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Abstract
Latest studies have exploited sink mobility as a pervasive approach to effectively mitigate the energy hole problem frequently 
perceived in the clustered wireless sensor network. For mobile sink (MS) based data collection, the selection of MS sojourn 
location plays a significant role in network performance. Moreover, there are several challenges to WSN in the form of energy 
preservation and data delivery latency. A one-hop data collection by the MS from each cluster conserves the network energy 
significantly but increases the number of sojourn points (SPs) which elongates the MS tour time. On the contrary, a lesser 
number of SPs may indulge the long chain of multi-hop data forwarding, which may further bring the energy hole issue 
into existence. In order to find a trade-off between energy preservation and data delivery delay, this article aims to attain an 
optimal number of SPs that guarantee the one-hop data collection from each cluster. Subsequently, an MS traversal path is 
formed by exploiting the ant colony optimization (ACO) algorithm that generates a near-optimal solution. Simulation results 
manifest the efficacy of the proposed protocol over the existing ones in terms of network lifetime, energy consumption, packet 
delivery ratio, end-to-end delay, etc.

Keywords Ant colony optimization · Energy hole · Highest density node · Mobile sink · Sojourn point · Wireless sensor 
network

1 Introduction

1.1  Background

Since the last decade, the notion of clustering (Shahraki 
et al. 2020; Heinzelman et al. 2000; Akkari et al. 2015) has 
been widely embraced in the domain of wireless sensor net-
work (WSN) to diminish the data redundancy among the 
sensed data. It also simplifies the routing process as only 
the cluster heads (CHs) are allowed to engage in routing. 
However, clustering, along with multi-hop routing (Yu et al. 
2012; Sabet and Naji 2015; Alaei and Yazdanpanah 2019; 
Osamy et al. 2018; Salem and Shudifat 2019) triggers rapid 

energy depletion of the sensor nodes in close proximity to 
the sink that accelerates their premature death. This leads to 
the isolation of the sink from the rest of the network, which 
is popularly known as energy hole problem (Ren et al. 2015; 
Ramos et al. 2016). Energy hole is one of the critical issues 
that causes a deterioration in the quality of service (QoS) 
of WSN by reducing the packet delivery ratio, throughput, 
network lifetime, and so on. It has been observed from most 
state-of-the-art protocols (Tao et al. 2012; Tang et al. 2015; 
Ghafoor et al. 2014; Roy et al. 2020; Abo-Zahhad et al. 
2015; Alsaafin et al. 2018; Wen et al. 2017b; Mehto et al. 
2020; He et al. 2019; Krishnan et al. 2018a; Kumar et al. 
2018; Wen et al. 2017a; Krishnan et al. 2018b; Huang et al. 
2019; Wen et al. 2018; Huang et al. 2017) that exploitation 
of mobile sink (MS) for sensor data gathering has turned 
out as a promising approach to competently alleviate the 
energy hole issue. Generally, in a clustered WSN, MS is a 
movable device that is responsible for gathering the cluster 
data from the CHs by travelling throughout the deployment 
area and eventually supplying the gathered data to the base 
station (BS). Sink mobilization assures the hotspots around 
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the sink to be changed as the data routing load is evenly 
diffused throughout the network. Thus, the overall network 
energy is balanced, and its lifetime is prolonged.

As stated by the radio energy dissipation model (Heinzel-
man et al. 2000), energy consumption is directly proportional 
to the transmission distance, and when the transmission dis-
tance becomes greater than some threshold distance ( �th ), 
it raises the dissipated energy exponentially (following the 
multipath model). Hence, for direct transmission to the MS, 
it is desirable to limit the communication range of the CHs 
within �th , and consequently follow the free space model in 
order to conserve the network energy. In other words, if an 
MS reaches within �th distance of any CH, it can directly 
transmit (free space/one-hop delivery) the data; otherwise, it 
will obey the multi-hop communication until its data reaches 
to the MS. It is worth noting that the rest part of this paper 
will use the terms one-hop distance and threshold distance 
( �th ) interchangeably during the MS-based data gathering. 
Usually, traditional MS-based data gathering approaches can 
be categorized into two major groups. In the first one, MS 
fetches data from individual sensor nodes via one-hop com-
munication (Tao et al. 2012; Tang et al. 2015), which results 
in improved network energy preservation and collision-free 
data collection. Nevertheless, this technique can not satisfy 
the requirements of delay-sensitive applications of WSN due 
to a large number of data collection points as well as the 
velocity constraint of the MS. The other school of thought 
(Ghafoor et al. 2014; Roy et al. 2020; Abo-Zahhad et al. 
2015; Alsaafin et al. 2018; Wen et al. 2017b; Mehto et al. 
2020; He et al. 2019; Krishnan et al. 2018a; Kumar et al. 
2018; Wen et al. 2017a; Krishnan et al. 2018b) allows the 
MS to sojourn at a limited number of data collection points 
for data gathering and thus reduces the data delivery latency 
to the BS. Such a delay-sensitive data gathering approach 
is often termed as rendezvous based strategy where some 
of the sensor nodes are elected as rendezvous points (RPs). 
The non-RP nodes forward their data to the nearest RPs that 
eventually deliver these buffered data to the MS when it 
appears in their proximity. Determining the appropriate RPs, 
along with an optimal MS trajectory, is the utmost attention 
of this strategy. However, most of the existing rendezvous 
based approaches do not ensure a one-hop data gathering 
because of the restricted number of MS sojourn points (SPs); 
in consequence, it may encounter multi-hop communica-
tion. This raises the probability of the energy hole around 
the SPs. Considering the incompatibility between energy 
preservation and data delivery delay, MS-based data gath-
ering protocols should exploit the advantages of both delay 
and energy-sensitive approaches. This arises the research 
problem of finding a minimal set of SPs to secure one-hop 
data delivery; accordingly, the trade-off between the afore-
mentioned conflicting metrics can be achieved.

Once the SPs are nominated, it is necessary to design 
an efficient traversal path for the MS to visit each SP for 
data collection. Generally, MS traversal path designing tech-
nique aims to minimize the length of the path. Researchers 
in (Wen et al. 2017b; Mehto et al. 2020; He et al. 2019; 
Krishnan et al. 2018a; Kumar et al. 2018) have concluded 
that an optimal tour of MS not only reduces the data col-
lection latency but also improves the packet delivery ratio. 
However, finding the minimal length MS tour among all the 
possible tour sequences incurs a non-polynomial time solu-
tion for a large number of SPs that refers to the travelling 
salesman problem (TSP) (Kumar et al. 2018). Since the past 
two decades, several nature-inspired metaheuristics such as 
genetic algorithm (GA), particle swarm optimization (PSO), 
ant colony optimization (ACO), moth flame optimization, 
bee colony optimization etc. are leveraged by the researchers 
to generate a near-optimal solution of the TSP in a reason-
able amount of time. However, finding the optimal MS tour 
problems are considered as a discrete optimization problem, 
and unlike GA and PSO, the aforesaid metaheuristics are 
mainly designed for continuous optimization. This prevents 
such metaheuristics from being suited for the MS traversal 
problems in WSN. On the other hand, between ACO and 
GA, ACO (Dorigo and Stützle 2019; Krishnan et al. 2019) 
is a construction based technique and more suitable for MS 
traversal while as a population based search heuristic, the 
working of GA increases the search overhead, and conse-
quently not viable for MS based routing. In addition, the 
majority of the metaheuristics demand a proper tuning of 
the parameters to attain better efficacy that results in severe 
computational cost for a large-scale problem.

Unlike the other metaheuristics, ACO adopts an adaptive 
approach for parameter tuning during its search procedure. 
Considering the foregoing benefits, ACO has gained its pop-
ularity in solving the computationally hard routing problems 
like TSP and generates an optimal MS tour such that the path 
length is minimized while visiting all the nominated SPs 
(Krishnan et al. 2018a; Kumar et al. 2018).

1.2  Motivation

Although extensive research works have been carried out 
for decades on clustering in WSN, MS-based data gathering 
from a clustered WSN is yet to be explored particularly in 
its delay-sensitive applications. In the energy-constrained 
delay-sensitive network, MS-based data gathering reveals 
the crucial challenges as follows:

– Prolonging the network lifetime has always been the pri-
mary goal in an energy-constrained WSN. Most of the 
existing energy-sensitive MS based data gathering proto-
cols achieve energy efficiency by ensuring one-hop con-
nectivity among the CHs and SPs. However, they often 



10839An optimal mobile sink sojourn location discovery approach for the energy‑constrained and…

1 3

follow visiting each CH for data gathering, which is not a 
scalable approach in large-scale networks. In this regard, 
the research problem of a minimal set of SP nomination 
emerges to guarantee every CH coverage by one-hop 
distance. A solution to such a problem will drastically 
improve the data collection latency while maintaining 
the energy efficiency of the network.

– Minimizing data collection latency is another key objec-
tive of WSN, especially for delay-sensitive applications. 
The data collection latency is directly related to the num-
ber of SPs of the MS. As a result, many of the existing 
delay-sensitive methods have nominated a restricted set 
of SPs to limit the tour time of the MS. However, lim-
iting the number of SPs may result in multi-hop com-
munication among the CHs and SPs that enhances the 
probability of energy hole problem. This necessitates the 
researchers to optimize the number of SPs that are sur-
rounded by the maximum possible number of CHs.

Therefore, the above-mentioned challenges motivate us to 
design an optimal trajectory of the MS that passes through 
the minimum set of SPs while ensuring one-hop connectiv-
ity to all CHs.

1.3  Contribution

This article proposes an energy-constrained and delay-sen-
sitive approach for discovering optimal sojourn points of the 
mobile sink. In a nutshell, the major contributions of this 
article are as follows:

– Nomination of the minimal number of SPs which guar-
antee the one-hop data collection from the CHs of the 
network.

– Construction of an optimal MS traversal path with the 
help of ant colony optimization algorithm to visit all the 
nominated SPs exactly once.

– Performing a detailed simulation analysis under (trun-
cated) Gaussian, non-uniform, and uniformly distributed 
WSN to manifest the flexibility and improvement of the 
proposed algorithm over the existing ones.

To the best of our knowledge, this is the first attempt to form 
a delay-aware data gathering path for the MS by nominating 
a minimal set of SPs in a clustered WSN. It is to be noted 
that, since clustering in WSN is a well-explored topic, this 
article adopts any of the standard existing clustering algo-
rithms (Yu et al. 2012; Sabet and Naji 2015) in order to form 
a clustered WSN.

1.4  Organization

The rest part of the paper is organized as follows. The related 
studies are reviewed in Sect. 2, while Sect. 3 consists of the 
system model comprising network deployment model, rudi-
mentary assumptions, relevant terminologies, and problem 
formulation. The proposed methodology is vividly described 
in Sect. 4 while Sect. 5 presents a theoritical analysis of our 
methodoogy. Section 6 accomplishes a comparative experi-
mental analysis of the proposed protocol with the related 
ones to show its efficacy. Finally, Sect. 7 draws the conclu-
sion and future work.

2  Related work

Several studies on the cluster-based communication algo-
rithms (Heinzelman et al. 2000; Akkari et al. 2015; Yu et al. 
2012; Sabet and Naji 2015; Alaei and Yazdanpanah 2019; 
Osamy et al. 2018; Salem and Shudifat 2019) have been 
developed over the past 2 decades with the aim of minimiz-
ing data redundancy as well as energy consumption of the 
overall network. However, multi-hop routing based cluster-
ing scheme encounters energy hole problem, and at the out-
set, it was adequately alleviated by various unequal cluster-
ing strategies (Kaur and Kumar 2018; Hamidouche et al. 
2018; Logambigai et al. 2018; Chen et al. 2019; Mazumdar 
and Om 2018; Sabor et al. 2016; Gajjar et al. 2016). Despite 
the fact, static sink scenario could not disseminate the data 
routing load uniformly in the network. Under the circum-
stances, sink mobility has emerged as a better alternative 
in order to competently mitigate the energy hole issue. Pri-
marily, MS-based data gathering can be classified into two 
major classes.

2.1  Energy‑sensitive approach

This class of data collection recommends the MS to reach 
individual sensor nodes for data collection; accordingly, 
it acquires an energy-saving architecture. Study Tao et al. 
(2012) develops a sink mobility assisted data gathering 
scheme based on progressive optimization method that con-
siders the data rate constraints between MS and the static 
nodes. It aims to minimize the data gathering latency by 
combining the proximate collection sites, actively skipping 
the redundant nodes, and eventually finding the proper start 
and finish locations of data collection. In the article Tang 
et al. (2015), based on the travelling salesman problem 
(TSP) heuristic, the delivery latency minimization prob-
lem (DLMP) is studied in a randomly deployed WSN with 
mobile sink. The proposed substitution heuristic algorithm 
(SHA) not only finds the anchor points on the sensor nodes’ 
communication radius but also removes the redundant 
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anchor points, and consequently ensures better shortening 
of the MS travelling route. However, gathering the data from 
individual sensor nodes elongates the MDC travelling route, 
which may not fit the aforementioned studies in delay-sensi-
tive applications of WSN.

2.2  Delay‑sensitive approach

On the contrary, the second class of approach aims to pro-
duce lower data delivery latency. It suggests the MS visit 
only a limited set of sensor nodes referred as rendezvous 
points (RP) for data gathering within a delay bound while 
the non-RP nodes forward their sensory data to the near-
est RPs (Roy et al. 2020; Abo-Zahhad et al. 2015; Alsaafin 
et al. 2018; Wen et al. 2017b; Mehto et al. 2020; He et al. 
2019; Krishnan et al. 2018a; Kumar et al. 2018). Article Roy 
et al. (2020) proposes a distributed RP selection strategy that 
considers both the energy and coverage sensitive parameters 
for clustering and routing procedure. This kind of methodol-
ogy guarantees minimal hop data forwarding from sensor 
nodes to their respective MS sojourn locations; accordingly, 
it attains a reducing data acquisition latency. A study in Abo-
Zahhad et al. (2015) introduces an MS based energy-efficient 
clustering protocol MSIEEP that alleviates the energy hole 
problem. MSIEEP reduces the overall hop count of the net-
work by dividing the sensing field into several equal-size 
partitions, each of which leads to one MS sojourn location. 
Furthermore, the proposed clustering protocol figures out 
the optimal number of cluster heads and their locations uti-
lizing the adaptive immune algorithm (AIA). But the major 
pitfall of this policy is that it minimizes the average hop 
counts of the network successfully only when the number of 
sojourn locations is high, which may increase the data gath-
ering latency. A further study Alsaafin et al. (2018) on MS 
trajectory planning for data gathering enables the network 
to dynamically pick up the RPs based on the clustering tech-
nique in a distributed way. This article recommends three 
types of MS trajectory designs referred to as REP, RDP, and 
DBP, which are respectively applicable for energy sensitive, 
delay-sensitive, and time-bounded applications of WSN.

Authors in Wen et al. (2017b) propose an energy-aware 
path construction (EAPC) algorithm whose notion is to con-
sider the path cost between successive data collection points 
(DCP) for the purpose of acquiring an improved data col-
lection path. EAPC algorithm is initiated by the building of 
the maximum spanning tree; then followed by the selection 
of an appropriate set of DCPs. Finally, it suggests the MS 
perform data collection from the highly burdened DCPs. 
Despite the improved data collection path construction, it 
may suffer from long haul multi-hop data forwarding in case 
of large scale unbalanced deployment scenarios. References 
Mehto et al. (2020); He et al. (2019) leverage particle swarm 
optimization (PSO) metaheuristic that aims to optimize the 

MDC travelling path in polynomial time. Study Mehto et al. 
(2020) presents an efficient RP nomination strategy utiliz-
ing the single objective PSO algorithm under two equality 
constraints, namely data delivery delay and traffic rate con-
straints. Authors in He et al. (2019) leverage multi-objective 
PSO based fitness function that aims to reduce the MDC tour 
length by an optimal selection of k number of MS sojourn 
points. However, in a large-scale WSN, it is inconvenient 
to forecast the suitable value of k as changes in the network 
topology may require a variation in the k value. Authors 
in Krishnan et al. (2018a) presents a dynamic clustering 
approach that distributes the dissipated energy load among 
the sensors by electing the CHs in each round; accordingly, 
it enhances the network lifetime. Subsequently, it establishes 
an optimal path for mobile data collectors by utilizing the 
ACO algorithm. However, it suffers from heavy congestion 
of the control messages due to which the network QoS may 
deteriorate. An ACO based routing algorithm is presented in 
the article (Kumar et al. 2018) that leverages the forwarding 
load of the sensor nodes to find the near-optimal set of RPs 
under uneven data generation.

From the literature analysis, it can be observed that the 
energy-efficient approaches overestimate the MS sojourn 
points by stopping the MS at each CH location to minimize 
the energy depletion. However, such approaches drastically 
elongate the tour time of the MS. On the other hand, the 
delay-sensitive approaches underestimate the MS sojourn 
points by nominating a limited SPs, which results in multi-
hop data propagation among the CHs. Thus, there is a 
research gap observed to ensure the nomination of minimal 
SPs for CH data gathering while preserving free space con-
nectivity for all CHs to any SP. In this context, this article 
proposes an optimal SP nomination strategy such that all 
the CHs are covered by one-hop distance with minimal SPs. 
Later, an optimal tour for the MS is also designed such that 
all the nominated SPs are visited with optimal tour path.

3  System model

3.1  Network deployment model

This article considers a WSN made up of n number of sen-
sor nodes and an MS. The MS travels across the target area 
and sojourns at specific sites to gather the sensory data. To 
illustrate the efficacy of the proposed protocol, three dif-
ferent types of deployment scenarios are considered in this 
article. Each node deployment follows a probability distribu-
tion model; correspondingly, they fulfil the requirement of a 
specific application. Generally, the uniform and non-uniform 
distributions of sensor node deployments are implemented 
in WSN. Here, uniform deployments allow sensor nodes to 
be deployed in such a way that node density is uniformly 
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distributed across the network; while non-uniform deploy-
ment (Huang and Savkin 2017) implies that sensor nodes 
should be sparsely populated in some regions and densely 
populated in some other regions. Uniformly distributed 
WSN is most feasible for area coverage (Harizan and Kuila 
2020; Khedr et al. 2018) monitoring which demands con-
tinuous surveillance of each part of the target area. This 
kind of monitoring is highly desirable in battlefield surveil-
lance, where malicious intruders are likely to be detected 
immediately. The non-uniform deployment is suitable for 
scenarios where the demand for sensing coverage degree 
is variable. Several military applications require different 
degrees of detection ability at different points in the target 
area and therefore, do not have a stringent restriction on 
detection timing. Here, the non-uniform deployment will 
be more suitable. Moreover, at times to safeguard a cen-
tral camp containing weaponry from the enemies a larger 
number of sensors are necessarily deployed around it, while 
other non-critical objects are sparsely surrounded by the sen-
sors. This produces none other than Gaussian-distributed 
deployment (Wang et al. 2012) which is a special case of 
non-uniform distribution. Here, sensor nodes are randomly 
but more densely deployed around a central object, and fur-
ther the location from the centre lower the likelihood of the 
deployment density. Hence, this article examines the pro-
posed methodology by employing 2D uniform, Gaussian, 
and non-uniformly distributed deployments in order to meet 
the criteria of immediate intrusion detection and detection 
with higher probability at crucial points, respectively. It 
should be noted that deployments following the above-stated 
distributions obey their corresponding bi-variate probability 
density function (pdf) f(x, y) whose mathematical notations 
are given below:

– A 2D uniform distribution in the range [a, b] has a pdf 
as: 

 where a = 0 and b = 200 are taken for the experimental 
use.

– A 2D Gaussian distribution having similar mean 
( �x = �y ) and similar standard deviation ( �x = �y ) in both 
the dimensions (X and Y) has a pdf as: 

However, a major issue caught in deployment with tradi-
tional Gaussian distribution refers to the unbounded deploy-
ment of sensors when the standard deviation value rises 
above some threshold. Therefore, to acquire a confined 
deployment within the boundary of the target area truncated 

(1)f (x, y) =

{ 1

b−a
for a ≤ x, y ≤ b

0 for x, y < a or x, y > b

f (x, y, �) =
1

2��2
e
−

(x−�)2+(y−�)2

2�2

Gaussian distribution (Wang et al. 2012) is employed in this 
paper whose pdf is given as:

The above-stated node distributions are graphically pre-
sented in Fig. 1a–i exhibit the (truncated) Gaussian, non-
uniform, and uniformly distributed deployments, respec-
tively for variable number of nodes (n). The influence of 
varying node densities on WSN performance metrics is 
elaborated in Sect. 6.1. For the experimental purpose, the 
2D truncated Gaussian distribution parameters are assumed 
as ( �x = �y = 100 ), ( �x = �y = 40 ) in both the dimensions X 
and Y of the target area (where 0 ≤ X ≤ 200 , 0 ≤ Y ≤ 200 ).

3.2  Rudimentary assumptions

This part comprises the rudimentary assumptions used 
throughout the paper as follows:

– All deployed sensor nodes are usually static throughout 
their lifetime. However, they may be moved under exter-
nal interferences, and the movement of a sensor node is 
followed by the random walk mobility model (Qin et al. 
2018).

– The geographical location of every sensor node is known 
by means of a global positioning system or some locali-
zation algorithms (Ukani et al. 2019; Wang et al. 2018).

– Every sensor node is identical with respect to their bat-
tery power, sensing range, and communication range.

– Each sensor node can regulate its transmission power 
level based on the propagation distance by means of 
some power control strategies (Gajjar et al. 2016; Lai 
et al. 2012).

– The sensor nodes are well synchronized in respect of 
their timer values (Benzaïd et al. 2017; Gherbi et al. 
2016).

– According to the references (Harizan and Kuila 2020; 
Shivalingegowda and Jayasree 2020) to ensure connec-
tivity, inter-cluster communication range ( Rcom ) should 
be at least twice the size of intra-cluster communication 
range ( RC ) i.e. Rcom ≥ 2 ∗ RC.

3.3  Relevant terminologies

The fundamental terminologies used in throughout this 
paper are listed below. 

(2)
f T (x, y, �) =

f (x, y, �)

∫
L

2

−
L

2

∫
L

2

−
L

2

f (x, y, �)dydx

.
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(i)  Sets S and SCH : Set S denotes the collective represen-
tation of n number of distinct sensor nodes deployed 
over the target area of size A × A unit2 . After accom-
plishing clustering over S , a new set SCH composed 
of NCH number of CHs is generated which satisfies 
the following set inclusion SCH ⊂ S

(ii)  CH density function(Fden ): It measures the population 
density of a CH in terms of number of CHs present 
in its (2 ∗ Rcom) range. For each CH si , it can be com-
puted by a bijective function Fden ∶ SCH → Sden as: 

(3)Fden(i) =
no. of other CHs in (2 ∗ Rcom) of i

th CH + 1

NCH

 where NCH denotes the total number of CHs in the network 
and 0 ≤ Fden(i) < 1 . The } + 1 ’ in the numerator part indi-
cates the inclusion of the ith CH itself along with other CHs 
in its 2 ∗ Rcom range. Set Sden holds all such Fden values of 
the corresponding CHs.
(iii)  Highest density node (hdn): It denotes the CH sj pos-

sessing highest CH Density value among all the CHs 
in SCH i.e., 

 where argmax returns a singleton consisting the id of the 
highest density CH. Hence, we can write 

argmax
j∈SCH

Fden(j) ∶= {j ∣ ∀i ∈ SCH ∶ Fden(i) < Fden(j)}

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1  Different deployment distributions of WSNs with varying node densities
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(iv)  2-Circle intersection (2 − C inter) : It should be noted 
that communication range ( Rcom ) of each sensor forms 
a circular shape in 2 − D space. Moreover, the theory 
of circle-circle intersection tells that each pair of 
circle can be intersected at one or two intersection 
point(s). A 2-Circle intersection (2 − C inter) refers 
only such circle intersection having two intersection 
points which is pictorially presented in Fig. 2. In this 
figure, the red dots denote the CHs while the black 
dots represent the 2-Circle intersection points. Con-
sequently, for each CH si , a 2-C set can be constructed 
which contains the ids of other CHs with whom si has 
a 2 − C inter i.e., 

 From Fig. 2, the 2-C set of the following CHs are clearly 
seen as: ��−�

�
= {2, 4} , ��−�

�
= {1, 3, 4} , ��−�

�
= {2, 4, 5} , 

��−�
�

= {1, 2, 3, 5} , and ��−�
�

= {3, 4} . In addition, the 
respective Inter2−C

i
 set is preserved for each CH, whose each 

element is a tuple of the intersection points with the CH and 
other respective CHs in set S2−C

i
 i.e., 

 Figure 2 shows Inter2−C
2

= {
(
(x21

1
, y21

1
), (x21

2
, y21

2
)
)
,
(
(x23

1
, y23

1
),

(x23
2
, y

23

2
)
)
 , 
(
(x24

1
, y24

1
), (x24

2
, y24

2
)
)
} which is a collection 

of three tuples each of which represents two intersection 
points generated by the intersection of CH s2 with CHs 
s1, s3, s4 ∈ S2−C

2
.

(v)  Common overlapping region (COR): For p number 
of intersected circles (or CHs), there can be p or less 
than p number of common intersection points (CIP) 
and the enclosure of these points results a region 

(4)hdn = arg max
j∈SCH

Fden(j)

(5)S2−C
i

=
{
j ∣ j ∈ SCH ∧ dist(i, j) < 2 ∗ Rcom

}

(6)Inter2−C
i

=
{(

(xik
1
, yik

1
), (xik

2
, yik

2
)
)
∣ k ∈ S2−C

i

}
.

called common overlapping region (COR). The set 
of CIPs is mathematically denoted as: 

 Figure 3a–c shows the CORs constructed from 2, 3 and 
4 circle intersections respectively. According to Eq. 7 , 
in Fig.  3c, S4

pts
= {(x1, y1), (x2, y2) , (x3, y3), (x4, y4)} . It is 

obvious that placing a Mobile Sink (MS) within any COR 
ensures a simultaneous one-hop data gathering from p num-
ber of CHs. A collection of such p number of CHs having 
COR constructs a common overlapping set (COS) which is 
mathematically defined as: 

(vi)  Maximum length COS: In order to attain one-hop data 
gathering from maximum possible number of CHs, 
the proposed protocol quests after maximum length 
COS. This leads to selecting COR having maximum 
number of CH intersection among all the CORs. The 
following Fig. 4 shows the correct placement of MS 
with a red tick as it refers to a COR of highest number 
of CHs (here 4).

 

3.4  Problem formulation

In this study, our primary objective is to discover an optimal 
set of MS sojourn points Ssoj that guarantees a compromise 
between energy preservation and data delivery delay. This 
can be obtained by minimizing the number of such SPs 
( Nsp ) while securing a one-hop connectivity to the CHs. 
Hence, the minimization problem of MS sojourn points can 
be formulated as: 

 where constraint 9b states that for each cluster head j ∈ SCH 
there exists atleast one SP to obtain one-hop data gathering. 
Xij is a binary variable which is defined by:

where dist(i, j) is the euclidean distance between CH j ∈ SCH 
and sojourn point i ∈ Ssoj and �th is the threshold distance for 

(7)
S
p

cip
=
{
(xi, yi) ∈ ℝ ×ℝ ∣ 0 ≤ xi, yi

≤200∧i = 1, 2,… , q where q ≤ p}

(8)
COSp =

{
j ∣ j ∈ S�� and

⋂
Rcom(j)

≠∅} where |COSp| = p

(9a)�� ∶ minimize Nsp

(9b)subject to

Nsp∑
i=1

Xij ≥ 1, ∀j ∈ SCH

Xij =

{
1 dist(i, j) ≤ �th
0 otherwise

Fig. 2  2 − C intersection for CH s
2



10844 S. Roy et al.

1 3

free-space energy model (as defined in Sect. 6.2). The latter 
part of the proposed protocol constructs an optimal path for 
the MS visiting every SP exactly once and returning back 
to the starting SP. This kind of optimal path mainly aims to 
reduce the total travelling distance of the MS tour which in 

turn minimizes the data gathering delay. This refers to noth-
ing but a Nsp city travelling salesman problem and according 
to Miller–Tucker–Zemlin the MS tour minimization problem 
can be formulated as: 

Fig. 3  Common overlaps

(a) (b)

(c)

Fig. 4  Maximum COR finding
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 where Cij is the travelling distance from SP i to SP j and Xij 
is a binary variable that is defined by:

Constraints 10b and 10c refer to exactly one entry for a SP 
j ∈ Ssoj and exactly one exit for a SP i ∈ Ssoj , respectively. 
Eq. 10d denotes the constraint for subtour elimination where 
Ui is the auxiliary variable ∀i = 1,… ,Nsp.

4  Proposed work

The proposed protocol comprises the following phases:

4.1  Phase 1: set‑up phase

All the sensor nodes in this phase participate in the cluster-
ing process by adopting any standard clustering algorithm 
like (Yu et al. 2012; Sabet and Naji 2015) to evenly partition 
the whole network into a number of clusters. Based on the 
CH information (ID, location, etc.), BS nominates a set of 
optimal MS Sojourn points (SP) exploiting which a closed 
path is built where each SP will be visited only once by the 
MS for data gathering.

4.2  Phase 2: routing phase

The working principle of the routing phase can be catego-
rized into two sub-phases as (i) optimal sojourn points nomi-
nation and (ii) MS traversal path construction.

(10a)𝐏𝟐 ∶ minimize

Nsp
∑

i=1

Nsp
∑

j≠i,j=1

CijXij

(10b)subject to

Nsp∑
i=1,i≠j

Xij = 1, ∀j = 1,… ,Nsp

(10c)
Nsp∑

j=1,j≠i

Xij = 1, ∀i = 1,… ,Nsp

(10d)Ui − Uj +NspXij ≤ Nsp − 1 2 ≤ i ≠ j ≤ Nsp

(10e)Ui ≥ 0 ∀i = 1,… ,Nsp

(10f)Xij ∈
{
0, 1

}
∀i, j = 1,… ,Nsp

Xij =

{
1 if SP j is reached from SP i

0 otherwise

4.2.1  Optimal sojourn points nomination

In order to achieve better energy efficiency, this sub-phase 
aims to choose a set of MS sojourn points which ensure a 
one-hop data collection. However, inefficient one-hop data 
collection may increase the number of SPs, which is not 
feasible for delay-sensitive networks. Hence appropriate 
selection of SPs plays a vital role in MS based data gather-
ing. The proposed protocol nominates the SPs in such a way 
that each SP is surrounded by the maximum possible num-
ber of cluster heads (CH) in the one-hop distance. It helps 
to attain a well regulation of the trade-off between energy 
consumption and data delivery latency. Figure 5 presents 
an algorithm of the optimal SP nomination in the form of 
a concise flow diagram. This flow diagram is an iterative 
process whose every iteration leads to an SP. The iterative 
process continues till all the CHs are covered in the one-hop 
distance by the nominated SPs. An outline of the proposed 
flow diagram is given below:

– Input:

– Set Ssoj will hold the Sojourn points (SP) found in 
each iteration. Initially, Ssoj is null.

– In order to safeguard from data loss SCH remains 
intact and its replica ( SCH  ) is employed.

– Process 1: Calculates the CH density ( Fden() ) value for 
every CH ∈ SCH  using Eq. 3

– Process 2:

– Determines highest density node (hdn) among all 
CHs ∈ SCH  using Eq. 4.

– Calculate 2-Circle intersection set S2−C
hdn

 using Eq. 5.

– Process 3: Calculates maximum length common over-
lapping set ( COSpmax ) for hdn by invoking the function 
Max_COS(hdn, S2−c

hdn
) . In other words, COSpmax refers to 

the set of CHs covered by the forthcoming SP in the cur-
rent iteration.

– Process 4:

– Calculates the corresponding set of common inter-
secting points ( Sp

cip
 ) by invoking the function 

INTER_PTS(COS
p
max).

– Finds the coordinates 
{
(xcen, ycen)

}
 of jth SP by cal-

culating the centroid of all CIPs.

– Process 5: After every iteration, value updating is per-
formed as:
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– Updates Ssoj by adding the coordinates of the SP 
found in the current iteration.

– Updates SCH  by eliminating the set of covered CHs 
( COSpmax ) from it (as the covered CHs will not be 
considered in the next iteration).

– Decision: Subsequently, decision making is also per-
formed to check whether all CHs are covered or not as:

– IF ( SCH == ∅ ) i.e. all CHs are covered then Go to 
Output

– ELSE Go to Process 1 i.e.start of the next iteration.

– O u t p u t :  A  s e t  o f  s o j o u r n  p o i n t s 
Ssoj =

{
(x

soj

j
, y

soj

j
) ∣ j = 1, ...,Nsp ∧

(
Nsp ≪ NCH

)}

It is to be noted that the aforementioned algorithm (Fig. 5) 
will not run in every round in order to mitigate the com-
putational complexity. It will be invoked if and only if re-
clustering takes place. Upon re-clustering, it generates a new 
set of SPs to maintain the adaptability of the network. For a 
better understanding of the readers, a synthetic example of 
the proposed algorithm is illustrated below.

4.2.2  Illustration of SP nomination

Consider  a  WSN of  200 sensor  nodes i .e . , 
� =

{
s0, s1,… , s199

}
 which are deployed over a target area of 

size 200 × 200 unit2 . The node deployment follows the uni-
form distribution model (Eq. 1 ). After clustering, from the 
set � , the following set of cluster heads S�� is generated as:

For the sake of simplicity, only the subscript i of each CH 
si is used to denote its corresponding ID. In Fig. 6a, the 
black dots refer to the Cluster Heads (CH) and their cor-
responding member nodes are shown in red dots. The asso-
ciation between a member and its respective CH are shown 
by the red lines. Let’s have a close look at three successive 
iterations.

INPUT: Ssoj = ∅,SCH = SCH

S�� = [13, 46, 119, 14, 2, 186, 71, 92, 56, 62, 38, 129,

174, 91, 28, 132, 165, 115, 53, 35, 16,

197, 87, 149, 11, 193, 156, 89, 138,

81, 116, 93, 154, 58, 180, 94, 29, 185, 68, 163]

Fig. 5  Flow diagram of the proposed SP nomination approach
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by magenta dots and Fig. 7d depicts the first SP by blue 
coloured star. Figure 8a, b exhibits the scenarios before and 
after updating of S�� , respectively. The same process is 
repeated in Iteration 2 and 3 (as shown in Figs. 9a, 10, 11c) 
over updated set SCH  set each iteration concludes with one 
optimal SP (in Figs. 9b and 11a). Iterations will continue 
until all the CHs are covered by their respective SPs i.e. 
S�� = ∅ . The presented synthetic example lasts for 6 itera-
tions and hence generates 6 MS sojourn points (in Fig. 11d) 
which assures a one-hop data collection from all the 40 CHs.

(a) (b)

Fig. 6  Set up phase and Highest density node (hdn) finding

In Fig. 6b, highest density node hdn = 163 and its com-
munication radius Rcom are marked by green triangle and 
green circle respectively. The Rcom of each CH except the 
hdn is marked by a light cyan circle. Furthermore, the non-
CH nodes are blurred as we are only concerned about the 
CHs. As shown in Fig. 7a, the dark cyan chords inside the 
dark green circle presents the 2 − C inter for hdn = 163 . 
Figure 7b exhibits the maximum length COS ( COSpmax ) for 
hdn = 163 with a lesser number of dark cyan chords than 
Fig. 7a. Figure 7b shows the corresponding set of CIPs ( Sp

cip
 ) 
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(a) (b)

(c) (d)

Fig. 7  Iteration 1 of the proposed algorithm (Fig 5 )
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(a) (b)

Fig. 8  Iteration 1 (continued)

(a) (b)

Fig. 9  Iteration 2 of the proposed algorithm (Fig 5 )
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(a) (b)

Fig. 10  Iteration 2 (continued)

(a) (b)

(c) (d)

Fig. 11  Iteration 3 and 6 (final one)
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4.2.3  MS traversal path construction

The second step of the routing phase establishes an MS tra-
versal path to visit each SP for data gathering and returns 
back to the starting point by following some sequence. 
It is worth mentioning that such sequence is obliged to 
produce the shortest length tour among all possible tour 
sequences in order to fulfil the delay-sensitive requirements 
of WSN. Now, for Nsp number of SPs in the network, there 
are (Nsp−1)!

2
 number of possible tours generated from the 

brute force approach that is extremely large for the large-
scale WSNs. This infers that MS path construction incurs 

a non-polynomial time solution. Hence, it is highly desir-
able to exploit an optimization strategy like ACO algorithm 
(Dorigo and Stützle 2019) to build a near-optimal MS tour 
in a reasonable amount of time. Inspired by the foraging 
behaviour of the real ants, ACO employs a number of arti-
ficial ants which have distinguishing properties as follows:

– They have memory, i.e., they’ll not visit the SP that has 
been already visited.

– They know the distance among the SPs and tend to select 
the nearest SP if the pheromone level remains same.
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– If the distance of two paths are same they’ll tend to 
choose the path which has more pheromone.

The essential parameters used in ACO Algorithm 1 are 
described below:

– Transition probability(��
��
(�) ): It is the probability of how 

ant k will choose the SP j while sitting at SP i at time t 

 where allowedk is the set of SP (s) which is (are) not yet 
visited by ant k, �ij(t) is intensity of pheromone trail 
between SPs i and j at time t, �ij is visibility of SP j from 
SP i.e., �ij =

i

dij
 , and � and � are parameters to regulate 

the relative influence of trail versus visibility.
– Pheromone updating ( ���(� +N��) ): Since there are Nsp 

number of SPs, after Nsp iterations each ant completes a 
tour. Subsequently, pheromone trail �ij(t +Nsp) on edge 
(i,j) at time t +Nsp will be updated as 

 where �ij(t) is pheromone trail on edge (i,j) at time t, � is 
evaporation factor which regulates pheromone reduction, 
and ��ij is total change in pheromone trail between time 
t and (t +Nsp) as shown below 

 where l is the no of ants and ��k
ij
 is quantity per unit 

length of trail on edge (i,j) by kth ant between time t and 
(t +Nsp)

 where Q is constant and Lk is tour length by ant k.
Exploiting ACO, Algorithm 1 results a minimal length 
MS traversal path based on the fully connected graph 
G = (Ssoj, Esoj) where Ssoj is the set of all SPs obtained by 

(11)Pk
ij
(t) =

⎧
⎪⎨⎪⎩

�
�ij(t)

���
�ij
��

∑
p∈allowedk

�
�ip(t)

���
�ip

�� if j ∈ allowedk

0 otherwise

(12)�ij(t +Nsp) = �.�ij(t) + ��ij

(13)��ij =

l∑
k=1

��k
ij

��k
ij
=

{
Q∕Lk if ant k travels on edge(i, j) between t and (t +Nsp)

0 otherwise

the flow diagram in Fig. 5, and Esoj is the set of connections 
among these SPs. In Algorithm 1, Line 3 defines two lists 
to store the shortest tour length and its corresponding cycle, 
respectively in each iteration. Initially, l number of ants are 
placed randomly on Nsp number of SPs. Line 6 suggests 
the assignment of the initial trail value �ij(0) for each edge 
(i, j) ∈ E to a constant c. This algorithm further maintains a 
sp_listk for each ant k, which contains the already visited SPs 
by k. The movement of each ant k to SP j while sitting at SP i 
is determined by the probabilistic measure defined in Eq. 11. 
Once, an SP is visited by ant k; it is inserted to the respective 
sp_list in order to maintain the set allowedk . Then, the tour 
length Lk is computed for each ant k when it has visited all 
the cities. Among them, the shortest tour is found as well as 
inserted with the corresponding tour length into min_list and 
min_len respectively. Line 23 and 24 refer the pheromone 
trail updating on each edge (i, j) ∈ E . The whole process 
continues until the number of iterations reaches the thresh-
old value or the convergence criteria is reached (Line 26). 
The final output of Algorithm 1 is simulated in Fig. 12.

Fig. 12  MS traversal path construction by Algorithm  1
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4.3  Phase 3: steady phase

At the beginning of the data transmission, each non-CH 
node forwards its sensed data to the respective CH obey-
ing the TDMA schedule. The data aggregation is performed 
afterwards at the CH level to mitigate the redundant data 
overhead. In order to avoid collision with other clusters’ 
data, each CH employs a CDMA strategy to forward the 
aggregated data to the MS. On the other hand, following 
the aforementioned constructed path (in Algorithm 1 ) the 
MS moves to the jth Sojourn Point (SP) for data collection 
and broadcasts a WAKE_UP MSG (round No, pause time) 
to wake up all the surrounding CHs which are at a one-hop 
distance. Consequently, a CH may receive duplicate WAKE_
UP MSG if it is located at a one-hop distance from more 
than one SPs. This issue can be resolved by the field “round 
number” in the WAKE_UP MSG as the duplicate messages 
having the same round number are thereby dropped by such 
CHs. Furthermore, a sojourn time is given for the MS in 
each SP to gather the CH data, and as soon as the sojourn 
time expires, the MS moves to the next SP with a certain 
speed. This process continues until all the SPs are visited by 

the MS, which eventually transfers the gathered data to the 
base station for further processing.

5  Analysis of the proposed protocol

Definition 1 SET-COVER. Given a set system 
∑

= (U,F) , 
where U =

{
u1,… , un

}
 is a n element set aka universe and 

F =
{
f1,… , fm

}
 is a family of m subsets such that 

⋃
i fi = U . 

The goal is to find the smallest number of these subsets 
whose union covers all the elements of U.

However, SET-COVER problem is an NP-Hard problem that 
fails to produce an optimal solution in polynomial time. 
Hence, the greedy set cover heuristic is heavily exploited for 
generating a poynomial time solution with an approximation 
factor of ln n . The proposed MS sojourn point nomination 
algorithm is a SET-COVER problem where U = SCH and 
our aim is to obtain a minimal cardinality set Ssoj of sojourn 
points that satisfies the constraint 9b. In this context, each 
nominated SP i ∈ Ssoj results in a subset of cluster heads Ssub

i
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such that 
⋃

i S
sub
i

= SCH i.e. F =
{
S
sub
1

,… ,Ssub
i

,… ,Ssub
Nsp

}
 

where |||Ssoj
||| = Nsp.

Theorem 1 The proposed SP nomination algorithm takes 
at most (N�

sp
lnNCH + 1) number of iterations to cover SCH 

where N′
sp

 is the minimal number of SPs used by the optimal 
solution.

Proof Let us assume the following notations to analyze the 
performance of the proposed greedy heuristic:

– N
′
sp

 denotes the number of SPs used by the optimal solu-
tion to cover SCH.

– Nsp denotes the number of SPs used by the greedy heu-
ristic to cover SCH.

– ai denotes the number of new CHs covered at iteration i.
– bi denotes the number of CHs remain uncovered at the 

end of iteration i.

We will begin with b0 = n and at the 1st iteration, we cover 
a1 number of new CHs that results in b1 = NCH − a1 , the 
number of uncovered CHs. In the 2nd iteration, we will cover 
a2 number of another CHs that results in b2 = b1 − a1 , and 
so on. Now, if the optimal solution is covering all the CHs 
with N′

sp
 number of SPs, then there must a subset Ssub

i
∈ F  

covering at least NCH

N
′
sp

 number of CHs. In addition, the pro-

posed greedy heuristic picks the biggest set of CHs in each 
iteration and hence, covers at least that many CHs. At any 
iteration i, the amount of CHs covered by the greedy heuris-
tic is at least as good as the remaining CHs divided by the 
N

′
sp

 i.e., ai ≥
bi−1

N
�
sp

 . Hence, the expression for the number of 

CHs uncovered at ith iteration can be expressed as:

According to the mathematical induction,

After N′
sp

 iterations nominating N′
sp

 number of SPs, the 
number of leftover CHs are:

(14)

bi = bi−1 − ai

≤ bi−1 −
bi−1

N
�
sp

=

(
1 −

1

N
�
sp

)
bi−1

(15)bi ≤ b0

(
1 −

1

N
�
sp

)i

= NCH

(
1 −

1

N
�
sp

)i

(16)
bN�

sp
= NCH

(
1 −

1

N
�
sp

)N
�
sp

≤ NCH

(
1

e

)

[by Taylor’s expansion]

Hence, the proposed greedy heuristic will have no more than 

NCH ×

(
1

e

)
 number of CHs left at N′

sp

th iteration. If we put 

Nsp = N
�
sp
× lnNCH , then

This states after Nsp = N
�
sp
× lnNCH iterations, the proposed 

heuristic will have atmost one CH left. In other words, the 
heuristic will terminate in no more than (N�

sp
lnNCH + 1) 

iterations which proves the Theorem 1.   ◻

Theorem 2 The proposed MS traversal path construction 
algorithm guarantees a solution of minimal length tour con-
verging in polynomial time.

Proof The proposed MS traversal path construction algo-
rithm is similar to Nsp city TSP where the objective is mini-
mize the tour distance (Eq. 10a). Such a hard combinatorial 
optimization problem involves (Nsp−1)!

2
 number of MS tour 

possibilites where Scan = {C1, C2,… , C (Nsp−1)!

2

} is the set of 

all possible candidate solutions. Every candidate solution 
Ci ∈ Scan is one sequence of sojourn points traversed by the 
MS in a given order. Among them, the optimal MS traversal 
path COPT ∈ Scan ought to be discovered in polynomial time.

Herein, we have applied ACO algorithm including a fully 
connected graph G = (Ssoj, Esoj) and m ants where after (
Nsp × m

)
 number of iterations the trail intensity of every 

edge (i, j) ∈ Esoj is updated. The pheromone updation 
(Eq. 12) of ACO is formulated in such a way that the shorter 
edges will have higher pheromone value (the number of ants 
visited the respective edge). Hence, after 

(
NCmax ×Nsp × m

)
 

number of iterations the path possessing highest number of 
pheromone trail intensity is nominated as the optimal MS 
path (minimal distance path) where NCmax is the maximum 
value of the cycle counter. In other words, ACO will gener-
ate an minimal length MS tour and stops iterating when 
NCi = NCmax or the convergence criteria is met which proves 
the Theorem 2.   ◻

6  Performance evaluation

In practice, the implementation of WSN routing protocols 
is quite expensive and arduous for large-scale applications. 
This necessitates the use of simulation tools to analyze and 
evaluate the performance of the WSN protocols. In this sec-
tion, a thorough simulation analysis is carried out to mani-
fest the improvements of the proposed protocol over the 

(17)

bNsp
= NCH

(
1 −

1

N
�
sp

)N
�
sp
×lnNCH

≤ NCH × e− lnNCH = 1
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related existing protocols like EAPC (Wen et al. 2017b), 
Dynamic (Krishnan et al. 2018a), and Distributed (Alsaafin 
et al. 2018). The whole set of simulations is conducted using 
Python programming language (NetworkX Python library) 
with the Spyder 3.1.2 development environment running in 
an octa-core Intel(R) processor, Xeon(R) server on the Win-
dows Server 2012R2 operating system.

6.1  Simulation environment

The simulation environment assumes a number of sensor 
nodes having initial energy Einit = 0.5 Jule are deployed over 
a target area of size 200 × 200 m2 . As mentioned in Sect. 3.1, 
this article considers three distinct WSN deployments fol-
lowing (truncated) Gaussian, non-uniform, and uniform 

distributions that demonstrates the flexibility of our protocol 
in different WSN applications. Moreover, it has been noticed 
from empirical studies that network performance is substan-
tially influenced by varying the denity of the sensor nodes. 
Therefore, this article accomplishes the simulation analysis 
of the studied protocols in all considered WSN deployments 
with different number of nodes (n). Figure 1 shows several 
initial deployment scenarios where Fig. 1a–c exhibit the 
(truncated) Gaussian-distributed WSNs for 200, 400, and 
600 number of nodes and Fig. 1d–i exhibit the same for non-
uniform and uniformly distributed WSNs, respectively. The 
corresponding clustered networks are shown in Fig. 13a–i 
while Fig. 14a–i exhibit the shortest possible MS trajectory 
for collecting CH data from optimal set of sojourn points.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 13  Clustered network for different WSN deployments with varying node densities
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6.2  Energy model

In the proposed architecture, we use the radio energy dis-
sipation model (Heinzelman et al. 2000) to estimate the 
energy consumption of the sensor nodes during data trans-
mission and aggregation. According to the first order radio 

model, for transmitting b bits of data over a distance of � , 
the radio expends:

where �elec and �amp are the energy dissipation per bit in the 
electronic circuit and the amplifier, respectively. The path 
loss exponent is denoted by e that relies on the transmission 

(18)ET (b, �) = b × �elec + b × �amp × �e

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 14  Optimal MS trajectory for different WSN deployments with varying node densities
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distance � . When � is less than the threshold distance �th , the 
free space (fs) model is applied to set the e value to 2 and 
�amp = �fs otherwise, the multipath (mp) model is applied to 
set e to 4 and �amp = �mp . The threshold distance is derived 
as �th =

√
�fs

�mp
 . Hence, the transmission energy Eq. 18 can 

be rewritten as

Similarly, to receive and aggregate a data packet of b 
bits radio expends respectively ER(b) = b × �elec and 
Eagg = b × �da where �da is the dissipated energy for one 
bit data aggregation. For the experimental purpose, the 
radio model parameter values are taken as �elec = 50 nJ , 
�fs = 10 pJ∕bit∕m2  ,  �mp = 0.0013 pJ∕bit∕m4  ,  a n d 
�da = 5 nJ∕bit∕signal . In addition, the transmitted data and 
control packets are considered of size 4000 bits and 200 bits 
respectively.

6.3  Performance metrics:

The efficacy of the proposed protocol is measured with 
respect to the following performance metrics:

– Energy consumption (in Joule): In the proposed model, 
energy consumption of the sensor nodes is caused by the 
data and control packet exchanges during set-up, routing, 
and steady phases. The total energy consumed by the 
network in the first round can be calculated as: 

 where ei
1
 is the energy consumed by the ith sensor node 

in first round and n is the total number of sensor nodes. 
The following rounds evaluate the network energy con-
sumption as a cumulative sum of the current and earlier 
rounds’ energy consumption. For example, total energy 
consumption in Rth round can be expressed as (Roy et al. 
2020): 

– Number of alive nodes: It indicates the total number of 
sensor nodes possessing higher residual energy than the 
energy threshold E (minimum energy needed by any 
sensor node to accomplish the network operation) (Roy 
et al. 2020). Therefore, in a round R , a sensor node i is 
claimed to be alive if 

(19)ET (b, 𝛿) =

{
b × 𝜀elec + b × 𝜀fs × 𝛿2 if 𝛿 < 𝛿th
b × 𝜀elec + b × 𝜀mp × 𝛿4 if 𝛿 ≥ 𝛿th

E1
con

=

n∑
i=1

ei
1

(20)Er
con

=

n∑
i=1

ei
1
+

n∑
i=1

ei
2
+⋯ R times

 where Einit is the initial energy of every sensor node and 
Ei
res

 is the residual energy of ith sensor node.
– First node die (FND): It denotes the number of rounds 

after which first alive node dies (Roy et al. 2020) i.e. its 
residual energy falls below the energy threshold E . The 
mathematical expression of FND is as follows: 

 where Ri is the lifetime of sensor node i.
– Packet delivery ratio (PDR): It is the proportion of the 

total number of data packets reached to MS ( Pi
ms

 ) to the 
total number of packets transmitted i.e., 

 where Pi
gen

 is the is the number of packets generated at 
ith senseor node. In real life applications, packets received 
at the MS are always lesser in number than packets trans-
mitted due to error-prone medium, heavy congestion, 
hostile environment etc. According to the random uni-
formed model (Abo-Zahhad et al. 2015) packet loss prob-
ability between a sender p and receiver q is defined by 

 This implies that the packet is assumed to be success-
fully delivered when the link probability between the 
sender and receiver is greater than Ploss(p, q) otherwise, 
it is dropped. In other words, packet loss probability 
increases dynamically with the increase in the transmis-
sion distance.

– End-to-end delay (E2Ed): This metric is referred to the 
time (in ms) required for a packet generated by some 
sensor node to be successfully delivered to the sink 
(Roy et al. 2020). It involves transmision, propagation 
and queuing delays. The average E2Ed of the network is 
estimated as: 

(21)

(
Einit −

R−1∑
r=1

ei
r

)
> E i.e., Ei

res
> E

(22)

FND = min
�
R

i ∣ i = 1, 2,… , n
�

subject to

⎛
⎜⎜⎝
Einit −

R
i�

r=1

ei
r

⎞
⎟⎟⎠
≤ �

(23)PDR =
P
i
MS∑n

i=1
P
i
gen

(24)

Ploss(p, q) =

⎧⎪⎨⎪⎩

0 �(p, q) ∈ [0, 50)

0.01 ∗ (�(p, q) − 50) �(p, q) ∈ [50, 100]

1 �(p, q) ∈ (100,∞)

(25)E2Edavg =

∑n

i=1
P
i
gen

× (ta − tg)
i

∑n

i=1
P
i
gen
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 where tg is single packet generation time at ith sensor 
node, ta is packet arrival time at the MS, Pi

gen
 is the num-

ber of packets generated at ith senseor node and sucess-
fully delivered to the sink.

– Average hop count (AHC): Hop count of a source node 
indicates the number of intermediate nodes through 
which its data will be forwarded to the destination node. 

AHC measures the average of all CHs’ hop count in the 
network to relay their cluster data to the MS.

6.3.1  Energy efficiency

Conserving sensor energy is a paramount concern for 
any energy-constrained WSN application as it refers to 
the longevity of the network. Hence, a comparison graph 

(a) (b) (c)

Fig. 15  Total energy consumption for different WSN deployments where n = 200

(a) (b) (c)

Fig. 16  Total remaining energy till FND for different WSN deployments with varying node densities ( n = 200 , 400, and 600)

(a) (b) (c)

Fig. 17  Number of alive nodes for different WSN deployments where n = 200
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is presented in Fig. 15 among the proposed protocol and 
existing benchmarks in terms of total energy consumption 
(as defined in Eq. 20) for 200 number of deployed sensors. 
This graph exhibits the dominance of our protocol over the 
others as it achieves minimal energy consumption in each 
round by ensuring one-hop data delivery to the sink along 
with a limited number of Sojourn points (SP). On the other 
hand, EAPC (Wen et al. 2017b) encounters multi-hop data 
forwarding strategy which leads to higher energy consump-
tion during data communication whereas dynamic (Krishnan 
et al. 2018a) and distributed (Alsaafin et al. 2018) suffer 
from higher transmission energy expenditure despite assur-
ing one-hop data delivery. This is because of their large 
number of data collection points which increases the MS 
traversal latency and eventually may lead to buffer overflow 
of the CHs. Subsequently, re-transmission of the dropped 
packets will further expend the energy of the network. How-
ever, it is of great importance to manifest the efficacy of the 
proposed protocol under the impact of varying node den-
sities in order to guarantee its scalability. Hence, Fig. 16 
depicts bar representations of the four studied protocols in 
respect of total remaining energy till FND for different node 
densities (200–600). It is obvious that the total remaining 

energy till FND for the proposed one is much lower than 
the existing ones, which approves a more balanced energy 
consumption among the sensors.

6.3.2  Network lifetime

An extended network lifetime is always desirable in energy-
limited WSN applications. In this regard, Fig. 17 exhibits a 
comparative analysis among the foregoing protocols with 
respect to the number of alive nodes (as defined in Eq. 21). 
The comparison is made for 200 number of deployed nodes 
under (truncated) Gaussian, non-uniform, and uniformly 
distributed scenarios. It is clear that the proposed protocol 
achieves substantial enhancement in prolonging the network 
lifetime over the related protocols. Enhanced network life-
time is achieved due to the minimal energy consumption in 
each network round caused by the one-hop data transmis-
sion to the MS sojourn points. Herein, the terminology for 
network lifetime is set as FND (Eq. 22). However, evaluat-
ing the network performance by means of FND may not be 
an ideal measure as most of the WSN protocols function 
satisfactorily even after a certain number of sensor nodes 
die. Hence, the line graphs (Fig. 17) regarding the number 

(a) (Truncated) Gaussian (b) Non-uniform (c) Uniform

Fig. 18  Network lifetime for different WSN deployments with varying node densities ( n = 200 , 400, and 600)

(a) (b) (c)

Fig. 19  Packet delivery ratio for different WSN deployments where n = 200
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of alive nodes consider the comparative analysis among the 
proposed and related existing ones until the last node dies. 
From Fig. 18a, we can observe that the proposed protocol 
improves the network lifetime in case of (truncated) Gauss-
ian deployment by 33–76% × than Distributed (Alsaafin 
et al. 2018), 51–90% × than dynamic (Krishnan et al. 2018a), 
and 67–76% × than EAPC (Wen et al. 2017b). From Fig. 18b 
we can further observe the improvement of network life-
time in case of non-uniform deployment by 35–57% × than 
distributed, 49–72% × than dynamic, and 61–72% × than 
EAPC protocol while Fig. 18c exhibits the same for uniform 
deployment by 35–58% × than distributed, 48–66% × than 
dynamic, and 52–72% × than EAPC protocol. The consistent 
performance gain of the proposed protocol in all considered 
scenarios over the compared protocols validates its better 
scalability.

6.3.3  Packet delivery

In addition to the network lifetime, network QoS metrics like 
packet delivery ratio and end-to-end delay are also essential 
to assess the effectiveness of the WSN routing protocols. As 
defined in Eq. 23, PDR is the rate of received packets where 

higher PDR value refers to the better end-to-end reliability 
of the network. However, in practice, sharing an error-prone 
medium, hazardous environment, and heavy network traffic 
may lead to packet loss during data transmission; accord-
ingly, reduces the network end-to-end reliability. Eqution 24 
states that packet loss probability is directly proportional to 
the propagation distance between sender and receiver. Fig-
ure 19 reveals that the proposed protocol outperforms the 
related existing studies with respect to PDR for n = 200 . 
EAPC (Wen et al. 2017b) suffers from severe packet drop 
after HND due to the long haul multi-hop communication 
in the unbalanced scenario. On the other side, dynamic 
(Krishnan et al. 2018a), distributed (Alsaafin et al. 2018), 
and the proposed one suggest a one-hop data delivery to 
the MS to ensure a higher PDR. However, unlike the pro-
posed protocol, distributed and dynamic both recommend a 
substantially large number of data collection points which 
results in buffer overflow at the CHs, and consequently 
degrades their performance. Moreover, the bar graphs in 
Fig. 20 validate the competence and scalability of the pro-
posed protocol for all considered scenarios by presenting 
the average PDR value till FND for variable node densi-
ties (200–600). From 20a, it is noticed that the proposed 

(a) (b) (c)

Fig. 20  Average Packet Delivery Ratio (PDR) till FND for different WSN deployments with varying node densities ( n = 200 , 400, and 600)

(a) (b) (c)

Fig. 21  End-to-end delay (E2Ed) for different WSN deployments where n = 200



10861An optimal mobile sink sojourn location discovery approach for the energy‑constrained and…

1 3

protocol increases the average PDR till FND by 7–23% × 
than distributed, 17–27% × than dynamic, and 17–19% × 
than EAPC. From Fig. 20b, we can observe that the pro-
posed protocol raises the average PDR till FND by 12–24% 
× than distributed, 19–26% × than dynamic, and 18–21% 
× than EAPC. We can further notice from Fig. 20c, that 
the proposed one improves the average PDR till FND by 
12–24% × than distributed, 19–27% × than dynamic, and 
16–21% × than EAPC.

6.3.4  End‑to‑end delay

Another crucial QoS routing metric, end-to-end delay 
(defined in Eq. 25) of the transmitted data packets is also 
taken into account herein to evaluate the studied protocols. 
A lower value of E2Ed is always desirable in delay-sensitive 
WSN applications as it refers to the data delivery timeliness. 
A comparison graph for n = 200 is depicted in Fig. 21 that 
demonstrates the superiority of our protocol over the com-
pared ones with respect to the average end-to-end delay of 
the network. Both EAPC (Wen et al. 2017b) and dynamic 
(Krishnan et al. 2018a) experience higher E2Ed because of 
the presence of long-haul multi-hop routing. On the other 
hand, distributed (Alsaafin et al. 2018) despite offering a 
one-hop data gathering scheme, suffers from high E2Ed as it 
lengthens the MS traversal path comprising a larger number 
of sojourn points. The proposed protocol suggests a one-hop 
data gathering with the minimal possible number of sojourn 
points and attains a considerably lower E2Ed. In addition, 
Fig. 22 depicts the bar representations of the foregoing pro-
tocols with respect to average E2Ed till FND for n = 200 , 
400, and 600, respectively. It is noticed from Fig. 22a that 
the proposed protocol mitigates the average E2Ed value till 
FND by 14–20% × than dynamic, 22–25% × than EAPC, 
and 34–35% × than Distributed. Likewise, Fig. 22b shows 
that the average delay of the proposed protocol till FND 
is improved by 15–20% × than dynamic, 22–26% × than 
EAPC, and 37–39% × than distributed. It is further observed 

from Fig. 22c that the average delay of the proposed protocol 
till FND is reduced by 15–19% × than dynamic, 23–25% × 
than EAPC, and 38–44% × than Distributed. It is noteworthy 
that an increase in node density increases the congestion in 
the network, which inflicts higher end-to-end delay.

6.3.5  Hop count and sojourn points

It has been noticed that higher average hop count (as defined 
in Sect. 6.3) value of a WSN increases the likelihood of 
the hotspot problem. This enforces the proposed protocol to 
focus on minimizing the AHC value of the network. In addi-
tion to the proposed one, dynamic (Krishnan et al. 2018a) 
and distributed (Alsaafin et al. 2018) both obtain a one-hop 
data gathering which produces the least AHC value. On the 
contrary, EAPC (Wen et al. 2017b) encounters the multi-
hop forwarding and suffers from hotspot issue. However, 
minimizing the hop count may increase the number of MS 
sojourn points ( Nsp ) which may not secure the delay-sen-
sitive applications of WSN. This introduces nothing but a 
trade-off issue between AHC and Nsp that can be formulated 
as:

where f1 and f2 are two conflicting objective functions, SCH 
is the set of all CHs, and Sloc

CH
 is the set of all CH coordi-

nates i.e. Sloc
CH

=
{
(xch

i
, ych

i
) ∣ i = 1, 2,… ,NCH

}
 . Figure 23a–i 

exhibit four solutions of the minimization problem 26 in dif-
ferent deployment scenarios where each solution is obtained 
by the proposed and compared existing protocols at any ran-
domly selected round.

However, the proposed solution achieves a great bal-
ance between both the objectives (f1 and f2), which clearly 

(26)

minimize f1(SCH ,S
loc
CH

) = AHC

minimize f2(SCH ,S
loc
CH

) = Nsp

subject to ��SCH
�� < < �S�

0 ≤ xch
i
∈ S

loc
CH

≤ 200 ; 0; ≤ ych
i
∈ S

loc
CH

≤ 200

⎫⎪⎬⎪⎭

(a) (b) (c)

Fig. 22  Average E2Ed till FND for different WSN deployments with varying node densities ( n = 200 , 400, and 600)
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manifests its efficacy in both energy-aware and delay-sensi-
tive applications.

7  Conclusion

In this paper, a novel mobile sink based data gathering pro-
tocol has been proposed for a clustered wireless sensor net-
work to mitigate the energy hole problem. The proposed 
protocol aims to nominate an optimal set of SPs such that 
each SP is surrounded by the maximum possible number of 
cluster heads in one-hop proximity. Afterwards, the short-
est possible MS traversal route is established in polynomial 

time to visit all the nominated SPs by means of the ACO 
algorithm. Thus, the proposed protocol attains an energy 
efficiency by ensuring one-hop communication between the 
CHs and MS, while the data collection latency is minimized 
by designing a minimal length path to cover the SPs. More 
concretely, this article provides an effective balance between 
energy consumption and data collection latency in the net-
work. The performance evaluation exhibits that the proposed 
protocol consistently outperforms the related existing litera-
ture in (truncated) Gaussian, non-uniform, and uniformly 
distributed deployments with various node densities. This 
manifests the viability of the proposed protocol in differ-
ent scale WSNs. In the future, this protocol can be further 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 23  A population of four solutions for different WSN deployments where n = 200
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extended to multiple MS-based data gathering problems 
under storage as well as time-constrained WSN applications.
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