
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2021) 12:10823–10835
https://doi.org/10.1007/s12652-020-02884-1

ORIGINAL RESEARCH

Workflow scheduling based on deep reinforcement learning
in the cloud environment

Tingting Dong1 · Fei Xue2 · Chuangbai Xiao1 · Jiangjiang Zhang1

Received: 24 September 2020 / Accepted: 23 December 2020 / Published online: 9 January 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
As a convenient and economic computing model, cloud computing promotes the development of intelligence. Solving the
workflow scheduling is a significant topic to promote the development of the cloud computing. In this work, an Actor-Critic
architecture is utilized to solve this problem achieving the task executive time minimization under the task precedence con-
straint. It is similar to the list-based heuristic algorithm which includes the task prioritizing phase and task allocation phase.
However, the results of the two phases interact with each other. In the task prioritizing phase, given a workflow represented
as the data communication time matrix and task computation time matrix, a distribution over different task permutations by
the improved Pointer network can be predicted. Then, the heuristic algorithm based on the HEFT achieves the task allocation
to get the task executive time. Using negative task executive time as the reward signals, the model parameters by a policy
gradient method in the first phase can be optimized. The simulation experiment is done from the task executive time, and
the results shows that the workflow scheduling by the deep reinforcement learning is more effective comparing with other
four single objective heuristic algorithms.

Keywords Cloud computing · Workflow scheduling · Deep reinforcement learning · Actor-Critic

1 Introduction

In the process of transforming the industrial economy into
the digital economy, cloud computing as a distributed com-
puting model plays a vital role (Yuan et al. 2010). Gartner,
a authoritative research institution, released the global cloud
computing market research data, which showed that the
global public cloud service market will reach $331.2 billion
in 2022 and the size and growth of the cloud services indus-
try will be nearly three times that of the overall IT service
(Market Share: IT Services, Worldwide 2019).

Cloud computing is a promising utility-oriented comput-
ing paradigm, and it provides users computing resources
over the Internet to execute applications submitting by users

(Bodrow 2017; Sun et al. 2020; Cai et al. 2020c). The cloud
computing platform consists of a cluster of distribution com-
puting resources to execute large-scale and complex appli-
cations. Workflow can also be used to describe the data-
intensive application. A workflow expressed as the directed
acyclic graph (DAG) is a parallel and sequence model, con-
sisting of a set of tasks with their precedence relationship,
that is, a task can’t be executed until all of its immediate
predecessors are completed. Some large-scale scientific and
engineering computing problems in astronomy, physics, bio-
informatics and many other fields (Juve et al. 2013) can be
abstracted as workflow models. These scientific applications
usually have the characteristics of data and computing inten-
sive. A high-performance cloud environment is offered to
the large-scale computing requirements of workflow. The
completion of a workflow usually requires the cooperation of
multiple heterogeneous servers. Workflow scheduling (Kar-
pagam et al. 2020) can map all tasks in a workflow into the
available cloud computing resources to achieve certain goals
under some constraints, which is a challenging problem in
the cloud computing environment.

It is not a feasible approach to schedule each task
manually due to the complex and large-scale workflow

 * Fei Xue
 Xuefei2004@126.com

 Tingting Dong
 dongtingting2019@163.com

1 Faculty of Information Technology, Beijing University
of Technology, Beijing, China

2 School of Information, Beijing Wuzi University, Beijing,
China

http://orcid.org/0000-0002-3436-6356
http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-020-02884-1&domain=pdf

10824 T. Dong et al.

1 3

construction. Many research scholars have devoted them-
selves to the field of workflow scheduling with the important
performance metrics of solution quality and computing com-
plexity which are also two conflicting goals. Heuristic algo-
rithms (Faragardi et al. 2020; Rajasekar and Palanichamy
2020; Liu 2020) are a popular way, which can be easy to
implement and have low computational complexity to get
a local optimal solution. However, the heuristic algorithms
lack robustness that work only on specific issues. What’s
more, the solution quality deteriorates with the increasing
number of problem instances. Another popular way to solve
the problem is meta-heuristic algorithms (Cui et al. 2020;
Cai et al. 2020a; Nedjah et al. 2020) whose main disadvan-
tage is that they need high computational cost.

In this work, the purpose is to design the method to tackle
the workflow scheduling from the perspective of solution
quality and computational complexity. The emergence of
Machine learning (ML) (Hopfield and Tank 1985; Cai et al.
2020b) promotes the development of artificial intelligence
(AI) (Hassan et al. 2020a, b) and can solve more complex
and high-dimensional issues than the tradition methods. As
the major role of ML, Reinforcement learning (RL) (Sutton
and Barto 1998) learns the optimal policy through data gen-
erated from interaction with the environment, which is nec-
essary for scheduling problem without high quality labels.
Deep reinforcement learning (DRL) (Mnih et al. 2015) com-
bines nonlinear learning in deep learning (Cui et al. 2018)
and decision learning in reinforcement learning, which can
be applied in many fields. In this work, we utilize the Actor-
Critic (Barto et al. 1970) which is a kind of DRL to tackle
the workflow scheduling problem in cloud environment. We
make an improvement on the classical list-based heuristic
which includes task prioritizing phase and task allocation
phase. In the proposed DRL architecture, the two phases are
combined and interact with each other. The training model is
obtained by training the off-line data set. The trained model
can be directly used to solve practical problems, which can
reduce the calculation time. The three major contributions
of this work are:

1. An Actor-Critic architecture is designed to tackle the
workflow scheduling problem aiming at minimizing
the task execution time under the task precedence con-
straint.

2. The improved Pointer network as the Actor network,
called the P-Network model, is used to predict the task
sort distributed which can be as the input of task alloca-
tion phase, and a simple heuristic algorithm is designed
to select the server from the the perspective of the task
precedence relationship and computational complexity,
which is reward to adjust the task sort.

3. Comparing with other four single objective heuristic
algorithms, the performance of the proposed algorithm

in this work is effective in aspect of the average task
executive time (makespan) and the efficiency.

The rest of this work is organized as below. Some related
works about the list-based heuristic algorithms and deep
reinforcement learning are discussed and analyzed in
Sect. 2. Problem description and formulation are expressed
in Sect. 3. Deep reinforcement learning architecture for the
workflow scheduling is proposed in Sect. 4. In Sect. 5, we
make simulation experiments to evaluate the performance
of our algorithm. Finally, we give conclusions and future
works in Sect. 6.

2 Related work

Scheduling is a fundamental problem in many fields (Zhang
et al. 2020; Kumar and Giri 2020). DAG-based workflow
scheduling problem is proved to be NP-hard, and it is hard
to find the optimal solution. In this work, the related work of
the workflow scheduling is given for the list-based heuristic
algorithms and reinforcement learning.

List-based heuristic algorithm is a popular heuristic
algorithm to solve the workflow scheduling problem, con-
sisting of task prioritizing phase and task allocation phase.
One of the well-known list-based heuristic algorithm is
the heterogeneous earliest-finish-time (HEFT) (Topcuoglu
et al. 2002) which has low computational complexity. Task
prioritizing phase is that all tasks in the workflow form a
sequence according to certain rules which can determine
the task allocation order in the second phase. The upward
rank was a common method to get the task sequence of a
workflow, which utilized the average execution time and
communication time of the task to calculate the sorting
value traversing each task from bottom to up. Algorithms
using this method include HEFT, Lookahead (Bittencourt
et al. 2010) and predict earliest finish time algorithm (PEFT)
(Arabnejad and Barbosa 2014), etc. Critical-path-on-a-pro-
cessor (CPOP) (Topcuoglu et al. 2002) utilized the sum of
the average execution time and communication time of tasks
to determine the task priority, and defined the critical path
using the longest path from the starting task to the finish-
ing task. Tasks on the critical path and other tasks adopt
different allocation strategies. Task allocation phase is that
tasks are assigned to servers in turn to satisfy certain goals
according to the obtaining task sequence in the first phase.
The algorithm of HEFT selected the server with the earliest-
finish-time (EFT) to allocate the task. Considering the effect
of succeed task execution time on the current scheduling
decision, Bittencourt et al. (2010) proposed the Lookahead
algorithm based on HEFT to improve the optimization, but
the time complexity of the algorithm was higher than that
of HEFT. For the high complexity of Lookahead, Arabnejad

10825Workflow scheduling based on deep reinforcement learning in the cloud environment

1 3

and Barbosa (2014) considering the effect of the current
task execution time on the next decision proposed PEFT,
but the algorithm had the poor optimization when the quan-
tity of parallel tasks is large. The task prioritizing phase is
important for the second phase. However, the first phase is
independent of the second phase in the list-based heuristic
algorithms. Both phases are vital for the workflow schedul-
ing and should interact with each other. In this work, the two
phases adjust each other to achieve the optimization by deep
reinforcement learning.

Since the concept of ML was proposed, it has aroused
intense research in many fields (Khan et al. 2020; Cui et al.
2020). DRL is already successfully used to solve combi-
natorial optimization problems, bin packing problems, job
scheduling problems, etc., which shows its huge potential
and inspires us to solve the workflow scheduling problem.
Dong et al. (2020) proposed a deep Q learning workflow
scheduling architecture to minimize the makespan. Aiming
at the makespan and load balance, Tong et al. (2019) utilized
the deep Q-learning algorithm to solve the multi-objective
workflow scheduling problem. Combining Q_learning and
HEFT, Tong et al. (2020) utilized Q_learning to achieve the
task sort and EFT to finish the task allocation aiming at min-
imizing the makespan. However, the reward in Q_learning
was required by the upward rank value, which caused the
separation of the two phases. Similarly, Asghari et al. (2020)
combined Q_learning and the heuristic algorithm to solve
the multi-objective online workflow scheduling. However,
Q_learning is limited in solving the large-scale workflow
scheduling problem. In this work, we utilized the DRL
instead of the Q_learning algorithm to achieve the task sort.

In this work, we propose a workflow scheduling strategy
by DRL. Given any the data communication time matrix
and the task computation time matrix and the certain char-
acteristics of tasks, the distribution over different task sorts
can be found utilizing the constructed neural network. And
the task sort can be as the input of task allocation phase. In
turn, the result of server selection using the proposed simple
heuristic algorithm can be the reward to adjust the task sort.

3 Problem description and formulation

3.1 The description of the cloud workflow
scheduling system

Cloud computing is a new type of computing model ori-
ented to numerical and information processing, which inte-
grates distributed computing, Internet technology, large-
scale resource management and other technologies, and
makes reasonable use of computing power and resources.
In essence, it can be regarded as a large-scale heterogene-
ous parallel distributed computing system. As the popular
cloud computing service model, IaaS(Infrastructure as a Ser-
vice) can provide clients with many heterogeneous service
resources to accomplish their various demands.A cloud plat-
form based on IaaS is utilized in this work. Figure 1 shows
the cloud workflow scheduling framework in this work.

The cloud workflow scheduling system is made up of the
IaaS-based platform and clients. For clients, the comput-
ing resources in the cloud are infinite. They present their
application requirements (workflow), which is composed of
a set of task units, to the cloud platform and can obtain the
computing resources. The IaaS-based platform consists of
numerous heterogeneous servers, which contain the different
computational capabilities. The function of cloud platform
is to fulfill the clients demands.

Used symbols and notations referred to the workflow
scheduling model are in Table 1.

3.2 Problem formulation

Some quantities used in this work need to be defined and
explained. A DAG graph can express a workflow, which
is comprised of task nodes T, where T = t1, t2,… , tm
represents m tasks in a workflow, and edges D, where
D =

{
dij|i ≠ j, andi, j ∈ {1,… ,m}

}
 indicates the convey-

ing data value and the precedence constraint relationship
between ti and tj . TPij is utilized to express the precedence

Fig. 1 The cloud workflow
scheduling framework

...

Client/user request

A workflow

A workflow

...

Task sequence

Heterogeneous cloud servers

...

...

Task allocation

10826 T. Dong et al.

1 3

relationship between any two tasks. TPij = 1 represents that
the immediate predecessor of the ti is the tj . Otherwise, TPij
is 0. The task tentry is the starting task without any predeces-
sor node or father node, and the task texit is the lasting task
without any successor node or son node. Data communica-
tion time (DCT) represents conveying the data between two
tasks with the dependency relationship, the value of which
is relevant to the conveying data value and metastasis rates
and shows on each edge in Fig. 2. Task computation time
(TCT) represents the time for different servers to execute a
task, shows in Fig. 3.

Workflow is the combination of parallel and sequence
construction. Each task in a workflow can be only allo-
cated to one server, and a server can only execute one task
at a time. DCT is generated only when two tasks with the
dependency relationship are assigned on different servers.
Otherwise, DCT between two tasks is zero. Setting the server

set V, V = v1, v2,… , vn , and data metastasis rates between vl
and vk as �lk , we can define the Data communication time
between ti and tj by

3.3 Model building and the definition of elements
in deep reinforcement learning

In this work, we focus on the executing time minimization
of a workflow, that is the makespan minimization, to design
a reasonable workflow scheduling algorithm based on deep
reinforcement learning. By analyzing the factors that affect
the execution time of tasks, the elements in deep reinforce-
ment learning are defined.

Figure 4 shows the process of task allocation. For a work-
flow, the allocation of the starting task tentry is the basic of
the whole scheduling, the start execution time of which is
zero. The allocation of parallel tasks (tasks without depend-
encies) is the key to the optimization of workflow schedul-
ing. With the increasing of parallelism degree, the execution
time of the whole workflow is shorten. Therefore, it is of
great significance to improve the parallelism of task execu-
tion to optimize the workflow scheduling. The description
of the task’s start and finish time on the server provides the
basis for other tasks’ allocation in the whole workflow. For
the task ti , the finish time of immediate predecessors and the
DCT between immediate predecessors and ti and the task
earliest execution time on the server jointly determine the
start execution time of the task ti . The start execution time
of task ti on the server vj can be defined as

(1)

DCT(ti, tj) =

{
dij

�lk
, TPij = 1 ∪ ti in vl and tj in vk(l ≠ k)

0, otherwise

(2)

SET(ti, vj) = max(max
tp∈Pre(ti),h∈[1,n]

(FET(tp, vh) + DCT(tp, vh)),

max
ti∈A(vj)

FET(tl, vj))

Table 1 Symbols and notations referred to the workflow scheduling
model

Notation Definition

n Server numbers
m Task numbers
T The set of tasks, T = t1, t2,… , tm

V The set of tasks, V = v1, v2,… , vn

TCT(ti, vj) The task computation time of ti on vj
DCT(ti, tj) The task communication time between ti and tj
TPij The precedence relationship between ti and tj
�ij The data metastasis rates between vi and vk
dij The conveying data value from ti to tj
SET(ti, vj) The start execution time of ti on vj
FET(ti, vj) The finish execution time of ti on vj

t1

t2 t3 t4 t5

t7 t8 t9

t11

55
77777 1000010

1111

1313

171712222212 99

13139914141777771711111515

t6

t10

88

1111515

1313

99

Fig. 2 Example of a DAG-based workflow

Task Server1 Server2 Server3

t1 9 13 18
t2 22 19 41
t3 15 27 39
t4 32 23 43
t5 34 42 46
t6 19 38 44
t7 43 26 36
t8 41 38 33
t9 38 29 11
t10 56 27 62
t11 18 28 33

Fig. 3 Time computation time matrix

10827Workflow scheduling based on deep reinforcement learning in the cloud environment

1 3

Where FET(tp, vh) represents the finish execution time of
task tp on the server vh . Pre(ti) is the immediate predeces-
sor set of ti . A(vj) represents the task sets allocated on the
server vj.

In this work, once the task is assigned to the server, it
will not be interrupted until the task is finished. Therefore,
the start execution time and TCT on the server determine
the finish time of the task ti . The finish time of task ti on the
server vj can be defined as

Because multiple servers work in parallel, the execution
time of the whole workflow depends on the finish time of
the task on the server with the longest working time. In this
work, the objection function of the workflow scheduling
problem is to minimize the workflow makespan. Then the
objection function can be defined by.

A deep reinforcement learning architecture is utilized to
solve the workflow scheduling problem. The state space and
action space in the deep reinforcement learning are defined
by the established mathematical model and the known
quantities.

State space definition The characteristics of tasks can be
included in the state space, consisting of DCT, TCT , the start

(3)FET(ti, vj) = SET(ti, vj) + TCT(ti, vj)

(4)F = max
j∈[1,n]

(max
tl∈A(vj)

FET(tl, vj))

(5)minmakespan = minF

and finish execution time of tasks in servers. The definition
of state space is as follows.

Action space definition Utilizing the deep reinforcement
learning to achieve task sorting, the final result is to get a
task sequence. Therefore, tasks are regarded as actions, and
a task is selected at each decision step. In addition, in order
to improve the success rate of action selection and speed up
the convergence speed of the algorithm, a Mask scheme is
added to restrain the action selection at each episode. See
Sect. 4.1 for details.

4 Deep reinforcement learning architecture
for workflow scheduling

Value-based and policy-based iteration are two representa-
tive methods of reinforcement learning. The value-based
iteration method Watkins and Dayan (1992) selects actions
to obtain the optimal policy by estimating values of actions,
including Q-Learning, Sarsa, temporal difference learning,
etc. The policy-based iteration method obtains the opti-
mal policy by adjusting the parameters in policies. Actor-
Critic combines the policy-based iteration and value-based

(6)

S =

{
DCT(ti, vj), TCT(ti, vj),

∀ti∈A(vj)
[
SET(ti, vj),FET(ti, vj)

]}
,

i ∈ (1,… ,m), j ∈ (1,… , n)

...

Ti
m

e

0

15

30

45

60

75

v1 v2 v3

t1

t3

t2

t4

t5

t6

t7

t8

t9

Ti
m

e

Server

T ask

Finally allocation

v3

Ti
m

e
0

15

30

45

60

75

v2
Server

Initial state

v1
0

15

30

45

60

75

v1 v2 v3
Server

N ext allocation

t1

Fig. 4 The process of task allocation

10828 T. Dong et al.

1 3

iteration methods, which is an excellent deep reinforcement
learning. Actor-Critic includes the Actor network and Critic
network. Actor network is used to predict the policy prob-
ability distribution with parameters about different task
sorts, whose network structure is the P-Network in this work.
Critic network is used to estimate the expected value with
parameters for a given state to evaluate the quality of the
action policy. The Actor-Critic framework is used to get the
optimal action policy by running multiple training episodes
in this work.

The motivation to use the Actor-Critic architecture to
solve workflow scheduling problems in cloud environment
is as follows.

1. Inspiring by using DRL to solve the combinatorial opti-
mization problem (Irwan et al. 2016), we use DRL to
mix task prioritizing phase and task allocation phase,
which can get better near-optimal solution than that two
parts are carried out separately.

2. Using this proposed architecture to obtain the training
model, we can get a near-optimal solution in a short time
for a new workflow instant.

3. Unlike value-based iteration method, which limits the
scale of the problem, utilizing this framework can solve
high-dimensional and more complex issues.

4.1 Architecture of the neural network for the task
sorting

Task prioritizing phase is to get the task allocation order as
the input of task allocation phase. Pointer network (Oriol
et al. 2015) is a kind of neural networks and is used to solve
problems in many fields, including Traveling Salesman
Problem (TSP), Convex Hull, Delaunay Triangulation, etc.
It can achieve the input sequence sort with variable output
dictionary size. Utilizing the principle of pointer network
as the Actor network is proposed to obtain the task sort in
this work.

Pointer network consists of two recurrent neural network
(RNN): the encoder and the decoder. DCT and TCT are as
the neural network input points X. But the set of task char-
acteristics are as inputs which do not have fixed order in
our model, we use the proposed neural network model in
Mohammadreza et al. (2018) to directly use the embedded
task characteristics instead of the encoder, which can sim-
plify the computational complexity. At each decoding time

step t(t = 1,… , n) , the decoder uses attention mechanism
Dzmitry et al. (2015) to point to an input as the output which
is also the input of the next decoding time step �(t) . When
all tasks are as the outputs, this process can be terminated.
We aim to find a stochastic policy � with a different task
sequence which can minimize the loss function by learning
the parameters. The probability can be defined by the chain
rule.

Attention mechanism is a neural network to provide the
distribution over different outputs at every decoding time
step t, which is helpful for pointer networks to force on the
important input information and reduce the influence of
unimportant information. First, the relevant information is
extracted between the inputs xi and the decoder hidden state
ht at decoding time step t, which can make better use of
the input information and guide the (t + 1) − th time step
to make a decision. A vector at can be used to express the
relevant weight between every input xi to the decoder hid-
den state ht.

Where using softmax function normalizes the ut , and W1 ,
W2 and va represent the trainable parameters.The proposed
neural network can be called P-Network and shown in Fig. 5.

A Mask scheme is defined as the 0-1 list, which is used
to generate feasible solutions and improve the success rate
of the training. The scheme restrains the action selection
from three aspects. First, considering that each task can only
be selected once during a complete task sorting process,
the value of the selected task position in the function is set
to be 0. Then, considering that the task tentry only has son
nodes and the task texit only has father nodes, the tentry is
set as the first one and the texit is set as the last one in the
task sequence. Finally, considering the dependency between
tasks, all its father nodes have been selected when a task is
selected. The pseudo code of the process of the Mask scheme
is given in Algorithm1.

(7)p(�|X) =
m∏

t=1

p(�t+1|�1,�2,… ,�t,X)

(8)ui
t
= vT

a
tanh(W1xi +W2ht)

(9)at = softmax(ut)

(10)p(�t+1|�1,�2,… ,�t,X) = at

10829Workflow scheduling based on deep reinforcement learning in the cloud environment

1 3

In the Algorithm 1, the Mask list is initialized, and all
value in the list is 1 (line 1). For each iteration, tasks, whose
father nodes still are not allocated, are found among all
tasks, and the value of those tasks is set to 0 (line 2–12).

Then, the policy probability of unfeasible solutions is set
to −∞ using the log-probabilities (line 13). The next task
is selected utilizing the �-greed policy (line 14). The Mask
value of the selected task is set to 0 (line 15). Repeat the loop
until all tasks are selected.

4.2 A heuristic algorithm based on the HEFT
for the task allocation

Task prioritizing phase can get the distribution with different
task sorts by the proposed neural network, then the task sort
policy � can get. For the task allocation phase, tasks in the
workflow are allocated to servers and the makespan of the
whole workflow can be calculated. And the makespan can be
as reward to make a feedback on the result of task sequenc-
ing. Two mainly factors are considered in this phrase, includ-
ing the task precedence relationship and computational
complexity. We design a heuristic algorithm based on the
HEFT, which allocates the task to the server with the earliest
completion time. The pseudo code of the task allocation is
given in Algorithm 2.

Fig. 5 Task sorting based on the
P-Network model

Attention MechanismAttention Mechanism

.....x1 x2 x3 xm hmh1 ht ht+1

x2 x1 x3s1 s2 s3 sm

Decoder

EmbeeddinggggEmbedding

Input layer

RNN

Output layer

10830 T. Dong et al.

1 3

1. Reward function
 The ultimate goal of training via deep reinforcement

learning is to endow the higher probabilities to the task
sort which can get shorter makespan. Reward function
can reflect the optimization problem and guide the train-
ing method to adjust the parameters of neural network.
Using the symbol � to represent all parameters of the
proposed neural network, we can define the reward func-
tion as follows.

In this work, there are two parts to achieve the workflow
scheduling, task prioritizing phase and task allocation
phase. Thus, we can compute the reward only after fin-
ishing the two phase. S is the state space vector referring
to Sect. 3.3, and X is the neural network input points
referring to Sect. 4.1. During the training process, we
utilize a distributed � to generate the DAG-based work-
flow cases. And the total training goal refers to sampling
from this distribution, i.e. J(�) = ES∼�J(�|S).

2. Parameter optimization via Actor-Critic
 Given the environment state, the ultimate goal of

reinforcement learning is to obtain the highest reward,
and the best action policy can achieve this goal. In this

(11)J(�|S) = E�∼p� (⋅|X) − F(�|S)

In the Algorithm 2, we can get the distribution by the
proposed neural network and the task sort by the �-greed
policy in the training phrase and greed policy in the test-
ing phrase (line 1–2). Rank denotes the task sort list,
and Rank(i) denotes the task in the ith location of Rank.
Task allocation phase can be achieved by line 3–17. The
algorithm selects the sever vj with the earliest start time
SET(ti, vj) for task ti according the task order in Rank. The
algorithm first finds all father nodes of Rank(i) among the
set of tasks that already were allocated. Then, the start time
of the Rank(i) on server vk is determined by the finish time
of its father nodes Rank(l), the data communication time
DCT(Rank(l), Rank(i)) between the Rank(i) and Rank(l),
and the earliest start execution time of the server vk (line
4–12). The start time and scheduling result of the Rank(i)
by traversing all servers can be achieved (line 13–14). The
finish time of Rank(i) on the server vk is determined by the
start time of the task and the task computation time on the
server (line 15). After all tasks are scheduled, makespan can
get (line 18).

4.3 Training methods based on deep reinforcement
learning

We utilize the P-Network model to generate a policy � dis-
tribution with parameters over a different task sort. Then,
we use the DRL to train the proposed neural network model.

10831Workflow scheduling based on deep reinforcement learning in the cloud environment

1 3

work, action policy is the task sort. We can get the best
policy by adjusting the network parameter iteratively.
Policy gradient methods are used to train parameters �

in P-Network and �′ in Critic network. The pseudo code
of the Actor-Critic architecture training in the workflow
scheduling is given in Algorithm 3.

Fig. 6 Flowchat of workflow
scheduling based on the deep
reinforcement learning T1

T2 T3 T4 T5

T6 T7 T8

T9

1010
88888 11111

111122212

14444414

1717 1111 1515

1616
111121213333313

999999777777

Reset environment

State

Actor network

Probability distributed
with parameter θ

Task sort policy

Critic network

Value function with
parameter θ ’

A heuristic algorithm in server
selection phase in Algorithm2

reward

... ...

......

Actor_loss, Critic_loss

train train

Attention MechanismAttention Mechanism

.....x1 x2 x3 xm hmh1 ht ht+1

x2 x1 x3s1 s2 s3 sm

Decoder

EmbeddinggggggEmbedding

Input layer

RNN

Output layer

10832 T. Dong et al.

1 3

50 100 150 200

20

40

60

80

100

120

140

task numbers

A
ve
ra
ge

m
ak

es
pa

n

HEFT
PEFT

Lookahead
CPOP
WSDRL

(a) CCR=0.5

50 100 150 200

20

40

60

80

100

120

140

task numbers

A
ve
ra
ge

m
ak

es
pa

n

HEFT
PEFT

Lookahead
CPOP
WSDRL

(b) CCR=1.0

50 100 150 200

20

40

60

80

100

120

140

task numbers

A
ve
ra
ge

m
ak

es
pa

n
HEFT
PEFT

Lookahead
CPOP
WSDRL

(c) CCR=1.2

50 100 150 200

20

40

60

80

100

120

140

task numbers

A
ve
ra
ge

m
ak

es
pa

n

HEFT
PEFT

Lookahead
CPOP
WSDRL

(d) CCR=1.5

Fig. 7 The average makespan under various number of tasks and CCR

10833Workflow scheduling based on deep reinforcement learning in the cloud environment

1 3

In the Algorithm 3, the DAG-based workflow cases
are generated obeying a distributed � (line 4). Utilizing
the proposed P-Network gets the preliminary distribution
over different task permutations (line 5), and the ultimate
distribution can be predicted by the process of the Mask
scheme in Algorithm 1 (line 6). According the p�(�|Xi) ,
the task sorting policy can be required utilizing the �-greed
(line 7). After training the sample instances using the pro-
posed P-Network (line 3–9), the policy gradient is utilized to
update the parameters in the Actor (line 10) and Critic net-
work (line 11). The gradient of the parameters is formulated
by the REINFORCE algorithm Ronald (1992), and V�� (Si) is
the reward approximation acquiring from the Critic network.

The flowchart of workflow scheduling based on the deep
reinforcement learning can be expressed in Fig. 6.

5 Simulations

To evaluate the performance of the proposed algorithm, a
series of simulations are given. In this section, simulation
setup and algorithm performance evaluation are elaborated
in detail.

5.1 Simulation setup

It is complicated and cost-high to evaluate the algorithm
performance in the real cloud environment. WorkflowSim is
the simulation toolkit extended from CloudSim, which can
be utilized to simulate a cloud workflow scheduling environ-
ment accurately and used in this work.

0.5 1 1.5

0.20

0.40

0.60

0.80

1.00

1.20

1.40
·104

the value of CCR

A
ve
ra
ge

m
ak

es
pa

n

HEFT
PEFT

Lookahead
CPOP
WSDRL

(a) server numbers = 2

0.5 1 1.5

0.20

0.40

0.60

0.80

1.00
·104

the value of CCR

A
ve
ra
ge

m
ak

es
pa

n

HEFT
PEFT

Lookahead
CPOP
WSDRL

(b) server numbers = 5

Fig. 8 The average makespan of Montage (25 tasks)

0.5 1 1.5

0.20

0.40

0.60

0.80

1.00

1.20

1.40
·104

the value of CCR

A
ve
ra
ge

m
ak

es
pa

n

HEFT
PEFT

Lookahead
CPOP
WSDRL

(a) server numbers = 10

0.5 1 1.5

0.20

0.40

0.60

0.80

1.00
·104

the value of CCR

A
ve
ra
ge

m
ak

es
pa

n

HEFT
PEFT

Lookahead
CPOP
WSDRL

(b) server numbers = 5

Fig. 9 The average makespan of epigenomics (100 tasks)

10834 T. Dong et al.

1 3

5.1.1 Related parameters

Two types of workflows are used to evaluate the proposed
algorithm, including randomly generated workflows in train-
ing and test phrase and workflows of real-word applications
in test phrase.

A workflow is described in terms of the workflow struc-
ture, which can be described by the amount of tasks and the
dependencies between tasks. For randomly generated work-
flows, given the number of tasks, the dependencies between
tasks are randomly generated. In this work, the DCT among
tasks randomly takes the value from 0 to 10. The commu-
nication-to-computation ratio (CCR) is utilized to get the
average TCT , and the TCT obeys the normal distribution, the
standard deviation of which is 3. For real-world workflows,
two types of widely scientific workflow structure are used,
including Montage (25 tasks) and epigenomics (100 tasks).

A workflow is regarded as a sample. In each training pro-
cess, we set 10,000, 25,000 and 50,000 train samples for the
batch size of 256, and 2000 test samples. RNN with 128 hid-
den size is utilized in the P-Network and Critic network. The
Adam Optimizer is utilized to train the neural model, and
the learning rate is 10−4 . The � value in the �-greed policy is
significant for the algorithm optimization. The initial � value
is 0.1, then is updated from 0.1 to 0.05 with the algorithm
iteration.

5.2 Performance evaluation

The average makespan are utilized to evaluate the perfor-
mance of WSDRL. And HEFT, PEFT, Lookahead and
CPOP are utilized to make a comparison with the proposed
algorithm in this work.

5.2.1 The makespan evaluation of randomly generated
workflows

CCR is utilized to reflect the intensive degree of a workflow.
The value of CCR is large when the communication between
tasks is intensive, and the value of CCR is small when the
computation is intensive. By controlling the value of CCR ,
different types of workflows are generated for the algorithm
evaluation. When the value of CCR is set to 0.5, 1, 1.2 and
1.5, the average makespan can be obtained under various
amounts of tasks by five algorithms using 2000 test samples,
which can be described in Fig. 7. In the experiment, 5 serv-
ers are utilized to execute those workflows.

In the Fig. 7, the average makespan is the shortest using
our proposed algorithm under different amounts of tasks
and value of CCR. In addition, Lookahead shows the better
performance than other algorithms excepting the proposed

algorithm. And CPOP shows the worst performance among
the five algorithms. With the increasing amounts of tasks,
the performance superiority of our algorithm becomes more
obvious because of the disadvantage of the local solution for
heuristic algorithms.

5.2.2 The makespan evaluation of real‑world workflows

The two kinds of workflows are utilized to calculate the aver-
age makespan using different amounts of servers. In each
workflow, values of CCR are 0.5, 1 and 1.5.

The average makespan of Montage (25 tasks) can be
acquired by 2 severs in Fig. 8a and 5 servers in Fig. 8b.
Firstly, it can be found that the average makespan reduces
with the increasing number of servers. However, the down-
ward trend is not large with the increasing value of CCR
, that is because it is unwise to allocate tasks to multiple
servers when DCT is large. Then, WSDRL can acquire a
better result.

The average makespan of Epigenomics (100 tasks) can be
acquired by 10 severs in Fig. 9a and 20 servers in Fig. 9b. It
can be found that WSDRL can achieve the nearly same effect
as Lookahead. However, the computational complexity is far
lower than Lookahead, because we only need to consider the
task allocation phrase after training.

6 Conclusion and future work

A new workflow scheduling algorithm based on the Actor-
Critic architecture is proposed to achieve the makespan
minimization. The designed architecture combines the
neural network model and the heuristic algorithm based on
the HEFT to achieve the task sequence and task allocation,
considering the solution quality and computational complex-
ity. The algorithm performance evaluation is in aspect of
the average makespan, and the simulation result comparing
with other four heuristic algorithms shows the effective-
ness of the proposed algorithm. In the future work, we will
design the algorithm to solve the multi-objective workflow
scheduling (Wang et al. 2020) on the basis of this work.
Besides, dynamic uncertainties have an important impact
on the workflow scheduling, and it is the major work to add
dynamic uncertainties in the cloud environment into the
design of the algorithm.

Acknowledgements This paper is supported by Humanity and Social
Science Research of Ministry of Education (20YJCZH200), Beijing
Intelligent Logistics System Collaborative Innovation Center Open
Topic (No. BILSCIC-2019KF- 05), Grass-roots Academic Team Build-
ing Project of Beijing Wuzi University (No. 2019XJJCTD04).

10835Workflow scheduling based on deep reinforcement learning in the cloud environment

1 3

References

Arabnejad H, Barbosa JG (2014) List scheduling algorithm for hetero-
geneous systems by an optimistic cost table. IEEE Trans Parallel
Distrib Syst 25(3):682–694

Asghari A, Sohrabi MK, Yaghmaee F (2020) Online scheduling of
dependent tasks of cloud’s workflows to enhance resource uti-
lization and reduce the makespan using multiple reinforcement
learning-based agents. Soft Comput. https ://doi.org/10.1007/
s0050 0-020-04931 -7

Barto AG, Sutton RD, Anderson CW (1970) Neuron like elements that
can solve difficult learning control problems. IEEE Trans Syst
Man Cybern 13(5):834–846

Bittencourt LF, Sakellariou R, Madeira ERM (2010) DAG schedul-
ing using a lookahead variant of the heterogeneous earliest finish
time algorithm. In: 2010 18th Euromicro conference on parallel,
distributed and network-based processing, pp 27–34. https ://doi.
org/10.1109/PDP.2010.56

Bodrow W (2017) Impact of industry 4.0 in service oriented firm. Adv
Manuf 5(4):394–400

Cai XJ, Hu ZM, Chen JJ (2020a) A many-objective optimization rec-
ommendation algorithm based on knowledge mining. Inf Sci
537:148–161

Cai XJ, Hu ZM, Chen JJ (2020b) A many-objective optimization
recommendation algorithm based on knowledge mining. Inf Sci
537:148–161

Cai X, Geng S, Wu D, Cai J, Chen J (2020c) A multi-cloud model
based many-objective intelligent algorithm for efficient task
scheduling in internet of things. IEEE Internet Things J. https ://
doi.org/10.1109/JIOT.2020.30400 19

Cui ZH, Xue F, Cai XJ, Cao Y, Wang GG, Chen JJ (2018) Detection of
malicious code variants based on deep learning. IEEE Trans Ind
Inform 14(7):3187–3196

Cui ZH, Zhang JJ, Wu D, Cai XJ, Wang H, Zhang WS, Chen JJ (2020)
Hybrid many-objective particle swarm optimization algorithm for
green coal production problem. Inf Sci 518:256–271

Cui ZH, Xu XH, Xue F, Cai XJ, Cao Y, Zhang WS, Chen JJ (2020)
Personalized recommendation system based on collaborative fil-
tering for IoT scenarios. IEEE Trans Serv Comput 13(4):685–695

Dong TT, Xue F, Xiao CB, Li JT (2020) Task scheduling based on deep
reinforcement learning in a cloud manufacturing environment.
Concurr Comput Pract Exp 32(11):e5654

Dzmitry B, Kyunghyun C, Yoshua B (2015) Neural machine translation
by jointly learning to align and translate. In: International confer-
ence on learning representations. arXiv :1409.0473

Faragardi HR, Sedghpour MRS, Faziahmadi S, Fahringer T, Rasouli
N (2020) GRP-HEFT: a budget-constrained resource provision-
ing scheme for workflow scheduling in IaaS clouds. IEEE Trans
Parallel Distrib Syst 31(6):1239–1254

Hassan M, Rehmani MH, Chen JJ (2020a) DEAL: differentially private
auction for blockchain based microgrids energy trading. IEEE
Trans Serv Comput 13(2):263–275

Hassan M, Rehmani MH, Chen JJ (2020b) Differential privacy tech-
niques for cyber physical systems: a survey. IEEE Commun Surv
Tutor 22(1):746–789

Hopfield JJ, Tank DW (1985) Neural computation of decisions in opti-
mization problems. Biol Cybern 52(3):141–152

Irwan B, Hieu P, Quoc V L, Mohammad N, Samy B (2016) Neural
combinatorial optimization with reinforcement learning. arXiv
:1611.09940

Juve G, Chervenak A, Deelman E, Bharathi S, Mehta G, Vahi K (2013)
Characterizing and profiling scientific workflows. Future Gener
Comput Syst 29(3):682–692

Karpagam M, Geetha K, Rajan C (2020) A reactive search optimization
algorithm for scientific workflow scheduling using clustering tech-
niques. J Ambient Intell Hum Comput. https ://doi.org/10.1007/
s1265 2-020-02480 -3

Khan SQ, Ghani A, Khurram M (2020) Frequency-dependent synap-
tic plasticity model for neurocomputing applications. Int J Bioin-
spired Comput 16(1):56–66

Kumar H, Giri S (2020) Optimisation of makespan of a flow shop
problem using multi layer neural network. Int J Comput Sci Math
11(2):107–122

Liu QM (2020) Integrated deteriorating maintenance and patient sched-
uling for single medical device with heuristic algorithm. Int J
Bioinspired Comput 16(2):121–131

Market Share: IT Services, Worldwide (2019). https ://www.gartn
er.com/en/docum ents/39833 85/marke t-share -it-servi ces-world
wide-2019. id: g00717813

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare
MG et al (2015) Human-level control through deep reinforcement
learning. Nature 518(7540):529–533

Mohammadreza N, Afshin O, Martin T, Lawrence VS (2018) Rein-
forcement learning for solving the vehicle routing problem. arXiv
:1802.04240

Nedjah N, Mourelle LD, Morais RG (2020) Inspiration-wise swarm
intelligence meta-heuristics for continuous optimisation: a sur-
vey—part I. Int J Bioinspired Comput 15(4):207–223

Oriol V, Meire F, Navdeep J (2015) Pointer networks. In: Advances
in neural information processing systems, pp 2692–2700.
arXiv:1506.03134

Rajasekar P, Palanichamy Y (2020) Scheduling multiple scientific
workflows using containers on IaaS cloud. J Ambient Intell Hum
Comput. https ://doi.org/10.1007/s1265 2-020-02483 -0

Ronald W (1992) Simple statistical gradient following algo-
rithms for connectionnist reinforcement learning. Mach Learn
8(3–4):229–256

Sun D, Gao S, Liu XY, Li FY, Buyya R (2020) Performance-aware
deployment of streaming applications in distributed stream com-
puting systems. Int J Bioinspired Comput 15(1):52–62

Sutton RS, Barto AG (1998) Reinforcement learning: an introduction.
MIT Press, Cambridge

Tong Z, Chen HJ, Deng XM, Li KL, Li KQ (2019) A scheduling
scheme in the cloud computing environment using deep Q-learn-
ing. Inf Sci 512:1170–1191

Tong Z, Deng XM, Chen HJ, Mei J, Liu H (2020) QL-HEFT: a novel
machine learning scheduling scheme base on cloud computing
environment. Neural Comput Appl 32(10):5553–5570

Topcuoglu H, Hariri S, Wu MY (2002) Performance-effective and low-
complexity task scheduling for heterogeneous computing. IEEE
Trans Parallel Distrib Syst 13(3):260–274

Wang PH, Huang JR, Cui ZH, Xie LP, Chen JJ (2020) A Gaussian
error correction multi-objective positioning model with NSGA-II.
Concurr Comput Pract Exp 32(5):e5464

Watkins CJCH, Dayan P (1992) Q-learning. Mach Learn
8(3–4):279–292

Yuan D, Yang Y, Liu X, Chen JJ (2010) A data placement strat-
egy in scientific cloud workflows. Future Gener Comput Syst
26(8):1200–1214

Zhang X, Li XT, Yin MH (2020) An enhanced genetic algorithm for
the distributed assembly permutation flowshop scheduling prob-
lem. Int J Bioinspired Comput 15(2):113–124

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s00500-020-04931-7
https://doi.org/10.1007/s00500-020-04931-7
https://doi.org/10.1109/PDP.2010.56
https://doi.org/10.1109/PDP.2010.56
https://doi.org/10.1109/JIOT.2020.3040019
https://doi.org/10.1109/JIOT.2020.3040019
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1611.09940
http://arxiv.org/abs/1611.09940
https://doi.org/10.1007/s12652-020-02480-3
https://doi.org/10.1007/s12652-020-02480-3
https://www.gartner.com/en/documents/3983385/market-share-it-services-worldwide-2019
https://www.gartner.com/en/documents/3983385/market-share-it-services-worldwide-2019
https://www.gartner.com/en/documents/3983385/market-share-it-services-worldwide-2019
http://arxiv.org/abs/1802.04240
http://arxiv.org/abs/1802.04240
http://arxiv.org/abs/1506.03134
https://doi.org/10.1007/s12652-020-02483-0

	Workflow scheduling based on deep reinforcement learning in the cloud environment
	Abstract
	1 Introduction
	2 Related work
	3 Problem description and formulation
	3.1 The description of the cloud workflow scheduling system
	3.2 Problem formulation
	3.3 Model building and the definition of elements in deep reinforcement learning

	4 Deep reinforcement learning architecture for workflow scheduling
	4.1 Architecture of the neural network for the task sorting
	4.2 A heuristic algorithm based on the HEFT for the task allocation
	4.3 Training methods based on deep reinforcement learning

	5 Simulations
	5.1 Simulation setup
	5.1.1 Related parameters

	5.2 Performance evaluation
	5.2.1 The makespan evaluation of randomly generated workflows
	5.2.2 The makespan evaluation of real-world workflows

	6 Conclusion and future work
	Acknowledgements
	References

