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Abstract
Perceiving the information about ambient traffic lights is an inevitable task for autonomous vehicles. To deal with the issue, 
this work develops an accurate and fast traffic light recognition strategy for autonomous vehicles by an onboard camera. In 
this paper, deep learning based detection and object tracking is synthesized to determine the position and color of traffic lights. 
First, the mechanism of simultaneous detection and tracking is founded, wherein the video reading module, convolutional 
neural network (CNN) module, integrated channel feature tracking (ICFT) module are run simultaneously. Then, the respec-
tive modules of detection and tracking are introduced. CNN model is designed and trained to obtain the position of traffic 
lights utilized as initial information for tracking. ICFT is applied to continually track the traffic light targets and determine 
the light color. Finally, the effectiveness of the presented method is validated via comparing with the state of art. Experiments 
results indicate that the proposed technique can improve the accuracy and speed of recognition. Our contributions are: (1) 
Establish a mechanism for simultaneous detection and tracking of traffic lights; (2) Carefully design the CNN architecture 
and ICFT features; (3)The precision and recall rates on traffic lights recognition reached 0.962 and 0.909, respectively, and 
the recognition speed reached 21.4FPS (GPU: Nvidia Titan Xp).

Keywords Traffic light recognition · Autonomous vehicle · Deep learning · Intelligent transportation

1 Introduction

Development of autonomous vehicles is one of the most 
prevalent research hotspots in the recent decade (Wang 
et al. 2014; Chen et al. 2019; Wang et al. 2020a). Traffic 
lights recognition is a critical technology in autonomous 

vehicles, which is able to obtain information on the status, 
color, and number of signal lights, and the lanes controlled 
by each light (Fairfield and Urmson 2011; Possatti et al. 
2019; De Charette and Nashashibi 2009b). Although traffic 
lights are designed with various techniques, nowadays, there 
are still some challenges in identifying traffic lights. These 
challenges include: (1) in a complex and changing traffic 
environment, the recognition requires superior robustness 
(Chiang et al. 2011; Wang et al. 2020b; 2) to ensure the 
safety of the vehicle during the driving, the operation of 
the algorithm must be real-time (Greenhalgh and Mirmehdi 
2012).

In the initial phase of developing traffic light recogni-
tion system, the feature-based methods (Saini et al. 2017; 
Lee et al. 2018; Cai et al. 2012; Diaz-Cabrera et al. 2015; 
Hosseinyalamdary and Yilmaz 2017; Wang and Xiong 
2016) are widely adopted. For example, an ellipsoid geom-
etry threshold model in HSV color space is built to extract 
interesting color regions. Besides, a kernel function is pro-
posed to combine two heterogeneous features which are 
used to describe the candidate regions of traffic light. (Liu 
et al. 2016) But it can not perform well when it occurs 
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to the diverse weather with various brightness  (Wang 
et al. 2021). Furthermore, the adaptive background sup-
pression filter is implemented to predict the location for 
traffic lights (Shi et al. 2015). This method highlights the 
traffic light candidate regions while suppressing the unde-
sired backgrounds. Besides, several features such as the 
aspect ratio, area, location, and context of traffic lights 
are tried (Li et al. 2017; Kim et al. 2013; De Charette and 
Nashashibi 2009a). The contribution of related references 
is to design and use various new features on one or more 
conditions to improve the accuracy of traffic lights detec-
tion. But their common challenge is that this feature design 
based on the researcher’s prior knowledge cannot cope 
with complex and diverse realistic scenarios.

In recent years, deep learning methods which can provide 
models imitating neural decision-making are applied to deal 
with classification and object detection (Jensen et al. 2016). 
For example, in some works, various deep neural network 
algorithms are trained as efficient classifiers based on the 
cumulative training data. The contribution of designing 
and using neural networks is to greatly improve the accu-
racy of traffic light recognition in dynamic scenes. Because 
neural networks establish an implicit function to describe 
various characteristics of traffic lights.(Lee and Kim 2019; 
Bach et al. 2018; John et al. 2015; Chen and Huang 2016) 
Recent studies reveal that a combination of the image infor-
mation and deep learning is a promising way to promote the 
performance of recognition (Wang and Zhou 2018; Wang 
et al. 2019; Hirabayashi et al. 2019), wherein prior feature 
is exploited to generate region of interest (ROI), and neural 
network is utilized to determine the state or color of traffic 
lights. John et al. (2014) used image processing techniques 
to extract the texture, color, and shape features of the candi-
date area hereafter the identification of the traffic light state 
is made by an artificial neural network using Multilayer-
Perceptron (MLP). In these works, preprocessing slightly 
reduces the amount of calculation and saves processing time. 
Still, the common problem of deep learning methods is the 
excessive calculation that slows down the speed of process-
ing and instability in video detection.

In order to reduce computational redundancy, achieve 
the requirement of real-time for autonomous vehicles, some 
researchers are exploring the pattern of informing drivers the 
position, status, and remaining time of traffic lights through 
Vehicle-to-roadside-Infrastructure (V2I) or GPS in the last 
several years. For example, Hirabayashi et al. (2019) uses 
current location and finds traffic lights on the road. Ci et al. 
(2019) studies the effect of V2I on traffic flow at signal-
ized intersections. But the large-scale introduction of V2I 
requires a large investment in infrastructure, which will not 
be possible in the short term. Therefore, it is still meaningful 
to study onboard traffic light recognition algorithms.

This paper, proposes a novel traffic lights recognition 
strategy. First, the multi-thread program is built, wherein 
the video reading, CNN model, ICFT is settled. Then, the 
respective module of detection and tracking are cooperated 
to search the traffic light targets and determine the light 
color. Finally, the performance of the presented traffic lights 
recognition method is validated in experiments. The results 
indicate that the presented method is a promising choice for 
traffic lights recognition.

Three original innovations and contributions are under-
lined in this article: (1) a composite mechanism of traffic 
light recognition is constructed to jointly utilize both detec-
tion and tracking information. To the best of our knowledge, 
this is a novel attempt to combine deep learning and object 
tracking methods in traffic lights recognition of autonomous 
vehicles. (2) The architecture of CNN and the features in 
ICFT are well-designed and suitable for traffic light rec-
ognition. (3) Compared with traditional image processing 
methods or a single deep learning algorithm, the proposed 
strategy is of better recognition accuracy and speed for the 
traffic light.

The following content is arranged in this layout: the 
part of the method detail is explained in Sect. 2. Section 3 
describes the results and analysis of various experiments 
performed on the dataset. Finally, the conclusion and future 
work are summarized in Sect. 4.

2  Methods

In this section, the details of the method are given that 
including the mechanism, CNN model, and IFCT. The con-
structions and mathematical formulations of these three 
parts are expounded carefully.

2.1  Mechanism of simultaneous detection 
and tracking

In this paper, an innovative mechanism of simultaneous 
detection and tracking is created. There are three threads in 
the mechanism: Reading, Detection and Tracking.

Figure 1 demonstrates the main process of the mecha-
nism. The output of the detection thread is utilized as auxil-
iary information to update and correct the initial information 
for the tracking thread.

As for the description in time scale, which is shown in 
Fig. 2. The recognition process can be recognized as a cycle 
without a fixed period. Once the tracking module starts, the 
frames of the image would be quickly proceed based on the 
initial information, and outputs are saved. After each detec-
tion, Inter-frame Buffer discriminates the newly appearing or 
disappearing target, filtering out the influence of the muta-
tion caused by false detection, and completing the update of 
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the target position and quantity. Besides, the final candidate 
area given by Inter-frame Buffer is corrected using MSER 
(Maximally Stable Extreme Regions) to acquire a more 
accurate initial information for the tracking thread.

2.2  Deep learning based detection

A deep learning based method is implemented in the detec-
tion part.The CNN model is founded which consists of 
two main parts: backbone and backend. Table 1 shows the 
brief structure of the backbone network with some main 
layers. The backbone is composed of five residual net-
work blocks. Different from the sequential networks such 
as GoogleNet and VGG19, residual networks can better 

solve the overfitting problem of deep neural networks. In 
terms of the number of network layers, in order to increase 
the calculation speed, the network depth is strictly limited. 
Compared with Faster R-CNN (152 layers), the proposed 
network model has only 58 layers. Before the data enter 
each block, the feature map is processed by a convolu-
tional layer with a stride of 2, the size is reduced to a 
quarter, and the number of filters is doubled. The softmax 
is used as the activation function.

In the backend network, some networks only use sin-
gle-scale feature. Many network models employ feature 
maps of different sizes to detect targets, such as SSD. 
However, SSD does not reuse low-level high-resolution 
feature maps, that is, does not make full use of the spatial 
information in the low-level feature maps, which is very 
important for the detection of small objects. Therefore, we 
add the feature maps obtained by the last residual networks 
to the previous feature map. Through such a connection, 
the feature maps used in each layer of prediction are fused 
with different resolutions and different strength of seman-
tic features.

Fig. 1  The mechanism of traffic light recognition algorithm. The 
reading thread reads every frame from the input video with a speed 
of 100 frames per second. The detection thread produces the updated 
coordinate information of targets which is needed by tracking thread.
The tracking also runs on the newest image captured by the reading 
thread

Fig. 2  The process in time scale. Each picture is read from the input 
video, and we take the sequence of pictures that we keep reading as 
the timeline. When the first frame of the video is read, the detection 
thread starts running immediately. The tracking thread won’t start 
until the first target is found

Table 1  The Backbone of the Network

Convolutional: convolutional layer, residual: residual network, Num× : 
repetition times of the structure, last three lines represent the pooling 
method, the output connection scale, and the activation function used 
by the network

Type Filters Size Output

Convolutional 32 3×3 512×288
Convolutional 32 3× 3 / 2 256×144
Convolutional 16 1×1

1× Convolutional 32 3×3
Residual 256×144
Convolutional 64 3× 3 / 2 128×72
Convolutional 32 1×1

1× Convolutional 64 3×3
Residual 128×72
Convolutional 128 3× 3 / 2 64×36
Convolutional 64 1×1

4× Convolutional 128 3×3
Residual 64×36
Convolutional 256 3× 3 / 2 32×18
Convolutional 128 1×1

4× Convolutional 256 3×3
Residual 32×18
Convolutional 512 3× 3 / 2 16×9
Convolutional 256 1×1

2× Convolutional 512 3×3
Residual 16×9
Avgpool Global
Connected 1000
Softmax
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In the way of connection, the Add function is adopted 
rather than the Concatenate layer as usual. At the same time, 
since this method only adds additional cross-layer connec-
tions to the original network, practically no additional time 
and calculations are required. The calculation amount of the 
Concatenate layer is twice that of the Add layer.

According to the explanation above the entire CNN is 
illustrated in Fig. 3.

2.3  Integrated channel feature tracking

In the proposed method, an integrated channel feature is 
used as an object model to compute the weight. The steps 
of the individual tracking algorithm will be specifically 
described below:

2.3.1  Target model description

This method uses the integrated channel feature function as 
the description of the target model. The integrated feature 
includes HSV and LBP, of which the calculation method is 
introduced later.

2.3.2  Particle sample set and particle initialization

The position and size of the traffic light target in the video 
is represented by a rectangular box, so the state space s(n)t  of 
the particle sample of the traffic light at t time is constructed 
by four parameters of the rectangle:

Where n ∈ {1, 2,… ,N} and N is the number of random par-
ticles, x(n)t  and y(n)t  denote the center coordinate of the rec-
tangular box, h(n)t  and w(n)

t  determine the height and width of 
the rectangular box, a(n)t  is the corresponding scale factor. In 
particle initialization, a random particle set with N particles 
of which each state vector obeying a Gaussian distribution 
is generated.

The range of traffic lights in the image area can be esti-
mated and restricted by the transition model. A second-order 
auto-regressive dynamics model is adopted. The particle 
sample set is propagated through the system state transition 
equation to obtain a new particle sample set:

Where A1 , A2 , m is the Auto-regressive coefficients, and 
taking A1 = 2.0,A2 = −1.0,B = 1.0 . N(0,�) denotes the 
Gaussian distribution with zero mean and covariance 
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2.3.3  Weight calculation

First, the histograms of the Hue and Saturation channels of 
the target image and particle samples are computed separately. 
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Fig. 3  The structure of the detection network. The feature map is 
extracted in the backbone while detection is finished in the backend 
of the network. The number of network layers and the number of fil-
ters in the backbone are set properly to improve the computational 
efficiency without excessively reducing the recognition accuracy. 

Subsequently, the connection of multi-scale feature maps is created 
in the backend network to enhance the performance of small object 
detection without substantially increasing the calculation amount of 
the original model
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Then, Bhattacharyya coefficient is used to calculate the likeli-
hood between two histograms:

Where p(u)
s
(n)
t

 denotes each histogram bin of one particle sam-

ple, q0 is each histogram bin of target, and m is the number 
of histogram bins. Each histogram value c(n)t  for the particle 
sample set s(n)t  is calculated by Bhattacharyya coefficient:

Where fc is the normalization coefficient as well as the fol-
lowing fh.

Second, the LBP histogram is calculated. Then calculate the 
histogram of each cell, that is, the frequency of each number 
(assuming the decimal number LBP value). Similarly, the h(n)t  
is calculated:

Where j
s
(n)
t

 is the LBP histogram of each particle samples, k0 
is the LBP histogram of the target.

Also, the distance weight is calculated:

Where x0, y0 is the coordination of the target center in the 
image, r(n)t  is the distance between each particle and target 
center, and R(n)

t  indicates the distance weight.
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Therefore, the Integrated Channel Feature Based Weight can 
be obtained:

The average of the particle sample set based on the weight 
is estimated as the output of the object tracking:

2.3.4  Re‑sampling

First, the particles are sorted according to the weight size, 
and then a new set of particles is re-sampled according to the 
discrete probability distribution rules obtained after sorting. 
The newly generated particles are given equal initialization 
weights. To maintain particle diversity, Gaussian noise is 
added to the re-sampling process.

2.4  Inter‑frame buffer

The inter-frame buffer is demonstrated in Fig.  4. It is 
assumed that after the kth detection, a certain target is found, 
and the distance of which between all the targets tracked 
in the previous frame is compared with the threshold for 
determining whether it is a new target. If it is a new target, 
the new target will not be tracked in this cycle right away.

Then in the (k + 1)th detection, if the target still appears, 
the target will be tracked, that is, the new target enters. But 
if the target does not appear for the (k + 1)th test, it will not 
enter the tracking.
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Fig. 4  The process of inter-frame buffer
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After the new target obtained, MSER is carried out. 
MSER performs a binarization process on an image that 
has been processed into a gray-scale image. The coordina-
tion of darker traffic light cases set in other backgrounds can 
be corrected by MSER as shown in Fig. 5.

3  Results and discussion

First, the detection network is trained and four derived net-
works are compared afterward. Meanwhile, the performance 
comparison between the common single-channel feature and 
the proposed integrated channel feature is also implemented. 
Finally, the overall algorithm is tested.

3.1  Datasets

3.1.1  Berkeley deep drive 100K

44,932 images that traffic lights appear in diverse trans-
portation and weather conditions are obtained from the 80 
thousand annotation files in the BDD100K. The resolution 
of training images is 1280×720 pixels and the frame rate of 
which is 30FPS.

3.1.2  Local urban dataset

A local urban dataset is established to evaluate the algorithm 
we developed. The data is captured at Jiangbei District, 

Chongqing, China. The video acquisition device is the Log-
itech C922 HD Camera. The camera is fixed at the top of 
the front windshield of an electric vehicle. All the videos are 
720p with a frame rate of 30FPS. After editing and filtering, 
22 videos are finally reserved. Meanwhile, these sequences 
of videos are split into 1770 images.

3.2  Evaluations of detection network

The computer runs in the whole experiment is equipped with 
Nvidia Titan XP with 12 GB memory and the resolution of 
training input images is 521×288. LUD is uesd in the test of 
network models trained before.

The details of detection results compared with YOLOv3 
are listed in Table 2. Our network model and YOLOv3 have 
little difference in the number of TP and FN, so the recall 
rate is similar. But the number of FP is reduced by 15%. 
This means that our network has stronger anti-interference 
ability. One step closer, the accuracy of our network has 
increased by 2.3 percentage points, and the F1 value is also 
better. At the same time, the results indicate that our network 
has a faster calculation speed, and its operating speed has 
increased by 23.8%. Through comparison and analysis, our 
network is greatly increasing the calculation speed, at the 
same time, it still maintains the recognition performance 
level of the existing excellent network models, and has 
stronger stability.

To further prove the optimality of our network, four self-
derived networks (MF, BR, MU, MFBR) are introduced to 
be compared with our network in the experiment. These net-
works are of some differences in their structure and they are 
given in Table 3. The presence or absence of the first ResNet 
determines the initial size of the resolution of the three fea-
ture maps. The feature map sizes of BR and MFBR are 4 
times larger than those of other models. The larger the size 
of the feature map, the more conducive to the recognition 
of small-sized targets, but the fewer global features obtained 
by the receptive field. Setting more filters in the network can 
get more features. For example, the number of filters for MF 
and MFBR is twice that of other models, and the number of 
features they obtain is also twice that of other models. With 
more features, the more accurate the model’s description of 
the target, but obviously the amount of calculation is also 
greater. MU increases the multiple of up-sampling, which Fig. 5  MSER correction

Table 2  Details of the detection 
results

Precision = TP∕(TP + FP) , Recall = TP∕(TP + FN) , where TP represents number of true-pos-
itives, FP represents number of false-positives and FN represents number of false-negatives. 
F
1
= 2 × Precision × Recall∕(Precision + Recall)

Network TP FP FN FPS Precision Recall F1

YOLOv3 196 40 38 14.47 0.830 0.838 0.834
Ours 197 34 37 17.92 0.853 0.842 0.847
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increases the area of the feature map (the largest one) used 
to identify the smallest target, which is more beneficial to 
the recognition of small targets. There are two ways to join 
the two feature maps in the connection layer: Add is more 
efficient and Concat retains more information.

Each network introduced above is trained on the identi-
cal device and settings. The details of detection results are 
shown in Table 4 and Fig. 6. About the precision rate, all 
the derived networks are higher than YOLOv3. Especially, 
MFBR is 6.4 percentage points higher than YOLOv3. What 
is opposite, the recall rate of most models is the lower or 
equal compared to YOLOv3. Only our network is a little bit 
higher than YOLOv3. Compared with the F1 score which 
can measure the accuracy of the two-classification model, 
MFBR and our network are better. Referred to the item of 

FPS, MU and our network are much faster than YOLOv3 
and increase by 31.2% and 23.8% respectively. Although 
the precision rate and F1 score of MFBR are both best, the 
speed is too slow and cannot reach real-time detection. In 
Fig. 7, there are a couple of detection results of our network 
in the test.

3.3  Feature channel tracking comparison

The Intersection over Union (IoU) value between the track-
ing result and the ground truth after tracking a certain num-
ber of times is applied to characterize the accuracy. The 
Success Rate Map and Accuracy Map of different tracking 
features are displayed in Fig. 8. The detailed data is shown 
in Table 5 and the advantages are bolded.

According to the experimental results, among these 
groups of channel features, the Average Error, Average 
IOU, and AUC of the single-channel are not as excellent as 
integrated channel features. Furthermore, in our algorithm, 
HSV+LBP reaches 52.5 FPS which is much quicker than 
other integrated groups. Overall, the performance of the 
integrated channel feature is satisfactory, and the accuracy 
and stability are better than the single-channel feature.

3.4  Entire algorithm performance evaluation

The five test videos in the evaluation are shown in Fig. 10. 
Table 6 reveals the result of this test. In the experiment, the 
algorithm processes a total of 14103 frames of the image 
during the experiment, which takes 660.2 seconds, and the 
actual average running frame rate is 21.4 FPS. Comparing 
with the performance of the YOLOv3 in Table 2 (14.47FPS), 

Table 3  Parameters of Models

MF more filters, BR bigger resolution, MU more up-sampling. MF has more filters in network. Resolution 
of three feature map in BR is bigger. The first up-sampling time of MU is 4, therefore the third feature map 
is bigger. MFBR possesses the characteristics of both MF and BR

Network First ResNet Filters times Up-sam-
pling times

Connection layer Resolutions of feature maps

MF I/A 2 2 Concat 16× 9, 32×18, 64×36
BR N/A 1 2 Concat 32×18, 64×36, 128×72
MU I/A 1 4 Concat 16× 9, 32×18, 128×72
MFBR N/A 2 2 Concat 32×18, 64×36, 128×72
Ours I/A 1 2 Add 16× 9, 32×18, 64×36

Table 4  Details of detection 
results via self-derived networks

Network TP FP FN FPS Precision Recall F1

MF 196 36 38 15.75 0.845 0.838 0.841
BR 188 26 46 16.08 0.878 0.803 0.839
MU 175 27 59 18.98 0.866 0.748 0.803
MFBR 194 23 40 12.94 0.894 0.829 0.860
Ours 197 34 37 17.92 0.853 0.842 0.847

Fig. 6  Comparison of the detection performance. In the daytime, the 
conditions of captured images are favorable and the similar objects 
of a traffic light are few, so the model with a better recall rate is pre-
ferred. Furthermore, the detection speed is always the indicator that 
we care about. According to the comprehensive comparison, our net-
work is the optimal network that is suitable for the stage of detection 
for the overall algorithm
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the complete algorithm can process 47.9% more images in 
the same amount of time.

Referring to the precision rate and recall rate, the pre-
cision rate ranges from 0.937 to 0.973 with an average 
of 0.962; the recall rate ranges from 0.834 to 0.953 with 
an average of 0.909. By comparison, both performances 
are more superior to the result of previous evaluation on 
YOLOv3—precision rate increased by 15.9%, and the recall 
rate increased by 8.5%. As revealed in the experimental 
results, there is a significant improvement in traffic light 
recognition supported by the proposed algorithm.

In the entire algorithm experiment, the algorithm we pro-
posed still has certain limitations. In Fig. 9, there are two 
typical defects in the experiment: (a) The rightmost traffic 
light in the bottom row is missed; (b) Although the traf-
fic light is found, its box position is interfered with by the 
countdown indicator next to the light. Higher Precision rate 
means accurate recognition and few false detections, but the 
recall rate of the proposed method is relatively low, that is, 
there is a case of missed detection. In addition, when the 
target pixel area is very small, the image composed of half 
of the black countdown indicator and a red number is similar 
to the traffic light, resulting in inaccurate positioning of the 
traffic light (Fig. 10).

For the five video test results in Table 6, we conducted a 
statistical significance test to determine if the average per-
formance data of the proposed method in the experiment 
is significantly improved compared to YOLOv3 (results 
in Table 2). The test process of FPS is shown below. The 

Fig. 7  Samples of traffic light detection result. The detected traffic 
lights are marked by red rectangles

Fig. 8  Performance of tracking
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significance level � is set to 0.05. The hypotheses for the 
significance test are as follows:

H0 : The FPS of the proposed method is not higher than 
that of YOLOV3.

H1 : The FPS of the proposed method is higher than that 
of YOLOV3.

For the test of a single normal population mean, when the 
standard deviation is unknown, the T-test is used:

Where S is the sample standard deviation, T is the test sta-
tistic. Since T is in the rejection interval, H0 is rejected, that 
is, H1 is accepted. The significance test results of Precision 
and Recall are also the same. Therefore, it can be considered 
that the improvement of the proposed method compared to 
YOLOv3 is not accidental.

The color of traffic lights is told by the hue feature. The 
corresponding confusion matrix is shown in Fig. 11. From 
the result, the recognition accuracy of red lights is higher 
than that of green lights because the difference between red 
and background color is more significant than green espe-
cially referring to blue sky and green trees.

Figure 12 reveals the time consummation of the detection 
thread and the tracking thread and total process. The average 
detecting time on a single frame of the detection thread is 
not much different from the time consumption in the previ-
ous experiment, which is basically above and below 0.056s. 
However, the average tracking time on a single frame of the 
tracking thread is much shorter, which takes about 0.019s. 
The shorter the time required to process the task, the lower 
the computational complexity of the algorithm. In Fig. 11, 
both Track Thread and Detection Thread can achieve traffic 

(15)S =

√

√

√

√

1

n − 1

n
∑

i=1

(X
i
− X)

2

=1.975

(16)T =

X − �
0

S

√

n = 7.846

(17)Rejection interval ∶ {t > t1−𝛼(n − 1) = 2.132}

Table 5  Details of tracking test results

Channels FPS Average error Average IOU AUC 

HOG 10.4 4.954 0.528 0.307
HSV 200.8 4.480 0.565 0.342
LBP 59.8 4.667 0.539 0.321
HOG+HSV 10.7 4.268 0.573 0.348
HOG+LBP 7.8 4.711 0.530 0.314
HSV+LBP(Ours) 52.5 4.393 0.567 0.344

Fig. 9  Mistakes in detection result

Fig. 10  Proportions of light’s color in videos. The test video con-
tains 10712 targets, of which red and green lights are 7132 and 3589 
respectively

Table 6  Details of evaluation results

pFrames denotes the number of processed frames, pTime means the 
processing time

Video pFrames pTime Fps Precision Recall

1 1990 106.8s 18.6 0.959 0.953
2 2263 115.3s 19.6 0.937 0.834
3 2841 132.2s 21.5 0.962 0.888
4 4381 190.5s 23.0 0.973 0.920
5 2628 115.4s 22.8 0.954 0.922
Total 14103 660.2s 21.4 0.962 0.909

Fig. 11  Confusion matrix of color classification
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light targets However, the average time for Detection Thread 
to process each frame of pictures is 2.6 times that of Track 
Thread. That is to say, the computational complexity of the 
detection network model is 2.6 times that of the tracking 
model. When compared with other deep learning meth-
ods, the FPS of YOLOv3 is 14.47, the FPS of the proposed 
method is 21.4. Therefore, the complexity of our method is 
47.9% lower than that of YOLOv3 and the proposed algo-
rithm can meet the requirement of the real-time application.

4  Conclusion

To enhance the usability of the traffic light recognition system 
in autonomous vehicles, this article employs CNN and ICFT 
to determine the coordinates and color for traffic lights. This 
paper improves the recognition accuracy and processing speed 
by combining detection and tracking. Experiment results first 
estimate the optimality of the presented CNN models and 
ICFT, which indicates that the Recall (0.842) and FPS (0.853) 
of the modified model are close to those of YOLOv3 (0.838 
and 0.830) but FPS (17.92) is higher than 14.47. Additionally, 
IFCT is proved to achieve better performance of 4.393 Aver-
age Error, 0.567 Average IOU, and 0.344 AUC than single-
channel feature tracking. The overall test further demonstrates 
the superiority of the proposed method, which means the pro-
posed traffic lights recognition method could be adaptive to 
autonomous vehicles and achieve better performance.

Future work focuses on three perspectives: (1) Apply the 
related traffic light recognition system of this article into the 
system-on-chip and deploy on a real vehicle; (2) Communi-
cate the traffic light information via 5G. By doing this, the 
efficiency and safety of autonomous vehicles in the network 
can be promoted by sharing the information; (3) Employ 
more advanced algorithms to improve the adaptability of 
CNN in different places. Reinforcement learning (RL) is a 
promising method to train the network in the way of unsu-
pervised learning.
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