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Abstract
The main objective of this paper is to introduce some algebraic properties of finite linear Diophantine fuzzy subsets of group, 
ring and field. Relatedly, we define the concepts of linear Diophantine fuzzy subgroup and normal subgroup of a group, 
linear Diophantine fuzzy subring and ideal of a ring, and linear Diophantine fuzzy subfield of a field. We investigate their 
basic properties, relations and characterizations in detail. Furthermore, we establish the homomorphic images and preim-
ages of the emerged linear Diophantine fuzzy algebraic structures. Finally, we describe linear Diophantine fuzzy code and 
investigate the relationships between this code and some linear Diophantine fuzzy algebraic structures.

Keywords Fuzzy set · Linear Diophantine fuzzy set · Group · Ring · Ideal · Field · Coding theory

1 Introduction

The membership of elements in classical set theory is con-
sidered in binary terms according to a bivalent condition 
whether an element belongs to the set. This is insufficient 
to deal with many real world problems. To eradicate these 
restrictions, Zadeh (1965) proposed the fuzzy set (FS), in 
which the membership degrees of elements range over the 
interval [0, 1]. The membership degree 0 implies that an 
element does not belong to the related fuzzy set, and the 
membership degree 1 implies that an element completely 
belongs to the related fuzzy set. The membership degrees on 
the interval (0, 1) mean the partial membership to the fuzzy 
set. Since that seminal publication, the fuzzy set theory was 
widely studied in various directions like operational research 
and decision making (Ekel 2002; Liu et al. 2019; Petchi-
muthu et al. 2020; Zimmermann 2001; Zhou et al. 2015). 
As an extension of fuzzy set, Atanassov (1986) generalized 
this notion and introduced a new concept called intuitionistic 
fuzzy set (IFS). For further work related to IFSs and their 
drawbacks, we may refer to Aydın and Enginog ̃lu (2020), 
Kamacı (2019), Karaaslan (2016), Karaaslan and Karataş 
(2016), Kumar and Garg (2018) and Uluçay et al. (2019). 

Yager (2013) highlighted that in some practical implemen-
tations, the sum of degrees of membership and non-mem-
bership to which an alternative satisfying attribute may be 
greater than 1, but their square sum is less than or equal to 1. 
Therefore, he familiarized the model of Pythagorean fuzzy 
set (PyFS). This paradigm was studied by many authors 
in various aspects (Peng 2019; Peng and Garg 2019; Wei 
and Wei 2018; Zhang et al. 2019). Yager (2017) proposed 
the intuitionistic fuzzy set of type q (where q ≥ 1 ), called 
q-rung orthopair fuzzy set (q-ROFS), extending the spaces 
of FS, IFS and PyFS. Subsequently, significant advances 
were made with academic research related to q-ROFSs (Ali 
2018; Liu and Wang 2018; Wang et al. 2019).

On the other hand, many authors studied the fuzzy set 
theoretic approaches to the algebraic structures. Rosenfeld 
(1971) formulated the notion of fuzzy subgroup of a group. 
Subsequently, many researchers were engaged in extending 
the notions of abstract algebra to the broader framework of 
the fuzzy environment. Naturally, there exist an interest in 
generalizing other types of algebraic structures (e.g. rings, 
ideals, fields) as fuzzy algebraic structures. Liu (1982) dis-
cussed fuzzy set in the realm of ring theory. immediately 
afterwards, among others, Aktaş and Çagm̃an (2007), Dixit 
et al. (1992), Mukherjee and Sen (1987), Öztürk et al. (2010) 
studied on fuzzy ring/ideal and proposed certain ring theo-
retic analogues. Malik and Mordeson (1990) developed the 
fuzzy subfields of a field and characterized the properties of 
field extensions in terms of fuzzy subfields. In (Aygünog ̃lu 
et al. 2012; Biswas 1997; Marashdeh and Salleh 2011; Yu 
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and Yuan 2011; Zhang et al. 2010), the intuitionistic fuzzy 
subalgebras of groups, rings and fields were explored and 
their characterizations were discussed. Several authors 
carried out further studies on the algebraic properties of 
Pythagorean fuzzy set and q-rung orthopair fuzzy set [see 
(Adak and Salokolaei 2019; Jansi and Mohana 2020; Luq-
man et al. 2019)]. Nowadays, research and improvement 
of new algebraic structures in fuzzy set theory is still an 
important issue.

In theory and practice, the fuzzy sets, intuitionistic fuzzy 
set, Pythagorean fuzzy set and q-rung orthopair fuzzy set 
have their own limitations related to the functions of mem-
bership and non-membership. Riaz and Hashmi (2019) 
detailed these limitations and supported them with illus-
trative examples. To eliminate the restrictions of existing 
methodologies, they proposed a new generalized form of 
fuzzy set called linear Diophantine fuzzy set. The algebraic 
properties of linear Diophantine fuzzy sets are issues that 
have not been considered deeply until now. In this paper, we 
aim to fill this research gap by revealing the structural char-
acteristics of linear Diophantine fuzzy set of some algebraic 
structures. Accordingly, we define the prevailing concepts 
of linear Diophantine fuzzy subgroup/normal subgroup/sub-
ring/ideal/subfield. Thus, we are tempted to generalise as 
long as it is possible some of the results known in the fuzzy 
set theory. We get many interesting results related to the lin-
ear Diophantine fuzzy relationships and linear Diophantine 
fuzzy subalgebras of given algebraic structures. Also, we 
focus on the construction of codes by linear Diophantine 
fuzzy sets and their applications in practice.

The paper is organised according to the following. Sec-
tion 2 addresses the requisite preliminary concepts and 
introduces the cartesian product of linear Diophantine fuzzy 
sets. Sections 3 and 4 describe the linear Diophantine fuzzy 
subgroup and normal subgroup of a classical group and 
discuss their characterizations. Sections 5 and 6, introduce 
the algebraic properties of linear Diophantine fuzzy set of 
a ring and provide some theoretical results related to them. 
Section 7 offers the way for revealing the structural charac-
teristics of linear Diophantine fuzzy subfield of a field. Sec-
tion 8 proposes an linear Diophantine fuzzy-based approach 
to coding theory. Section 9 summarizes the conclusion of 
this research.

2  Preliminaries

In this section, some essential concepts that are useful for 
discussions in the next sections are explained.

Suppose that G is a set and “ ⋅ ” is a binary operation on 
G . Then, the algebraic structure (G, ⋅) is said to be a group if 
and only if the following properties are satisfied: 

(i)  gj ⋅ gk ∈ G ∀gj, gk ∈ G.
(ii)  gj ⋅ (gk ⋅ gl) = (gj ⋅ gk) ⋅ gl ∀gj, gk, gl ∈ G.
(iii)  There exists an element eG ∈ G  such that 

gj ⋅ eG = eG ⋅ gj = gj ∀gj ∈ G.
(iv)  For each gj ∈ G , there exists an element g−1

j
∈ G such 

that gj ⋅ g−1j = g−1
j

⋅ gj = eG.

 If the properties (i) and (ii) are satisfied then (G, ⋅) is called 
a semigroup.

In addition to these properties, the following properties 
is satisfied then (G, ⋅) is termed to be a commutative group. 

(v)  gj ⋅ gk = gk ⋅ gj ∀gj, gk ∈ G.

 A subgroup S of a group G is a subset of G which is a group 
under the same operation as G . That is, S is a subgroup of G 
if gj ⋅ q−1k ∈ S for all gj, gk ∈ S ⊆ G . A subgroup N  of G is 
called a normal subgroup if g ⋅ gj ⋅ g−1 ∈ N  for all gj ∈ N  , 
q ∈ G (or gj ⋅ gk ∈ N ⇔ gk ⋅ gj ∈ N ∀gj, gk ∈ G ). A function 
Ψgrp ∶ G1 → G2 between groups G1 and G2 is called a group 
homomorphism if Ψgrp(g

1
j
⋅
G1

g1
k
) = Ψgrp(g

1
j
) ⋅

G2

Ψgrp(g
1
k
) for 

all g1
j
, g1

k
∈ G1.

Assume that R is a set and “ + ” and “ ⋅ ” is two binary 
operation on R . Then, the algebraic structure (R,+, ⋅) is 
said to be a ring if and only if the following properties are 
satisfied: 

(i)  (R,+) is a commutative group.
(ii)  (R, ⋅) is a semigroup.
(iii)  rj ⋅ (rk + rl) = rj ⋅ rk + rj ⋅ rl and (rj + rk) ⋅ rl = rj ⋅ rl + rk ⋅ rl 

∀rj, rk, rl ∈ R.

 A subring H of a ring R is a subset of R which is a ring 
under the same operations as R . That is, H is a subring of 
R if rj − rk ∈ H and rj ⋅ rk ∈ H for all rj, rk ∈ H ⊆ R . A 
subring I  of R is a left ideal if r ⋅ rj ∈ I  for all rj ∈ I  , 
r ∈ R . It is a right ideal if rj ⋅ r ∈ I  for all rj ∈ I  , r ∈ R . If 
I  is both a left and right ideal, then it is called an ideal. A 
function Ψrng ∶ R1 → R2 between rings R1 and R2 is called 
a ring homomorphism if Ψrng(r

1

j
+

R1

r1
k
) = Ψrng(r

1

j
) +

R2

Ψrng(r
1

k
) 

and Ψrng(r
1

j
⋅
R1

r1
k
) = Ψrng(r

1

j
) ⋅

R2

Ψrng(r
1

k
) for all r1

j
, r1

k
∈ R1.

A ring (F,+, ⋅) is called a field if (F − {0F}, ⋅) is an com-
mutative group, where 0F indicates the identity element of the 
group (F,+) . A subfield K of a field F  is a subset of F  which 
is a field under the same operations as F  . That is, K is a sub-
field of F  if fj − fk ∈ K ∀fj, fk ∈ K and fj ⋅ f−1k

∈ K ∀fj, (0F ≠)fk ∈ K . 
A function Ψfld ∶ F1 → F2 between fields F1 and F2 is called 
a field homomorphism if Ψfld(f

1

j
+

F1

f 1
k
) = Ψfld(f

1

j
) +

F2

Ψfld(f
1

k
)  

and Ψfld(f
1
j
⋅
F1

f 1
k
) = Ψfld(f

1
j
) ⋅

F2

Ψfld(f
1
k
) for all f 1

j
, f 1
k
∈ F1.

In 1965, Zadeh introduced the fuzzy set which is charac-
terized by a membership function that assigns a degree of 



10355Linear Diophantine fuzzy algebraic structures  

1 3

membership ranging between zero and one for each object 
in a universal set. Simply, a fuzzy set is denoted and defined 
by � = {(qj, ⟨�(qj)⟩) ∶ qj ∈ Q} , where Q is a universal set 
and � ∶ Q → [0, 1] a membership function. Since this sem-
inal publication, the fuzzy set theory has been widely stud-
ied and expanded. In 1986, Atanassov described intuition-
istic fuzzy set by including the non-membership function 
to the construction of fuzzy set. In the following years, it 
was defined the concepts of Pyhthagorean fuzzy set (Yager 
2013) and q-rung orthopair fuzzy set (Yager 2017) which 
deal with the squares and q-rungs of the degrees of mem-
bership and non-membership in the intuitionistic fuzzy set, 
respectively. In 2019, Riaz and Hashmi pointed out that 
these sets have their own restrictions related to the member-
ship and non-membership degrees (see Table 18 in (Riaz 
and Hashmi 2019)). To eradicate the restrictions related to 
membership and non-membership functions in the struc-
tures of these sets, Riaz and Hashmi (2019) developed the 
linear Diophantine fuzzy set by adding reference parameters 
into them. This set which was brought to the literature in 
2019, is described as follows.

Definition 2.1 (Riaz and Hashmi 2019) Let Q be a universal 
set. Then, a linear Diophantine fuzzy set (LDFS) � on the 
universal set Q is described in the following form

where ��(qj),��(qj), �, � ∈ [0, 1] are the degrees of mem-
bership, non-membership and reference parameters, respec-
tively. These degrees satisfy the the conditions 0 ≤ � + � ≤ 1 
and 0 ≤ ���(qj) + ���(qj) ≤ 1 for all qj ∈ Q.

The reference parameters in the LDFS are specified attrib-
utes, but their degrees vary for each object in the universal set. 
The above definition evokes that the degrees of � and � are 
fixed for all objects. To emphasize that the degrees of refer-
ence parameters � and � for objects may vary (i.e. may not be 
fixed) and to better elucidate the concepts in the next sections, 
we revisit LDFS as follows.

where  ��(qj),��(qj), �
�(qj), �

�(qj) ∈ [0, 1] respec-
tively represent the degrees of membership, non-
membership and reference parameters for qj ∈ Q 
wi th  the  condi t ions  0 ≤ ��(qj) + ��(qj) ≤ 1 and 
0 ≤ ��(qj)��(qj) + ��(qj)��(qj) ≤ 1 . These reference 
parameters can help in describing and classifying a par-
ticular system. The hesitancy degree can be considered 
as �𝔇(qj)⟝𝔇(qj) = 1 − (�𝔇(qj)𝔘𝔇(qj) + �𝔇(qj)𝔖𝔇(qj)) , 

(2.1)� = {(qj, ⟨��(qj),��(qj)⟩, ⟨�, �⟩) ∶ qj ∈ Q}

(2.2)
� = {(qj, ⟨��(qj),��(qj)⟩,
⟨��(qj), �

�(qj)⟩) ∶ qj ∈ Q}

where �� is the reference parameter related to degree 
of indeterminacy in the LDFS � . Simply, a lin-
ear Diophantine fuzzy element (LDFE) is denoted by 
�(qj) = (⟨��(qj),��(qj)⟩, ⟨��(qj), �

�(qj)⟩) . The set of all 
LDFSs on the universal set Q is symbolized by LDFS(Q).

Example 2.2 Selection criteria are used to identify the most 
qualified candidate among all candidates who meet minimum 
qualifications and are selected for an interview for a particu-
lar position. The selection criteria go beyond minimum qual-
ifications and look at the quality, quantity and relevance of 
the experience, education, knowledge and other skills each 
applicant has. Assume that it is desired to determine the 
best-qualified candidate who meets the specified selection 
criteria and is also young. Let Q = {q1, q2, q3, q4} be a set of 
candidates selected for an interview for a particular position. 
For the construction of LDFS, the reference parameters are 
considered as � = young and � = not young (or old) . Thus, 
the following LDFS is created.

In  t he  s t r uc tu re  o f  LDFS � ,  t he  LDFE 
�(q1) = (⟨0.7, 0.6⟩, ⟨0.8, 0.2⟩) implies that for the candi-
date q1 , the degrees of membership and non-membership 
with respect to the selection criteria are 0.7 and 0.6, and the 
degrees of reference parameters: young and not young (or 
old) are 0.8 and 0.2. Others can be expounded similarly. As 
an explanatory to our proposal of Eq. (2.2) instead of Eq. 
(2.1), it is sufficient to highlight that the grades of refer-
ence parameters “young” and “not young” change for each 
candidate.

Definition 2.3 (Riaz and Hashmi 2019) An LDFS on 
the set Q of the form �̃ = {(qj, ⟨0, 1⟩, ⟨0, 1⟩) ∶ qj ∈ Q} 
is termed to be an empty (or null) LDFS, and the form 
�̃ = {(qj, ⟨1, 0⟩, ⟨1, 0⟩) ∶ qj ∈ Q} is termed to be an abso-
lute LDFS.

Note 1 From now on, I = {1, 2,… , n} unless otherwise 
specified.

Definition 2.4  (Riaz  and  Hashmi  2019)  Let 
�i = {(qj, ⟨��i

(qj),��i
(qj)⟩, ⟨��i (qj), �

�i (qj)⟩) ∶ qj ∈ Q} 
for i ∈ I be the LDFSs on the universal set Q . 

(1)  The complement of �i , denoted by �c
i
 , is defined as 

�c
i
= {(qj, ⟨��i

(qj),��i
(qj)⟩, ⟨��i (qj), �

�i (qj)⟩) ∶ qj ∈ Q} . Also, 
it is clear that (�c

i
)c = �i.

(2)  �i is a subset of �i′ for i, i� ∈ I , denoted by �i ⊆ �i′ , 
if and only if �i(qj) ≤ �i� (qj) (i.e., ��i

(qj) ≤ ��i�
(qj) , 

� =

�
(q1, ⟨0.7, 0.6⟩, ⟨0.8, 0.2⟩), (q2, ⟨0.4, 1⟩, ⟨0.5, 0.4⟩),
(q3, ⟨0.9, 0.4⟩, ⟨0.3, 0.7⟩), (q4, ⟨0.8, 0.3⟩, ⟨0.6, 0.4⟩)

�
.
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��i
(qj) ≥ ��i�

(qj)  ,  ��i (qj) ≤ ��i� (qj)  a n d 
��i(qj) ≥ ��i� (qj) ) for all qj ∈ Q.

(3)  �i and �i′ for i, i� ∈ I are equal, denoted by �i = �i� , 
if and only if �i(qj) = �i� (qj) (i.e., ��i

(qj) = ��i�
(qj) , 

��i
(qj) = ��i�

(qj)  ,  ��i (qj) = ��i� (qj)  a n d 
��i(qj) = ��i� (qj) ) for all qj ∈ Q.

(4)  The union of �i for all i ∈ I , denoted by 
⋃

i∈I �i , is 
defined as 

where for each qj ∈ Q , �∪̃�i
(qj) =

⋁
i∈I ��i

(qj) ,  
= supi∈I{��i

(qj)} , �∪̃�i(qj) =
⋁

i∈I �
�i (qj) = supi∈I{�

�i (qj)} 
and �∪̃�i (qj) =

⋀
i∈I �

�i (qj) = infi∈I{�
�i (qj)}.

(5)  The intersection of �i for all i ∈ I , denoted by 
⋂

i∈I �i , 
is defined as 

where for each qj ∈ Q , �∩̃�i
(qj) =

⋀
i∈I ��i

(qj) 

= infi∈I{��i
(qj)} , �∩̃�i

(qj) =
⋁

i∈I ��i
(qj) = supi∈I{��i

(qj)} , 

�∩̃�i(qj) =
⋀

i∈I �
�i (qj) = infi∈I{�

�i (qj)}  a n d 

�∩̃�i (qj) =
⋁

i∈I �
�i (qj) = supi∈I{�

�i (qj)}.

Proposition 2.5 Let �i ∈ LDFS(Q) for i = 1, 2, 3 . Then, the 
following properties are valid. 

(i)  �i ∩ �̃ = �̃ and �i ∪ �̃ = �i.
(ii)  �i ∩ �̃i = �i and �i ∪ �̃i = �̃i.
(iii)  �1 ∩�2 = �2 ∩�1 and �1 ∪�2 = �2 ∪�1.
(iv)  �1 ∩ (�2 ∩�3) = (�1 ∩�2) ∩�3  a n d 

�1 ∪ (�2 ∪�3) = (�1 ∪�2) ∪�3.
(v)  �1 ∩ (�2 ∪�3) = (�1 ∩�2) ∪ (�1 ∩�3)  a n d 

�1 ∪ (�2 ∩�3) = (�1 ∪�2) ∩ (�1 ∪�3).
(vi)  (�1 ∩�2)

c = �c
1
∪�c

2
 and (�1 ∪�2)

c = �c
1
∩�c

2

Proof The proofs are clear from Proposition 3.7 in Riaz and 
Hashmi (2019) and Definition 2.3.   ◻

(2.3)

�
i∈I

�i = {(qj, ⟨�∪̃�i
(qj),�∪̃�i

(qj)⟩,

⟨�∪̃�i(qj), �
∪̃�i (qj)⟩) ∶ qj ∈ Q}

(2.4)

�
i∈I

�i = {(qj, ⟨�∩̃�i
(qj),�∩̃�i

(qj)⟩,

⟨�∩̃�i(qj), �
∩̃�i (qj)⟩) ∶ qj ∈ Q}

Definition 2.6 Let Qi (i ∈ I) be the universal sets. Also, 
let �i be the LDFS on the universal set Qi for each i ∈ I . 
Then, the cartesian product of LDFSs �i (i ∈ I) , denoted by ∏

i∈I �i , is defined as

w h e r e  f o r  e a c h  (qi
j
)i∈I ∈

∏
i∈I Qi  , 

�Π̃�i
((qi

j
)i∈I) =

⋀
i∈I ��i

(qi
j
) = infi∈I{��i

(qi
j
)}  , 

�Π̃�i
((qi

j
)i∈I) =

⋁
i∈I ��i

(qi
j
) = supi∈I{��i

(qi
j
)}  , 

�Π̃�i ((qi
j
)i∈I) =

⋀
i∈I �

�i (qi
j
) = infi∈I{�

�i (qi
j
)}  a n d 

�Π̃�i ((qi
j
)i∈I) =

⋁
i∈I �

�i(qi
j
) = supi∈I{�

�i (qi
j
)}.

Proposition 2.7 Let �i be the LDFS on the universal set Qi 
for each i ∈ I . Then, 

∏
i∈I �i is also LDFS.

Proof This can be easily proved by using the Definition 2.6, 
therefore omitted.   ◻

E xa m p l e  2 . 8  L e t  Q1 = {q1
1
} ,  Q2 = {q2

1
, q2

2
} a n d 

Q3 = {q3
1
, q3

2
} be three universal sets. We consider the 

following LDFSs �1 , �2 , �3 on the universal sets Q1 , 
Q2 , Q3 , respectively. �1 = {(q1

1
, ⟨0.5, 0.9⟩, ⟨0.2, 0.5⟩)} , 

�2 = {(q2
1
, ⟨0.9, 0.8⟩, ⟨0.3, 0.7⟩), (q2

2
, ⟨0.8, 0.7⟩, ⟨0.5, 0.3⟩)} 

and �3 = {(q2
1
, ⟨0.4, 0.5⟩, ⟨0.8, 0.1⟩), (q2

2
, ⟨0.3, 0.4⟩, ⟨0.3, 0.6⟩)}.

Then, the cartesian product of �1 , �2 and �3 is obtained 
as follows.

Definition 2.9 Let Q1 and Q2 be two universal sets and 
Ψ ∶ Q1 → Q2 be a function. 

(1)  If �1 = {(q1
j
, ⟨��1

(q1
j
),��1

(q1
j
)⟩, ⟨��1 (q1

j
), ��1 (q1

j
)⟩) ∶ q1

j
∈ Q1} 

is an LDFS on Q1 , then the image Ψ(�1) of LDFS �1 
is an LDFS on Q2 and it is defined as follows: 

(2.5)

�
i∈I

�i =
��

(qi
j
)i∈I , ⟨�Π̃�i

((qi
j
)i∈I),�Π̃�i

((qi
j
)i∈I)⟩,

�
�Π̃�i((qi

j
)i∈I), �

Π̃�i((qi
j
)i∈I)

��
∶ (qi

j
)i∈I ∈

�
i∈I

Qi

�

�
i∈I={1,2,3}

�i =

�
((q1

1
, q2

1
, q3

1
), ⟨0.4, 0.9⟩, ⟨0.2, 0.7⟩), ((q1

1
, q2

1
, q3

2
), ⟨0.3, 0.9⟩, ⟨0.2, 0.7⟩),

((q1
1
, q2

2
, q3

1
), ⟨0.4, 0.9⟩, ⟨0.2, 0.5⟩), ((q1

2
, q2

1
, q3

2
), ⟨0.3, 0.9⟩, ⟨0.2, 0.6⟩)

�
.

(2.6)

Ψ(�1) ={(q
2
j
,Ψ(�1)(q

2
j
)) ∶ q2

j
∈ Q2}

={(q2
j
, ⟨�Ψ(�1)

(q2
j
),�Ψ(�1)

(q2
j
)⟩,

⟨�Ψ(�1)(q2
j
), �Ψ(�1)(q2

j
)⟩) ∶ q2

j
∈ Q2}

={(q2
j
, ⟨Ψ(��1

)(q2
j
),Ψ(��1

)(q2
j
)⟩,

⟨Ψ(��1 )(q2
j
),Ψ(��1 )(q2

j
)⟩) ∶ q2

j
∈ Q2}
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 where for all q2
j
∈ Q2 , 

(2)  If �2 = {(q2
j
, ⟨��2

(q2
j
),��2

(q2
j
)⟩, ⟨��2 (q2

j
), ��2 (q2

j
)⟩) ∶ q2

j
∈ Q2} 

is an LDFS on Q2 , then the preimage Ψ−1(�2) of 
LDFS �2 is an LDFS on Q1 and it is defined as 
follows: 

3  Linear Diophantine fuzzy subgroup

In this section, we introduce the notion of linear Diophantine 
fuzzy subgroup and discuss its crucial properties.

Definition 3.1 Let (G, ⋅) be a classical group and � be an 
LDFS on G . Then, � is called a linear Diophantine fuzzy 
subgroupoid (LDF-subgroupoid) of G iff the following con-
dition is satisfied 

(G1)  �(gj ⋅ gk) ≥ �(gj) ⋏�(gk) for all gj, gk ∈ G , i.e., 

Ψ(��1
)(q2

j
) =

�⋁
��1

(q1
j
), if q1

j
∈ Ψ−1(q2

j
)

0, otherwise
,

Ψ(��1
)(q2

j
) =

�⋀
��1

(q1
j
), if q1

j
∈ Ψ−1(q2

j
)

1, otherwise
,

Ψ(��1 (q2
j
)) =

�⋁
��1 (q1

j
), if q1

j
∈ Ψ−1(q2

j
)

0, otherwise
,

Ψ(��1 (q2
j
)) =

�⋀
��1 (q1

j
), if q1

j
∈ Ψ−1(q2

j
)

1, otherwise
.

(2.7)

Ψ−1
(
�2

)
=
{(

q1
j
,Ψ−1

(
�2

)(
q1
j

))
∶ q1

j
∈ Q1

}

=
{(

q1
j
,
⟨
�Ψ−1(�2)

(
q1
j

)
,�Ψ−1(�2)

(
q1
j

)⟩
,

⟨
�Ψ−1(�2)

(
q1
j

)
, �Ψ

−1(�2)
(
q1
j

)⟩)
∶ q1

j
∈ Q1

}

=
{(

q2
j
,
⟨
��2

(
Ψ
(
q1
j

))
,��2

(
Ψ
(
q1
j

))⟩
,

⟨
��2

(
Ψ
(
q1
j

))
, ��2

(
Ψ
(
q1
j

))⟩)
∶ q1

j
∈ Q1

}

=
{(

q1
j
,�2

(
Ψ
(
q1
j

)))
∶ q1

j
∈ Q1

}
.

��(gj ⋅ gk) ≥ ��(gj) ⋏��(gk),

��(gj ⋅ gk) ≤ ��(gj) ⋎��(gk),

��(gj ⋅ gk) ≥ ��(gj) ⋏ ��(gk),

��(gj ⋅ gk) ≤ ��(gj) ⋎ ��(gk).

 The linear Diophantine fuzzy subgroupoid � is called a 
linear Diophantine fuzzy subgroup (LDF-sugroup) of G iff 
the following condition is provided: 

(G2)  �(g−1
j
) = �(gj) for all gj ∈ G , i.e., 

 The collection of all LDF-subgroups of G is denoted by 
LDFsG(G).
Example 3.2 Let us consider the Klein’s 4-group 
G = {e, a, b, c} with the multiplication table:

Then, the LDFS

is an LDF-subgroup of G . However, the LDFS

is not an LDF-subgroup of G since ��(e) ≱ ��2
(a) ∧��2

(a) 
and 𝛽�2 (c) ≰ 𝛽�2 (a) ∨ 𝛽�2 (b).

Proposition 3.3 Let G be a classical group and � be an 
LDF-subgroup of G . Then, 

(i)  �(eG) ≥ �(gj) for all gj ∈ G , where eG is the unit ele-
ment of G.

(ii)  �(gj
�) ≥ �(gj) for all gj ∈ G , where � ∈ ℕ.

Proof Let G be a classical group and � be an LDF-subgroup 
of G . 

(i)  Let eG be the unit element of G . From Definition 3.1, 
we obtain that for any gj ∈ G

��

(
g−1
j

)
= ��(gj), ��

(
g−1
j

)
= ��(gj),

��
(
g−1
j

)
= ��(gj), �

�
(
g−1
j

)
= ��(gj).

�1 =

�
(e, ⟨0.7, 0.5⟩, ⟨0.5, 0.4⟩), (a, ⟨0.5, 0.7⟩, ⟨0.4, 0.5⟩),
(b, ⟨0.3, 0.8⟩, ⟨0.2, 0.6⟩), (c, ⟨0.3, 0.8⟩, ⟨0.2, 0.6⟩)

�

�2 =

�
(e, ⟨0.3, 0.5⟩, ⟨0.5, 0.4⟩), (a, ⟨0.4, 0.7⟩, ⟨0.4, 0.5⟩),
(b, ⟨0.3, 0.8⟩, ⟨0.2, 0.6⟩), (c, ⟨0.3, 0.8⟩, ⟨0.2, 0.9⟩)

�
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 Thus, by Definition 2.4 (2), we have �(eG) ≥ �(gj) for all 
gj ∈ G.

(ii)  It can be verified with the similar discussion, so it is 
omitted.

   ◻

Theorem 3.4 Let G be a classical group and � be an LDFS 
on G . Then, � is an LDF-subgroup of G if and only if 
�(gj ⋅ gk

−1) ≥ �(gj) ⋏�(gk) for all gj, gk ∈ G.

Proof Let � be an LDF-subgroup of the classical group G . 
By Definition 3.1, we obtain that for all gj, gk ∈ G

Thus, the desired inequality �(gj ⋅ gk
−1) ≥ �(gj) ⋏�(gk) is 

satisfied.
Conversely,  let  �(gj ⋅ gk

−1) ≥ �(gj) ⋏�(gk) for 
all gj, gk ∈ G . If it is taken gj = eG , then we have 
�(eG ⋅ gk

−1) ≥ �(eG) ⋏�(gk) ⇒ �(gk
−1) ≥ �(gk) 

(using Proposition  3.3 (i)). Then, we can write 
�(gk) = �((gk

−1)−1) ≥ �(gk
−1) and so �(gk

−1) = �(gk) . 
Considering the arbitrary property of gk , this equal-
ity meets the condition (G2) of being the LDF-sub-
group given in Definition  3.1. Taking into account 
the assumption and the last equality, we obtain 
�(gj ⋅ gk) = �(gj ⋅ (gk

−1)−1) ≥ �(gj) ⋏�(gk
−1) = �(gj) ⋏�(gk) for all 

gj, gk ∈ G . This inequality meets the condition (G1) of being 

��(eG) =��

(
gj ⋅ g

−1
j

)
≥ ��(gj) ⋏��(g

−1
j
)

=��(gj) ⋏��(gj) = ��(gj),

��(eG) =��

(
gj ⋅ g

−1
j

)
≤ ��(gj) ⋎��

(
g−1
j

)

=��(gj) ⋎��(gj) = ��(gj),

��(eG) =�
�
(
gj ⋅ g

−1
j

)
≥ ��(gj) ⋏ ��

(
g−1
j

)

=��(gj) ⋏ ��(gj) = ��(gj),

��(eG) =�
�
(
gj ⋅ g

−1
j

)
≤ ��(gj) ⋎ ��

(
g−1
j

)

=��(gj) ⋎ ��(gj) = ��(gj).

��

(
gj ⋅ gk

−1
)
≥��(gj) ⋏��

(
g−1
k

)

=��(gj) ⋏��(gk),

��

(
gj ⋅ g

−1
k

)
≤��(gj) ⋎��

(
g−1
k

)

=��(gj) ⋎��(gk),

��
(
gj ⋅ g

−1
k

)
≥��(gj) ⋏ ��

(
g−1
k

)

=��(gj) ⋏ ��(gk),

��
(
gj ⋅ g

−1
k

)
≤��(gj) ⋎ ��

(
g−1
k

)

=��(gj) ⋎ ��(gk).

the LDF-subgroup given in Definition 3.1. Consequently, the 
LDFS � is an LDF-subgroup of G .   ◻

Theorem 3.5 Let G be a classical group and �i (i ∈ I) be the 
LDF-subgroups of G . Then, 

(i)  
⋂

i∈I �i is an LDF-subgroup of G.
(ii)  

⋃
i∈I �i is an LDF-subgroup of G.

Proof Let �i (i ∈ I) be the LDF-subgroups of the group G . 

(i)  To complete the proof, we should demonstrate that ⋂
i∈I �i(gj ⋅ gk

−1) ≥
⋂

i∈I �i(gj) ∧
⋂

i∈I �i(gk) for all 
gj, gk ∈ G.

  By Definition 2.4 (5), we have 

 for all gj, gk ∈ G . Since �i (i ∈ I) are the LDF-sub-
groups of G , we obtain 

(3.1)

⋂
i∈I

�i

(
gj ⋅ gk

−1
)

=
(⟨

�∩̃�i

(
gj ⋅ gk

−1
)
,�∩̃�i

(
gj ⋅ gk

−1
)⟩

,⟨
�∩̃�i

(
gj ⋅ gk

−1
)
, �∩̃�i

(
gj ⋅ gk

−1
)⟩)

(3.2)

�∩̃�i

(
gj ⋅ gk

−1
)
=
⋀
i∈I

��i

(
gj ⋅ gk

−1
)

≥
⋀
i∈I

(��i
(gj) ∧��i

(gk)

=

(⋀
i∈I

��i
(gj)

)
∧

(⋀
i∈I

��i
(gk)

)

=�∩̃�i
(gj) ∧�∩̃�i

(gk),

(3.3)

�∩̃�i

(
gj ⋅ gk

−1
)
=
⋁
i∈I

��i

(
gj ⋅ gk

−1
)

≤
⋁
i∈I

(��i
(gj) ∨��i

(gk)

=

(⋁
i∈I

��i
(gj)

)
∨

(⋁
i∈I

��i
(gk)

)

=�∩̃�i
(gj) ∨�∩̃�i

(gk),
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 Form Eqs. (3.2)–(3.5), the desired inequality (Eq. (3.1)) is 
satisfied. Thus, the proof of (i) ends.

(ii)  The proof can be demonstrated similar to the proof of 
(i).

   ◻

Theorem 3.6 Let Gi (i ∈ I) be the classical groups and �i 
be the LDF-subgroups of Gi for i ∈ I . Then, 

∏
i∈I �i is an 

LDF-subgroup of the group 
∏

i∈I Gi.

Proof Suppose that �i are the LDF-subgroups of Gi for i ∈ I . 
To conclude the proof, we have to verify that ∏

i∈I �i((g
i
j
)i∈I ⋅ (g

i
k
)
−1

i∈I
) ≥

∏
i∈I �i((g

i
j
)i∈I) ∧

∏
i∈I �i((g

i
k
)i∈I) 

for all (gi
j
)i∈I , (g

i
k
)i∈I ∈

∏
i∈I Gi.

By Definition 2.6, we have

(3.4)

�∩̃�i

(
gj ⋅ gk

−1
)
=
⋀
i∈I

��i

(
gj ⋅ gk

−1
)

≥
⋀
i∈I

(��i (gj) ∧ ��i (gk)

=

(⋀
i∈I

��i (gj)

)
∧

(⋀
i∈I

��i (gk)

)

=�∩̃�i (gj) ∧ �∩̃�i(gk),

(3.5)

�∩̃�i

(
gj ⋅ gk

−1
)
=
⋁
i∈I

��i

(
gj ⋅ gk

−1
)

≤
⋁
i∈I

(��i (gj) ∨ ��i (gk)

=

(⋁
i∈I

��i (gj)

)
∨

(⋁
i∈I

��i (gk)

)

=�∩̃�i(gj) ∨ � ∩̃�i(gk).

(3.6)

∏
i∈I

�i

((
gi
j

)
i∈I

⋅

(
gi
k

)−1
i∈I

)

=
(⟨

�Π̃�i

((
gi
j

)
i∈I

⋅

(
gi
k

)−1
i∈I

)
,

�Π̃�i

((
gi
j

)
i∈I

⋅

(
gi
k

)−1
i∈I

)⟩
,

⟨
�Π̃�i

((
gi
j

)
i∈I

⋅

(
gi
k

)−1
i∈I

)
,

�Π̃�i

((
gi
j

)
i∈I

⋅

(
gi
k

)−1
i∈I

)⟩)

for all (gi
j
)i∈I , (g

i
k
)i∈I ∈

∏
i∈I Gi . Since �i is the LDF-sub-

groups of Gi for each i ∈ I , we obtain

According to the similar discussion, the following inequali-
ties are also true.

Hence, 
∏

i∈I �i is an LDF-subgroup of the group 
∏

i∈I Gi .  
 ◻

Example 3.7 Let us take into consideration the classical 
groups (ℤ2,+) and (ℤ4,+) . Also, we devised the following 
LDF-subgroups of (ℤ2,+) and (ℤ4,+) , respectively.

Then, we obtain an LDFS on the group ℤ2 × ℤ4 as follows:

(3.7)

�Π̃�i

((
gi
j

)
i∈I

⋅

(
gi
k

)−1
i∈I

)
= �Π̃�i

((
gi
j
⋅

(
gi
k

)−1)
i∈I

)

=
⋀
i∈I

��i

(
gi
j
⋅

(
gi
k

)−1)

≥
⋀
i∈I

(
��i

(
gi
j

)
∧��i

(
gi
k

))

=

(⋀
i∈I

��i

(
gi
j

))
∧

(⋀
i∈I

��i

(
gi
k

))

= �Π̃�i

((
gi
j

)
i∈I

)
∧�Π̃�i

((
gi
k

)
i∈I

)
,

(3.8)
�Π̃�i

(((
gi
j

)
i∈I

⋅

(
gi
k

)−1
i∈I

)

≤ �Π̃�i

((
gi
j

)
i∈I

)
∨�Π̃�i

((
gi
k

)
i∈I

)
,

(3.9)
�Π̃�i

((
gi
j

)
i∈I

⋅

(
gi
k

)−1
i∈I

)

≥ �Π̃�i

((
gi
j

)
i∈I

)
∧ �Π̃�i

((
gi
k

)
i∈I

)
,

(3.10)
�Π̃�i

((
gi
j

)
i∈I

⋅

(
gi
k

)−1
i∈I

)

≤ �Π̃�i

((
gi
j

)
i∈I

)
∨ �Π̃�i

((
gi
k

)
i∈I

)
.

�1 = {(0̄, ⟨0.7, 0.5⟩, ⟨0.3, 0.6⟩), (1̄, ⟨0.2, 0.6⟩, ⟨0.2, 0.7⟩)},

�2 =

�
( ̄̄0, ⟨0.4, 0.4⟩, ⟨0.2, 0.4⟩), ( ̄̄1, ⟨0.3, 0.8⟩, ⟨0.1, 0.5⟩),
( ̄̄2, ⟨0.3, 0.8⟩, ⟨0.1, 0.5⟩), ( ̄̄3, ⟨0.3, 0.8⟩, ⟨0.1, 0.5⟩)

�
.

�
i∈I={1,2}

�i =

⎧
⎪⎪⎨⎪⎪⎩

((0̄, ̄̄0), ⟨0.4, 0.5⟩, ⟨0.2, 0.6⟩), ((0̄, ̄̄1), ⟨0.3, 0.8⟩, ⟨0.1, 0.6⟩),
((0̄, ̄̄2), ⟨0.3, 0.8⟩, ⟨0.1, 0.6⟩), ((0̄, ̄̄3), ⟨0.3, 0.8⟩, ⟨0.1, 0.6⟩),
((1̄, ̄̄0), ⟨0.2, 0.6⟩, ⟨0.2, 0.7⟩), ((1̄, ̄̄1), ⟨0.2, 0.8⟩, ⟨0.1, 0.7⟩),
((1̄, ̄̄2), ⟨0.2, 0.8⟩, ⟨0.1, 0.7⟩), ((1̄, ̄̄3), ⟨0.2, 0.8⟩, ⟨0.1, 0.7⟩)

⎫
⎪⎪⎬⎪⎪⎭

.
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It is clear that the LDFS 
∏

i∈I={1,2} �i is an LDF-subgroup 
of ℤ2 × ℤ4.

Theorem 3.8 Let G1 and G2 be two classical groups and 
Ψgrp ∶ G1 → G2 be a group homomorphism. If �1 is an LDF-
subgroup of G1 , then the image Ψgrp(�1) of �1 is also an 
LDF-subgroup of G2.

Proof  Let  �1 ∈ LDFsG(G1) .  I f  Ψ−1
grp

(g2
1
) = �  and 

Ψ−1
grp

(g2
2
) = � for g2

1
, g2

2
∈ G2 ,  then it is clear that 

Ψgrp(�1) ∈ LDFsG(G2) .  Suppose that  there exist 
g1
1
, g1

2
∈ G1 such that Ψgrp(g

1
1
) = g2

1
 and Ψgrp(g

1
2
) = g2

2
 . 

To complete the proof, we must demonstrate that 
Ψgrp(�1)(g

2
1
⋅ (g2

2
)−1) ≥ Ψgrp(�1)(g

2
1
) ∧ Ψgrp(�1)(g

2
2
) . Since 

�1 ∈ LDFsG(G1) and Ψgrp is a group homomorphism (i.e., 
Ψgrp(g

1
1
⋅ (g1

2
)−1) = Ψgrp(g

1
1
) ⋅Ψgrp((g

1
2
)−1) = g2

1
⋅ (g2

2
)−1)

(3.11)

Ψgrp

�
��1

��
g2
1
⋅

�
g2
2

�−1�

=
�

g1
1
⋅(g12)

−1
∈Ψ−1

grp

�
g2
1
⋅(g22)

−1
�
��1

�
g1
1
⋅

�
g1
2

�−1�

≥
�

g1
1
∈Ψ−1

grp(g
2
1), g

1
2
∈Ψ−1

grp(g
2
2)

�
��1

�
g1
1

�
∧��1

�
g1
2

��

=

⎛⎜⎜⎝
�

g1
1
∈Ψ−1

grp(g
2
1)

��1

�
g1
1

�⎞⎟⎟⎠
∧

⎛⎜⎜⎝
�

g1
2
∈Ψ−1

grp(g
2
2)

��1

�
g1
2

�⎞⎟⎟⎠
= Ψgrp

�
��1

��
g2
1

�
∧ Ψgrp

�
��1

��
g2
2

�
,

(3.12)

Ψgrp

�
��1

��
g2
1
⋅

�
g2
2

�−1�

=
�

g1
1
⋅(g12)

−1
∈Ψ−1

grp

�
g2
1
⋅(g22)

−1
�
��1

�
g1
1
⋅

�
g1
2

�−1�

≤
�

g1
1
∈Ψ−1

grp(g
2
1), g

1
2
∈Ψ−1

grp(g
2
2)

�
��1

�
g1
1

�
∨��1

�
g1
2

��

=

⎛⎜⎜⎝
�

g1
1
∈Ψ−1

grp(g
2
1)

��1

�
g1
1

�⎞⎟⎟⎠
∨

⎛⎜⎜⎝
�

g1
2
∈Ψ−1

grp(g
2
2)

��1

�
g1
2

�⎞⎟⎟⎠
= Ψgrp

�
��1

��
g2
1

�
∨ Ψgrp

�
��1

��
g2
2

�
,

B y  E q s .  ( 3 . 1 1 ) – ( 3 . 1 4 ) ,  w e  o b t a i n  t h a t 
Ψgrp(�1)(g

2
1
⋅ (g2

2
)−1) ≥ Ψgrp(�1)(g

2
1
) ∧ Ψgrp(�1)(g

2
2
)  fo r 

all g2
1
, g2

2
∈ G2 . Therefore, Ψgrp(�1) is an LDF-subgroup of 

G2 .   ◻

Theorem 3.9 Let G1 and G2 be two classical groups and 
Ψgrp ∶ G1 → G2 be a group homomorphism. If �2 is an LDF-
subgroup of G2 , then the preimage Ψ−1

grp
(�2) of �2 is also an 

LDF-subgroup of G1.

P r o o f  L e t  �2 ∈ LDFsG(G2)  .  T o  c o n -
c lude  t he  p roo f ,  we  have  t o  p rove  t ha t 
Ψ−1

grp
(�2)(g

1
1
⋅ (g1

2
)−1) ≥ Ψ−1

grp
(�2)(g

1
1
) ∧ Ψgrp(�2)(g

1
2
)  fo r 

all g1
1
, g1

2
∈ G1 . Since �2 ∈ LDFsG(G2) and Ψgrp is a group 

homomorphism

(3.13)

Ψgrp

�
��1

��
g2
1
⋅

�
g2
2

�−1�

=
�

g1
1
⋅(g12)

−1
∈Ψ−1

grp

�
g2
1
⋅(g22)

−1
�
��1

�
g1
1
⋅

�
g1
2

�−1�

≥
�

g1
1
∈Ψ−1

grp(g
2
1), g

1
2
∈Ψ−1

grp(g
2
2)

�
��1

�
g1
1

�
∧ ��1

�
g1
2

��

=

⎛
⎜⎜⎝

�
g1
1
∈Ψ−1

grp(g
2
1)

��1

�
g1
1

�⎞⎟⎟⎠
∧

⎛
⎜⎜⎝

�
g1
2
∈Ψ−1

grp(g
2
2)

��1

�
g1
2

�⎞⎟⎟⎠
= Ψgrp

�
��1

��
g2
1

�
∧ Ψgrp

�
��1

��
g2
2

�
,

(3.14)

Ψgrp

�
��1

��
g2
1
⋅

�
g2
2

�−1�

=
�

g1
1
⋅(g12)

−1
∈Ψ−1

grp

�
g2
1
⋅(g22)

−1
�
��1

�
g1
1
⋅

�
g1
2

�−1�

≤
�

g1
1
∈Ψ−1

grp(g
2
1), g

1
2
∈Ψ−1

grp(g
2
2)

�
��1

�
g1
1

�
∨ ��1

�
g1
2

��

=

⎛⎜⎜⎝
�

g1
1
∈Ψ−1

grp(g
2
1)

��1

�
g1
1

�⎞⎟⎟⎠
∨

⎛⎜⎜⎝
�

g1
2
∈Ψ−1

grp(g
2
2)

��1

�
g1
2

�⎞⎟⎟⎠
= Ψgrp

�
��1

��
g2
1

�
∨ Ψgrp

�
��1

��
g2
2

�
.

(3.15)

�Ψ−1
grp(�2)

(
g1
1
⋅

(
g1
2

)−1)
= ��2

(
Ψ
(
g1
1
⋅

(
g1
2

)−1))

= ��2

(
Ψ
(
g1
1

)
⋅Ψ

((
g1
2

)−1))

≥ ��2

(
Ψ
(
g1
1

))
∧��2

(
Ψ
(
g1
2

))

= �Ψ−1
grp(�2)

(
g1
1

)
∧�Ψ−1

grp(�2)
(
g1
2

)
,
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Thus,  we have  Ψ−1
grp

(�
2
)(g1

1
⋅ (g1

2
)−1) ≥ Ψ−1

grp
(�

2
)(g1

1
)

∧Ψ−1
grp

(�
1
)(g1

2
) for all g1

1
, g1

2
∈ G1 . Hence, Ψ−1

grp
(�2) is an 

LDF-subgroup of G1 .   ◻

Example 3.10 Consider the groups (ℤ2,+) and (ℤ4,+) . Also, 
we take the function Ψgrp ∶ ℤ4 → ℤ2 , Ψgrp( ̄̄r) = r̄ . Then, it 
is obvious that Ψgrp is a group homomorphism. If it is taken

then �1 ∈ LDFsG(ℤ4) .  By Def ini t ion  2 .9 ,  we 
h a v e  Ψgrp(��1

)(0̄) = ��1
( ̄̄0) ∨��1

( ̄̄2) = 0.7  , 
Ψgrp(��1

)(1̄) = ��1
( ̄̄1) ∨��1

( ̄̄3) = 0.4 and others can be 
obtained similarly. Then, by Theorem 3.8, we can say that

is an LDF-subgroup of ℤ2 . Indeed, we obtain that 
�2 ∈ LDFsG(ℤ2) from Definition 3.1.

(3.16)

�Ψ−1
grp(�2)

(
g1
1
⋅

(
g1
2

)−1)
= ��2

(
Ψ
(
g1
1
⋅

(
g1
2

)−1))

= ��2

(
Ψ
(
g1
1

)
⋅Ψ

((
g1
2

)−1))

≤ ��2

(
Ψ
(
g1
1

))
∨��2

(
Ψ
(
g1
2

))

= �Ψ−1
grp(�2)

(
g1
1

)
∨�Ψ−1

grp(�2)
(
g1
2

)
,

(3.17)

�Ψ−1
grp(�2)

(
g1
1
⋅

(
g1
2

)−1)
= ��2

(
Ψ
(
g1
1
⋅

(
g1
2

)−1))

= ��2

(
Ψ
(
g1
1

)
⋅Ψ

((
g1
2

)−1))

≥ ��2

(
Ψ
(
g1
1

))
∧ ��2

(
Ψ
(
g1
2

))

= �Ψ−1
grp(�2)

(
g1
1

)
∧ �Ψ−1

grp(�2)
(
g1
2

)
,

(3.18)

�Ψ
−1
grp(�2)

(
g1
1
⋅

(
g1
2

)−1)
= ��2

(
Ψ
(
g1
1
⋅

(
g1
2

)−1))

= ��2

(
Ψ
(
g1
1

)
⋅Ψ

((
g1
2

)−1))

≤ ��2

(
Ψ
(
g1
1

))
∨ ��2

(
Ψ
(
g1
2

))

= �Ψ
−1
grp(�2)

(
g1
1

)
∨ �Ψ

−1
grp(�2)

(
g1
2

)
,

�1 =

�
( ̄̄0, ⟨0.7, 0.5⟩, ⟨0.3, 0.3⟩), ( ̄̄1, ⟨0.4, 0.7⟩, ⟨0.2, 0.8⟩),
( ̄̄2, ⟨0.4, 0.7⟩, ⟨0.2, 0.8⟩), ( ̄̄3, ⟨0.4, 0.7⟩, ⟨0.2, 0.8⟩)

�

�2 = {(0̄, ⟨0.7, 0.5⟩, ⟨0.3, 0.3⟩), (1̄, ⟨0.4, 0.7⟩, ⟨0.2, 0.8⟩)}

4  Linear Diophantine fuzzy normal 
subgroup

This section focuses on the description of linear Diophan-
tine fuzzy normal subgroup.

Definition 4.1 Let G be a classical group group and � be an 
LDF-subgroup of G . Then, � is called a linear Diophantine 
fuzzy normal subgroup (LDF-Nsubgroup) of G if 

(N1)  �(gj ⋅ gk ⋅ gj
−1) = �(gk) ∀gj, gk ∈ G.

Note that the collection of all LDF-Nsubgroups of G is 
denoted by LDFNsG(G).

Example 4.2  Cons ide r  t he  symmet r i c  g roup 
S
3
= {�

0
= e, �

1
= (123), �

2
= (132), �

3
= (23), �

4
= (13), �

5
= (12)} . 

We can create the following Cayley table for S3.

Then, the LDFS

is an LDF-subgroup of S3 . It is clear from (N1) of Defini-
tion 4.1 that � is an LDF-Nsubgroup of S3.

Proposition 4.3 Let � be an LDF-Nsubgroup of G . Then, the 
following are equivalent: 

(i)  �(gj ⋅ gk ⋅ gj
−1) = �(gk) ∀gj, gk ∈ G.

(ii)  �(gj ⋅ gk) = �(gk ⋅ gj) ∀gj, gk ∈ G.

� =

⎧⎪⎨⎪⎩

(�0, ⟨0.8, 0.6⟩, ⟨0.4, 0.6⟩), (�1, ⟨0.6, 0.7⟩, ⟨0.2, 0.7⟩),
(�2, ⟨0.6, 0.7⟩, ⟨0.2, 0.7⟩), (�3, ⟨0.4, 0.9⟩, ⟨0.1, 0.7⟩),
(�4, ⟨0.4, 0.9⟩, ⟨0.1, 0.7⟩), (�5, ⟨0.4, 0.9⟩, ⟨0.1, 0.7⟩)

⎫⎪⎬⎪⎭
.
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Proof 

(i)⇒ (ii): Assume that �(gj ⋅ gk ⋅ gj
−1) = �(gk) for all 

gj, gk ∈ G . Taking the advantage of arbitrary property 
gk , the equality in (ii) is shown easily.
( i i ) ⇒ ( i ) :  L e t  �(gj ⋅ gk) = �(gj ⋅ gk) 
f o r  a l l  gj, gk ∈ G  .  T h e n ,  w e  o b t a i n 
�(gj ⋅ gk ⋅ gj

−1) = �(gk ⋅ gj ⋅ gj
−1) = �(gk)  f o r  a l l 

gj, gk ∈ G . This is sufficient for proof.

  ◻

Lemma 4.4 Let G be a classical group group and � be an 
LDF-subgroup of G . If the group G is a commutative then � 
is an LDF-Nsubgroup of G.

Proof The proof is straightforward, hence omitted.   ◻

Example 4.5 We consider  the classical  group 
G = {1,−1, i,−i} with the following natural multiplication:

Since the group G is a commutative, each LDF-subgroup of 
G is also LDF-Nsubgroup.

Theorem 4.6 Let G be a classical group and �i ( i ∈ I ) be the 
LDF-Nsubgroups of G . Then, 

(i)  
⋂

i∈I �i is an LDF-Nsubgroup of G.
(ii)  

⋃
i∈I �i is an LDF-Nsubgroup of G.

Proof Assume that G is a classical group and �i (i ∈ I) are 
the LDF-Nsubgroups of G . 

(i)  We have to prove that 
⋂

i∈I
�i(gj ⋅ g

i
k
⋅ gj

−1)

=
⋂

i∈I �i(gk) for all gj, gk ∈ G . Since �i ∈ LDFNsG(G) 
for each i ∈ I , we obtain by the definition of intersection,  
�∩̃�i

(gj ⋅ gk ⋅ gj
−1) =

⋀
i∈I ��i

(gj ⋅ gk ⋅ gj
−1) =

⋀
i∈I

��i
(gk) = �∩̃�i

(gk) . On the other hand, the following  
equalities are obtained in a similar way.  
�∩̃�i

(gj ⋅ gk ⋅ gj
−1) = �∩̃�i

(gk)  ,  �∩̃�i(gj ⋅ gk ⋅ gj
−1) 

= �∩̃�i(gk) , �∩̃�i (gj ⋅ gk ⋅ gj
−1) = �∩̃�i(gk) . Hence, we 

say that 
⋂

i∈I �i is an LDF-Nsubgroup of G.
(ii)  It can be proved by using the similar techniques.

   ◻

Theorem 4.7 Let Gi be the classical groups and �i be the 
LDF-Nsubgroups of Gi for i ∈ I . Then, 

∏
i∈I �i is an LDF-

Nsubgroup of the group 
∏

i∈I Gi.

Proof By considering the normality condition (N1) in Defi-
nition 4.1, it can be proved similar to that of Theorem 3.6.  
 ◻

Theorem 4.8 Let G1 and G2 be two classical groups and 
Ψgrp ∶ G1 → G2 be a surjective homomorphism of groups. If 
�1 is an LDF-Nsubgroup of G1 , then the image Ψgrp(�1) of 
�1 is also an LDF-Nsubgroup of G2.

Proof From Theorem  4.8,  Ψgrp(�1) ∈ LDFsG(G2) 
if �1 ∈ LDFsG(G1) . Hence, it is sufficient to dem-
onstrate the normality property of Ψgrp(�1) (i.e., 
Ψgrp(�1)(g

2
1
⋅ g2

2
) = Ψgrp(�1)(g

2
2
⋅ g2

1
)  ) .  A s s u m e 

that there exist g2
1
, g2

2
∈ G2 such that Ψ−1

grp
(g2

1
) = g1

1
 , 

Ψ−1
grp

(g2
2
) = g1

2
 and  so  Ψ−1

grp
(g2

1
⋅ g2

2
) = g1

1
⋅ g1

2
 .  S ince 

�1 ∈ LDFNsG(G1) and Ψgrp is a group homomorphism (i.e., 
Ψgrp(g

1
1
⋅ (g1

2
)−1) = Ψgrp(g

1
1
) ⋅Ψgrp((g

1
2
)−1) = g2

1
⋅ (g2

2
)−1)

T h u s ,  t h e  d e s i r e d  e q u a l i t y 
Ψgrp(�1)(g

2
1
⋅ g2

2
) = Ψgrp(�1)(g

2
2
⋅ g2

1
) is satisfied, and so 

Ψgrp(�1) ∈ LDFNsG(G2) .   ◻

Theorem 4.9 Let G1 and G2 be two classical groups and 
Ψgrp ∶ G1 → G2 be a group homomorphism. If �2 is an LDF-
Nsubgroup of G2 , then the preimage Ψ−1

grp
(�2) of �2 is also 

an LDF-Nsubgroup of G1.

(4.1)

Ψgrp(��1
)
(
g2
1
⋅ g2

2

)
=

⋁
g1
1
⋅g1

2
∈Ψ−1

grp
(g2

1
⋅g2

2
)

��1

(
g1
1
⋅ g1

2

)

=
⋁

g1
2
⋅g1

1
∈Ψ−1

grp
(g2

2
⋅g2

1
)

��1

(
g1
2
⋅ g1

1

)
= ��1

(
g1
2
⋅ g1

1

)
,

(4.2)

Ψgrp(��1
)
(
g2
1
⋅ g2

2

)
=

⋀
g1
1
⋅g1

2
∈Ψ−1

grp
(g2

1
⋅g2

2
)

��1

(
g1
1
⋅ g1

2

)

=
⋀

g1
2
⋅g1

1
∈Ψ−1

grp
(g2

2
⋅g2

1
)

��1

(
g1
2
⋅ g1

1

)
= ��1

(
g1
2
⋅ g1

1

)
,

(4.3)

Ψgrp(�
�1 )

(
g2
1
⋅ g2

2

)
=

⋁
g1
1
⋅g1

2
∈Ψ−1

grp
(g2

1
⋅g2

2
)

��1

(
g1
1
⋅ g1

2

)

=
⋁

g1
2
⋅g1

1
∈Ψ−1

grp
(g2

2
⋅g2

1
)

��1

(
g1
2
⋅ g1

1

)
= ��1

(
g1
2
⋅ g1

1

)
,

(4.4)

Ψgrp(�
�1 )

(
g2
1
⋅ g2

2

)
=

⋀
g1
1
⋅g1

2
∈Ψ−1

grp
(g2

1
⋅g2

2
)

��1

(
g1
1
⋅ g1

2

)

=
⋀

g1
2
⋅g1

1
∈Ψ−1

grp
(g2

2
⋅g2

1
)

��1

(
g1
2
⋅ g1

1

)
= ��1

(
g1
2
⋅ g1

1

)
.
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Proof From Theorem  3.9, Ψ−1
grp

(�2) ∈ LDFsG(G1) if 
�2 ∈ LDFsG(G2) . To complete the proof, it is enough to 
show that Ψ−1

grp
(�2)(g

1
1
⋅ g1

2
) = Ψ−1

grp
(�2)(g

1
2
⋅ g1

1
) . By the nor-

mality of �2 and the homomorphism of Ψgrp , we obtain

f o r  e a c h  g1
1
, g1

2
∈ G1  .  S o ,  w e  h a v e 

Ψ−1
grp

(�2) ∈ LDFNsG(G1) .   ◻

Example 4.10 We consider the LDFSs �1 and �2 on the 
groups (ℤ4,+) and (ℤ2,+) , and the group homomor-
phism Ψgrp ∶ ℤ4 → ℤ2 given in Example 3.10. We know 
that �1 ∈ LDFsG(ℤ4) and �2 ∈ LDFsG(ℤ2) . Since ℤ4 
is a commutative (abelian) group, �1 ∈ LDFNsG(ℤ4) 
from Lemma 4.4. By Theorem 4.8, we can say that �2 is 
an LDF-Nsubgroup of ℤ2 . Indeed, this is obvious since 
�2 ∈ LDFNsG(ℤ2) and ℤ2 is a commutative (abelian) group.

5  Linear Diophantine fuzzy subring

In this section, the notion of linear Diophantine fuzzy sub-
ring is introduced and the related propositions are derived.

Definition 5.1 Let (R,+, ⋅) be a classical ring and � be an 
LDFS on R . Then, � is said to be a linear Diophantine fuzzy 
subring (LDF-subring) of R if and only if the following 
properties are satisfied: 

(R1)  �(rj + rk) ≥ �(rj) ∧�(rk)∀rj, rk ∈ R.
(R2)  �(−rj) = �(rj)∀rj ∈ R.
(R3)  �(rj ⋅ rk) ≥ �(rj) ∧�(rk)∀rj, rk ∈ R.

Note that the collection of all LDF-subrings of R is 
denoted by LDFsR(R).

Example 5.2 Let (R,+, ⋅) be a classical r ing and 
C = {c ∈ R ∶ rc = cr for all r ∈ R} . The set C denotes 
center of R . Define an LDFS � on R as follows:

This LDFS � is an LDF-subring of R.

(4.5)

Ψ−1
grp

(
�2

)(
g1
1
⋅ g1

2

)
=�2

(
Ψ
(
g1
1
⋅ g1

2

))

=�2

(
Ψ
(
g1
1

)
⋅Ψ

(
g1
1

))

=�2

(
Ψ
(
g1
2

)
⋅Ψ

(
g1
1

))

=�2

(
Ψ
(
g1
2
⋅ g1

1

))

=Ψ−1
grp

(
�2

)(
g1
2
⋅ g1

1

)

�(rj) =

�
(⟨0.9, 0.5⟩, ⟨0.7, 0.2⟩), if rj ∈ C

(⟨0.4, 0.8⟩, ⟨0.5, 0.4⟩), otherwise

Proposition 5.3 Let (R,+, ⋅) be a classical ring and � be 
an LDF-subring of R . Then, �(0R) ≥ �(rj) for all rj ∈ R , 
where 0R is the unit element of R related to the binary oper-
ation +.

Proof Let (R,+, ⋅) be a classical ring. Obviously, (R,+) is a 
group. Also, � is an LDF-subgroup of (R,+) since � is an 
LDF-subring of R . Hence, the proof is clear from Proposi-
tion 3.3.   ◻

Theorem 5.4 Let R be a classical ring and � be an LDFS on 
R . Then, � is an LDF-subring of R iff the following axioms 
are provided. 

(i)  �(rj − rk) ≥ �(rj) ∧�(rk)∀rj, rk ∈ R.
(ii)  �(rj ⋅ rk) ≥ �(rj) ∧�(rk)∀rj, rk ∈ R.

Proof If � is an LDF-subring of R , it has properties 
(R1), (R2) and (R3) in Definition 5.1. Then, we obtain 
�(rj − rk) ≥ �(rj) ∧�(−rk) = �(rj) ∧�(rk) from (R1) and 
(R2), and also �(rj ⋅ rk) ≥ �(rj) ∧�(rk) from (R3).

Conversely, assume that the axioms (i) and (ii) are satis-
fied. Especially, if we take rj = 0R for the axiom (i), then 
we obtain �(−rk) ≥ �(rk) , and so �(−(−rk)) ≥ �(−rk) . 
Consequently, we have �(−rk) = �(rk) . Thus, we say that 
the axiom (i) corresponds to the properties (R1) and (R2) in 
Definition 5.1. Evidently, the axiom (ii) corresponds to the 
property (R3) in Definition 5.1. Hence, the proof is com-
pleted.   ◻

Theorem 5.5 Let R be a classical ring and �i ( i ∈ I ) be the 
LDFN-subrings of R . Then, 

(i)  
⋂

i∈I �i is an LDFN-subring of R.
(ii)  

⋃
i∈I �i is an LDFN-subring of R.

Proof Let �i (i ∈ I) be the LDF-subrings of the classical 
ring R . 

(i)  We know that (R,+) is a group since (R,+, ⋅) is 
a ring. Then, �i (i ∈ I) are the LDF-subgroups 
of the group (R,+) . From Theorem  3.5, we have ⋂

i∈I �i(rj − rk) ≥
⋂

i∈I �i(rj) ∧
⋂

i∈I �i(rk) for all 
rj, rk ∈ R . To terminate the proof, we must show that ⋂

i∈I �i(rj ⋅ rk) ≥
⋂

i∈I �i(rj) ∧
⋂

i∈I �i(rk) for  al l 
rj, rk ∈ R.

  Since �i for each i ∈ I is the LDF-subring of R , 
we obtain 
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 Considering Definition 2.4 (2) and (5), by Eqs. (5.1)–(5.4), 
we have 

⋂
i∈I �i(rj ⋅ rk) ≥

⋂
i∈I �i(rj) ∧

⋂
i∈I �i(rk) for all 

rj, rk ∈ R . This completes the proof of (i).

(ii)  It can be proved similar to the proof of (i).

   ◻

Theorem 5.6 Let Ri be the classical rings and �i be the 
LDFN-subrings of Ri for i ∈ I . Then, 

∏
i∈I �i is an LDFN-

subring of the ring 
∏

i∈I Ri.

Proof By considering the properties in Definition 5.1, the 
proof can be verified similar to that of Theorem 6.6.   ◻

Theorem 5.7 Let R1 and R2 be two classical rings and 
Ψrng ∶ R1 → R2 be a ring homomorphism. If �1 is an LDF-
subring of R1 , then the image Ψrng(�1) of �1 is also an 
LDF-subring of R2.

Proof By the computations similar to the proof of Theo-
rem 3.8, it can be demonstrated by considering Defini-
tion 5.1.   ◻

Theorem 5.8 Let R1 and R2 be two classical rings and 
Ψrng ∶ R1 → R2 be a ring homomorphism. If �2 is an 

(5.1)

�∩̃�i
(rj ⋅ rk) =

⋀
i∈I

��i
(rj ⋅ rk) ≥

(⋀
i∈I

��i
(rj)

)

∧

(⋀
i∈I

��i
(rk)

)
= �∩̃�i

(rj) ∧�∩̃�i
(rk),

(5.2)

�∩̃�i
(rj ⋅ rk) =

⋁
i∈I

��i
(rj ⋅ rk) ≤

(⋁
i∈I

��i
(rj)

)

∨

(⋁
i∈I

��i
(rk)

)
= �∩̃�i

(rj) ∨�∩̃�i
(rk),

(5.3)

�∩̃�i (rj ⋅ rk) =
⋀
i∈I

��i (rj ⋅ rk) ≥

(⋀
i∈I

��i (rj)

)

∧

(⋀
i∈I

��i (rk)

)
= �∩̃�i (rj) ∧ �∩̃�i(rk),

(5.4)

�∩̃�i(rj ⋅ rk) =
⋁
i∈I

��i (rj ⋅ rk) ≤

(⋁
i∈I

��i (rj)

)

∨

(⋁
i∈I

��i(rk)

)
= �∩̃�i(rj) ∨ �∩̃�i(rk).

LDF-subring of R2 , then the preimage Ψ−1
rng

(�2) of �2 is 
also an LDF-subring of R1.

Proof By the computations similar to the proof of Theo-
rem 3.9, it can be demonstrated by considering Defini-
tion 5.1.   ◻

6  Linear Diophantine fuzzy ideal

In this section, the linear Diophantine fuzzy ideal is 
described and it is supported by some illustrative examples.

Definition 6.1 Let (R,+, ⋅) be a classical ring and � be an 
LDFS on R . Then,

(1) � is called a linear Diophantine fuzzy left ideal 
(LDF-leftideal) of R if and only if the following prop-
erties are satisfied:

(LI1) �(rj − rk) ≥ �(rj) ∧�(rk)∀rj, rk ∈ R.
(LI2) �(rj ⋅ rk) ≥ �(rk)∀rj, rk ∈ R.

(2) � is called a linear Diophantine fuzzy right ideal 
(LDF-rightideal) of R if and only if the following prop-
erties are satisfied:

(RI1) �(rj − rk) ≥ �(rj) ∧�(rk)∀rj, rk ∈ R.
(RI2) �(rj ⋅ rk) ≥ �(rj)∀rj, rk ∈ R.

Definition 6.2 Let (R,+, ⋅) be a classical ring and � be an 
LDFS on R . Then, � is called a linear Diophantine fuzzy 
ideal (LDF-ideal) of R if and only if the following proper-
ties are satisfied: 

(I1)  �(rj − rk) ≥ �(rj) ∧�(rk)∀rj, rk ∈ R.
(I2)  �(rj ⋅ rk) ≥ �(rj) ∨�(rk)∀rj, rk ∈ R.

Note that the collection of all LDF-ideals of R is 
denoted by LDFI(R).

Remark Each LDF-ideal of the classical ring R is an LDF-
subring of R , but this argument is conversely not true in 
general. For example, the LDFS � on R given in Exam-
ple 5.2 is an LDF-subring of R but may not be an LDF-ideal 
of R.

Proposition 6.3 Let (R,+, ⋅) be a classical ring and � be 
an LDF-ideal of R . 
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(i)  �(0R) ≥ �(rj) for all rj ∈ R , where 0R is the unit ele-
ment of R related to the binary operation +.

(ii)  If (R,+, ⋅) is a classical ring with identity, then 
�(rj) ≥ �(1R) for all rj ∈ R , where 1R is the identity 
of R.

Proof (i)  It is similar to the proof of Proposition 5.3, there-
fore omitted.

(ii)  By considering Definition 6.1 (2), we obtain 
�(rj) = �(1R ⋅ rj) ≥ �(1R) for all rj ∈ R , So 
the proof is completed.

   ◻

Example 6.4 We consider R = {0, p, q, r} with the following 
Cayley tables:

It can be easily verified that R is a ring with identity. Also, 
we consider the following LDFS � on the ring R.

Then, we say that � is an LDF-ideal of R and it provides the 
axioms in Proposition 6.3.

Theorem 6.5 Let R be a classical ring and �i ( i ∈ I ) be the 
LDFN-ideals of R . Then, 

(i)  
⋂

i∈I �i is an LDFN-ideal of R.
(ii)  

⋃
i∈I �i is an LDFN-ideal of R.

Proof By considering the conditions in Definition 6.2, it can 
be demonstrated similar to proof of Theorem 5.5.   ◻

Theorem 6.6 Let Ri be the classical rings and �i be the 
LDFN-ideals of Ri for i ∈ I . Then, 

∏
i∈I �i is an LDFN-

ideal of the ring 
∏

i∈I Ri.

Proof Assume that �i are the LDF-ideals of Ri for i ∈ I . To 
complete the proof, we have to prove that for all 
(gi

j
)i∈I , (g

i
k
)i∈I ∈

∏
i∈I Gi,

� =

�
(0, ⟨0.6, 0.7⟩, ⟨0.4, 0.5⟩), (p, ⟨0.3, 0.9⟩, ⟨0.1, 0.7⟩),
(q, ⟨0.3, 0.9⟩, ⟨0.1, 0.7⟩), (r, ⟨0.3, 0.9⟩, ⟨0.1, 0.7⟩)

�

By Definition 2.6, we have

for all (ri
j
)i∈I , (r

i
k
)i∈I ∈

∏
i∈I

Ri . Since �i is the LDF-ideal of 

Ri for each i ∈ I , we obtain

According to the similar discussion, the following inequali-
ties are also true.

∏
i∈I

�i

(
(ri

j
)i∈I − (ri

k
)i∈I

)
≥

∏
i∈I

�i((r
i
j
)i∈I) ∧

∏
i∈I

�i

(
(ri

k
)i∈I

)
,

∏
i∈I

�i

(
(ri

j
)i∈I ⋅ (r

i
k
)i∈I

)
≥

∏
i∈I

�i((r
i
j
)i∈I) ∨

∏
i∈I

�i((r
i
k
)i∈I).

(6.1)

∏
i∈I

�i

((
ri
j

)
i∈I

−
(
ri
k

)
i∈I

)
=

(⟨
�Π̃�i

((
ri
j

)
i∈I

−
(
ri
k

)
i∈I

)
, �Π̃�i

((
ri
j

)
i∈I

−
(
ri
k

)
i∈I

)⟩
,

⟨
�Π̃�i

((
ri
j

)
i∈I

−
(
ri
k

)
i∈I

)
, �Π̃�i

((
ri
j

)
i∈I

−
(
ri
k

)
i∈I

)⟩)

(6.2)

∏
i∈I

�i

((
ri
j

)
i∈I

⋅

(
ri
k

)
i∈I

)
=

(⟨
�Π̃�i

((
ri
j

)
i∈I

⋅

(
ri
k

)
i∈I

)
, �Π̃�i

((
ri
j

)
i∈I

⋅

(
ri
k

)
i∈I

)⟩
,

⟨
�Π̃�i

((
ri
j

)
i∈I

⋅

(
ri
k

)
i∈I

)
, �Π̃�i

((
ri
j

)
i∈I

⋅

(
ri
k

)
i∈I

)⟩)

(6.3)

�Π̃�i

((
ri
j

)
i∈I

−
(
ri
k

)
i∈I

)
= �Π̃�i

((
ri
j
− ri

k

)
i∈I

)

=
⋀
i∈I

��i

(
ri
j
− ri

k

)
≥
⋀
i∈I

(
��i

(
ri
j

)
∧��i

(
ri
k

))

=

(⋀
i∈I

��i

(
ri
j

))
∧

(⋀
i∈I

��i

(
ri
k

))

= �Π̃�i

((
ri
j

)
i∈I

)
∧�Π̃�i

((
ri
k

)
i∈I

)
,

(6.4)
�Π̃�i

(((
ri
j

)
i∈I

−
(
ri
k

)
i∈I

)

≤ �Π̃�i

((
ri
j

)
i∈I

)
∨�Π̃�i

((
ri
k

)
i∈I

)
,

(6.5)
�Π̃�i

((
ri
j

)
i∈I

−
(
ri
k

)
i∈I

)

≥ �Π̃�i

((
ri
j

)
i∈I

)
∧ �Π̃�i

((
ri
k

)
i∈I

)
,
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T h u s ,  w e  o b t a i n  t h a t ∏
i∈I �i((r

i
j
)i∈I − (ri

k
)i∈I) ≥

∏
i∈I �i((r

i
j
)i∈I) ∧

∏
i∈I �i((r

i
k
)i∈I) for  

all (gi
j
)i∈I , (g

i
k
)i∈I ∈

∏
i∈I Gi . By using similar techniques, it 

i s  e a s i l y  s h o w n  t h a t ∏
i∈I �i((r

i
j
)i∈I ⋅ (r

i
k
)i∈I) ≥

∏
i∈I �i((r

i
j
)i∈I) ∨

∏
i∈I �i((r

i
k
)i∈I)  

for all (gi
j
)i∈I , (g

i
k
)i∈I ∈

∏
i∈I Gi . Hence 

∏
i∈I �i is an LDF-

ideal of the ring 
∏

i∈I Gi .   ◻

Theorem 6.7 Let R1 and R2 be two classical rings and 
Ψrng ∶ R1 → R2 be a ring homomorphism. If �1 is an LDF-
ideal of R1 , then the image Ψrng(�1) of �1 is also an LDF-
ideal of R2.

Proof With the discussions similar to the proof of Theo-
rem 3.8, it can be verified by considering Definition 6.2.  
 ◻

Theorem 6.8 Let R1 and R2 be two classical rings and 
Ψrng ∶ R1 → R2 be a ring homomorphism. If �2 is an LDF-
ideal of R2 , then the preimage Ψ−1

rng
(�2) of �2 is also an 

LDF-ideal of R1.

Proof With the discussions similar to the proof of Theo-
rem 3.9, it can be verified by considering Definition 6.2.  
 ◻

7  Linear Diophantine fuzzy subfield

This section is devoted to the linear Diophantine fuzzy sub-
field and its theoretical results.

Definition 7.1 Let (F,+, ⋅) be a classical field and � be an 
LDFS on F  . Then, � is said to be a linear Diophantine fuzzy 
subfield (LDF-subfield) of F  if and only if the following 
properties are satisfied: 

(F1)  �(fj + fk) ≥ �(fj) ∧�(fk)∀fj, fk ∈ F .
(F2)  �(−fj) = �(fj)∀fj ∈ F .
(F3)  �(fj ⋅ fk) ≥ �(fj) ∧�(fk)∀fj, fk ∈ F .
(F4)  �(fj

−1) = �(fj)∀fj(≠ 0F) ∈ F  .

Note that the collection of all LDF-subfields of R is 
denoted by LDFsF(F).

(6.6)
�Π̃�i

((
ri
j

)
i∈I

−
(
ri
k

)
i∈I

)

≤ �Π̃�i

((
ri
j

)
i∈I

)
∨ �Π̃�i

((
ri
k

)
i∈I

)
.

Example 7.2 Let us consider the field F = ℚ(
√
2)  , where ℚ 

denotes the set of rational numbers. We define an LDFS � 
on F  as follows:

Then, the LDFS � is an LDF-subfield of F .

Proposition 7.3 Let (F,+, ⋅) be a classical field and � be an 
LDF-subfield of F  . �(0F) ≥ �(fj) for all rj ∈ F  , where 0F  
is the unit element of F  related to the binary operation +.

Proof It can be shown similar to the proof of Proposi-
tion 5.3.   ◻

Theorem 7.4 Let F  be a classical field and � be an LDFS 
on F  . Then, � is an LDF-subfield of F  iff the following 
axioms are provided. 

(i)  �(fj − fk) ≥ �(fj) ∧�(fk)∀fj, fk ∈ F .
(ii)  �(fj ⋅ f

−1
k

) ≥ �(fj) ∧�(fk)∀fj, fk(≠ 0F) ∈ F .

Proof It can be seen by discussing similar to the proof of 
Theorem 5.4.   ◻

Theorem 7.5 Let R be a classical field and �i ( i ∈ I ) be the 
LDFN-subfields of F  . Then, 

(i)  
⋂

i∈I �i is an LDFN-subfield of R.
(ii)  

⋃
i∈I �i is an LDFN-subfield of R.

Proof Let’s prove (ii), the other assertion can similarly be 
proved. Let �i (i ∈ I) be the LDF-subfields of the classical 
field F  . We have to prove that

and

Since �i (i ∈ I) are the LDF-subfields of F  , we obtain

�(fj) =

�
(⟨1, 0⟩, ⟨1, 0⟩), if fj ∈ ℚ

(⟨0, 1⟩, ⟨0, 1⟩), otherwise

⋃
i∈I

�i(fj − fk) ≥
⋃
i∈I

�i(fj) ∧
⋃
i∈I

�i(fk) ∀fj, fk ∈ F

⋃
i∈I

�i

(
fj ⋅ fk

−1
)

≥
⋃
i∈I

�i(fj) ∧
⋃
i∈I

�i(fk) ∀fj, (0F ≠)fk ∈ F.
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and

By the similar observation,

are satisfied. Therefore, the union of the LDF-subfields �i 
( i ∈ I ) is also an LDF-subfield.   ◻

Note 2 Let F1 and F2 be two fields. F1 × F2 may not be 
a field. For instance, ℤp (p is a prime) is a field but ℤp × ℤp 
is not a field.

Theorem 7.6 Let F1 and F2 be two classical fields and 
Ψfld ∶ F1 → F2 be a field homomorphism. If �1 is an LDF-
subfield of F1 , then the image Ψfld(�1) of �1 is also an LDF-
subfield of R2.

Proof By the calculations similar to the proof of Theo-
rem 3.8, it can be easily obtained by considering Defini-
tion 7.1.   ◻

Theorem 7.7 Let F1 and F2 be two classical fields and 
Ψfld ∶ F1 → F2 be a field homomorphism. If �2 is an LDF-
ideal of F2 , then the preimage Ψ−1

fld
(�2) of �2 is also an 

LDF-ideal of F1.

(7.1)

�∪̃�i
(fj − fk) =

⋁
i∈I

��i
(fj − fk)

≥
⋁
i∈I

(��i
(fj) ∧��i

(fk)

=

(⋁
i∈I

��i
(fj)

)
∧

(⋁
i∈I

��i
(fk)

)

=�∪̃�i
(fj) ∧�∪̃�i

(fk),

(7.2)

�∪̃�i

(
fj ⋅ fk

−1
)
=
⋁
i∈I

��i

(
fj ⋅ fk

−1
)

≥
⋁
i∈I

(��i
(fj) ∧��i

(fk)

=

(⋁
i∈I

��i
(fj)

)
∧

(⋁
i∈I

��i
(fk)

)

=�∪̃�i
(fj) ∧�∪̃�i

(fk).

(7.3)
�∪̃�i

(fj − fk) ≤ �∪̃�i
(fj) ∨�∪̃�i

(fk),

�∪̃�i
(fj ⋅ fk

−1) ≤ �∪̃�i
(fj) ∨�∪̃�i

(fk),

(7.4)
�∪̃�i (fj − fk) ≥ �∪̃�i(fj) ∧ �∪̃�i(fk),

�∪̃�i (fj ⋅ fk
−1) ≥ �∪̃�i (fj) ∧ �∪̃�i(fk),

(7.5)
�∪̃�i(fj − fk) ≤ �∪̃�i (fj) ∨ � ∪̃�i(fk),

�∪̃�i(fj ⋅ fk
−1) ≤ �∪̃�i(fj) ∨ � ∪̃�i (fk)

Proof By the calculations similar to the proof of Theo-
rem 3.9, it can be easily obtained by considering Defini-
tion 7.1.   ◻

8  An LDF‑based approach to coding theory

In this section, we introduce the concept of linear Diophan-
tine fuzzy code and thus propose a different approach to 
coding theory. Also, we investigate relationships between 
the linear Diophantine fuzzy codes and LDF-algebraic struc-
tures (such as LDF-subring, LDF-ideal).

Now let’s briefly talk about the concepts of code, binary 
code, codeword. For further information, we refer to Hill 
(1986); Pless (1989).

A q-ary code ℭ is a given set of sequences of symbols 
where each symbol is selected from a set �q (is often taken 
to be the set ℤq ) of q distinct elements. The set �q is said to 
be the alphabet. If q is a prime power (i.e. q = p� for some 
prime number p and positive integer � ) then we take the 
alphabet �q to be the finite field of order q. If q = 2 then the 
code is described as a binary code. That is, a binary code is 
a set of sequences of 0’s and 1’s.

� n
q

 will denote the set of all ordered n-tuples 
� = a1a2 … an where ai ∈ � n

q
 . The elements of � n

q
 are said 

to be vectors or words, and n is termed to be the length of 
ai . Also, any element of ℭ ⊆ � n

q
 is said to be a codeword. 

Observe that the set � n
q

 has qn elements. For example, 
�
3
2
= {000, 001, 010, 011, 100, 101, 110, 111} is a set of all 

ordered 3-tuples of 0’s and 1’s, and it has qn = 23 elements. 
Also, ℭ = {000, 111} is a binary code of � 3

2
 , and �1 = 000 

and �2 = 111 are two codewords in ℭ.
A vector (a1, a2,… , an) will usually be written simply as 

a1a2 … an . We consider the ambient space � n
2
 of all n-tuples 

of 0’s and 1’s with addition (+) and multiplication (⋅) of 
vectors componentwise mod 2. That is, if two vectors are 
�j = (a

j

1
, a

j

2
,… , a

j
n) and �k = (ak

1
, ak

2
,… , ak

n
) then

and

Then, we say that (� n
2
,+, .) is a ring with identity, where 

0� n
2
= (0, 0,… , 0

⏟⏞⏞⏟⏞⏞⏟
n

) = 00… 0
⏟⏟⏟

n

 is the (additive) unit of � n
2
 and 

1� n
2
= (1, 1,… , 1

⏟⏞⏞⏟⏞⏞⏟
n

) = 11… 1
⏟⏟⏟

n

 is the (multiplicative) identity 

of � n
2
 . For example, if two codewords of binary code ℭ of � 5

2
 

(8.1)�j + �k =
(
a
j

1
+ ak

1
, a

j

2
+ ak

2
,… , aj

n
+ ak

n

)
(mod2)

(8.2)�j ⋅ �k =
(
a
j

1
⋅ ak

1
, a

j

2
⋅ ak

2
,… , aj

n
⋅ ak

n

)
(mod2).
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are �1 = 10110 and �2 = 11010 then �1 + �2 = 01100 and 
�1 ⋅ �2 = 10010.

Note 3 From now on, we assume that the alphabet �q is 
�2 , and so we use the binary code (i.e., 2-ary code).

Definition 8.1 Let �j = a
j

1
a
j

2
… a

j
n be a word (vector) of � n

2
 . 

The weight of word �j is the sum of its elements (entries). It 
is denoted by w(�j) =

∑n

i=1
a
j

i
 . If the word of � n

2
 is 1� n

2
 , then 

w(1� n
2
) = n and this is called the maximum weight, denoted 

by wmax.

Note 4 For q-ary codes, the concept of weight of a 
vector is given as “it is number of its elements that non-
zero entries” in literature (see (Özkan and Özkan 2002) 
for details). For example, if we consider the codeword 
�j = 1022001 for � 7

3
 then we obtain w(�j) = 4 . Since 2-ary 

codes consist of 0 and 1, Definition 8.1 is the same as this 
concept.

Definition 8.2 Let �j = a
j

1
a
j

2
… a

j
n be a word (vector) of � n

2
 . 

If � j

1
,� j

2
,… ,� j

n are described to be the positions of entries 
( i .e . ,  a

j

1
, a

j

2
,… , a

j
n  resp.)  in  �j  then the value 

a
j

1
� j

1
+ a

j

2
� j

2
+⋯ + a

j
n�

j
n are called the relative weight of 

word �j . It is denoted by �(�j) =
∑n

i=1
a
j

i
� j

i
 . If the word of 

� n
2
 is �j = 1� n

2
 , then �(�j) =

n(n+1)

2
 and this is said to be the 

maximum relative weight, denoted by �max.

The concept of relative weight can be generalized as 
follows.

Definition 8.3 Let �j = a
j

1
a
j

2
… a

j
n be a word (vector) of � n

2
 . 

If � j

1
,� j

2
,… ,� j

n are described to be the positions of entries 
( i .e . ,  a

j

1
, a

j

2
,… , a

j
n  resp.)  in  �j  then the value 

(a
j

1
)t(� j

1
)t + (a

j

2
)t(� j

2
)t +⋯ + (a

j
n)

t(� j
n)

t are said to be the 
t-rung relative weight of word (vector) �j , where t is a posi-
t i v e  i n t e g e r .  I t  i s  d e n o t e d  b y 
�(t)(�j) =

∑n

i=1
(a

j

i
)t(� j

i
)t =

∑n

i=1
a
j

i
(� j

i
)t . If the word of � n

2
 

is �j = 1� n
2
 , then �(t)(�j) is called the maximum t-rung rela-

tive weight, denoted by �(t)
max

 . For example, �(3)
max

= (
n(n+1)

2
)2 

for t = 3.

In the year 1990, Šešelja and Tepavčević (1990) study on 
construction of codes by P-fuzzy sets, in which (P,≤) is a 
partially ordered set. They described the following compo-
nentwise defined order on the set of codewords belonging 
to a binary code.

Definition 8.4 (Šešelja and Tepavčević 1990) Let 
�j = c

j

1
c
j

2
… c

j
n and �k = ck

1
ck
2
… ck

n
 be two any codewords 

of the binary code ℭ of � n
2
 . If cj

i
≥ ck

i
 for all i = 1, 2,… , n , 

then two codewords �j and �k belonging to binary code ℭ can 
be ordered and this order is �j ≤ �k . Here, ≤ is the ordinary 
ordering relation on the lattice ({0, 1},≤) ∶ 0 < 1 . It is obvi-
ous that �j = �k iff cj

i
= ck

i
 for all i = 1, 2,… , n.

Proposition 8.5 Let ℭ be a binary code of � n
2
 . 

(i)  �j < 0� n
2
 for all 𝔠j(≠ 0� n

2
) ∈ ℭ.

(ii)  1� n
2
< �j for all 𝔠j(≠ 1� n

2
) ∈ ℭ.

Proof Let ℭ be a binary code of � n
2
 . 

(i)  If 𝔠j(≠ 0� n
2
) ∈ ℭ , we can say that cj

i
= 1 > 0 for at least 

one i ∈ {1, 2,… , n} .  So, we have �j < 0� n
2
 by 

Definition 8.4.
(ii)  It can be proved similar to (i), and therefore omitted.

   ◻

E xa m p l e  8 . 6  We  c o n s i d e r  t h e  b i n a r y  c o d e 
ℭ = {000, 001, 011, 111} o f  �

3
2

 .  Then ,  we  have 
111 < 011 < 001 < 000.

Proposition 8.7 Let �j and �k be two codewords of the binary 
code ℭ of � n

2
 . If �j ≤ �k then �j ⋅ �k = �k.

Proof Assume that �j = (c
j

1
, c

j

2
,… , c

j
n) and �k = (ck

1
, ck

2
,… , ck

n
) 

is two codewords of the code ℭ of � n
2
 , and �j ≤ �k . From 

Definition 8.4, we write cj
i
≥ ck

i
 for all i = 1, 2,… , n . Since 

c
j

i
, ck

i
∈ {0, 1} and cj

i
≥ ck

i
 , we calculate (by Eq. (8.2))

  ◻

Now, we introduce the concept of linear Diophantine 
fuzzy code, which offers a different perspective on coding 
theory.

Definition 8.8 Let ℭ be a code of � n
2
 and � be an LDFS on 

� n
2
 . If the following properties are satisfied: 

(C1)  �(�j ⋅ �k) ≤ �(�j) ∧�(�k)∀�j, �k ∈ � n
2
.

(C2)  �(�j) ≠ �(�k) if �j ≠ �k.

(8.3)
�j ⋅ �k =

(
c
j

1
⋅ ck

1
, c

j

2
⋅ ck

2
,… , cj

n
⋅ ck

n

)

=
(
ck
1
, ck

2
,… , ck

n

)
= �k.
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Fig. 1  Binary code-character for � 8

2
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 then

is called a linear Diophantine fuzzy code (LDF-code) cor-
responding to the code ℭ of � n

2
.

Example 8.9 We consider � 8
2
 and Fig. 1 (Source: https ://theas 

ciico de.com.ar/).
Let us generate LDF-code corresponding to the code ℭ 

of 8-tuples encoding (converting information from a source 
into symbols) the text “LDFSs/2019”. Then, we have the 
code ℭ as follows:

Also, we suppose that

where

for all �j ∈ �
8
2
.

F rom Def in i t ions   8 .1  and  8 .3 ,  we  have 
0 ≤ ��(�j),��(�j), �

�(�j), �
�(�j) ≤ 1 . Also, we calculate 

��(�j) + ��(�j) =
�∑n

i=1
a
j

i

wmax

�2

+
�∑n

i=1
(1−a

j

i
)

wmax

�2

≤

�∑n

i=1
a
j

i

wmax

+
∑n

i=1
(1−a

j

i
)

wmax

�2

=
�∑n

i=1
a
j

i
+(1−a

j

i
)

wmax

�2

= 1 . Thus, � is an LDFS on 
�
8
2
 . Since it satisfies the conditions (C1) and (C2) in Defini-

tion 8.8, we can say that

𝔇ℭ = {(𝔠j, ⟨𝔘𝔇(𝔠j),𝔖𝔇(𝔠j)⟩, ⟨�𝔇(𝔠j), �
𝔇(𝔠j)⟩) ∶ 𝔠j ∈ ℭ}

ℭ =

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝔠1
𝔠2
𝔠3
𝔠4
𝔠5
𝔠6
𝔠7
𝔠8
𝔠9
𝔠10

⎫
⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

01001100

01000100

01000110

01010011

01110011

00101111

00110010

00110000

00110001

00111001

⎫
⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

.

� = {(�j, ⟨��(�j),��(�j)⟩, ⟨��(�j), �
�(�j)⟩) ∶ �j ∈ �

8
2
}

(8.4)

��(�j) =

������
n∑
i=1

a
j

i
(� j

i
)3

�(3)
max

, ��(�j) =

������
n∑
i=1

(1 − a
j

i
)(� j

i
)3

�(3)
max

,

��(�j) =

⎛⎜⎜⎜⎜⎝

n∑
i=1

a
j

i

wmax

⎞⎟⎟⎟⎟⎠

2

, ��(�j) =

⎛⎜⎜⎜⎜⎝

n∑
i=1

(1 − a
j

i
)

wmax

⎞⎟⎟⎟⎟⎠

2

is an LDF-code corresponding to the code ℭ of � 8
2
 . In addi-

tion, we give the matching in Table 1.

Note 5 The the grades of reference parameters are 
important for the LDF-code. We assume that �j = 00000100 
and �k = 00111000 (see: Fig. 1) then it is obtained that 

𝔇ℭ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝔠1, ⟨
�

349

1296
,

�
947

1296
⟩, ⟨ 9

64
,
25

64
⟩),

(𝔠2, ⟨
�

224

1296
,

�
1072

1296
⟩, ⟨ 1

16
,

9

16
⟩),

(𝔠3, ⟨
�

567

1296
,

�
729

1296
⟩, ⟨ 9

64
,
25

64
⟩),

(𝔠4, ⟨
�

927

1296
,

�
369

1296
⟩, ⟨ 1

4
,
1

4
⟩),

(𝔠5, ⟨
�

954

1296
,

�
342

1296
⟩, ⟨ 25

64
,

9

64
⟩),

(𝔠6, ⟨
�

1223

1296
,

�
73

1296
⟩, ⟨ 25

64
,

9

64
)⟩),

(𝔠7, ⟨
�

434

1296
,

�
862

1296
⟩, ⟨ 9

64
,
25

64
⟩),

(𝔠8, ⟨
�

91

1296
,

�
1205

1296
⟩, ⟨ 1

16
,

9

16
⟩),

(𝔠9, ⟨
�

603

1296
,

�
693

1296
⟩, ⟨ 9

64
,
25

64
⟩),

(𝔠10, ⟨
�

728

1296
,

�
568

1296
⟩, ⟨ 1

4
,
1

4
⟩)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(𝔠1, ⟨0.5188, 0.8548⟩, ⟨0.1406, 0.3906⟩),
(𝔠2, ⟨0.4156, 0.9094⟩, ⟨0.0625, 0.5625⟩),
(𝔠3, ⟨0.6614, 0.75⟩, ⟨0.1406, 0.3906⟩),
(𝔠4, ⟨0.8456, 0.5335⟩, ⟨0.25, 0.25⟩),
(𝔠5, ⟨0.8579, 0.5136⟩, ⟨0.3906, 0.1406⟩),
(𝔠6, ⟨0.9713, 0.2372⟩, ⟨0.3906, 0.1406⟩),
(𝔠7, ⟨0.5786, 0.8155⟩, ⟨0.1406, 0.3906⟩),
(𝔠8, ⟨0.2649, 0.9642⟩, ⟨0.0625, 0.5625⟩),
(𝔠9, ⟨0.682, 0.7312⟩, ⟨0.1406, 0.3906⟩),
(𝔠10, ⟨0.7494, 0.6619⟩, ⟨0.25, 0.25⟩)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

Table 1  The tabular form of LDF-code corresponding to the code ℭ 
of � 8

2

Character Binary Code LDF-code

L 01001100 (⟨0.5188, 0.8548⟩, ⟨0.1406, 0.3906⟩)
D 01000100 (⟨0.4156, 0.9094⟩, ⟨0.0625, 0.5625⟩)
F 01000110 (⟨0.6614, 0.75⟩, ⟨0.1406, 0.3906⟩)
S 01010011 (⟨0.8456, 0.5335⟩, ⟨0.25, 0.25⟩)
s 01110011 (⟨0.8579, 0.5136⟩, ⟨0.3906, 0.1406⟩)
/ 00101111 (⟨0.9713, 0.2372⟩, ⟨0.3906, 0.1406⟩)
2 00110010 (⟨0.5786, 0.8155⟩, ⟨0.1406, 0.3906⟩)
0 00110000 (⟨0.2649, 0.9642⟩, ⟨0.0625, 0.5625⟩)
1 00110001 (⟨0.682, 0.7312⟩, ⟨0.1406, 0.3906⟩)
9 00111001 (⟨0.7494, 0.6619⟩, ⟨0.25, 0.25⟩)

https://theasciicode.com.ar/
https://theasciicode.com.ar/
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��(�j) = ��(�k) = 0.4081 and ��(�j) = ��(�k) = 0.9128 
(by Eq. (8.4)). But we have �(aj) ≠ �(ak) by using the 
grades of reference parameters.

Proposition 8.10 Let � be an LDFS on � n
2
 and 𝔇ℭ be an 

LDF-code corresponding to the code ℭ of � n
2
 . If �j ≤ �k for 

𝔠j, 𝔠k ∈ ℭ , then �(�j) ≥ �(�k).

Proof Assume that 𝔇ℭ is an LDF-code corresponding to 
the code ℭ of � n

2
 and �j ≤ �k . Then, we have �j ⋅ �k = �k from 

Proposition 8.7. By the property (C1) in Definition 8.8, we 
write

for all 𝔠j, 𝔠k ∈ ℭ . Thus, the proof is completed.   ◻

Proposition 8.11 Let ℭ be a code of � n
2
 and � be an LDFS 

on � n
2
 . Assume that 𝔇ℭ is an LDF-code corresponding to the 

code ℭ of � n
2
 . Then, 

(i)  �(0� n
2
) < �(�j) for all 𝔠j(≠ 0� n

2
) ∈ ℭ.

(ii)  �(�j) < �(1� n
2
) for all 𝔠j(≠ 1� n

2
) ∈ ℭ.

Proof Let 𝔇ℭ is an LDF-code corresponding to the code ℭ 
of � n

2
 . 

(i)  By the property (C1) in Definition 8.8, we can write 
�(�j ⋅ 0� n

2
) ≤ �(�j) ∧�(0� n

2
) ⇒ �(0� n

2
) ≤ �(�j) for all 

𝔠j ∈ ℭ . Considering the property (C2) in Defini-
tion 8.8, we have �(0� n

2
) < �(�j) for all 𝔠j(≠ 0� n

2
) ∈ ℭ

.
(ii)  It can be proved similarly to the proof of (i).

   ◻

Theorem 8.12 Let � be an LDFS on � n
2
 . If � be an LDF-

subring/LDF-ideal of � n
2
 , then there is no LDF-code cor-

responding to any binary code ℭ of � n
2
 . (or contrapositive)

Proof The proof is clear from Definitions 5.1, 6.2, 8.8 and 
Propositions 5.3, 6.3, 8.11.   ◻

Example 8.13  We  cons ide r  � 2
2
= {00, 01, 10, 11} . 

Then, we have Cayley tables in Example  6.4 
( f o r  0 = 00, p = 01, q = 10, r = 11  ) .  I t  o b v i -
ous that (� 2

2
,+, .) is a ring with identity. If � is 

an LDF-subring/LDF-ideal of � 2
2

 then we have 
�(p + q) ≥ �(p) ∧�(q) ⇒ �(r) ≥ �(p) ∧�(q)  ,  a n d 
�(q) ≥ �(p) ∧�(r) and �(p) ≥ �(q) ∧�(r) . These imply 

(8.5)
�(�j ⋅ �k) ≤�(�j) ∧�(�k) ⇒ �(�k)

≤�(�j) ∧�(�k) ⇒ �(�k) ≤ �(�j)

�(p) = �(q) = �(r) . By considering Proposition 5.3, we 
have

By considering Definition 8.8 (C2) and Proposition 8.11, we 
say that if � is an LDF-subring/LDF-ideal of � 2

2
 then there 

is no LDF-code corresponding to any binary code ℭ of � 2
2
.

Discussion Can the properties (R1, R2, R3) in Defini-
tion 5.1 or the properties (I1, I2) in Definition 6.2 be taken 
instead of properties (C1, C2) in Definition 8.8? Suppose that 
� on � n

2
 has the properties (R1),(R2) and (R3) in definition of 

LDF-subring. It is necessary in order to generate LDF-code 
that each codeword in ℭ matches a distinct LDF-number in � . 
So, we assume that if �j ≠ �k implies �(�j) ≠ �(�k) . We will 
continue by considering this assumption.

For every �j(≠ 1� n
2
) ∈ � n

2
 there is an �k ∈ � n

2
 such that 

�j + �k = 1� n
2

 ,  e . g . ,  �k = 01010101 ∈ �
8
2

 f o r 
�j = 10101010 ∈ �

8
2
 . From the property (R1) in Defini-

tion 5.1, we have

and

Since �j ≠ �k , this implies �(�j) ≠ �(�k) . If �(�j) < �(�k) 
then �(�j) ≥ �(1� n

2
) by Eq. (8.9) and �(1� n

2
) ≥ �(�j) by Eq. 

(8.7). So, we obtain �(�j) = �(1� n
2
) . If �(�j) > �(�k) then 

�(�k) ≥ �(1� n
2
) by Eq. (8.8) and �(1� n

2
) ≥ �(�k) by Eq. 

(8.7). Hence, we obtain �(�j) = �(1� n
2
) . Therefore, if 

�j + �k = 1� n
2
 then �(�j) = �(1� n

2
) or �(�k) = �(1� n

2
) . Con-

sequently, we can say that �(�j� ) = �(1� n
2
) for some (at least 

(2n−1 − 1) ) �j′ ≠ 1� n
2
 . This means that some codewords in ℭ 

match the same LDF-number. However, this is an undesir-
able result (contradiction).

Comparison In the year 2002, Özkan and Özkan pub-
lished a seminal paper, which aims to introduce the notion of 
fuzzy code and thus propose a different approach to coding 
theory. In (Özkan and Özkan 2002), the authors endeav-
ored to convert binary codes to fuzzy numbers by using 
not-so fuzzy ideal, and thus made major contribution to 
the literature. However, there are some flaws for the condi-
tions (see: Definition 2.2) in the definition of fuzzy code in 
Özkan and Özkan (2002). The authors described the func-
tion J as J ∶ C → [0, 1] where C is a binary code (in Defini-
tion 2.2 (Özkan and Özkan 2002)). For x = 1000101 ∈ C 
and y = 1100010 ∈ C in Example 2.2 (Özkan and Özkan 
2002), it is obtained that x + y = 0100111 ∉ C  and 

(8.6)�(0) ≥ �(p) = �(q) = �(r).

(8.7)�(�j + �k) = �(1� n
2
) ≥ �(�j) ∧�(�k),

(8.8)�(�j + 1� n
2
) = �(�k) ≥ �(�j) ∧�(1� n

2
)

(8.9)�(1� n
2
+ �k) = �(�j) ≥ �(1� n

2
) ∧�(�k).
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x ⋅ y = 1000000 ∉ C . Hence, J(x + y) and J(x ⋅ y) are not 
defined. Assume that

( i . e . ,  x + y ∈ C  a n d  x ⋅ y ∈ C  f o r 
a l l  x, y ∈ C  )  t h e n  i t  i s  c a l c u l a t e d  a s 
J(0110000 + 0010000) ≱ min{J(0110000), J(0010000)}  . 
Therefore, we can say that the function J does not generate 
a fuzzy code for each code ℭ of � 7

2
 , however can generate 

fuzzy codes for some specially specified codes. Especially, 
we take the code

then J is a fuzzy code according to Definition 2.2 in Özkan 
and Özkan (2002), but J(0011000) = J(0100100) =

7

28
 . 

Since 0011000 ≠ 0100100 , this is a problematic situa-
tion. To eradicate these restrictions, we describe the novel 
concept of linear Diophantine fuzzy code (by using not-so 
LDF-subring/LDF-ideal). Thus, we argue that linear Dio-
phantine fuzzy code can be generated for each code ℭ of � n

2
 

if the LDFS � on � n
2
 satisfies the conditions (C1) and (C2) 

in Definition 8.8. All of these are details demonstrating the 
advantage of the LDF-code proposed in this section.

9  Conclusion

The studies of generalized types of fuzzy sets in the alge-
braic structures like group, ring, field are interesting research 
topics. In this paper, we investigated the algebraic proper-
ties of linear Diophantine fuzzy sets in the structures of 
groups, rings and fields. Some related concepts, e.g., the 
linear Diophantine fuzzy subgroup, linear Diophantine fuzzy 
normal subgroup, linear Diophantine fuzzy subring, linear 
Diophantine fuzzy ideal, linear Diophantine fuzzy subfield 
were proposed. In addition, we made a theoretical study on 
their fundamental characteristic features analogous to those 
of ordinary groups, rings and fields. Also, we proposed the 
linear Diophantine fuzzy code corresponding to the binary 
code, which can be used for data compression, data storage, 
data transmission and cryptography.

We hope that this new notion will bring a new oppor-
tunity in the research and development of theory of linear 
Diophantine fuzzy set, which is a generalized form of fuzzy 
set. To extend this study, further research can be done by 
examining the properties of linear Diophantine fuzzy sets 

C =

⎧⎪⎨⎪⎩

0000000

0110000

0010000

0100000

⎫⎪⎬⎪⎭

C =

⎧⎪⎨⎪⎩

0000000

0111100

0011000

0100100

⎫⎪⎬⎪⎭

in other algebraic structures such as modules and lattices. In 
the near future, we will endeavor to describe these potential 
concepts for linear Diophantine fuzzy sets.
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