determined dynamically depending upon 
intensity. The threshold values are chosen according to the 
best quality output after many real-time observations.

The maximum filter is applied to every local patch of 
three RGB channels. The highest value of intensity Ihighest(p) 
of any pixel is estimated as follows:

where Ic is the color channel of I. The atmospheric light 
(A) is the average intensity of the 0.2% pixels (i.e. brightest 
0.1% and darkest 0.1% pixels), denoted as K in the three 
bright channels (RGB) of I, i.e.:

The source of (A) at night is caused by streetlights and 
headlights. The road vision at night is classified into two states. 
(a) Bright (consists of high beam headlights of oncoming 

(2)Ω(p) =

⎧
⎪⎨⎪⎩

3 × 3∀ pixels where itensity ≤ 85

5 × 5∀ pixels where 86 ≤ itensity ≤ 170

9 × 9∀ pixels where itensity > 170

(3)Ihighest(p) = max
y�{Ω(p)}

( max
c�{r,g,b}

Ic(p))

(4)A =
1

|k|
∑
p∈k

Ihighest(p)

vehicles) (b) dark (no high beam headlights of any vehicles). 
Many real-time experiments reveal almost similar values for 
the same state. Therefore, the value of (A) is calculated when 
a new state starts, and no need to recalculate it until there is 
any change in state and so on.

In the case of a bright frame (consists of high beam light), 
the highest intensity present in the high beam headlight region. 
So, Ihighest(p) will be the highest value of intensity (from maxi-
mum value among R, G, and B) for a local patch. Hence, the 
brightest 0.1% pixels will be from the high beam light region, 
and the darkest 0.1% pixels will be from any other darker 
region of the frame. Therefore, the value of atmospheric light 
(A) (the average intensity of the 0.2% pixels) will be a bal-
anced value, which will enhance the entire frame smoothly.

3.2 � Frame Inversion and transmission map 
estimation

Now, normalization of the Eq. (1) is done as follows:

Afterward, the highest intensity is calculated by putting the 
max operator on each side of the Eq. (5):

Here, t(p) is the transmission map. As J is a clear and bright 
output frame, so the highest intensity of J tends to 255, i.e.:

Putting Eq. (7) into Eq. (6), we have

(5)
Ic(p)

Ac
= t(p)

Jc(p)

Ac
+ (1 − t(p))

(6)

max
y∈Ω(p)

(
max

c

Ic(p)

Ac

)
= t(p) max

y∈Ω(p)

(
max

c

Jc(p)

Ac

)
+ (1 − t(p))

(7)Jhighest(p) = max
y∈{Ω(p)}

(
max

c
Jc(p)

)
= 255

Fig. 3   Visualization of the overall framework of the proposed approach
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From Eq. (8) the transmission t(p) is assessed by

3.3 � Bright scene recovery

With the help of A and t(p), the bright scene is recovered 
according to (1). Sometimes t(p) becomes close to zero and 
the output J(p) becomes a little bit noisy. To avoid such a 
problem, we limit a lower bound of the transmission by t0. 
Here, t0 = 0.15 is finalized after several real-time experimen-
tal analyses. The ultimate scene radiance J(p) is recovered by

3.4 � Adaptive gamma correction

The intensity of a monitor screen, which emits light using 
any given input signal, is usually not a linear function. It 
depends on the power factor of the voltage provided in it. 
This power factor is known as gamma. We can represent 
gamma while increasing the intensity of dark and low con-
trast image by:

where the voltage (V) drives the electron (input intensity), 
flow is related to the light intensity (I) emitted by the moni-
tor (output intensity), and gamma (γ) is the power factor 
(constant). The representation of light intensity for various 
gamma (γ) value is demonstrated in Fig. 4.

Gamma correction method (Rahman et al. 2016; Huang 
et al. 2013; Acharya and Giri 2020) can correct the non-
linear function through a look-up table using the following 
steps:

Step 1: Input frame

(8)Ihighest(p)

Ac
= t(p)

255

Ac
+ (1 − t(p))

(9)t(p) =
Ihighest(p) − Ac

255 − Ac

(10)J(p) =
I(p) − A

max(t(p), t0)
+ A

(11)I = V�

Step 2: Determine the maximum pixel intensity
Step 3: Select the value of gamma
Step 4: Look-up table formation
Step 5: Mapping of input pixel values in the look-up table
Step 6: Output frame
After determining the maximum intensity value of the 

input frame and finalizing the gamma value, the formation of 
the look-up table for an 8-bit image frame is done as follows.

Pixels of the input frames are mapped to the values in the 
look-up table. In the beginning, the first pixel of the frame 
is considered and the intensity is calculated. At that time the 
corresponding look-up table index is checked. Finally, the 
matching value in the look-up table is collected to create a 
new output frame as demonstrated in Fig. 5. 

Here, a gamma (γ) value of 0.45 is used for lookup table 
formation and to enhance the low light dark frames. This 
threshold value of gamma, which is appropriate for all types 
of night-time frames, is chosen after many real-time experi-
ments. It maps a narrow range of low-light input values into 
a wider range of brighter output values with gamma < 1. 
A dark pixel of a dark frame increases more intensity by 
gamma correction than a brighter pixel in a dark frame. 
Therefore, the frames which consist of brighter lights (such 
as streetlights, headlights, and moonlight), and without any 
brighter lights, both are perfectly suitable for enhancement 
using the chosen gamma value. Hence, from Eqs. (11) and 
(12) we get:

Enhanced frames after gamma correction with various 
gamma (γ) values are shown in Fig. 6. From Fig. 6, it is 
observed that gamma correction with Gamma(γ) = 0.25 
produces an output with over brightness. Similarly, 
Gamma(γ) = 0.75 produce darker output. Whereas, 
Gamma(γ) = 0.45 produce perfect output.

(12)

Look − UpTable =
|||||
Max_intensity ×

(
[0 ∶ Max_intensity]�

Max_intensity

)|||||

(13)

Enhanced intensity =
|||||
255 ×

(
[Original intensity]0.45

255

)|||||

Fig. 4   Variation of light intensity for different gamma (γ) value Fig. 5   Mapping of pixels to the values in the look-up table
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4 � Experimental results

The proposed approach is tested on many real-time frames 
during the night. The approach is also trialed on “BDD 
Dataset (BDD100K)” (Yu et al. 2020) (contains plenty of 
night-time driving images). Outstanding performances for 
most of the frames are observed with minimum process-
ing time. Quantitative and qualitative performances are as 
follows.

4.1 � Quantitative performance

As the ground truth of output frames are unknown, so no-
reference (NR) methods are used to compare the proposed 
approach with state-of-the-art techniques. No-reference free 
energy-based robust-metric for contrast-distortion (NIQMC) 
and blind image quality measure of enhanced images 
(BIQME) are used for effective assessment of performance 
(Gu et al. 2017, 2018).

NIQMC evaluates the quality of an image by its local 
particulars and global histogram of the image. NIQMC par-
ticularly favors the images with high contrast. Thus, higher 
NIQMC values indicate better image contrast quality.

BIQME comprehensively considers five influencing fac-
tors, i.e., contrast, sharpness, brightness, colorfulness, and 
naturalness, and 17 associated features to blindly predict vis-
ual quality. A higher BIQME indicates better image quality.

Besides, the output frames are tested by three other effec-
tive assessment methods, which are: lightness order error 
(LOE) (Guo et al. 2017; Ying et al. 2017), the peak signal-
to-noise ratio (PSNR), and the structural similarity (SSIM) 
(Lv et al. 2018, 2019). The “LOE” is used to measure the 
lightness distortion between the original input image and the 
enhanced image. The lower the “LOE” value, the better the 
enhancement. The “PSNR” is evaluated based on the noise 
present in the enhanced image. The higher the PSNR value, 

the better the image approximation. The SSIM index is used 
to quantify the likeness between two images, and it consid-
ers three aspects in enhanced images: lighting, contrast, and 
structure. The SSIM index is a decimal value between -1 and 
1. SSIM = 1 only when two images with identical sets of 
data are compared.

A comparative performance analysis (average of 30 real-
time frames and 30 frames from BDD100K dataset), among 
existing low-light vision enhancement methods in terms of 
NIQMC, BIQME, LOE, PSNR, and SSIM is exposed in 
Table 1. Table 1 reveals the performance superiority of our 
proposed technique compared to the existing low-light vision 
enhancement methods.

4.2 � Qualitative performance

The qualitative performance of the proposed approach is 
demonstrated (stepwise) in Fig. 7. In Fig. 7 it is observed 
that prominent and bright road views (output frames) are 
generated from darker frames (real-time original frames 
and frames from “BDD Dataset (BDD100K)”) at night by 
the proposed approach. A close view of the qualitative per-
formance (stepwise) of a real-time frame that consists of a 
high-intensity headlight of an oncoming bike in the even-
ing, is shown in Fig. 8. Figure 8 demonstrates the clarity 
of the enhanced output frame generated from a low-light 
input frame. We qualitatively evaluated and compared the 
proposed method with state-of-the-art techniques in Fig. 9. 
In Fig. 9 it is observed that the output of MBLLEN (Lv et al. 
2018) and GBLIE (Tanaka et al. 2019) look better, but still 
it has darkness throughout the road. Therefore, objects are 
not visible prominently. The output of LIEMDV (Kim et al. 
2019) becomes a bit hazy due to the over enhancement of the 
frame. This method often causes a color-inconsistency prob-
lem due to an incorrectly estimated illumination map and 
suffers from low-visibility. There is also a lack of sufficient 

Fig. 6   Gamma correction with various gamma values a original frame after bright scene recovery b gamma (γ) = 0.25 c gamma (γ) = 0.75 d 
gamma (γ) = 0.45.
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light in all the pixels of the road and surrounding views in 
the output of LIME (Guo et al. 2017). 

However, the result obtained from our proposed method 
is bright, prominent, natural, and maintains the color consist-
ency, while enhancing dark regions effectively. Figure 9 also 
demonstrates the performance superiority of our proposed 
technique compared to previously introduced approaches.

4.3 � Processing time analysis

In the case of driving, the timing-factor is very vital. If a 
driver is unable to see the road at the same time as live 
view then there is a high possibility of an accident. There 
shouldn’t be any delay between live video acquisition and 

reconstructed video display. In this proposed system, the 
total processing time of a frame is only a few milliseconds 
that a driver’s open eye will take to look like an original live 
video. Time taken (in milliseconds) by the entire process for 
various frame sizes is shown in Fig. 10.

The main strategy behind such a less processing time 
is that the atmospheric light (A) is not calculated in every 
frame, rather it is calculated only when a new state starts. 
Comparison of processing time among the existing methods 
and the proposed method is shown in Fig. 11. 

From Figs. 10 and 11, it is observed that, if a small 
size display (like a traditional night vision display) of 
standard resolution (848 × 480) is used, then the process-
ing time will be very less. A normal computing processor 

Table 1   Quantitative performance assessment (BIQME, NIQMC, PSNR, and SSIM indicate the higher the better. LOE indicates the lower the 
better)

Technique Real-time frames BDD100K Dataset

BIQME NIQMC LOE PSNR SSIM BIQME NIQMC LOE PSNR SSIM

LECARM (Ren et al. 2019b) 0.966 2.857 966 28.66 0.636 0.821 2.400 925 28.27 0.613
MBLLEN (Lv et al. 2018) 2.659 3.658 786 29.24 0.713 2.260 3.073 782 29.55 0.713
AGLIE (Lv et al. 2019) 2.300 4.027 684 30.26 0.878 1.955 3.383 726 30.27 0.747
GBLIE (Tanaka et al. 2019) 1.329 3.215 811 29.91 0.776 1.129 2.701 841 29.04 0.689
RTLE (R et al. 2019) 1.216 3.026 846 28.07 0.747 1.033 2.542 863 28.32 0.647
LIEM-IDMPPRP (Gu et al. 2018) 2.015 3.010 875 28.59 0.786 1.713 2.528 821 28.23 0.673
LIEMDV (Kim et al. 2019) 3.122 5.110 578 31.87 0.893 2.654 4.292 559 30.82 0.886
AVMCELI (Hsieh et al. 2020) 3.112 4.270 695 30.22 0.852 2.645 3.587 695 30.28 0.821
LIME (Guo et al. 2017) 3.422 4.967 678 31.02 0.885 2.909 4.172 658 31.02 0.877
Proposed method 3.622 5.491 512 32.12 0.915 3.078 4.612 534 32.28 0.921

Fig. 7   Low-light enhancement of frames (real-time frames and frames from “BDD Dataset (BDD100K)”) a original frame b obtained the high-
est intensity by dynamic-patch c transmission map d output frame after bright scene recovery and gamma correction.
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can process the above resolution and can produce a real-
time display without any noticeable delay. However, if a 
high resolution (HD) display is used, then a high-speed 
processor is required to process the frames without any noticeable delay. In that case, processor cost will be 

Fig. 8   Low-light enhancement of real-time frame that consists of a high-intensity headlight of an oncoming bike in the evening. a Original frame 
b obtained the highest intensity by dynamic-patch c transmission map d bright scene recovery d output frame after gamma correction.

Fig. 9   Qualitative comparison among the state-of-the-art techniques. a Input frame b result of Lv et al. (2018) c result of Tanaka et al. (2019) d 
result of Kim et al. (2019) e result of Guo et al. (2017) f result of our proposed method

Fig. 10   Processing time observation (CPU configuration: Intel(R) 
Core (TM) i7-10510U @ 2133 MHz, 8GB RAM, and 500 GB SSD)
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Fig. 11   Comparison of processing time among the existing methods 
and the proposed method for a 1280 × 720 resolution frame
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slightly expensive. During numerous real-time experi-
ments, a pleasant real-time output of 960 × 540 resolution 
is observed in a 13-in. display by a traditional processor 
[Intel(R) Core (TM) i5 8250U CPU@1.60–1.80 GHz with 
8 GB RAM] without any delay.

5 � Conclusion

The paper presents a real-time fast, low-light vision enhance-
ment technique to enhance road visibility at night for drivers. 
The driver faces a problem at night mainly due to a lack of 
sufficient light. This problem cannot be handled properly 
by using headlights and streetlights because these artificial 
lights cannot brighten all the pixels of a night-time frame. 
By the proposed technique a driver can have a prominent 
real-time bright vision of the road and surrounding view 
at night which appears the same during the day-time. Driv-
ers can easily distinguish objects, potholes, and pedestrians 
on the road. There are many existing approaches, which 
can enhance any low-light image. But, most of the existing 
approaches require enormous processing time and are not 
suitable for real-time applications. The proposed approach 
aims to provide a real-time bright view of the road promi-
nently for drivers during the night at a minimum computa-
tion time using a low-cost 2D camera. Many real-time tests 
are conducted and the experimental result reveals that the 
proposed approach achieves auspiciously against the existing 
low-light image enhancement algorithms. This system can 
be installed in any vehicle which generally plies at night. 
The driver, as well as passengers, can be out of risk by using 
this system. Pedestrians can also walk on the road safely if 
everybody uses the proposed system. This system can also 
be used in autonomous vehicles. Road accidents during night 
will also decrease.

In the future, the proposed work will be extended by add-
ing more features to handle rapid fluctuations of atmospheric 
light in a dynamic way. The region-based dynamic calcula-
tion of atmospheric light will be a great solution to produce 
high quality enhanced frames. Frames are produced with a 
perfect balance of brightness and contrast throughout the 
entire frame within a minimum processing time. A similar 
strategy will also be applied in a smartphone application for 
two-wheeler riders. Instead of installing a camera in wind-
shield glass, a virtual reality headset with a smartphone will 
be used so that any two-wheeler rider can get an enhanced 
view on any dark road. Besides, unwanted high beam lights 
on the road will also be inhibited with a more dynamic way 
to produce a comfortable output frame for any driver or 
rider.
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