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Abstract
As a convenient and economic computing model, cloud computing promotes the development of intelligence. Solving the 
workflow scheduling is a significant topic to promote the development of the cloud computing. In this work, an Actor-Critic 
architecture is utilized to solve this problem achieving the task executive time minimization under the task precedence con-
straint. It is similar to the list-based heuristic algorithm which includes the task prioritizing phase and task allocation phase. 
However, the results of the two phases interact with each other. In the task prioritizing phase, given a workflow represented 
as the data communication time matrix and task computation time matrix, a distribution over different task permutations by 
the improved Pointer network can be predicted. Then, the heuristic algorithm based on the HEFT achieves the task allocation 
to get the task executive time. Using negative task executive time as the reward signals, the model parameters by a policy 
gradient method in the first phase can be optimized. The simulation experiment is done from the task executive time, and 
the results shows that the workflow scheduling by the deep reinforcement learning is more effective comparing with other 
four single objective heuristic algorithms.

Keywords Cloud computing · Workflow scheduling · Deep reinforcement learning · Actor-Critic

1 Introduction

In the process of transforming the industrial economy into 
the digital economy, cloud computing as a distributed com-
puting model plays a vital role (Yuan et al. 2010). Gartner, 
a authoritative research institution, released the global cloud 
computing market research data, which showed that the 
global public cloud service market will reach $331.2 billion 
in 2022 and the size and growth of the cloud services indus-
try will be nearly three times that of the overall IT service 
(Market Share: IT Services, Worldwide 2019).

Cloud computing is a promising utility-oriented comput-
ing paradigm, and it provides users computing resources 
over the Internet to execute applications submitting by users 

(Bodrow 2017; Sun et al. 2020; Cai et al. 2020c). The cloud 
computing platform consists of a cluster of distribution com-
puting resources to execute large-scale and complex appli-
cations. Workflow can also be used to describe the data-
intensive application. A workflow expressed as the directed 
acyclic graph (DAG) is a parallel and sequence model, con-
sisting of a set of tasks with their precedence relationship, 
that is, a task can’t be executed until all of its immediate 
predecessors are completed. Some large-scale scientific and 
engineering computing problems in astronomy, physics, bio-
informatics and many other fields (Juve et al. 2013) can be 
abstracted as workflow models. These scientific applications 
usually have the characteristics of data and computing inten-
sive. A high-performance cloud environment is offered to 
the large-scale computing requirements of workflow. The 
completion of a workflow usually requires the cooperation of 
multiple heterogeneous servers. Workflow scheduling (Kar-
pagam et al. 2020) can map all tasks in a workflow into the 
available cloud computing resources to achieve certain goals 
under some constraints, which is a challenging problem in 
the cloud computing environment.

It is not a feasible approach to schedule each task 
manually due to the complex and large-scale workflow 
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construction. Many research scholars have devoted them-
selves to the field of workflow scheduling with the important 
performance metrics of solution quality and computing com-
plexity which are also two conflicting goals. Heuristic algo-
rithms (Faragardi et al. 2020; Rajasekar and Palanichamy 
2020; Liu 2020) are a popular way, which can be easy to 
implement and have low computational complexity to get 
a local optimal solution. However, the heuristic algorithms 
lack robustness that work only on specific issues. What’s 
more, the solution quality deteriorates with the increasing 
number of problem instances. Another popular way to solve 
the problem is meta-heuristic algorithms (Cui et al. 2020; 
Cai et al. 2020a; Nedjah et al. 2020) whose main disadvan-
tage is that they need high computational cost.

In this work, the purpose is to design the method to tackle 
the workflow scheduling from the perspective of solution 
quality and computational complexity. The emergence of 
Machine learning (ML) (Hopfield and Tank 1985; Cai et al. 
2020b) promotes the development of artificial intelligence 
(AI) (Hassan et al. 2020a, b) and can solve more complex 
and high-dimensional issues than the tradition methods. As 
the major role of ML, Reinforcement learning (RL) (Sutton 
and Barto 1998) learns the optimal policy through data gen-
erated from interaction with the environment, which is nec-
essary for scheduling problem without high quality labels. 
Deep reinforcement learning (DRL) (Mnih et al. 2015) com-
bines nonlinear learning in deep learning (Cui et al. 2018) 
and decision learning in reinforcement learning, which can 
be applied in many fields. In this work, we utilize the Actor-
Critic (Barto et al. 1970) which is a kind of DRL to tackle 
the workflow scheduling problem in cloud environment. We 
make an improvement on the classical list-based heuristic 
which includes task prioritizing phase and task allocation 
phase. In the proposed DRL architecture, the two phases are 
combined and interact with each other. The training model is 
obtained by training the off-line data set. The trained model 
can be directly used to solve practical problems, which can 
reduce the calculation time. The three major contributions 
of this work are: 

1. An Actor-Critic architecture is designed to tackle the 
workflow scheduling problem aiming at minimizing 
the task execution time under the task precedence con-
straint.

2. The improved Pointer network as the Actor network, 
called the P-Network model, is used to predict the task 
sort distributed which can be as the input of task alloca-
tion phase, and a simple heuristic algorithm is designed 
to select the server from the the perspective of the task 
precedence relationship and computational complexity, 
which is reward to adjust the task sort.

3. Comparing with other four single objective heuristic 
algorithms, the performance of the proposed algorithm 

in this work is effective in aspect of the average task 
executive time (makespan) and the efficiency.

The rest of this work is organized as below. Some related 
works about the list-based heuristic algorithms and deep 
reinforcement learning are discussed and analyzed in 
Sect. 2. Problem description and formulation are expressed 
in Sect. 3. Deep reinforcement learning architecture for the 
workflow scheduling is proposed in Sect. 4. In Sect. 5, we 
make simulation experiments to evaluate the performance 
of our algorithm. Finally, we give conclusions and future 
works in Sect. 6.

2  Related work

Scheduling is a fundamental problem in many fields (Zhang 
et al. 2020; Kumar and Giri 2020). DAG-based workflow 
scheduling problem is proved to be NP-hard, and it is hard 
to find the optimal solution. In this work, the related work of 
the workflow scheduling is given for the list-based heuristic 
algorithms and reinforcement learning.

List-based heuristic algorithm is a popular heuristic 
algorithm to solve the workflow scheduling problem, con-
sisting of task prioritizing phase and task allocation phase. 
One of the well-known list-based heuristic algorithm is 
the heterogeneous earliest-finish-time (HEFT) (Topcuoglu 
et al. 2002) which has low computational complexity. Task 
prioritizing phase is that all tasks in the workflow form a 
sequence according to certain rules which can determine 
the task allocation order in the second phase. The upward 
rank was a common method to get the task sequence of a 
workflow, which utilized the average execution time and 
communication time of the task to calculate the sorting 
value traversing each task from bottom to up. Algorithms 
using this method include HEFT, Lookahead (Bittencourt 
et al. 2010) and predict earliest finish time algorithm (PEFT) 
(Arabnejad and Barbosa 2014), etc. Critical-path-on-a-pro-
cessor (CPOP) (Topcuoglu et al. 2002) utilized the sum of 
the average execution time and communication time of tasks 
to determine the task priority, and defined the critical path 
using the longest path from the starting task to the finish-
ing task. Tasks on the critical path and other tasks adopt 
different allocation strategies. Task allocation phase is that 
tasks are assigned to servers in turn to satisfy certain goals 
according to the obtaining task sequence in the first phase. 
The algorithm of HEFT selected the server with the earliest-
finish-time (EFT) to allocate the task. Considering the effect 
of succeed task execution time on the current scheduling 
decision, Bittencourt et al. (2010) proposed the Lookahead 
algorithm based on HEFT to improve the optimization, but 
the time complexity of the algorithm was higher than that 
of HEFT. For the high complexity of Lookahead, Arabnejad 
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and Barbosa (2014) considering the effect of the current 
task execution time on the next decision proposed PEFT, 
but the algorithm had the poor optimization when the quan-
tity of parallel tasks is large. The task prioritizing phase is 
important for the second phase. However, the first phase is 
independent of the second phase in the list-based heuristic 
algorithms. Both phases are vital for the workflow schedul-
ing and should interact with each other. In this work, the two 
phases adjust each other to achieve the optimization by deep 
reinforcement learning.

Since the concept of ML was proposed, it has aroused 
intense research in many fields (Khan et al. 2020; Cui et al. 
2020). DRL is already successfully used to solve combi-
natorial optimization problems, bin packing problems, job 
scheduling problems, etc., which shows its huge potential 
and inspires us to solve the workflow scheduling problem. 
Dong et al. (2020) proposed a deep Q learning workflow 
scheduling architecture to minimize the makespan. Aiming 
at the makespan and load balance, Tong et al. (2019) utilized 
the deep Q-learning algorithm to solve the multi-objective 
workflow scheduling problem. Combining Q_learning and 
HEFT, Tong et al. (2020) utilized Q_learning to achieve the 
task sort and EFT to finish the task allocation aiming at min-
imizing the makespan. However, the reward in Q_learning 
was required by the upward rank value, which caused the 
separation of the two phases. Similarly, Asghari et al. (2020) 
combined Q_learning and the heuristic algorithm to solve 
the multi-objective online workflow scheduling. However, 
Q_learning is limited in solving the large-scale workflow 
scheduling problem. In this work, we utilized the DRL 
instead of the Q_learning algorithm to achieve the task sort.

In this work, we propose a workflow scheduling strategy 
by DRL. Given any the data communication time matrix 
and the task computation time matrix and the certain char-
acteristics of tasks, the distribution over different task sorts 
can be found utilizing the constructed neural network. And 
the task sort can be as the input of task allocation phase. In 
turn, the result of server selection using the proposed simple 
heuristic algorithm can be the reward to adjust the task sort.

3  Problem description and formulation

3.1  The description of the cloud workflow 
scheduling system

Cloud computing is a new type of computing model ori-
ented to numerical and information processing, which inte-
grates distributed computing, Internet technology, large-
scale resource management and other technologies, and 
makes reasonable use of computing power and resources. 
In essence, it can be regarded as a large-scale heterogene-
ous parallel distributed computing system. As the popular 
cloud computing service model, IaaS(Infrastructure as a Ser-
vice) can provide clients with many heterogeneous service 
resources to accomplish their various demands.A cloud plat-
form based on IaaS is utilized in this work. Figure 1 shows 
the cloud workflow scheduling framework in this work.

The cloud workflow scheduling system is made up of the 
IaaS-based platform and clients. For clients, the comput-
ing resources in the cloud are infinite. They present their 
application requirements (workflow), which is composed of 
a set of task units, to the cloud platform and can obtain the 
computing resources. The IaaS-based platform consists of 
numerous heterogeneous servers, which contain the different 
computational capabilities. The function of cloud platform 
is to fulfill the clients demands.

Used symbols and notations referred to the workflow 
scheduling model are in Table 1.

3.2  Problem formulation

Some quantities used in this work need to be defined and 
explained. A DAG graph can express a workflow, which 
is comprised of task nodes T, where T = t1, t2,… , tm 
represents m tasks in a workflow, and edges D, where 
D =

{
dij|i ≠ j, andi, j ∈ {1,… ,m}

}
 indicates the convey-

ing data value and the precedence constraint relationship 
between ti and tj . TPij is utilized to express the precedence 

Fig. 1  The cloud workflow 
scheduling framework
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relationship between any two tasks. TPij = 1 represents that 
the immediate predecessor of the ti is the tj . Otherwise, TPij 
is 0. The task tentry is the starting task without any predeces-
sor node or father node, and the task texit is the lasting task 
without any successor node or son node. Data communica-
tion time (DCT) represents conveying the data between two 
tasks with the dependency relationship, the value of which 
is relevant to the conveying data value and metastasis rates 
and shows on each edge in Fig. 2. Task computation time 
(TCT ) represents the time for different servers to execute a 
task, shows in Fig. 3.

Workflow is the combination of parallel and sequence 
construction. Each task in a workflow can be only allo-
cated to one server, and a server can only execute one task 
at a time. DCT is generated only when two tasks with the 
dependency relationship are assigned on different servers. 
Otherwise, DCT between two tasks is zero. Setting the server 

set V, V = v1, v2,… , vn , and data metastasis rates between vl 
and vk as �lk , we can define the Data communication time 
between ti and tj by

3.3  Model building and the definition of elements 
in deep reinforcement learning

In this work, we focus on the executing time minimization 
of a workflow, that is the makespan minimization, to design 
a reasonable workflow scheduling algorithm based on deep 
reinforcement learning. By analyzing the factors that affect 
the execution time of tasks, the elements in deep reinforce-
ment learning are defined.

Figure 4 shows the process of task allocation. For a work-
flow, the allocation of the starting task tentry is the basic of 
the whole scheduling, the start execution time of which is 
zero. The allocation of parallel tasks (tasks without depend-
encies) is the key to the optimization of workflow schedul-
ing. With the increasing of parallelism degree, the execution 
time of the whole workflow is shorten. Therefore, it is of 
great significance to improve the parallelism of task execu-
tion to optimize the workflow scheduling. The description 
of the task’s start and finish time on the server provides the 
basis for other tasks’ allocation in the whole workflow. For 
the task ti , the finish time of immediate predecessors and the 
DCT between immediate predecessors and ti and the task 
earliest execution time on the server jointly determine the 
start execution time of the task ti . The start execution time 
of task ti on the server vj can be defined as

(1)

DCT(ti, tj) =

{
dij

�lk
, TPij = 1 ∪ ti in vl and tj in vk(l ≠ k)

0, otherwise

(2)

SET(ti, vj) = max( max
tp∈Pre(ti),h∈[1,n]

(FET(tp, vh) + DCT(tp, vh)),

max
ti∈A(vj)

FET(tl, vj))

Table 1  Symbols and notations referred to the workflow scheduling 
model

Notation Definition

n Server numbers
m Task numbers
T The set of tasks, T = t1, t2,… , tm

V The set of tasks, V = v1, v2,… , vn

TCT(ti, vj) The task computation time of ti on vj
DCT(ti, tj) The task communication time between ti and tj
TPij The precedence relationship between ti and tj
�ij The data metastasis rates between vi and vk
dij The conveying data value from ti to tj
SET(ti, vj) The start execution time of ti on vj
FET(ti, vj) The finish execution time of ti on vj

t1

t2 t3 t4 t5

t7 t8 t9

t11

55
77777 1000010

1111

1313

171712222212 99

13139914141777771711111515
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t10

88

1111515

1313
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Fig. 2  Example of a DAG-based workflow

Task Server1 Server2 Server3

t1 9 13 18
t2 22 19 41
t3 15 27 39
t4 32 23 43
t5 34 42 46
t6 19 38 44
t7 43 26 36
t8 41 38 33
t9 38 29 11
t10 56 27 62
t11 18 28 33

Fig. 3  Time computation time matrix
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Where FET(tp, vh) represents the finish execution time of 
task tp on the server vh . Pre(ti) is the immediate predeces-
sor set of ti . A(vj) represents the task sets allocated on the 
server vj.

In this work, once the task is assigned to the server, it 
will not be interrupted until the task is finished. Therefore, 
the start execution time and TCT  on the server determine 
the finish time of the task ti . The finish time of task ti on the 
server vj can be defined as

Because multiple servers work in parallel, the execution 
time of the whole workflow depends on the finish time of 
the task on the server with the longest working time. In this 
work, the objection function of the workflow scheduling 
problem is to minimize the workflow makespan. Then the 
objection function can be defined by.

A deep reinforcement learning architecture is utilized to 
solve the workflow scheduling problem. The state space and 
action space in the deep reinforcement learning are defined 
by the established mathematical model and the known 
quantities.

State space definition The characteristics of tasks can be 
included in the state space, consisting of DCT, TCT , the start 

(3)FET(ti, vj) = SET(ti, vj) + TCT(ti, vj)

(4)F = max
j∈[1,n]

( max
tl∈A(vj)

FET(tl, vj))

(5)minmakespan = minF

and finish execution time of tasks in servers. The definition 
of state space is as follows.

Action space definition Utilizing the deep reinforcement 
learning to achieve task sorting, the final result is to get a 
task sequence. Therefore, tasks are regarded as actions, and 
a task is selected at each decision step. In addition, in order 
to improve the success rate of action selection and speed up 
the convergence speed of the algorithm, a Mask scheme is 
added to restrain the action selection at each episode. See 
Sect. 4.1 for details.

4  Deep reinforcement learning architecture 
for workflow scheduling

Value-based and policy-based iteration are two representa-
tive methods of reinforcement learning. The value-based 
iteration method Watkins and Dayan (1992) selects actions 
to obtain the optimal policy by estimating values of actions, 
including Q-Learning, Sarsa, temporal difference learning, 
etc. The policy-based iteration method obtains the opti-
mal policy by adjusting the parameters in policies. Actor-
Critic combines the policy-based iteration and value-based 

(6)

S =

{
DCT(ti, vj), TCT(ti, vj),

∀ti∈A(vj)
[
SET(ti, vj),FET(ti, vj)

]}
,

i ∈ (1,… ,m), j ∈ (1,… , n)
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iteration methods, which is an excellent deep reinforcement 
learning. Actor-Critic includes the Actor network and Critic 
network. Actor network is used to predict the policy prob-
ability distribution with parameters about different task 
sorts, whose network structure is the P-Network in this work. 
Critic network is used to estimate the expected value with 
parameters for a given state to evaluate the quality of the 
action policy. The Actor-Critic framework is used to get the 
optimal action policy by running multiple training episodes 
in this work.

The motivation to use the Actor-Critic architecture to 
solve workflow scheduling problems in cloud environment 
is as follows. 

1. Inspiring by using DRL to solve the combinatorial opti-
mization problem (Irwan et al. 2016), we use DRL to 
mix task prioritizing phase and task allocation phase, 
which can get better near-optimal solution than that two 
parts are carried out separately.

2. Using this proposed architecture to obtain the training 
model, we can get a near-optimal solution in a short time 
for a new workflow instant.

3. Unlike value-based iteration method, which limits the 
scale of the problem, utilizing this framework can solve 
high-dimensional and more complex issues.

4.1  Architecture of the neural network for the task 
sorting

Task prioritizing phase is to get the task allocation order as 
the input of task allocation phase. Pointer network (Oriol 
et al. 2015) is a kind of neural networks and is used to solve 
problems in many fields, including Traveling Salesman 
Problem (TSP), Convex Hull, Delaunay Triangulation, etc. 
It can achieve the input sequence sort with variable output 
dictionary size. Utilizing the principle of pointer network 
as the Actor network is proposed to obtain the task sort in 
this work.

Pointer network consists of two recurrent neural network 
(RNN): the encoder and the decoder. DCT and TCT  are as 
the neural network input points X. But the set of task char-
acteristics are as inputs which do not have fixed order in 
our model, we use the proposed neural network model in 
Mohammadreza et al. (2018) to directly use the embedded 
task characteristics instead of the encoder, which can sim-
plify the computational complexity. At each decoding time 

step t(t = 1,… , n) , the decoder uses attention mechanism 
Dzmitry et al. (2015) to point to an input as the output which 
is also the input of the next decoding time step �(t) . When 
all tasks are as the outputs, this process can be terminated. 
We aim to find a stochastic policy � with a different task 
sequence which can minimize the loss function by learning 
the parameters. The probability can be defined by the chain 
rule.

Attention mechanism is a neural network to provide the 
distribution over different outputs at every decoding time 
step t, which is helpful for pointer networks to force on the 
important input information and reduce the influence of 
unimportant information. First, the relevant information is 
extracted between the inputs xi and the decoder hidden state 
ht at decoding time step t, which can make better use of 
the input information and guide the (t + 1) − th time step 
to make a decision. A vector at can be used to express the 
relevant weight between every input xi to the decoder hid-
den state ht.

Where using softmax function normalizes the ut , and W1 , 
W2 and va represent the trainable parameters.The proposed 
neural network can be called P-Network and shown in Fig. 5.

A Mask scheme is defined as the 0-1 list, which is used 
to generate feasible solutions and improve the success rate 
of the training. The scheme restrains the action selection 
from three aspects. First, considering that each task can only 
be selected once during a complete task sorting process, 
the value of the selected task position in the function is set 
to be 0. Then, considering that the task tentry only has son 
nodes and the task texit only has father nodes, the tentry is 
set as the first one and the texit is set as the last one in the 
task sequence. Finally, considering the dependency between 
tasks, all its father nodes have been selected when a task is 
selected. The pseudo code of the process of the Mask scheme 
is given in Algorithm1.

(7)p(�|X) =
m∏

t=1

p(�t+1|�1,�2,… ,�t,X)

(8)ui
t
= vT

a
tanh(W1xi +W2ht)

(9)at = softmax(ut)

(10)p(�t+1|�1,�2,… ,�t,X) = at
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In the Algorithm 1, the Mask list is initialized, and all 
value in the list is 1 (line 1). For each iteration, tasks, whose 
father nodes still are not allocated, are found among all 
tasks, and the value of those tasks is set to 0 (line 2–12). 

Then, the policy probability of unfeasible solutions is set 
to −∞ using the log-probabilities (line 13). The next task 
is selected utilizing the �-greed policy (line 14). The Mask 
value of the selected task is set to 0 (line 15). Repeat the loop 
until all tasks are selected.

4.2  A heuristic algorithm based on the HEFT 
for the task allocation

Task prioritizing phase can get the distribution with different 
task sorts by the proposed neural network, then the task sort 
policy � can get. For the task allocation phase, tasks in the 
workflow are allocated to servers and the makespan of the 
whole workflow can be calculated. And the makespan can be 
as reward to make a feedback on the result of task sequenc-
ing. Two mainly factors are considered in this phrase, includ-
ing the task precedence relationship and computational 
complexity. We design a heuristic algorithm based on the 
HEFT, which allocates the task to the server with the earliest 
completion time. The pseudo code of the task allocation is 
given in Algorithm 2.

Fig. 5  Task sorting based on the 
P-Network model

Attention MechanismAttention Mechanism

..... ...... ......x1 x2 x3 xm hmh1 ht ht+1
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1. Reward function
  The ultimate goal of training via deep reinforcement 

learning is to endow the higher probabilities to the task 
sort which can get shorter makespan. Reward function 
can reflect the optimization problem and guide the train-
ing method to adjust the parameters of neural network. 
Using the symbol � to represent all parameters of the 
proposed neural network, we can define the reward func-
tion as follows.

In this work, there are two parts to achieve the workflow 
scheduling, task prioritizing phase and task allocation 
phase. Thus, we can compute the reward only after fin-
ishing the two phase. S is the state space vector referring 
to Sect. 3.3, and X is the neural network input points 
referring to Sect. 4.1. During the training process, we 
utilize a distributed � to generate the DAG-based work-
flow cases. And the total training goal refers to sampling 
from this distribution, i.e. J(�) = ES∼�J(�|S).

2. Parameter optimization via Actor-Critic
  Given the environment state, the ultimate goal of 

reinforcement learning is to obtain the highest reward, 
and the best action policy can achieve this goal. In this 

(11)J(�|S) = E�∼p� (⋅|X) − F(�|S)

In the Algorithm 2, we can get the distribution by the 
proposed neural network and the task sort by the �-greed 
policy in the training phrase and greed policy in the test-
ing phrase (line 1–2). Rank denotes the task sort list, 
and Rank(i) denotes the task in the ith location of Rank. 
Task allocation phase can be achieved by line 3–17. The 
algorithm selects the sever vj with the earliest start time 
SET(ti, vj) for task ti according the task order in Rank. The 
algorithm first finds all father nodes of Rank(i) among the 
set of tasks that already were allocated. Then, the start time 
of the Rank(i) on server vk is determined by the finish time 
of its father nodes Rank(l), the data communication time 
DCT(Rank(l), Rank(i)) between the Rank(i) and Rank(l), 
and the earliest start execution time of the server vk (line 
4–12). The start time and scheduling result of the Rank(i) 
by traversing all servers can be achieved (line 13–14). The 
finish time of Rank(i) on the server vk is determined by the 
start time of the task and the task computation time on the 
server (line 15). After all tasks are scheduled, makespan can 
get (line 18).

4.3  Training methods based on deep reinforcement 
learning

We utilize the P-Network model to generate a policy � dis-
tribution with parameters over a different task sort. Then, 
we use the DRL to train the proposed neural network model.
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work, action policy is the task sort. We can get the best 
policy by adjusting the network parameter iteratively. 
Policy gradient methods are used to train parameters � 

in P-Network and �′ in Critic network. The pseudo code 
of the Actor-Critic architecture training in the workflow 
scheduling is given in Algorithm 3.

Fig. 6  Flowchat of workflow 
scheduling based on the deep 
reinforcement learning T1
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Fig. 7  The average makespan under various number of tasks and CCR 
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In the Algorithm  3, the DAG-based workflow cases 
are generated obeying a distributed � (line 4). Utilizing 
the proposed P-Network gets the preliminary distribution 
over different task permutations (line 5), and the ultimate 
distribution can be predicted by the process of the Mask 
scheme in Algorithm 1 (line 6). According the p�(�|Xi) , 
the task sorting policy can be required utilizing the �-greed 
(line 7). After training the sample instances using the pro-
posed P-Network (line 3–9), the policy gradient is utilized to 
update the parameters in the Actor (line 10) and Critic net-
work (line 11). The gradient of the parameters is formulated 
by the REINFORCE algorithm Ronald (1992), and V�� (Si) is 
the reward approximation acquiring from the Critic network.

The flowchart of workflow scheduling based on the deep 
reinforcement learning can be expressed in Fig. 6.

5  Simulations

To evaluate the performance of the proposed algorithm, a 
series of simulations are given. In this section, simulation 
setup and algorithm performance evaluation are elaborated 
in detail.

5.1  Simulation setup

It is complicated and cost-high to evaluate the algorithm 
performance in the real cloud environment. WorkflowSim is 
the simulation toolkit extended from CloudSim, which can 
be utilized to simulate a cloud workflow scheduling environ-
ment accurately and used in this work.
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Fig. 8  The average makespan of Montage (25 tasks)
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Fig. 9  The average makespan of epigenomics (100 tasks)
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5.1.1  Related parameters

Two types of workflows are used to evaluate the proposed 
algorithm, including randomly generated workflows in train-
ing and test phrase and workflows of real-word applications 
in test phrase.

A workflow is described in terms of the workflow struc-
ture, which can be described by the amount of tasks and the 
dependencies between tasks. For randomly generated work-
flows, given the number of tasks, the dependencies between 
tasks are randomly generated. In this work, the DCT among 
tasks randomly takes the value from 0 to 10. The commu-
nication-to-computation ratio (CCR ) is utilized to get the 
average TCT , and the TCT  obeys the normal distribution, the 
standard deviation of which is 3. For real-world workflows, 
two types of widely scientific workflow structure are used, 
including Montage (25 tasks) and epigenomics (100 tasks).

A workflow is regarded as a sample. In each training pro-
cess, we set 10,000, 25,000 and 50,000 train samples for the 
batch size of 256, and 2000 test samples. RNN with 128 hid-
den size is utilized in the P-Network and Critic network. The 
Adam Optimizer is utilized to train the neural model, and 
the learning rate is 10−4 . The � value in the �-greed policy is 
significant for the algorithm optimization. The initial � value 
is 0.1, then is updated from 0.1 to 0.05 with the algorithm 
iteration.

5.2  Performance evaluation

The average makespan are utilized to evaluate the perfor-
mance of WSDRL. And HEFT, PEFT, Lookahead and 
CPOP are utilized to make a comparison with the proposed 
algorithm in this work.

5.2.1  The makespan evaluation of randomly generated 
workflows

CCR  is utilized to reflect the intensive degree of a workflow. 
The value of CCR  is large when the communication between 
tasks is intensive, and the value of CCR  is small when the 
computation is intensive. By controlling the value of CCR , 
different types of workflows are generated for the algorithm 
evaluation. When the value of CCR  is set to 0.5, 1, 1.2 and 
1.5, the average makespan can be obtained under various 
amounts of tasks by five algorithms using 2000 test samples, 
which can be described in Fig. 7. In the experiment, 5 serv-
ers are utilized to execute those workflows.

In the Fig. 7, the average makespan is the shortest using 
our proposed algorithm under different amounts of tasks 
and value of CCR. In addition, Lookahead shows the better 
performance than other algorithms excepting the proposed 

algorithm. And CPOP shows the worst performance among 
the five algorithms. With the increasing amounts of tasks, 
the performance superiority of our algorithm becomes more 
obvious because of the disadvantage of the local solution for 
heuristic algorithms.

5.2.2  The makespan evaluation of real‑world workflows

The two kinds of workflows are utilized to calculate the aver-
age makespan using different amounts of servers. In each 
workflow, values of CCR  are 0.5, 1 and 1.5.

The average makespan of Montage (25 tasks) can be 
acquired by 2 severs in Fig. 8a and 5 servers in Fig. 8b. 
Firstly, it can be found that the average makespan reduces 
with the increasing number of servers. However, the down-
ward trend is not large with the increasing value of CCR 
, that is because it is unwise to allocate tasks to multiple 
servers when DCT is large. Then, WSDRL can acquire a 
better result.

The average makespan of Epigenomics (100 tasks) can be 
acquired by 10 severs in Fig. 9a and 20 servers in Fig. 9b. It 
can be found that WSDRL can achieve the nearly same effect 
as Lookahead. However, the computational complexity is far 
lower than Lookahead, because we only need to consider the 
task allocation phrase after training.

6  Conclusion and future work

A new workflow scheduling algorithm based on the Actor-
Critic architecture is proposed to achieve the makespan 
minimization. The designed architecture combines the 
neural network model and the heuristic algorithm based on 
the HEFT to achieve the task sequence and task allocation, 
considering the solution quality and computational complex-
ity. The algorithm performance evaluation is in aspect of 
the average makespan, and the simulation result comparing 
with other four heuristic algorithms shows the effective-
ness of the proposed algorithm. In the future work, we will 
design the algorithm to solve the multi-objective workflow 
scheduling (Wang et al. 2020) on the basis of this work. 
Besides, dynamic uncertainties have an important impact 
on the workflow scheduling, and it is the major work to add 
dynamic uncertainties in the cloud environment into the 
design of the algorithm.
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