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Abstract
In this paper, an uncertain competing failure degradation model is proposed, in which the natural degradation process 
is described by an uncertain process, the time interval of shocks arrival and the size of the shocks have independent and 
nonidentical uncertainty distributions, respectively. The parameters in the distributions are uncertain variables. The belief 
reliability function and the mean time to failure of the system under three different shock models are studied according to 
uncertainty theory, and Micro-Electro-Mechanical System as an example is used to explain the developed models.

Keywords Competing failure processes · Uncertainty theory · Bi-uncertain variable · Uncertainty distribution · Belief 
reliability

1 Introduction

Reliability analysis has become very important in engineer-
ing practice. In the past decades, reliability analysis has been 
mainly applied to the chemical industry, machinery, aero-
space, electronics industry, communication system, power 
system, transportation, etc., and has made considerable 
achievements (Rackwitz 2001; Faulin et al. 2010; Finkel-
stein and Cha 2013). In the traditional reliability analysis, a 
complex system experiences both internal degradation and 
random external shock (Klutke and Yang 2002). All of the 
internal deterioration due to wear, corrosion, weathering and 
so on,there are usually three ways to describe the degrada-
tion process: degradation amount distribution (Huang and 
Askin 2003), degradation path (Lu and Meeker 1993) and 
stochastic process. Gamma process (Pan and Balakrishnan 
2011) and Wiener process (Guan et al. 2016) are the most 
commonly used stochastic methods. External shock is 
caused by irresistible external forces such as high pressure, 
overload, collision, etc. Both internal degradation and ran-
dom external shock may lead to system failure. They are 

competing with each other, and the failure caused by that 
is called competitive failure. Internal degradation and ran-
dom external shock may be independent or dependent. Many 
scholars have studied on the independent competition failure 
model (Huang and Askin 2004; Wang and Zhang 2005; Li 
and Pham 2005; Keedy and Feng 2012) and dependent com-
petition failure model (Peng et al. 2010; Rafiee et al. 2014, 
2017; Song et al. 2014; Jiang et al. 2015; Hao et al. 2017; 
Wang et al. 2020a, b).

Traditional reliability analysis is studied according to 
probability theory, which is based on large sample data with 
frequencies close to the probability. However, in engineer-
ing practice, we can only get limited data, or even no data 
such as nuclear test data, newly developed products due to 
restrictions of cost, technology and other factors. We have to 
invite experts in the relative fields to access to expert expe-
rience data. Nevertheless, Liu (2012) showed that humans 
will always estimate a wider range than the specific value. 
If we still use human belief degree to estimate the probabil-
ity distribution, the result will be subjective. In this situa-
tion, probability theory is no longer suitable to compute the 
human belief degree.

To deal with this kind of subjective data, Liu (2007) first 
proposed the uncertainty theory and refined it (2010a) which 
was based on the normality, duality, subadditivity and prod-
uct axiom. The uncertainty theory is considered as a suit-
able mathematical tool to model epistemic uncertainty (Liu 
2012). To describe the uncertain phenomena over time, Liu 
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(2008) put forward Liu process in 2008. After several years 
of development, uncertain theory has been widely used in 
many fields such as reliability analysis, option pricing, inter-
est rate, decision making, statistics analysis, and so on.

Many scholars apply uncertainty theory to reliability 
analysis. Liu (2010b) first proposed the uncertainty meas-
ure to describe the system reliability, and defined the uncer-
tainty reliability index in the boolean system. Zeng et al. 
(2013) named the metric of products reliability as belief 
reliability under uncertainty theory and presented numeri-
cal evaluation methods to evaluate the belief reliability of 
systems. Zeng et al. (2017) developed belief reliability con-
sidering epistemic and aleatory uncertainty and calculated 
the belief reliability of coherent systems by a minimal cut 
set-based method (Zeng et al. 2018). Gao et al. (2018) stud-
ied an uncertain weighted k-out-of-n system whose weights 
are estimated by uncertain variables instead of exact num-
bers. Cao et al. (2019) studied discrete time series–parallel 
systems with uncertain parameters. Sheng and Ke (2020) 
discussed a multiple state uncertain weighted k-out-of-n 
system.

All of the above studies are based on the assumption 
that the lifetime of components is an uncertain variable. 
However, in practical engineering, a complex system will 
be impacted by irresistible external shocks, the causes of 
each shock are different, and the type of shock and the dam-
age caused by a shock to the system is also different. To 
describe the different damage degree of the system caused 
by different types of shock, it is necessary to introduce a 
bi-uncertain variable. Bi-uncertain variables are proposed 
by Liu et al. (2020) in the reliability analysis of general 
systems. It is assumed that the lifetime of each component 
has independent and nonidentical uncertainty distributions, 
and the parameters in the uncertainty distribution are also 
uncertain variables. Using bi-uncertain variables to describe 
different types of shock have more practical significance in 
a complex system with limited information.

In this paper, under the environment of uncertainty the-
ory, we consider a system has experienced both internal 
degradation and external shock. The internal degradation 
is described by Liu process. The time interval of external 
shock arrival and the damage caused by a shock to the 
system is described by different bi-uncertain variables, 
respectively. Three types of shock model are considered: 
(1) extreme shock model: when the magnitude of an shock 
exceeds a specific threshold value, the system fails; (2) 
cumulative shock model: the damage caused by cumulative 
shock exceeds a critical value, the system fails; (3) � shock 
model: a system fails when the inter-arrival time between 
two successive shocks is less than a threshold value � . The 
uncertain internal degradation and uncertain external shock 
are independent of each other. The scientific contribution of 
this paper to existing engineering practice and theoretical 

research is summarized as: (1) the continuous degradation 
process is described by a Liu process; (2) the shock model 
is an uncertain renewal reward process; (3) the interarrival 
times of shocks arrival and the shock sizes are assumed to 
be bi-uncertain variables, respectively. The time interval 
of shocks and the size of the shocks have independent and 
nonidentical uncertainty distributions with uncertain param-
eters. Stents implanted in the human body can be used as 
the application background of the model proposed. The 
stent experiences cyclic stress and a variety of overloads. 
The cyclic stresses include contractions and dilations due to 
heartbeat, and the overloads are mainly caused by patient’s 
excessive activities.

The rest of this paper is arranged as follows. In Sect. 2, 
competing failure reliability models are developed. In 
Sect. 3, the belief reliability function and mean time to fail-
ure are investigated with extreme shock model, cumulative 
shock model and � shock model according to the uncertainty 
theory, respectively. To illustrate the applications of the 
established models, some numerical examples are presented 
in Sect. 4. Finally, a brief conclusion is made in Sect. 5.

2  System description

2.1  Notation

H  The threshold level for soft failure
D  The threshold level for hardware failure
e  The minimum time lag between two 

consecutive shocks
�  Degradation speed
�  Diffusion coefficients
T   The lifetime of the system
�z  The first arrival time of X(t) to z
TH  The first arrival time of X(t) to H
�k  The uncertain time interval of the 

k − 1th uncertain shock and the kth 
uncertain shock

�k  The damage size caused by the kth 
uncertain shock

X(t)  Amount of continuous degradation at 
time t

N(t)  Number of uncertain shocks that have 
arrived by time t

�t(x)  The uncertainty distribution function of 
X(t)

�(z)  The uncertainty distribution of �z
F(x)  The uncertainty distribution of TH
�k(�k1,… , �knk ;x)  The uncertainty distribution of the 

uncertain time interval �k
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�k(�k1,… ,�knk
;x)  The uncertainty distribution of the 

uncertain shock �k
�ij(�i1,… , �imj

;x)  The uncertainty distribution of the 
uncertain variable �ij

�ij(�i1,… ,�imj
;x)  The uncertainty distribution of the 

uncertain variable �ij

�ij  Parameters in the uncertainty distribu-
tion �ij of uncertain variables �ij

�ij  Parameters in the uncertainty distribu-
tion �ij of uncertain variables �ij

�−1(�)  Inverse uncertainty distribution of the 
uncertain variable 

∑k+1

i=1
�i

�−1(�)  Inverse uncertainty distribution of the 
uncertain variable 

∑k

i=1
�i

R(t)  Belief reliability function at time t
NHFt  The hardware failure does not occur by 

time t
NSFt  The software failure does not occur by 

time t
MTTF  Mean time to failure

2.2  Preliminaries

In this section, we introduce some results in uncertainty 
theory, which are applied throughout the paper.

Definition 1 (Liu 2010a) Let � be an uncertain variable 
with regular uncertainty distribution �(x).Then the inverse 
function �−1(�) is called the inverse uncertainty distribu-
tion of �.

Theorem 1 (Liu 2010a) Let �1, �2,… , �n be independent 
uncertain variables with regular uncertainty distributions 
�1,�2,… ,�n , respectively. If f (�1, �2,… , �n) is a strictly 
increasing with respect to �1, �2,… , �m and strictly decreas-
ing with respect to �m+1, �m+2,… , �n , then 

has an inverse uncertainty distribution

Definition 2 (Liu 2007) Let � be an uncertain variable, then 
the expected value of � is defined by 

provided that at least one of the integrals is finite.

Theorem 2 (Liu 2007) Let � be an uncertain variable with 
regular uncertainty distribution � . Then, 

(1)� = f (�1, �2,… , �n)

(2)�−1(�) = f (�−1

1
(�),…�−1

m
(�),�−1

m+1
(1 − �),… ,�−1

n
(1 − �)).

(3)E(�) = �
∞

0

M{� ≥ x}dx − �
0

−∞

M{� ≤ x}dx,

Theorem 3 (Liu and Ha 2010) Assume �1, �2,… , �n are 
independent uncertain variables with regular uncertainty 
distributions �1,�2,… ,�n , respectively. If f (�1, �2,… , �n) 
is a strictly increasing with respect to �1, �2,… , �m and 
strictly decreasing with respect to �m+1, �m+2,… , �n , then the 
uncertain variable � = f (�1, �2,… , �n) has an expected value 

Definition 3 (Liu 2009) An uncertain process Ct is said to 
be a Liu process if

 (i) C0 = 0 and almost all sample paths are Lipschitz con-
tinuous;

 (ii) Ct has stationary and independent increments;
 (iii) every increment Cs+t − Cs is a normal uncertain vari-

able with expected value 0 and variance t2.

For an uncertain variable � with uncertainty distribu-
tion �(�1, �2,… , �n) , if the parameters �1, �2,… , �n are 
independent uncertain variables, we call it a bi-uncertain 
variable.

From an uncertainty space perspective, we can give a 
definition of bi-uncertain variable as follows.

Definition 4 Let (�k, Lk,Mk) be uncertainty spaces for 
k = 0, 1, 2,… , n, (� , L,M) is the product uncertainty space 
of (�k, Lk,Mk) ,if �(�||�(�1, �2,… , �n) ) is a measurable func-
tion from uncertainty space (� , L,M) to the set of Rn+1 ( R is 
the set of real numbers), and � has uncertainty distribution 
�(�1, �2,… , �n) , then � is called a bi-uncertain variable.

Let � be an bi-uncertain variable with uncertainty dis-
tribution function �(�1, �2,… , �n;x) , whose parameters 
�i, i = 1, 2,… , n are independent uncertain variables with 
uncertainty distributions �i, i = 1, 2,… , n.

Theorem 4 Let � be a bi-uncertain variable defined on the 
uncertainty space (� , L,M). If the uncertainty distribution 
function �(�1, �2,… , �n;x) of � is strictly increasing with 
respect to �1, �2,… , �p and strictly decreasing with respect 
to �p+1, �p+2,… , �n, then

Proof Assume � is the lifetime of the component, according 
to Theorem 5 in reference Liu et al. (2020), we have

(4)E(�) = ∫
1

0

�−1(�)d�.

(5)E(�) = ∫
1

0

f (�−1
1
(�),… ,�−1

m
(�),�−1

m+1
(1 − �),… ,�−1

n
(1 − �))d�.

(6)

M{� ≤ x}

= �
1

0

�(�−1
1
(�),… ,�−1

p
(�),�−1

p+1
(1 − �),… ,�−1

n
(1 − �);x)d�.
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so

The proof is complete.

2.3  Modeling of hardware failure due to uncertain 
shocks

The system is suffered from external shocks, and the dam-
age size of shock was described as a random variable in the 
traditional reliability model. In practical engineering appli-
cation, some components in the system are newly developed 
products with limited historical data. In this situation, it is no 
longer suitable to use random variables to describe external 

shocks. For systems with small samples of data, uncertain 
variables are more appropriate to describe external shocks. 
Due to different reasons, the types of shocks suffered by the 
system are different, each shock has a different distribution, 
and under limited sample data, in many cases, the param-
eters in the distribution can only estimate a range rather 
than a specific value. In this case, it can be assumed that the 
parameters in the distribution are uncertain variables.

Assume the time interval of shock arrival is a non-
negative bi-uncertain variable �i . Let �k be the uncer-
tain time interval of the k − 1th shock and the kth shock, 
and �1, �2,… are independent variables and nonidenti-
cal distributions with different uncertain parameters. Let 
uncertainty distributions of uncertain variables �1, �2,… 
b e  �1(�11, �12,… , �1n1 ;x),�2(�21, �22,… , �2n2 ;x),… , 
respectively, where parameters �ij, i = 1, 2,… , j = 1, 2,… 
are uncertain variables which have uncertainty distri-
b u t i o n s  �ij(�i1, �i2,… , �imi

;x), i = 1, 2,… , j = 1, 2,… , 

(7)R(t) = ∫
1

0

(1 − �(�−1
1
(�),… ,�−1

p
(�),�−1

p+1
(1 − �),… ,�−1

n
(1 − �);t))d�,

(8)
M{𝜉 ≤ x} = 1 −M{𝜉 > x}

= 1 − R(x)

= ∫ 1

0
𝜑(𝛬−1

1
(𝛼),… ,𝛬−1

p
(𝛼),𝛬−1

p+1
(1 − 𝛼),… ,𝛬−1

n
(1 − 𝛼);x)d𝛼.

and parameters �ij, i = 1, 2,… , j = 1, 2,… are constants. 
Assume �i(�i1, �i2,… , �ini ;x) is a strictly increasing with 
respect to �i1,… , �ip and strictly decreasing with respect to 
�i(p+1),… , �ini .

The damage size of shock is a non-negative bi-uncertain 
variable �i . Let �k be the size of kth uncertain shock, and 
�1, �2,… are independent variables and nonidentical uncer-
tainty distributions with different uncertain parameters. Let 
uncertainty distributions of uncertain variables �1, �2,… 
b e  �1(�11,�12,… ,�1n1

;x),�2(�21,�22,… ,�2n2
;x),… , 

respectively, where parameters �ij, i = 1, 2,… , j = 1, 2,… 
are uncertain variables which have uncertainty distri-
bu t ions  �ij(�i1,�i2,… ,�imi

;x), i = 1, 2,… , j = 1, 2,… , 
and parameters �ij, i = 1, 2,… , j = 1, 2,… are constants. 
Assume �i(�i1,�i2,… ,�ini

;x) is a strictly increasing with 
respect to �i1,… ,�ip and strictly decreasing with respect to 
�i(p+1),… ,�ini

.

According to Theorem 4, we have

Assume the time interval of uncertain shock arrival �i 
and the damage size of uncertain shock �i are independent, 
the number of uncertain shock at time t  is N(t) . Hardware 
fails if the damage size of the uncertain shock exceeds the 
threshold value D.

2.4  Modeling of software failure due to uncertain 
degradation

In the traditional reliability model, the natural degradation 
process is often described by stochastic process, Wiener 
process is a kind of point process widely used to describe 
the degradation process (Ye and Xie 2015; Liu et al. 2016). 
Although almost all sample paths of Wiener process are 
continuous, they are not Lipschitz continuous (Liu 2013a). 
Nevertheless almost all sample paths of Liu process are Lip-
schitz continuous functions (Liu 2013a), so it is more appro-
priate to use Liu process to describe degradation process 

(9)M{�i ≤ x} = �
1

0

�i(�
−1
i1
(�),… ,�−1

ip
(�),�−1

i(p+1)
(1 − �),… ,�−1

ini
(1 − �);x)d�.

(10)M{𝜂i < x} = ∫
1

0

𝜙i(𝛶
−1
i1

(𝛼),… ,𝛶 −1
ip

(𝛼),𝛶 −1
i(p+1)

(1 − 𝛼),… ,𝛶 −1
ini

(1 − 𝛼);x)d𝛼.
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when there is only a small amount of historical fault data in 
engineering practice.

To describe the sample path of the degradation process, 
the uncertain differential equation (Liu 2009) is introduced

Without loss of generality, assume

e, � are both constants, then the solution of the above differ-
ential equation under the initial value condition X(0) = 0 is

Thus, X(t) obeys the uncertain normal distribution 
N(et, �t) , and the uncertainty distribution function of X(t) is

Lemma 1 (Liu 2013b) Let X(t) be an uncertain process, 
whose uncertainty distribution function is �t(x), and 
X(0) = x0, x0 > 0, we define

�z is the first arrival time of X(t) to z, the uncertainty distri-
bution of �z is:

Theorem 5 Software failure occurs when the total degrada-
tion exceeds the threshold level H. The continuous degrada-
tion path is assumed

which has an initial value X(0) = 0. Then, the uncertainty 
distribution function of the first arrival time TH is

Proof When x > 0 , we have

(11)dX(t) = f (t,X(t))dt + g(t,X(t))dC(t).

(12)f (t,X(t)) = e, g(t,X(t)) = 𝜎, e ∈ R, 𝜎 > 0,

(13)X(t) = et + �C(t).

(14)�t(x) = (1 + exp(
�(et − x)√

3�t
))−1, x ∈ R.

(15)�z = inf{t ≥ 0|X(t) = z},

(16)𝜁(z) =

⎧
⎪⎨⎪⎩

1 − inf
0≤t≤z𝛷t(z), z > x0,

sup
0≤t≤z

𝛷t(z), z < x0.
.

(17)X(t) = et + �C(t),

(18)F(x) = (1 + exp(
𝜋(H − ex)√

3𝜎x
))−1, x > 0.

Theorem 6 The uncertain measure of software failure does 
not occur by time t is

Proof The uncertain measure of software failure does not 
occur by time t is

3  Belief reliability analysis

The system suffers uncertain internal degradation and uncer-
tain external shock, uncertain internal degradation and the 
uncertain external shock are independent, the belief reli-
ability of the system is defined as the uncertain measure that 
the total uncertain degradation does not exceed a threshold 
value H and the uncertain shocks do not cause the system 
fails by time t,

3.1  Case 1: extreme shock model

In the extreme shock model, hardware failure occurs when 
the damage size of shock exceeds a hard failure threshold 
D at first.

Theorem 7 If the uncertain internal degradation process 
X(t) for the system follows X(t) = et + �C(t), for t ≥ 0 . The 
uncertain external shock pattern is an extreme shock model, 
then the belief reliability of the system is

(19)

F(x) = M{TH ≤ x} = 1 − inf
0≤t≤x�t(H)

= 1 − inf
0≤t≤x(1 + exp(

�(et − H)√
3�t

))−1

= 1 − (1 + exp(
�(ex − H)√

3�x
))−1

= (1 + exp(
�(H − ex)√

3�x
))−1.

(20)M(NSFt) = (1 + exp(
�(et − H)√

3�t
))−1.

(21)M(NSFt) = M{TH > t} = 1 − F(t) = (1 + exp(
𝜋(et − H)√

3𝜎t
))−1.

(22)R(t) = M{NHFt ∩ NSFt}.

(23)

R(t) = [max
k≥0 (1 − ∫ 1

0
�(�−1

11
(�),… ,�−1

1m1
(1 − �),�−1

21
(�),… ,�−1

(k+1)m(k+1)

(1 − �);t)d�)

∧ min
1≤i≤k(∫

1

0
�i(�

−1
i1

(�),… ,� −1
ip

(�),� −1
i(p+1)

(1 − �),… ,� −1
ini

(1 − �);D)d�)]

∧(1 + exp(
�(et−H)√

3�t
))−1,
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and the mean time to failure of the system is

Proof 

Since the uncertain events 

�
N(t)⋂
k=1

𝜂k < D

�
 and the uncer-

tain events 

�
∞⋃
k=0

(N(t) = k), (
k⋂

i=1

𝜂i < D)

�
 are equivalent, 

then, we have

(24)

MTTF =�
+∞

0

{[max
k≥0

(1 − �
1

0

�(�−1
11
(�),… ,�−1

1m1
(1 − �),�−1

21
(�),… ,�−1

(k+1)m(k+1)
(1 − �);t)d�)

∧ min
1≤i≤k(�

1

0

�i(�
−1
i1

(�),… ,� −1
ip

(�),� −1
i(p+1)

(1 − �),… ,� −1
ini

(1 − �);D)d�)]

∧ (1 + exp(
�(et − H)√

3�t
))−1}dt.

(25)

R(t) = M{NHFt ∩ NSFt}

=M{(

N(t)⋂
i=1

𝜂i < D) ∩ (TH > t)}

= M{

N(t)⋂
i=1

𝜂i < D} ∧M{TH > t}. where

According to Theorem 1, 
∑k+1

i=1
�i has inverse uncertainty 

distribution

According to Theorem 4, we have

(26)

M

{
N(t)⋂
i=1

𝜂i < D

}
= M

{
∞⋃
k=0

(N(t) = k), (

k⋂
i=1

𝜂i < D)

}

= max
k≥0 M

{
N(t) = k,

k⋂
i=1

𝜂i < D

}

= max
k≥0 M{N(t) ≤ k} ∧M

{
k⋂
i=1

𝜂i < D

}
,

(27)M{N(t) ≤ k} = 1 −M

{
k+1∑
i=1

�i ≤ t

}
.

(28)�−1(�) =

k+1∑
i=1

�−1
i
(�).

(29)M

{
k+1∑
i=1

�i ≤ t

}
= �

1

0

�(�−1
11
(�),… ,�−1

1m1
(1 − �),�−1

21
(�),… ,�−1

(k+1)m(k+1)
(1 − �);t)d�.

(30)

M

{
N(t)⋂
k=1

(𝜂k < D)

}

= max
k≥0 (1 −M

{
k+1∑
i=1

𝜉i ≤ t

}
) ∧ min

1≤i≤k M{𝜂i < D}

=max
k≥0 (1 − �

1

0

𝜓(𝛬−1
11
(𝛼),… ,𝛬−1

1m1
(1 − 𝛼),𝛬−1

21
(𝛼),… ,𝛬−1

(k+1)m(k+1)
(1 − 𝛼);t)d𝛼)

∧ min
1≤i≤k(�

1

0

𝜙i(𝛶
−1
i1

(𝛼),… ,𝛶 −1
ip

(𝛼),𝛶 −1
i(p+1)

(1 − 𝛼),… ,𝛶 −1
ini

(1 − 𝛼);D)d𝛼).
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So

Let T  be the lifetime of the system, according to Defini-
tion 2, the mean time to failure of the system is

3.2  Case 2: cumulative shock model

In the cumulative shock model, hardware failure occurs 
when the damage size of the cumulative shock exceeds a 
hard failure threshold D.

(31)

R(t) = M

�
N(t)�
i=1

𝜂i < D

�
∧M{TH > t}

= [max
k≥0 (1 − �

1

0

𝜓(𝛬−1
11
(𝛼),… ,𝛬−1

1m1
(1 − 𝛼),𝛬−1

21
(𝛼),… ,𝛬−1

(k+1)m(k+1)
(1 − 𝛼);t)d𝛼)

∧ min
1≤i≤k(�

1

0

𝜙i(𝛶
−1
i1

(𝛼),… ,𝛶 −1
ip

(𝛼),𝛶 −1
i(p+1)

(1 − 𝛼),… ,𝛶 −1
ini

(1 − 𝛼);D)d𝛼)]

∧

�
1 + exp

�
𝜋(et − H)√

3𝜎t

��−1

.

(32)

MTTF = �
+∞

0

M{T > t}dt = �
+∞

0

R(t)dt

= �
+∞

0

{[max
k≥0

(1 − �
1

0

𝜓(𝛬−1
11
(𝛼),… ,𝛬−1

1m1
(1 − 𝛼),𝛬−1

21
(𝛼),… ,𝛬−1

(k+1)m(k+1)
(1 − 𝛼);t)d𝛼)

∧ min
1≤i≤k(�

1

0

𝜙i(𝛶
−1
i1

(𝛼),… ,𝛶 −1
ip

(𝛼),𝛶 −1
i(p+1)

(1 − 𝛼),… ,𝛶 −1
ini

(1 − 𝛼);D)d𝛼)]

∧ (1 + exp(
𝜋(et − H)√

3𝜎t
))−1}dt.

Theorem  8 If the uncertain internal degradation 
process X(t) for the system follows X(t) = et + �C(t) 

for t ≥ 0. The uncertain external shock pattern is a 
cumulative shock model, then belief reliability of the 
system is

and the mean time to failure of the system is

(33)

R(t) =[max
k≥0 (1 − �

1

0

�(�−1
11
(�),… ,�−1

1m1
(1 − �),�−1

21
(�),… ,�−1

(k+1)m(k+1)
(1 − �);t)d�)

∧ �
1

0

� (� −1
11

(�),… ,� −1
1m1

(1 − �),� −1
21

(�),… ,� −1
kmk

(1 − �);D)d�]

∧ (1 + exp(
�(et − H)√

3�t
))−1,

(34)

MTTF =�
+∞

0

{[max
k≥0 (1 − �

1

0

�(�−1
11
(�),… ,�−1

1m1
(1 − �),�−1

21
(�),… ,�−1

(k+1)m(k+1)
(1 − �);t)d�)

∧ �
1

0

� (� −1
11

(�),… ,� −1
1m1

(1 − �),� −1
21

(�),… ,� −1
kmk

(1 − �);D)d�]

∧ (1 + exp(
�(et − H)√

3�t
))−1}dt.
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Proof 

where

(35)R(t) = M{NHFt ∩ NSFt}=M{(

N(t)∑
i=1

𝜂i < D) ∩ (TH > t)} = M{

N(t)∑
i=1

𝜂i < D} ∧M{TH > t},

(36)

M{

N(t)∑
i=1

𝜂i < D} = M{

∞⋃
k=0

(N(t) = k), (

k∑
i=1

𝜂i < D)}

= max
k≥0 M{N(t) = k,

k∑
i=1

𝜂i < D}

= max
k≥0 M{N(t) ≤ k} ∧M{

k∑
i=1

𝜂i < D}

= max
k≥0 (1−M{

k+1∑
i=1

𝜉i ≤ t}) ∧M{

k∑
i=1

𝜂i < D}.

According to Theorem 1, 
∑k

i=1
�i has inverse uncertainty 

distribution

According to Theorem 4, we have

So

(37)�−1(�) =

k∑
i=1

�−1
i
(�).

(38)

M{

k∑
i=1

𝜂i < D}

= ∫
1

0

𝛹 (𝛶 −1
11

(𝛼),… ,𝛶 −1
1m1

(1 − 𝛼),𝛶 −1
21

(𝛼),… ,𝛶 −1
kmk

(1 − 𝛼);D)d𝛼.

(39)

M{

N(t)∑
i=1

𝜂i < D}=M{

∞⋃
k=0

(N(t) = k),

k∑
i=1

𝜂i < D}

= max
k≥0 M{N(t) = k,

k∑
i=1

𝜂i < D}

= max
k≥0 M{N(t) ≤ k} ∧M{

k∑
i=1

𝜂i < D}

= max
k≥0 (1 −M{

k+1∑
i=1

𝜉i ≤ t}) ∧ �
1

0

𝛹 (𝛶 −1
11

(𝛼),… ,𝛶 −1
1m1

(1 − 𝛼),𝛶 −1
21

(𝛼),… ,𝛶 −1
kmk

(1 − 𝛼);D)d𝛼

= max
k≥0 (1 − �

1

0

𝜓(𝛬−1
11
(𝛼),… ,𝛬−1

1m1
(1 − 𝛼),𝛬−1

21
(𝛼),… ,𝛬−1

(k+1)m(k+1)
(1 − 𝛼);t)d𝛼)

∧ �
1

0

𝛹 (𝛶 −1
11

(𝛼),… ,𝛶 −1
1m1

(1 − 𝛼),𝛶 −1
21

(𝛼),… ,𝛶 −1
kmk

(1 − 𝛼);D)d𝛼.

(40)

R(t) = M{

N(t)�
i=1

𝜂i < D} ∧M{TH > t}

= [max
k≥0 (1 − �

1

0

𝜓(𝛬−1
11
(𝛼),… ,𝛬−1

1m1
(1 − 𝛼),𝛬−1

21
(𝛼),… ,𝛬−1

(k+1)m(k+1)
(1 − 𝛼);t)d𝛼)

∧ �
1

0

𝛹 (𝛶 −1
11

(𝛼),… ,𝛶 −1
1m1

(1 − 𝛼),𝛶 −1
21

(𝛼),… ,𝛶 −1
kmk

(1 − 𝛼);D)d𝛼]

∧ (1 + exp(
𝜋(et − H)√

3𝜎t
))−1.



10659Belief reliability analysis of competing for failure systems with bi-uncertain variables  

1 3

According to Definition 2, the mean time to failure of 
the system is

3.3  Case 3: ı‑shock model

In the � shock model, hardware failure occurs when the 
interval time of two adjective consecutive shocks is less 
than a constant �.

(41)

MTTF = �
+∞

0

M{T > t}dt = �
+∞

0

R(t)dt

= �
+∞

0

{[max
k≥0 (1 − �

1

0

𝜓(𝛬−1
11
(𝛼),… ,𝛬−1

1m1
(1 − 𝛼),𝛬−1

21
(𝛼),… ,𝛬−1

(k+1)m(k+1)
(1 − 𝛼);t)d𝛼)

∧ �
1

0

𝛹 (𝛶 −1
11

(𝛼),… ,𝛶 −1
1m1

(1 − 𝛼),𝛶 −1
21

(𝛼),… ,𝛶 −1
kmk

(1 − 𝛼);D)d𝛼]

∧ (1 + exp(
𝜋(et − H)√

3𝜎t
))−1}dt.

Theorem 9 If the uncertain internal degradation process 
X(t) for the system follows X(t) = et + �C(t) for t ≥ 0. The 
uncertain external shock pattern is a � shock model, then the 
belief reliability of the system is

and the mean time to failure of the system is

Proof 

where

(42)

R(t) = {max
k≥0 (1 − �

1

0

�(Λ−1
11
(�),… ,Λ−1

1m1
(1 − �),Λ−1

21
(�),… ,Λ−1

(k+1)m(k+1)
(1 − �);t)d�)

∧ min
1≤i≤k[1 − �

1

0

�i(Λ
−1
i1
(�),… ,Λ−1

ip
(�),Λ−1

i(p+1)
(1 − �),… ,Λ−1

ini
(1 − �);�)d�]}

∧(1 + exp(
�(et − H)√

3�t
))−1,

(43)

MTTF = �
+∞

0

{[max
k≥0 (1 − �

1

0

�(�−1
11
(�),… ,�−1

1m1
(1 − �),�−1

21
(�),… ,�−1

(k+1)m(k+1)
(1 − �);t)d�)

∧ min
1≤i≤k[1 − �

1

0

�i(�
−1
i1
(�),… ,�−1

ip
(�),�−1

i(p+1)
(1 − �),… ,�−1

ini
(1 − �);�)d�]]

∧ (1 + exp(
�(et − H)√

3�t
))−1}dt.

(44)R(t) = M{NHFt ∩ NSFt}=M{(

N(t)⋂
i=1

𝜉i > 𝛿) ∩ (TH > t)} = M{

N(t)⋂
i=1

𝜉i > 𝛿} ∧M{TH > t},
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(45)

M{

N(t)⋂
k=1

(𝜉k > 𝛿)}=M{

∞⋃
k=0

(N(t) = k),

k⋂
i=1

𝜉i > 𝛿}

= max
k≥0 M{N(t) = k,

k⋂
i=1

𝜉i > 𝛿}

= max
k≥0 M{N(t) ≤ k} ∧M{

k⋂
i=1

𝜉i > 𝛿}

= max
k≥0 (1 −M{

k+1∑
i=1

𝜉i ≤ t}) ∧ min
1≤i≤k M{𝜉i > 𝛿}.

(46)
M{𝜉i > 𝛿} = 1 −M{𝜉i ≤ 𝛿}

= 1 − �
1

0

𝜑i(𝛬
−1
i1
(𝛼),… ,𝛬−1

ip
(𝛼),𝛬−1

i(p+1)
(1 − 𝛼),… ,𝛬−1

ini
(1 − 𝛼);𝛿)d𝛼

(47)

M{

N(t)⋂
i=1

𝜉i > 𝛿}

= max
k≥0 (1 −M{

k+1∑
i=1

𝜉i ≤ t}) ∧M{

k⋂
i=0

𝜉i > 𝛿}

= max
k≥0 (1 − �

1

0

𝜓(𝛬−1
11
(𝛼),… ,𝛬−1

1m1
(1 − 𝛼),𝛬−1

21
(𝛼),… ,𝛬−1

(k+1)m(k+1)
(1 − 𝛼);t)d𝛼)

∧ min
1≤i≤k[1 − �

1

0

𝜑i(𝛬
−1
i1
(𝛼),… ,𝛬−1

ip
(𝛼),𝛬−1

i(p+1)
(1 − 𝛼),… ,𝛬−1

ini
(1 − 𝛼);𝛿)d𝛼].

So

(48)

R(t) = M{

N(t)�
i=1

𝜉i > 𝛿} ∧M{TH > t}

= {max
k≥0

(1 − �
1

0

𝜓(𝛬−1
11
(𝛼),… ,𝛬−1

1m1
(1 − 𝛼),𝛬−1

21
(𝛼),… ,𝛬−1

(k+1)m(k+1)
(1 − 𝛼);t)d𝛼)

∧ min
1≤i≤k[1 − �

1

0

𝜑i(𝛬
−1
i1
(𝛼),… ,𝛬−1

ip
(𝛼),𝛬−1

i(p+1)
(1 − 𝛼),… ,𝛬−1

ini
(1 − 𝛼);𝛿)d𝛼]}

∧ (1 + exp(
𝜋(et − H)√

3𝜎t
))−1.
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Fig. 1  Sensitivity analysis of R(t) on H for Case 1
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Fig. 2  Sensitivity analysis of R(t) on D for Case 2

According to Definition 2, the mean time to failure of 
the system is

4  Numerical examples

In this section, using Micro-Electro-Mechanical System 
(MEMS) as an example to explain the proposed model. A 
micro-engine consists of several orthogonal linear comb 
drive actuators which are mechanically joined to a rotating 
gear. The wear on the rubbing surface between the gear and 
the pin joint usually causes a broken pin, which is the domi-
nant reason for micro-engines failure. Additionally, in shock 
tests on micro-engines, the springs fracture is observed when 
the magnitude of shocks is larger than a certain threshold 
(Tanner et al. 2000). Therefore, the micro-engine is subject 
to two competing failure processes: soft failure due to wear 
degradation and hard failure due to springs fracture caused 
by external shocks. The failure mode of the micro-engine 
is modeled by employing uncertainty theory in this paper.

Assume the uncertain degradation process is 
X(t) = et + �C(t) , the time interval of shock arrival is a 
non-negative bi-uncertain variable �i , the size of shock is a 
non-negative bi-uncertain variable �i , assume

(49)

MTTF = �
+∞

0

M{T > t}dt = �
+∞

0

R(t)dt

= �
+∞

0

{[max
k≥0 (1 − �

1

0

𝜓(𝛬−1
11
(𝛼),… ,𝛬−1

1m1
(1 − 𝛼),𝛬−1

21
(𝛼),… ,𝛬−1

(k+1)m(k+1)
(1 − 𝛼);t)d𝛼)

∧ min
1≤i≤k[1 − �

1

0

𝜑i(𝛬
−1
i1
(𝛼),… ,𝛬−1

ip
(𝛼),𝛬−1

i(p+1)
(1 − 𝛼),… ,𝛬−1

ini
(1 − 𝛼);𝛿)d𝛼]]

∧ (1 + exp(
𝜋(et − H)√

3𝜎t
))−1}dt.

and the above distributions are independent,the uncertain 
degradation process and the uncertain shock are independ-
ent, other parameters are as follows in Table 1.

4.1  Belief reliability analysis

4.1.1  Case 1: extreme shock model

Firstly, we introduce the numerical function graphs of 
the system under the extreme shock model as shown in 
Fig. 1. From Fig. 1, we can see the belief reliability func-
tion changes when the soft failure threshold increases from 
H = 1.5 to H = 2.5 . In general, the belief reliability func-
tion increases with the increase of H . The reason for this 
phenomenon is that the greater the soft failure threshold, the 
less the uncertain measure of software failure, so the belief 

(50)
�i ∼ N(�i, 0.05

i), �i ∼ L(0, 1), i = 1, 2,… ,

�i ∼ N(�i, 0.5
i),�i ∼ L(1, 2), i = 1, 2,… .
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reliability increases. The belief reliability decreases rapidly 
before the change point t = 2.845 , but decreases slowly after 
the change point, and before this change point the value of 
H is different from the belief reliability function, but after 
this change point the belief reliability function coincidence. 
This is because the system is affected by both the uncertain 
internal degradation and the uncertain shock, the change of 
software failure threshold influences the uncertain internal 
degradation, but has no influence on the uncertain external 
shock. When t > 2.845 , compared with the uncertain inter-
nal degradation, the impact of uncertain external shock is 
greater, and the impact of uncertain external shock plays a 
leading role. Therefore, the belief reliability function will 
not change with the change of software failure threshold.

4.1.2  Case 2: cumulative shock model

Then, under the cumulative shock model, the function graphs 
of belief reliability are simulated in Fig. 2. Figure 2 shows 
the belief reliability function changes when the hardware 
failure threshold increases from D = 4 to D = 6 . In general, 
the belief reliability function increases with the increase of 
D . The reason for this phenomenon is that the greater the 
hardware failure threshold, the less the uncertain measure of 
hardware failure, so the belief reliability increases. The three 
belief reliability function curves decrease rapidly before the 
first change point, and slowly after the first change point, 
some of them even remain unchanged for a certain period, 
but after t = 3.83 , the three curves coincide, and the belief 
reliability gradually tends to 0. When t > 3.83 , compared 
with the uncertain external shock, the impact of uncertain 
internal degradation is greater, and the impact of uncer-
tain internal degradation plays a leading role. Therefore, 

the belief reliability function will not change after with the 
change of hardware failure threshold.

4.1.3  Case 3: ı‑shock model

Finally, the belief reliability function graphs of � shock 
model are simulated in Fig. 3. Figure 3 shows the belief 
reliability function changes when the � increases from � = 1 
to � = 2 through step 3. In general, the belief reliability 
function decreases with the increase of � . The reason for 
this phenomenon is that the greater the � , the bigger the 
uncertain measure of hardware failure, so the belief reli-
ability decreases. The three belief reliability function curves 
decrease rapidly before the first change point, and after the 
first change point some of them even remain unchanged for 
a certain period, but after t = 3.221 , the three curves coin-
cide, and the belief reliability gradually tends to 0. Because 
there are two parts of system failure, software failure and 
hardware failure. The change of � will only cause hardware 
failure. When t > 3.221 , the failure of the system is mainly 
caused by software failure. Therefore, no matter how � 
changes, the belief reliability of the system will not change.
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Fig. 3  Sensitivity analysis of R(t) on � for Case 3

Table 1  Model parameter values

Parameters Values Sources

e 1 Assumption
� 1 Assumption
H 2 Assumption
D 5 Assumption
� 1.5 Assumption
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Fig. 4  The belief reliability curves of the bi-uncertain variable and 
uncertain variable for Case 1
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interval of shock arrival is a non-negative uncertain variable 
�∗
i
 , the size of shock is a non-negative uncertain variable �∗

i
 , 

assume

other parameters are shown in Table 1.
In the three cases, the belief reliability function graphs of 

bi-uncertain variable system and uncertain variable system 
are respectively shown in Figs. 4, 5, 6. From the Figs. 4, 
5, 6, it is easy to see that the belief reliability function of 

�∗
i
∼ N(0.5, 0.05i), i = 1, 2,…

(51)�∗
i
∼ N(1.5, 0.5i), i = 1, 2,…

Fig. 5  The belief reliability 
curves of the bi-uncertain vari-
able and uncertain variable for 
Case 2
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Fig. 6  The belief reliability curves of the bi-uncertain variable and 
uncertain variable for Case 3

Table 2  MTTFs of the system

system Extreme shock Cumulative shock � shock

MTTFs of the 
system with 
bi-uncertain 
variables

2.2241 2.0740 2.1850

MTTFs of the 
system with 
uncertain vari-
ables

1.9888 1.9789 1.7708

4.2  Comparison the belief reliability 
between the bi‑uncertain variable 
and uncertain variable

To compare the reliability of the bi-uncertain variable sys-
tem with that of the uncertain variable system, assume the 
uncertain degradation process is X(t) = et + �C(t) , the time 
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the system is indeed affected by the parameters with bi-
uncertain and uncertain variables. It’s worth mentioning that 
the general shape is similar under uncertain variables and 
constants. The common feature of the three graphs is that 
no matter which shock model, the belief reliability func-
tions with uncertain variables and constant parameters are 
sometimes the same, sometimes it is larger than the uncer-
tain variable under the constant parameters, sometimes it is 
smaller than the uncertain variable.

4.3  Comparison the MTTFs of the system 
between the bi‑uncertain variable 
and uncertain variable

To illustrate the relationship between the uncertain variables 
and constants parameters, we make a comparison of MTTFs 
in Table 2. According to Theorems 7–9 and the parameters 
are uncertain variables and constants, we obtain MTTFs 
with bi-uncertain variables and uncertain variables, and 
MTTFs of the system with bi-uncertain variables are higher 
than that of the uncertain variables. This is consistent with 
the results in reference Liu et al. (2020).

5  Conclusions

In this paper, we introduce a reliability model in which the 
degradation process is Liu process and the external shock is 
a bi-uncertain variable. The degradation process and exter-
nal shock are independent competitive failure models. The 
belief reliability and the mean time to failure of the system 
under the three models are discussed according to the uncer-
tainty theory. A numerical example is given to show the 
belief reliability of the three models. The belief reliability 
and MTTFs are compared between the bi-uncertain vari-
ables and the uncertain variables. In the time interval [0, t] , 
the belief reliability of bi-uncertain variables is sometimes 
greater, sometimes smaller, sometimes equal than that of 
uncertain variables. However, the MTTFs of bi-uncertain 
variables is greater than that of uncertain variables.
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