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Abstract
The contemporary unsupervised word representation methods have been successful in capturing semantic statistics on vari-
ous Natural Language Processing tasks. However, these methods proved to be futile in addressing tasks like polysemy or 
homonymy, which prevail in such tasks. There has been a rise in the number of state-of-the-art transfer learning techniques 
bringing into play the language models pre-trained on large inclusive corpus. Motivated by these techniques, the present paper 
proposes an efficacious transfer learning based ensemble model. This model is inspired by ULMFit and presents results on 
challenging sentiment analysis tasks such as contextualization and regularization. We have empirically validated the efficiency 
of our proposed model by applying it to three conventional datasets for sentiment classification task. Our model accomplished 
the state-of-the-art outcomes remarkably when compared to acknowledged baselines in terms of classification accuracy.

Keywords  Universal language model fine-tuning (ULMFit) · Bidirectional encoder representations from transformers 
(BERT) · Average stochastic gradient weight-dropped LSTM (AWD-LSTM) · Transfer learning · Sentiment classification

1  Introduction

Natural Language Processing (NLP) is an area of artificial 
intelligence which enables computers to read, understand 
and process human language. It is a discipline specifically 
focused on building a relationship between natural language 
data and data science. The natural language data generated 
from conversations, videos, speeches, image captions, etc is 
unstructured in nature as it is not in the form to be put into 
conventional row and column arrangement of a database. 
Natural Language Processing is a set of algorithms and tech-
niques for extracting meaningful information from data by 
adding necessary structure to it (Collobert et al. 2011). It can 
be divided into following three different sets of approaches: 

1.	 Rule Based Bird et al. (2009) stated that rule-based sys-
tems perform sentiment analysis using hand-crafted set 
of rules. As these systems are based on linguistic struc-
tures resembling human way of building grammar, they 

tend to focus on decoding the linguistic relationships 
between words to interpret the polarity of piece of text. 
The rule based system approach comprises of a definite 
set of rules employing traditional NLP approaches such 
as part-of-speech tagging, stemming, tokenization, lexi-
cons, etc.

2.	 Statistics Based Manning et al. (1999) explained that sta-
tistical approach does not rely on the hand-crafted rules 
but traditional machine learning perspective including 
probabilistic modeling, likelihood maximization, linear 
classifiers etc. This approach is based on statistical mod-
els like Hidden Markov Models, Perceptrons, Logistic 
Regression, etc. It takes the sentiment task as a clas-
sification problem and feeds it to a classifier. Statistical 
hypothesis in general is based on the data generated in 
accordance with some unknown probability distribution 
and makes inference out of it. The classifier predicts the 
most probable outcome from the distribution as the cor-
responding label.

3.	 Neural Networks Based Neural Networks are designed to 
find generalized predictive patterns as they are not based 
on hypothesis about the correlation among the variables. 
According to Young et al. (2018), this is the biggest 
advantage of neural networks over the traditional NLP 
techniques. Feature engineering is skipped in these net-
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works as they automatically learn to capture the impor-
tant features of data (Jean-François 2017). Some specific 
neural networks employed in NLP comprise of Recur-
rent Neural Networks (RNN), Convolutional Neural Net-
works (CNN), Long-Short Term Memory (LSTM), etc. 
These state-of-art networks (Bouazizi and Ohtsuki 2017; 
Chen et al. 2017) find applications in many areas such 
as text analytics, sentiment analysis, speech recognition, 
financial trading, etc.

For computers to precisely comprehend the unstructured 
data, it is necessary for them to understand the sentiments 
or contextual meanings hidden in the natural language (Col-
lobert et al. 2011). Present paper focuses on this abstract idea 
known as sentiment analysis.

Sentiment analysis (Pathak et al. 2020) refers to automati-
cally analyzing the sentiments and categorizing them into 
certain classes. This concept can be categorized into three 
major levels: aspect level, sentence level and document level.

•	 Aspect level sentiment analysis is a text mining technique 
that divides the text into different attributes and allots 
each attribute a sentiment class (Gupta et al. 2019).

•	 Sentence level sentiment analysis involves dividing 
the sentence into two classes: subjective and objective 
(Gupta et al. 2019). The subjective part comprises of 
emotions, beliefs, views, etc; whereas the objective part 
consists of the fact-based data.

•	 Document level sentiment analysis (Wu et al. 2020) con-
siders the whole document as a fundamental data block. 
It focuses on extracting sentiment(s) from the document 
to determine the overall opinion of document or any of 
its particular entity (Gupta et al. 2019).

With the proliferation of social media, multimodal sentiment 
analysis is set to bring new opportunities with the arrival 
of complementary data streams for improving and going 
beyond text-based sentiment analysis.

Soleymani et al. (2017) illustrated that sentiment analy-
sis techniques can be applied to any mode of data such as 
audio, video or text. The proposed work utilizes automated 
analysis techniques for text data at sentence level to detect 
the polarity of labelled text solely based on its content. The 
experimental results are obtained from three datasets which 
help in testing the overall effectiveness of our model.

The comprehensive contributions of this paper are as 
follows: 

1.	 We propose a bidirectional model inspired from ULMFit 
which is based on transfer learning.

2.	 We have demonstrated the experimental results of two 
important aggregation architectures used for extract-
ing features from embedding sequences namely Concat 

Pool and Attention, with and without zeta. When zeta 
is incorporated into the model, it reinforces the perfor-
mance of both aggregation architectures relative to the 
case when not utilized. It has also been observed that 
irrespective of the scaling parameter, Concat pool has 
performed efficiently relative to Attention mechanism.

3.	 We have reckoned that our proposed solution is an excel-
lent and novel substitute of Attention mechanism. Also, 
we have not confined the comparison to this mechanism 
only, we have compared our proposed model with other 
state-of-the-art deep and non-deep learning models also.

The organization of the present paper is as follows: Sect. 2 
provides an insight of the previous work of some researchers 
related to the paper; Sect. 3 lists out the datasets used in the 
research work along with their detailed study; Sect. 4 looks 
into some of the index terms used in the research work to 
get better understanding; Sect. 5 introduces the proposed 
model and provides the experimental results; Sect. 6 shows 
the experimental results of our proposed model and its com-
parison with other state-of-the-art models; Sect. 7 abridges 
the paper and provides suggestions for future work.

2 � Literature survey

There has been a lot of research in the field of sentiment 
classification, making it one of the most popular tasks in 
NLP (Cambria 2016). The advancements include traditional 
methods, deep learning methods, transfer learning methods, 
etc based on different sentiment classification algorithms. 
As stated by Wang et al. (2020) and Mirończuk and Prota-
siewicz (2018), these methods have evolved over the time 
to classify sentiments accurately in accordance with their 
contextual meanings. Present section discusses some of the 
significant NLP approaches used for sentiment classification.

2.1 � Traditional methods for sentiment analysis

In recent years, several machine learning techniques based 
on shallow models such as Support Vector Machine, Logis-
tic regression, etc (Jiang et al. 2018) are employed for senti-
ment analysis. These models are trained on a limited num-
ber of hand crafted features. Also, the features have to be 
identified by a domain expert in order to reduce the data 
complexity and provide an ease for these traditional tech-
niques to work. Collobert et al. (2011) explained that most 
state-of-art techniques in various NLP tasks, such as Named-
Entity Recognition (NER), Part-of-Speech (POS) tagging, 
Semantic role labelling are outperformed by a simple deep 
learning model. For modeling tedious NLP tasks, statistical 
NLP turned out to be one of the primary options (Haddoud 
et al. 2016; de Araujo et al. 2020). However, it often used to 
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suffer from curse of dimensionality in its initial phases while 
learning joint probability functions of language models, as 
stated by Bengio et al. (2003). This concept gave motiva-
tion for learning distributed representations of words present 
in low-dimensional space. Mikolov et al. (2013b) proposed 
novel architectures for producing high quality word repre-
sentations, thereby producing more accurate results com-
pared to the ones obtained from the traditional techniques.

2.2 � Deep learning methods for sentiment analysis

Distributional vectors follow distributional hypothesis, 
which state that words with similar semantics are likely to 
occur in similar context. The semantic similarity is directly 
proportional to the distance between vectors (Mikolov et al. 
2013b). The distance between these vectors is measured 
using cosine similarity.

Word embeddings can be pretrained in such a way that 
they capture the semantic information and give predictions 
based on the contextual meanings of words. These embed-
dings, due to their low dimensionality, have proved to be fast 
and efficient in capturing the conceptual semantics (Cambria 
et al. 2017; Turney and Pantel 2010). In the recent years, 
models creating these word embeddings have been facile. 
Thus, there was no need for deep learning models (Rane and 
Kumar 2018; Saif et al. 2016) to create quality embeddings. 
However, it is known that word embeddings are respon-
sible for state-of-art results in NLP tasks in which words, 
phrases, etc are represented using these embeddings (Jian-
qiang and Xiaolin 2017). For instance, Glorot et al. (2011) 
employed embeddings along with stacked autoencoders for 
domain adaptation in sentiment analysis whereas Hermann 
and Blunsom (2013) learnt the composition of sentence by 
introducing CCAE (Combinatory Categorial Autoencoders). 
Developments in NLP over these years marked the founda-
tion of research in distributed representations.

Mikolov et al. (2013a) developed a method to create word 
embeddings known as word2vec. It includes two models 
namely Common bag of words (CBOW) and Skip Gram 
which are used to obtain word embeddings. In CBOW archi-
tecture, distributed representations of words surrounding the 
input word are combined to predict the current target word. 
On the other hand, skip gram architecture usually attains 
the opposite of what CBOW does. It predicts the surround-
ing words based on the given target word. Pennington et al. 
(2014) showed the above mentioned word2vec methods do 
not utilize the corpus statistics efficiently. It happens because 
they train on different restricted context windows and not 
global co-occurrence information. They proposed a new 
model called GloVe, which directly captures the global rep-
resentation of data. GloVe focuses on the global word-to-
word co-occurrence matrix, which relates word embeddings 
to the co-occurrences of words over the whole corpus.

In 2016, Facebook developed fastText; an extension of 
vanilla word2vec model. It takes word parts into account 
and learns representations for sub-words, also known as 
character n-grams. Bojanowski et al. (2017) explained how 
fastText works by taking morphology into consideration; 
this technique strengthens learning in extremely inflected 
languages. The static embeddings came up with some limi-
tations as discussed in Sect. 4.1. As a result, they fail to 
capture higher-level information.

2.3 � Transfer learning methods for sentiment 
analysis

For instance, McCann et al. (2017) utilized an encoder of a 
supervised neural machine conversion to bring context out 
of the word embeddings. Eventually, the context based word 
vectors are concatenated with the pretrained word embed-
dings. On the other hand, Neelakantan et al. (2015) con-
ducted research by training each vector for individual word 
senses, which means multiple embeddings per word were 
learned. With these techniques, the issue of missing context 
was eliminated. These techniques, however, could not eradi-
cate the need of training the factual task model from scratch.

Many machine learning algorithms have an assumption 
that the training and future data must have same dimensions 
and be in same vector space (Pan and Yang 2009). However, 
this does not hold in real life applications. This aforesaid 
assumption was solved by a concept in which knowledge 
gained in one domain of interest is transferred to another. 
Therefore transfer learning emerged as a new learning strat-
egy for developing deep learning models (Liu et al. 2019).

Peters et al. (2018) introduced deep contextualised word 
representations known as ELMo (Embeddings from Lan-
guage models), capable of modeling complex characterstics 
of semantics. They proved that ELMo bi-LSTM can be 
trained on a large dataset and then used as an essential part 
in other NLP models. The word vectors allocated to a token 
or word are a learned function of inner states of language 
model. In other words, it is context dependent and same 
word can have different vectors under different contexts. 
This method trains only the main task model from scratch 
and considers pre-trained embeddings as a fixed parameter, 
thereby restricting its success.

Howard and Ruder (2018) proposed ULMFit (Univer-
sal Language Model Fine-tuning) model. It recommends 
language modeling on a massive corpus and uses this lan-
guage model as a backbone for fine-tuning the classifier. The 
architecture used by ULMFit for the language modeling is 
AWD-LSTM which stands for Average Stochastic Gradient 
Descent Weight Dropped LSTM. To apply this concept to 
other datasets, the parameters of language model have to 
be fine-tuned and a classifier layer has to be appended and 
trained. To delve into contextualization, an intuitive way to 
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find the alignment between the words was introduced by 
Bahdanau et al. (2015). This is performed by visualizing the 
weights analogous to annotations.

Peters et al. (2017) extracted contextual features from 
right-to-left and left-to-right from a deep learning model 
based on LSTM. But Devlin et al. (2019) developed an 
attention based model called BERT (Bidirectional Encoder 
Representation from Transformers) for training deep bidi-
rectional representations. This architecture can extract con-
textual features from right-to-left, left-to-right and combined 
left-to-right, thereby allowing high level of parallelism.

3 � Datasets

Sentiment detection reckons on text data. For experiment, 
we have chosen three databases commonly used in sentiment 
analysis nowadays: IMDb (Maas et al. 2011), US Airline 
Twitter (Crowdflower 2016), Real Life Deception Detection 
(Pérez-Rosas et al. 2015). A brief description of datasets is 
presented below. 

1.	 IMDb It is a movie review dataset containing 50,000 
movie reviews for binary sentiment classification. Each 
sample in this dataset is a text document. They are com-
bined to form training and test files. It comprises of 
binary reviews namely positive and negative as shown 
in the Table  1 below.

2.	 US Airline Twitter This dataset was first released by 
Crowdflower in 2015 comprising of tweets on major US 
Airlines such as United, US Airways, Southwest, Delta 
and Virgin America. The tweets have been classified into 
3 categories: Positive, Negative and Neutral. The present 
paper focuses on tweets and their labels for sentiment 
classification as shown in the Table  1 below.

3.	 Real Life Deception Detection (RLDD) It is multi-
modal dataset comprising of real life videos of court-
room trials. It is an aggregation of both text and visual 
data bisected into: Deceptive and Truthful. The videos 
have been sourced from various Youtube channels. We 

have used the transcripts of the courtroom trials to build 
the required dataset. A text document is created using 
both truthful and deceptive cases, refer Table  1 for the 
details.

4 � Index terms

4.1 � Word embeddings

According to Le and Mikolov (2014), the concept of word 
embeddings has been one of the outstanding developments 
in the field of Natural Language Processing in the last few 
years. These are also known as distributed representations 
of text in n-dimensional space. Word embeddings primar-
ily bridge the human understanding of language to that of 
a machine. These are a set of strategies in which tokens 
are mapped to real valued vectors in a meaningful vector 
space. The distance between vectors is directly proportional 
to semantic similarity between the tokens. These vectors 
values are learned in such a way that they resemble a neural 
network.

There are many word embeddings used by researchers 
nowadays, but the present paper focuses on two kinds of pre-
trained embeddings namely GloVe (Pennington et al. 2014) 
and fastText (Joulin et al. 2017). We selected these embed-
dings as they are pre-trained on a large corpus and can be 
employed in diverse downstream tasks such as named entity 
recognition, part-of-speech tagging, language modeling, etc.

GloVe

To the full extent, GloVe stands for Global Vectors for 
word representation. It is an unsupervised learning algo-
rithm developed by Pennington et al. (2014). GloVe finds 
its prime application in generating word embeddings based 
on the co-occurence information of words present in the cor-
pus. The process of building the word embeddings in GloVe 

Table 1   A brief outline of 
statistics of experimental 
datasets

Dataset Types of samples Total number of 
samples

Training examples Test examples

IMDb
Movie
Review

Positive/
Negative

25,000/
25,000

50,000 40,000 10,000

Twitter Positive/
Negative/
Neutral

2363/
9178/
3099

14,640 11,712 2928

Real Life
Deception
Detection

Truth/
Deceptive

60/
61

121 97 24
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is carried out by training the collection of global word to 
word co-occurrence statistics from the corpus. The resulting 
embeddings exhibit intriguing one dimensional substructure 
of vector space. The present paper uses GloVe embeddings 
of 300 dimensions containing 840 billion tokens for the sen-
timent classification purpose.

fastText

GloVe embeddings made remarkable developments in 
the field of NLP, but they were not able to generalize for 
the words not present in the GloVe embeddings. In 2016, 
Facebook’s AI research team released a library for learning 
word embeddings and performing sentiment classification 
known as fastText. According to Joulin et al. (2017), this 
library helps to build an unsupervised or supervised learn-
ing algorithm to obtain word vectors using a deep learning 
model. Their results presented major improvement of fast-
Text when compared to other embeddings such as word2vec, 
GloVe, etc. This improvement refers to dividing the word 
into sub-words known as n-grams (where n is total number 
of sub-words). The building blocks for sentiment classifica-
tion in this case are sub-words or n-grams and not words 
or sentences. This makes way for generalization as long as 
characters of words present in GloVe embeddings are pre-
sent in our database too.

Although the pre-trained embeddings immensely influ-
ence research in NLP, they still show following major 
limitations:

•	 Static embeddings presume that a word has same inter-
pretation across the corpus or they do not support poly-
semy. Due to the limitation, contextual meaning of the 
word is lost (Wang et al. 2020).

•	 When the embeddings are loaded into the model, only 
embedding layer is trained and not the hidden layers 
(Yosinski et al. 2014). Changes made in the embeddings 
do not reflect in hidden and output layers of the model. 
As a result, these layers have to be trained from scratch. 
Thus, pre-trained embeddings fail to capture higher-level 
information.

As a result of above mentioned limitations, researchers felt 
the need of a trained model capable of capturing contextual 
meanings of words present in the corpus. They introduced a 
technique known as Transfer Learning, wherein models are 
pre-trained on large corpus and fine-tuned for specific NLP 
tasks. The knowledge gained in pre-training step is utilized 
for fine-tuning on the target task. The strength of this tech-
nique includes accelerating the training time of a model by 
reusing the modules of hitherto developed models. These 
trained models are open-sourced and prove to be successful 

in various NLP classification challenges (Liu et al. 2019; 
Zheng et al. 2020).

4.2 � Pre‑trained models

ULMFit

Howard and Ruder (2018) proposed that transfer learning is 
the backbone of a pre-trained model, ULMFit, which stands 
for Universal Language Model Fine Tuning. ULMFit has 
been completely executed in fastai library, which simplifies 
training of fast and accurate neural nets using modern best 
practices. A brief outline of ULMFit is presented below. 

1.	 Language pre-training on general domain corpus Text 
data used in the model has to be tokenized and encoded. 
These unique tokens are then prioritized based on the 
usage in an order from most often to least often used. 
The text data is fed to embedding layer of the model. 
The embedding matrix in the model has vectors for 
each token in the general domain corpus named Wiki-
Text-103. The encoded tokens present in the corpus are 
matched to their corresponding vectors by using one-hot 
encoding. After the embedding layer, text data enters 
three stacked LSTM layers known as Average Stochastic 
Gradient Weight-Dropped LSTM (AWD-LSTM), where 
the model training takes place. The output of embed-
ding layer is in form of tensors with word embeddings. 
These tensors are fed as inputs to first LSTM layer. They 
are subsequently passed to the second and third LSTM 
layers. The hidden state of last LSTM layer has same 
shape as of embedded input. Softmax function is applied 
to the output of last LSTM layer to get corresponding 
probabilities. The first step is computationally expen-
sive; which is why fastai has made this model publicly 
available (Howard and Ruder 2018).

2.	 Language Model fine-tuning on target task The pre-
trained model is fine tuned on the target task at this 
step. To achieve this, the target dataset has to be pre-
processed and AWD-LSTM rebuild in order to load the 
weights of the language model. Also, the embeddings 
have to be adjusted according to the target dataset before 
recalliberating AWD-LSTM and loading the weights. 
However, the recurrent connections of an LSTM are 
usually susceptible to overfitting. If dropouts similar to 
LSTM’s hidden state are applied, its capability to hold 
on to long-term dependencies is challenged.

	   To resolve this problem, an alternative to dropout was 
derived by researchers known as DropConnect (Merity 
et al. 2018). Unlike the classical concept of dropout, 
where random subset of activations are set to zero, Drop-
Connect selects random subset of weights and sets them 
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Fig. 1   An arrangement of three stacked interconnected LSTM layers containing multiple LSTM blocks constitute a neural network. Nodes of 
this neural network are shown by LSTM blocks and the weights by their interconnections

Fig. 2   Dropout method applied to a neural network where random subset of activations are set to zero
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to zero. With this, input coming from random subset of 
units in the previous layer is received by each unit. Fig-
ures 1,  2 and  3 explain the difference between dropout 
and DropConnect when compared to a standard neural 
network using three LSTM layers. The LSTM blocks 
inside these layers are activations for the neural network.

	   The mathematical formulation of an LSTM can be 
expressed as set of subequations (a)–(f) of Eq. (1) as: 

 where [ Wi , Wf  , Wo , Ui , Uf  , Uo ] are weight matrices, 
xt is the vector input to the timestep t, ht is the current 
exposed hidden state, ct is the memory cell state, and ⊙ 
is the element-wise multiplication. Merity et al. (2018) 
proved that DropConnect is applied to hidden-to-hid-
den weight matrices [ Ui , Uf  , Uo ] instead of hidden or 
memory states, thereby preventing overfitting on the 
recurrent connections of the LSTM. Howard and Ruder 
(2018) explained that training the entire model at once 
leads to catastrophic forgetting in the three LSTMs as 

(1)

it = 𝜎(Wixt + Uiht−1) (a)

ft = 𝜎(Wf xt + Uf ht−1) (b)

ot = 𝜎(Woxt + Uoht−1) (c)

c̃t = tanh(Wcxt + Ucht−1) (d)

ct = it ⊙ c̃t + ft ⊙ +c̃t−1) (e)

ht = ot ⊙ tanh(ct) (f)

they still comprise of old weights from the pre-trained 
language model. In this situation, it is necessary to 
‘freeze’ the weights of stacked LSTM layers while the 
embedding and output layers are trained so that they 
can be adjusted to the LSTM weights. After this, all the 
AWD-LSTM layers are unfreezed for fine-tuning. This 
is how the language model learns task specific features 
of the language.

3.	 Target Task Classification Sentiment classification 
is performed by adjusting the language model archi-
tecture. To achieve this, two linear functional blocks 
namely ReLU and softmax activations respectively are 
appended to the stacked LSTMs. The resulting sentiment 
classification of text is obtained as probabilities from the 
softmax layer.

Attention in ULMFit

Soft attention is convenient because it addresses the entire 
input state space and keeps the model fully differentiable and 
deterministic (Vaswani et al. 2017; Xu et al. 2015). It lets the 
user decide how much attention should be paid to each and 
every token using cosine similarity. This is performed by 
representing the tokens and query in the same vector space. 
The cosine distance is entirely differentiable with respect to 

Fig. 3   DropConnect method applied to a neural network where random subset of weights are deactivated
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its inputs; hence the final model comes out to be differenti-
able. In soft attention mechanism, the gradients can be cal-
culated instantly as compared to hard attention where they 
are estimated through a stochastic process. This mechanism 
fits well into any existing model where gradients propagate 
through it and remaining layers of the neural network.

Soft attention mechanism compares the source and target 
states to generate attention scores, denoted by � (Bahdanau 
et al. 2015). These scores signify how well two words are 
aligned with each other at a particular position t with respect 
to a source sequence x and target sequence y, as shown in 
Eq. (2). Softmax activation is used to normalize these align-
ment scores, which are used to generate a context vector 
explained in Eqs. (3)–(4); where s and h are attention mecha-
nism parameters. Equation (5) explains how the scores are 
calculated from a context vector ( ct ), where Wc and bc are 
weight matrices and bias to be learned.

(2)�t,i = align(yt, xi)

(3)�t,i =
exp(score(st−1, hi))∑n

i�=1
exp(score(st−1, h

�
i
))

(4)ct =

n∑

i=1

(�t,i, hi)

(5)score(st, hi) = tanh(Wc ∗ c + bc)

BERT

BERT (Bidirectional Encoder Representations from Trans-
formers) is a technique developed by Google in 2018. BERT 
finds its roots from pre-training contextual representations 
such as ELMo (Peters et al. 2018), ULMFit, Generative Pre-
Training, Semi-Supervised Sequence learning, etc. Regard-
less of the above mentioned representations, where the text 
data is observed either from left to right or right-to-left or 
combined left-to-right training, BERT is considered to be 
the first deeply bidirectional language representation. Devlin 
et al. (2019) innovated the concept of bidirectional train-
ing of a well known attention model named Transformer, to 
language modelling. Transformer comprises of two distinct 
functional blocks: an encoder which reads the text input; and 
a decoder which provides a prediction for the task. Rather 
than processing the tokens present in a sequence one-by-
one, the attention models process the tokens in relation to 
all other ones present in that sequence. According to them, 
this kind of training is achieved through a unique approach 
known as Masked Language Modelling through which the 
language models tend to acquire an insightful sense of lan-
guage context and motion.

5 � Proposed model

The present manuscript proposes a new model inspired 
from the pre-trained model ULMFit. Our model follows 
the ensemble strategy of Forward and Backward language 
models. Both of these models are two versions of the same 
proposed model, as shown in Fig. 4 and discussed later.

Fig. 4   Proposed model archi-
tecture: an ensemble of forward 
and backward language models 
with scaled recurrent weights of 
AWD-LSTM
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Algorithm 1 above elaborates our proposed model in 
three steps. Clearly, as shown in the algorithm, we have per-
formed both forward and backward probability modeling of 
a sequence of tokens. All the steps in Algorithm have been 
explained in Sects. 5.1 and  5.2 in detail.

5.1 � Forward language model

The probability for modeling a token ts in a token sequence 
at position s in the forward language model is given by Eq. 
(6) as:

where the factor p(∗ | ∗) is referred to as the conditional 
probability generated in the forward and backward token 
sequences.

For sentiment analysis, our language model is pre-trained 
on a generic massive corpus: WikiText-103 (Howard and 
Ruder 2018). Pre-training commences with pre-processing 
of data. Although there are a lot of word embeddings avail-
able for pre-processing, our language model has been trained 
to obtain representations for full sentences apart from the 
distributed representations of tokens present inside it.

For the same sequence of tokens as mentioned in Eq. (6), 
each word is converted into an embedding vector wF

s
 , which 

are encoded by column vectors in an embedding matrix 
W

Femb

s  . The embedding of tth word in the vocabulary is cor-
responded by each column. The databunch object in fastai 
does the pre-processing in the background. The sequence of 
words affect the semantics of each and every word due to its 
dependence on foregoing words. Thus, we have employed 
three stacked LSTM layers (AWD-LSTM) succeeding the 
embedding layer, where the word embeddings are fed. The 

(6)p(t1, t2, ..., tN) =

N∏

s=1

p(ts|t1, t2, ..., ts−1)

hidden state HF
j

 of dimension D is obtained as the output of 
the last AWD-LSTM layer having same shape as the embed-
ded input as shown in Eq. (7):

where the subscript ‘j’ distinguishes the three stacked LSTM 
layers. Finally, the hidden state is multiplied with a decoder 
matrix. Eqs. (8), (9) illustrate the softmax function trans-
forming all values in the decoder matrix into probabilities.

where WFemb

s ∈ RD∗D , v(word level latent vector) and b ∈ D, 
therefore uF

s
∈ RD and uF

s
∈ R.

After the first stage of pre-training, we fine-tune the pre-
trained forward language model on task specific datasets, 
as mentioned in Sect. 3. Two strategies are used for fine 
tuning the language model: Discriminative fine tuning and 
Slanted triangular learning rates. Discriminative fine tuning 
is based on the fact that different layers of a neural network 
should possess different values of learning rates; as these 
layers capture different types of information (Yosinski et al. 
2014). Thus, we can tune each layer with different learning 
rates. The stochastic gradient descent (SGD) for the model 
parameter � at time step t with a learning rate of � is given 
by Eq. (10):

The model parameters are split into (�1, �2, ..., �L) , where L 
is the number of layers in the neural network and �l contains 
the parameters at lth layer. Analogous to model parameters, 

(7)HF
j
= LSTMj(H

F
j−1

,wF
s
)

(8)uF
s
= tanh(WFemb

s
HF

j
+ bF)

(9)aF
s
=softmax(vTuF

s
)

(10)�t = �t−1 − � ⋅ ∇�J(�)
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we obtain (�1, �2, ..., �L) for learning rate, where �l is the 
learning rate of lth layer of network. Equation (11) shows 
the updated SGD (SGD with discriminative fine tuning) as:

The Slanted triangular learning rate is based on the fact that 
the model should swiftly converge to an appropriate region 
of parameter space when the training commences. This is 
performed in order to adapt the model’s parameters to task 
specific features. An annealed learning rate can not attain 
this behaviour. Thus, we use Slanted triangular learning rate 
as shown in Eq. (12), which increases the learning rate lin-
early in the initial phase and then decays according to the 
follow-up schedule.

where cut is the iteration when we advance from initial 
phase towards follow-up schedule, T is the number of train-
ing iterations, �t specifies the learning rate at an iteration t, 
ratio is comparison of lowest and highest value of learning 
rate, p is the fraction of number of iterations which increased 
or decreased, cut_frac represents the fraction of rising learn-
ing rate.

Now, the final task is to build a classifier using the 
forward_encoder saved in the language model fine tuning 
step as mentioned in Eqs. (11) and (12). The classifier is 
also fine tuned using the two strategies mentioned above. 
The weights of AWD-LSTM have been scaled by a factor 
of zeta, denoted as ‘ � ’, which lies in the range (0,1]. This 
scaling factor generalizes the concept of DropConnect in 
stacked LSTM layers.

Subequations (a)–(f) of Eq. (13) show the mathematical 
formulation of LSTM (as seen from Eq. (1)) after scaling as:

When � is active, we do not lose any kind of information. 
However, when � is not active, traditional meaning of Drop-
Connect is justified in our model. The scaled interconnec-
tions of AWD-LSTM layers contain information which can 
occur anywhere in the document. Due to this, we concate-
nate the last hidden state of last time step hT  from 

(11)�l
t
= �l

t−1
− �l ⋅ ∇�l J(�)

(12)

cut =
⌊
T ⋅ cut_frac

⌋

p =

{
t∕cut, if t ≤ cut

1 −
t−cut

cut⋅(
1

cut_frac
−1)

, otherwise

�t =�max ⋅
1 + p ⋅ (ratio − 1)

ratio

(13)

it = 𝜎(Wixt + 𝜁 ∗ Uiht−1) (a)

ft = 𝜎(Wf xt + 𝜁 ∗ Uf ht−1) (b)

ot = 𝜎(Woxt + 𝜁 ∗ Uoht−1) (c)

c̃t = tanh(Wcxt + 𝜁 ∗ Ucht−1) (d)

ct = it ⊙ c̃t + ft ⊙ +c̃t−1) (e)

ht = ot ⊙ tanh(ct) (f)

HF
j
= (h1, h2, ...., hT ) with both average pooled and max 

pooled representations as illustrated in Eq. (14):

We did not fine tune all the layers of neural network concur-
rently, but gradually. This is carried out by gradual unfreez-
ing of layers. The output of the classifier is obtained as 
predictions in form of probabilities. These steps have been 
repeated for each dataset.

5.2 � Backward language model

Apart from the traditional forward language models, it is 
necessary to consider a backward language model in order 
to capture the future context in embeddings (Peters et al. 
2017). As discussed earlier in this section, both forward and 
backward language models are two versions of the same 
proposed architecture. Hence, a backward language model 
can be implemented in an analogous way to forward lan-
guage model.

A backward language model predicts the preceding token 
if future context is present. For the backward model, Eq. 
(15) shows the probability for modeling the token sequence 
mentioned in Eq. (6):

For the sequence of tokens which are run in reverse by a 
backward language model, each word is converted into an 
embedding vector wB

s
 . In an analogous way to forward lan-

guage model, the word embeddings are produced for the 
sequence (tN , tN−1, ..., ts+1) . These vectors are encoded by 
column vectors in an embedding matrix WBemb

s .
Subsequently, the hidden state HB

j
 of dimension D is 

obtained as the output of the last AWD-LSTM layer having 
same shape as the embedded input as shown in Eq. (16):

where the subscript ‘j’ distinguishes the three stacked LSTM 
layers. Finally, the hidden state is multiplied with a decoder 
matrix. The softmax function transforms all values in the 
decoder matrix into probabilities as shown in Eqs. (17) and 
(18):

where WBemb

s ∈ RD∗D , v(word level latent vector) and b ∈ D, 
therefore uB

s
∈ RD and uB

s
∈ R.

(14)hF
c
= [hT ,maxpool(H

F
j
),meanpool(HF

j
)]

(15)p(t1, t2, ..., tN) =

1∏

s=N

p(ts|tN , tN−1, ..., ts+1)

(16)HB
j
= LSTMj(H

B
j−1

,wB)

(17)uB
s
= tanh(WBembHB

j
+ bB)

(18)aB
s
=softmax(vTuB

s
)
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After the pre-trained language model is built, it is fine 
tuned for target datasets, as discussed in Sect. 3. Further-
more, the same fine tuning strategies are employed as 
explained in Eqs. (7) and (8). A classifier is built using the 
backward_encoder saved in the language model fine-tuning 
step. The classifier fine tuning is also performed using the 
same two strategies as in forward language model. Subse-
quently, the scaling factor � is applied to oversee the weights 
scaling in Back propagation through time (BPTT). The rea-
son for introducing � is again to extrapolate the idea of Drop-
Connect in AWD-LSTM. Correspondingly, we concatenate 
the last hidden state of last time step hT  from HB

j
 = 

(h1, h2, ...., hT ) with both average pooled and max pooled 
representations as illustrated in Equ.(19):

Thus, after the gradual unfreezing of backward language 
model layers, we obtain the predictions in form of probabili-
ties. The predictions of both forward and backward language 
models are ensemble to get the final predictions in form of 
probabilities: aFB

s
.

To evaluate the effectiveness of our model, we have used 
the same set of hyperparameters mentioned in Sect. 6 across 
all the datasets. We have utilized ‘NVIDIA Tesla P100’ GPU 
for faster and efficient computations.

The proposed model has been described in Fig.  4. The 
insight of AWD-LSTM section for both language models 
has been explained separately. AWD-LSTM consists of three 
stacked LSTM layers. The arrows represent the strength of 
connections or weights of the layers. The size and thickness 
of these arrows is directly related to weights, which in turn, 

(19)hB
c
= [hT ,maxpool(H

B
j
),meanpool(HB

j
)]

relates to the features extracted in AWD-LSTM layers. For 
instance, a thick arrow indicates unscaled recurrent weights 
when � is unity. We have use the term unscaled because � 
being unity does not alter the recurrent weights. Thus, it is 
considered inactive in this case. However, when � becomes 
active, it scales the recurrent weights, as represented by plain 
arrows. The broken arrows also indicate scaled weights in 
the given range. These are the extremely small weights 
which have higher chances of dying out in BPTT. Thus, they 
are eliminated using � which makes the model faster.

The fine grained description of AWD-LSTM layers inside 
our model has been displayed in Fig. 5. As we can clearly 
see, this figure contains 3 stacked LSTM layers. Each unit 
inside a layer describes an LSTM block. These interconnec-
tions between these layers, also known as their weights, are 
scaled by a factor of zeta ( � ) as explained earlier. Unscaled 
recurrent weights are presented using black arrows whereas 
scaled weights by grey arrows of variable lengths. Fig-
ures 1,  2 and  3 can be referred to comprehend the strategy 
behind generalization of DropConnect method.

We tried using the uni-directional language models. How-
ever, introducing the concept of bidirectionality proved to be 
effective. It was observed that ensemble predictions improve 
the model’s performance. Ensembling not only reduces the 
variance of our model but also results in predictions that are 
better than any single model. Moreover, the scaling factor 
eliminates extremely low weights during back propagation, 
thereby making the model faster.

Fig. 5   Fine grained description of AWD-LSTM layers inside our proposed model showing the generalized DropConnect strategy
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6 � Experimental results

The present section compares the experimental results of 
proposed model with existing state-of-the-art deep and non-
deep learning models. Table  2 consists of results for text 
classification using two word embeddings: GloVe and fast-
Text. In case of GloVe, data was trained using biLSTM and 
the classifiers employed were Logistic Regression, Linear 
SVM and Polynomial kernel. Hierarchical classifier was 
employed in case of fastText embeddings.

Subsequently, we have extensively extended our research 
and performed experiments by taking soft attention mecha-
nism into consideration. We tried using the consolidation of 
both attention layer and concat pool layer, but it performed 

poorly during testing than the training time. In other words 
we can say that it contributed to overfitting. Thus, both atten-
tion layer and concat pool layer can not be utilized together 
in the same model. To solve this issue, we replaced the 
concat pool layer with attention layer. This replacement is 
necessary for testing the overall performance of attention 
layer. We have also incorporated drop_mult (DM) and ( � ) 
in their own limits when using attention layer. The empiri-
cal results are obtained using three variations of DM and 
zeta which have been illustrated in Tables  3,  4,  5. Table  3 
demonstrates the model’s performance when � is not active 
and only weight dropout parameters are varied in their entire 
range. Table  4 shows results when only scaling factor � is 
active. Results when both DM and zeta are active are com-
piled in Table  5.

Table 2   Classification results of 
GloVe and fastText embeddings 
for each dataset

US Airline Twitter design metrics are written as plain text, RLDD design metrics as bold values and IMDb 
design metrics as italic values. This formatting has been done so that parameters values can be distin-
guished easily

Dataset Embedding Classifier Accuracy Precision Recall F1 score

Twitter/
RLDD/
IMDb

GloVe Logistic Regression 0.62/
0.75/
0.52

0.64/
0.79/
0.54

1.00/
0.65/
0.38

0.78/
0.71/
0.45

Linear SVM 0.64/
0.64/
0.52

0.64/
0.32/
0.50

1.00/
1.00/
1.00

0.78/
0.48/
0.67

Polynomial Kernel 0.64/
0.32/
0.49

0.64/
0.32/
0.50

1.00/
1.00/
1.00

0.78/
0.48/
0.67

fastText Hierarchical 0.67/
0.89/
0.74

0.71/
0.89/
0.74

0.71/
0.89/
0.74

0.71/
0.89/
0.74

Table 3   Classification results 
of both forward and backward 
language models using attention 
mechanism when zeta ( � ) is 
inactive and weight dropout 
parameters varied by a factor 
of DM

Design metrics follow the same formatting as mentioned in Table 2

Dataset Type of
model

DM Train loss Valid loss Accuracy F1 score

Twitter/
RLDD/
IMDb

Forward 0.01 0.377/
0.118/
0.021

0.533/
0.782/
0.235

0.798/
0.560/
0.938

0.735/
0.47/
0.938

0.5 0.400/
0.211/
0.125

0.532/
0.672/
0.151

0.791/
0.680/
0.945

0.726/
0.675/
0.945

0.7 0.507/
0.374/
0.153

0.514/
0.591/
0.173

0.801/
0.720/
0.938

0.737/
0.712/
0.938

Backward 0.01 0.383/
0.239/
0.025

0.551/
0.847/
0.225

0.790/
0.520/
0.936

0.724/
0.342/
0.936

0.5 0.486/
0.483/
0.129

0.532/
0.658/
0.150

0.791/
0.600/
0.945

0.726/
0.504/
0.945

0.7 0.499/
0.538/
0.166

0.517/
0.660/
0.169

0.797/
0.600/
0.939

0.740/
0.583/
0.939
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Next, we present the results of the proposed model. These 
experiments have been performed using aforementioned var-
iations of DM and zeta. In Table  6, the scaling factor � is not 
active. We have varied the weight dropout parameters by the 
factor of (DM) lying in the range [0,1], for both Forward and 
Backward Language models independently. In Table  7, scal-
ing factor � becomes active but DM goes naught. Both � and 
DM become active in Table  8. Both are varied according to 
each other in their own limits. We have chosen the values of 
� and DM in such a way that their effect on the model can 
be tested in their entire range efficiently.

Following this, we have performed a comparison of both 
aggregate architectures, namely concat pool and attention. 
This comparison is shown in Table  9. The final ensem-
ble classification accuracy of both Forward and Backward 
Language models is the measure of comparison for all the 
databases. Table  10 shows how effectively our model has 
performed when juxtaposed to other models. Along with 
ensemble classification accuracy results, we have illus-
trated graphical results in Figs. 6,  7 and  8 relating Loss 
and Learning Rate for both forward and backward language 
models, respectively.

We have used four Key Performance Indicators to evalu-
ate the effectiveness of our approach: Accuracy, Precision, 
Recall and F1 score. Although widely used, accuracy alone 
is not enough information to decide whether the proposed 
model makes robust predictions or not. The reason behind 
this is the overwhelming nature of unbalanced databases, 
where high accuracy can be achieved by an over- or under-fit 
model which do not generalize well for new data. Therefore, 
in order to fully evaluate the model, more performance met-
rics are required. Those metrics are Precision, Recall and F1 

score. We have also used the three aforementioned perfor-
mance metrics to test the behavior of our model. 

1.	 Accuracy refers to the overall correctness of classi-
fication. It measures the ratio of correctly classified 
instances over the total number of instances. 

 where

•	 True Positive (TP) Prediction is positive and it is 
true.

•	 True Negative (TN) Prediction is negative and it is 
true.

•	 False Positive (FP) Prediction is positive and it is 
false.

•	 False Negative (FN) Prediction is negative and it is 
false.

2.	 Precision is the ratio of the correctly positive labeled 
instances to all the positive labeled instances. In other 
words, it defines the reliability of results given by the 
model. 

3.	 Recall tells how many of the actual positive cases are 
predicted by the model correctly. It expresses how well 
the model is able to detect a particular instance. 

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Table 4   Classification results 
of both forward and backward 
language models by employing 
attention mechanism when zeta 
( � ) is active and weight dropout 
parameters remain independent 
of DM

This table follows the same formatting rules as followed in Table  2

Dataset Type of
model

Zeta(�) Train loss Valid loss Accuracy F1 score

Twitter/
RLDD/
IMDb

Forward 0.01 0.588/
0.207/
0.023

0.480/
0.682/
0.270

0.812/
0.560/
0.933

0.684/
0.549/
0.933

0.5 0.400/
0.245/
0.015

0.490/
0.597/
0.170

0.798/
0.880/
0.940

0.740/
0.880/
0.940

0.7 0.363/
0.255/
0.017

0.538/
0.625/
0.262

0.799/
0.680/
0.934

0.733/
0.667/
0.934

Backward 0.01 0.461/
0.132/
0.015

0.483/
0.662/
0.266

0.808/
0.520/
0.930

0.730/
0.480/
0.930

0.5 0.472/
0.367/
0.018

0.500/
0.700/
0.242

0.806/
0.560/
0.937

0.745/
0.430/
0.937

0.7 0.561/
0.323/
0.017

0.518/
0.671/
0.247

0.799/
0.560/
0.937

0.729/
0.550/
0.937
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Table 5   Classification results 
of both forward and backward 
language models by using 
attention mechanism when 
zeta ( � ) is varied according to 
certain DM values

This table follows the same formatting rules as mentioned in Table  2

Dataset Type of model DM Zeta ( �) Train loss Valid loss Accuracy F1 score

Twitter/
RLDD/
IMDb

Forward 0.01 0.01 0.267/
0.133/
0.015

0.560/
0.621/
0.231

0.797/
0.680/
0.938

0.737/
0.679/
0.938

0.01 0.5 0.597/
0.344/
0.022

0.506/
0.653/
0.250

0.806/
0.600/
0.937

0.730/
.594/
0.937

0.01 0.7 0.365/
0.418/
0.011

0.479/
0.690/
0.248

0.823/
0.600/
0.938

0.768/
0.583/
0.938

0.5 0.01 0.439/
0.360/
0.116

0.513/
0.782/
0.177

0.803/
0.520/
0.932

0.723/
0.404/
0.932

0.5 0.5 0.489/
0.221/
0.115

0.487/
0.603/
0.161

0.802/
0.680/
0.939

0.742/
0.652/
0.939

0.5 0.7 0.474/
0.381/
0.105

0.487/
0.675/
0.160

0.812/
0.600/
0.943

0.746/
0.565/
0.943

Forward 0.7 0.01 0.473/
0.541/
0.168

0.490/
0.641/
0.169

0.807/
0.720/
0.938

0.742/
0.712/
0.938

0.7 0.5 0.510/
0.478/
0.154

0.485/
0.643/
0.169

0.807/
0.720/
0.936

0.738/
0.712/
0.936

0.7 0.7 0.505/
0.333/
0.153

0.481/
0.633/
0.168

0.813/
0.720/
0.937

0.749/
0.688/
0.937

Twitter/
RLDD/
IMDb

Backward 0.01 0.01 0.266/
0.200/
0.017

0.515/
0.731/
0.276

0.802/
0.680/
0.929

0.736/
0.666/
0.929

0.01 0.5 0.484/
0.253/
0.025

0.498/
0.719/
0.227

0.807/
0.600/
0.940

0.738/
0.594/
0.940

0.01 0.7 0.407/
0.187/
0.024

0.487/
0.707/
0.235

0.810/
0.600/
0.937

0.754/
0.594/
0.937

0.5 0.01 0.475/
0.488/
0.130

0.541/
0.725/
0.172

0.795/
0.520/
0.937

0.731/
0.448/
0.937

0.5 0.5 0.503/
0.522/
0.117

0.479/
0.662/
0.159

0.805/
0.560/
0.943

0.740/
0.548/
0.943

0.5 0.7 0.402/
0.595/
0.119

0.509/
0.617/
0.159

0.795/
0.680/
0.942

0.734/
0.404/
0.942

0.7 0.01 0.511/
0.437/
0.171

0.483/
0.684/
0.176

0.813/
0.520/
0.934

0.749/
0.519/
0.934

0.7 0.5 0.559/
0.618/
0.153

0.492/
0.649/
0.171

0.808/
0.680/
0.938

0.751/
0.666/
0.938

0.7 0.7 0.500/
0.565/
0.137

0.499/
0.682/
0.165

0.807/
0.600/
0.941

0.738/
0.540/
0.941
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4.	 F1 Score is the harmonic mean of precision and recall. 
The F1 Score mentioned in our results is “macro” aver-
aged because it lets all the labels contribute equally 
regardless of their appearance in the corpus. 

Recall =
TP

TP + FN

F1 = 2 ∗
Precision ∗ Recall

Precision + Recall

Hyperparameters

The model hyperparameters are beneficial as their values 
are used to control the learning process. Our model consists 
of embedding size of 400 units, 3 layers with 1152 units per 
layer. It has been trained with Back Propagation Through 
Time (BPTT) technique with a batch size of 70. For clas-
sification, we have used dropout of 0.4, 0.05 for input and 
output embedding layers, respectively. Adam optimization 
method is used with parameter values �1 = 0.9 , �2 = 0.99 . 

Table 6   Classification results 
of both forward and backward 
language models of our 
proposed model when zeta ( � ) 
is inactive and weight dropout 
parameters varied by a factor 
of DM

Design metrics follow the same formatting as mentioned in Table  2

Dataset Type of
model

DM Train loss Valid loss Accuracy F1 score

Twitter/
RLDD/
IMDb

Forward 0.01 0.420/
0.165/
0.013

0.585/
0.562/
0.245

0.782/
0.680/
0.933

0.718/
0.679/
0.933

0.5 0.473/
0.231/
0.118

0.495/
0.583/
0.172

0.805/
0.760/
0.940

0.736/
0.760/
0.940

0.7 0.507/
0.319/
0.156

0.485/
0.630/
0.174

0.819/
0.720/
0.938

0.752/
0.713/
0.938

Backward 0.01 0.472/
0.227/
0.019

0.522/
0.552/
0.247

0.797/
0.640/
0.938

0.722/
0.618/
0.938

0.5 0.503/
0.416/
0.122

0.491/
0.547/
0.171

0.807/
0.760/
0.939

0.736/
0.750/
0.939

0.7 0.548/
0.498/
0.172

0.486/
0.620/
0.169

0.815/
0.600/
0.937

0.744/
0.583/
0.937

Table 7   Classification results 
of both forward and backward 
language models of our 
proposed model when zeta ( � ) 
is active and weight dropout 
parameters remain independent 
of DM

This table follows the same formatting rules as followed in Table 2

Dataset Type of
model

Zeta ( �) Train loss Valid loss Accuracy F1 score

Twitter/
RLDD/
IMDb

Forward 0.01 0.602/
0.179/
0.026

0.525/
0.548/
0.273

0.804/
0.760/
0.930

0.726/
0.756/
0.93

0.5 0.410/
0.116/
0.025

0.494/
0.580/
0.270

0.798/
0.720/
0.932

0.746/
0.713/
0.932

0.7 0.596/
0.155/
0.014

0.517/
0.557/
0.259

0.808/
0.680/
0.936

0.735/
0.679/
0.936

Backward 0.01 0.462/
0.152/
0.027

0.484/
0.707/
0.286

0.809/
0.600/
0.922

0.734/
0.540/
0.922

0.5 0.465/
0.226/
0.023

0.488/
0.762/
0.247

0.811/
0.600/
0.932

0.738/
0.504/
0.932

0.7 0.460/
0.219/
0.022

0.491/
0.634/
0.253

0.806/
0.600/
0.931

0.728/
0.594/
0.931
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Table 8   Classification results 
of both forward and backward 
language models of our 
proposed model when zeta ( � ) 
is varied according to certain 
DM values

This table follows the same formatting rules as mentioned in Table  2

Dataset Type of model DM Zeta ( �) Train loss Valid loss Accuracy F1 score

Twitter/
RLDD/
IMDb

Forward 0.01 0.01 0.596/
0.222/
0.023

0.524/
0.544/
0.239

0.801/
0.760/
0.933

0.717/
0.750/
0.933

0.01 0.5 0.596/
0.161/
0.026

0.505/
0.540/
0.254

0.807/
0.720/
0.933

0.729/0
.713/
0.933

0.01 0.7 0.583/
0.179/
0.016

0.519/
0.666/
0.253

0.802/
0.680/
0.933

0.724/
0.675/
0.933

0.5 0.01 0.497/
0.256/
0.117

0.501/
0.604/
0.178

0.809/
0.720/
0.933

0.750/
0.713/
0.933

0.5 0.5 0.497/
0.230/
0.111

0.495/
0.599/
0.157

0.811/
0.680/
0.943

0.750/
0.675/
0.943

0.5 0.7 0.479/
0.457/
0.106

0.485/
0.553/
0.161

0.814/
0.760/
0.942

0.749/
0.760/
0.942

Forward 0.7 0.01 0.511/
0.452/
0.175

0.492/
0.604/
0.176

0.814/
0.720/
0.931

0.743/
0.720/
0.931

0.7 0.5 0.517/
0.333/
0.151

0.490/
0.615/
0.166

0.802/
0.640/
0.939

0.731/
0.638/
0.939

0.7 0.7 0.511/
0.295/
0.153

0.491/
0.662/
0.168

0.813/
0.560/
0.937

0.744/
0.533/
0.937

Twitter/
RLDD/
IMDb

Backward 0.01 0.01 0.365/
0.288/
0.025

0.535/
0.568/
0.283

0.808/
0.680/
0.922

0.748/
0.632/
0.922

0.01 0.5 0.464/
0.239/
0.030

0.491/
0.639/
0.232

0.811/
0.640/
0.935

0.732/
0.618/
0.935

0.01 0.7 0.370/
0.346/
0.028

0.515/
0.596/
0.239

0.809/
0.680/
0.933

0.749/
0.603/
0.933

0.5 0.01 0.548/
0.595/
0.132

0.493/
0.633/
0.174

0.811/
0.760/
0.935

0.732/
0.750/
0.935

0.5 0.5 0.507/
0.357/
0.121

0.483/
0.629/
0.163

0.809/
0.720/
0.939

0.744/
0.713/
0.939

0.5 0.7 0.501/
0.322/
0.121

0.487/
0.679/
0.161

0.811/
0.560/
0.940

0.749/
0.548/
0.940

0.7 0.01 0.53/
0.568/
0.176

0.483/
0.638/
0.181

0.813/
0.760/
0.929

0.749/
0.750/
0.929

0.7 0.5 0.551/
0.456/
0.153

0.484/
0.662/
0.171

0.813/
0.560/
0.938

0.743/
0.533/
0.938

0.7 0.7 0.557/
0.400/
0.144

0.495/
0.559/
0.172

0.811/
0.720/
0.934

0.731/
0.703/
0.934
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We have used a batch size of 32, a learning rate of 0.004 
and 0.01 for fine-tuning the language model and classifier, 
respectively. Weight dropout parameter and scaling factor 
( � ) have been varied in their respective ranges. We have used 
the concept of bidirectional modeling by fine-tuning forward 
and backward language models separately and ensembling 
their predictions at the end.

6.1 � Comprehensive comparison

In this section, we present comparison of our evaluation 
results with the existing state-of-the-art models on senti-
ment analysis task. First 2 approaches namely Logistic 
Regression and Linear SVM are traditional machine learn-
ing techniques as mentioned in Sect. 2. Next 2 approaches 
namely GloVe+biLSTM and fastText are non-deep learning 
methods for sentiment analysis. These are also known as 
distributed representations of words. Rest of the strategies 
including ours are deep learning models. Out of these strat-
egies, all are based on transfer learning except for ANN. 
Apart from the top 4 approaches, every approach is capable 
of automatically extracting features from input data without 
the help of feature engineering.

Table  10 shows that classification accuracy of our model 
is preferable when tested on three conventional datasets, as 
mentioned in Sect. 3. Considering the algorithm effective-
ness, fastText has proved salient among other non-deep 
learning techniques in its category. Our proposed model, on 
the other hand, has achieved superior results not only among 
the deep learning approaches but all the eight approaches, as 
mentioned above. The classification accuracy of our model 
is 82.27%, 84% and 94.94% for US airline twitter, Real life 
deception detection and IMDb datasets respectively. In con-
trast to ULMFit, we planned to bring bidirectional contex-
tualization using ensemble methods. We also focused on 
regularization by generalizing the DropConnect method. Our 
aim is to create an ambitious yet reasonable framework for 
sentiment analysis task. Overall, our model has performed 
remarkably on experimental datasets and with such perfor-
mance, we can consider it as a robust framework for senti-
ment classification problems.

All the variations of our model have been explained 
independently in Tables  6,  7 and  8 as shown above. The 

Table 9   Comparison of experimental results of ensemble classifica-
tion accuracy of Concat Pool as used in our proposed model to exist-
ing state-of-the-art Attention mechanism with respect to same varia-
tions of DM and zeta as used in aforementioned experimental results 
for all the three databases

The three sections divided in this table are in accordance with the 
same three variations using DM and zeta

Parameter
(DM/zeta)

Ensemble accuracy
(concat pool/attention)

RLDD Twitter IMDB

0.01/1.0 70/52 80.05/80.05 94.68/94.79
0.5/1.0 76/52 80.33/79.64 94.59/94.28
0.7/1.0 72/64 81.18/80.23 94.35/94.24
0.0/0.01 72/60 81.97/81.02 93.53/94.14
0.0/0.5 68/76 82.27/81.52 94.31/94.64
0.0/0.7 72/64 81.66/81.50 94.21/94.51
0.01/0.01 76/60 80.94/81.15 93.89/94.30
0.01/0.5 74/70 81.01/82.10 94.58/94.64
0.01/0.7 84/58 80.36/79.97 94.63/94.23
0.5/0.01 64/52 81.43/80.91 94.14/93.99
0.5/0.5 78/66 81.40/81.28 94.80/94.77
0.5/0.7 72/72 81.93/81.22 94.94/94.74
0.7/0.01 80/66 82.21/80.70 94.68/94.54
0.7/0.5 70/80 81.25/81.56 94.25/94.23
0.7/0.7 76/74 81.76/81.52 94.29/93.79

Table 10   Comparison of 
experimental results of 
classification accuracy of our 
proposed model to existing 
state-of-the-art models

Highest accuracy values are highlighted in bold

Model Percentage accuracy on various datasets

RLDD (%) Twitter (%) IMDb (%)

Logistic Regression (Krishnamurthy et al. 2018) 64.57 64.31 52
Linear SVM (Krishnamurthy et al. 2018) 56.43 64 52
Glove+biLSTM (Abid et al. 2020) 58.33 69.08 87.9
fastText (Abid et al. 2020) 66.67 74.16 88.66
ANN (Shaukat et al. 2020) 80.16 79.4 91
ULMFit (Howard and Ruder 2018) 62.5 80.6 93.95
BERT-base (Devlin et al. 2019) 76.92 81.57 93.2
Soft Attention (Bahdanau et al. 2015) 80 82.10 94.63
Our model 84 82.27 94.94
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combined results of all model variations are illustrated in 
Figs. 9 and  10. The two bar graphs presented here show 
ensemble classification accuracy of both forward and 

backward language models for all experimental datasets. 
Sensitivity analysis of our model variations are explained 
using two parameters: DM and zeta(� ). In first bar graph, 
every value of DM is varied for all zeta values in the entire 
range. Correspondingly, second graph illustrates variation 
of every value of zeta with DM.

For IMDb, the accuracy is at its best when around 50% of 
dropout parameters and 70% of recurrent weights of AWD-
LSTM are scaled. DM is relatively less sensitive for this 
case. In case of RLDD, our model achieves maximum accu-
racy when only 1% of dropout parameters and 70% of AWD-
LSTM weights are scaled. Thus, our model is most sensitive 
to zeta for this corpus. For another counterpart Twitter, our 
model works best when we scale 50% of the AWD-LSTM 
weights. Clearly it does not depend on the dropout parameter 
scaling and is sensitive to weights scaling only. Altogether, 
it can be observed that our model is relatively more sensitive 
to weight scaling factor zeta ( � ). Keeping DM into consid-
eration, we can say that performance of our model varies 
directly with AWD-LSTM scaled weights in their respective 
limits.

Overall, the combination of DM = 0.5 and zeta = 0.7 
proves best for IMDb where our model achieves highest 
classification accuracy of 94.94%. Similarly, in case of 
RLDD dataset, it achieves highest accuracy of 84% when 
DM = 0.01 and zeta = 0.7 . On Twitter, our model attains 
maximum accuracy of 82.27% for DM = 0.0 and zeta = 0.5.

7 � Conclusion and future work

In this manuscript, we have focused on sentiment classi-
fication task and proposed a new transfer learning based 
model. It intends to work on challenging sentiment analy-
sis tasks such as contextualization and regularization. The 
main steps followed by our model include: (1) pre-train a 
language model (2) fine-tune the language model on target 
data by scaling recurrent weights of AWD-LSTM using a 
scaling factor zeta(� ). To introduce bidirectionality, we have 
performed both forward and backward language modeling 
based on state-of-the-art transfer learning based methods. 
Our model is an ensemble representation of forward and 
backward language models.

After an extensive and thorough research, we have dem-
onstrated that the model variations, �+concat pool and �
+attention perform extremely well as compared to their 
conventional versions where no zeta is incorporated. The 
performance of the model is intensified when � is included 
suitably in the model. In addition to this, our model has 
surpassed the experimental results of soft attention mecha-
nism too. Hitherto, the comparison with attention layer has 
been propounded especially on the grounds that both atten-
tion and concat pool are state-of-the-art feature aggregate 

Fig. 6   Loss versus learning rate of Twitter data

Fig. 7   Loss versus learning rate of RLDD data

Fig. 8   Loss versus learning rate of IMDb data
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architectures. That is why separate research has been carried 
out using both architectures individually and our model has 
emerged as the superior one.

Finally, it has been validated that the incorporation of � 
and its variation with DM has yielded superior results. This 
is so because with the companionship of these parameters, 
our model is no longer reckoning on just maximum and aver-
age values but has the hold of other dominant features of 
the embedding layer. The intention is to learn significant 

features of embeddings rather than just presuming that con-
catenation of maximum and average values or just attention 
mechanism can provide finest results. Therefore, we have 
arrived at a conclusion that inclusion of zeta in our model 
makes an apt and excellent substitute for attention mecha-
nism. Our model has performed remarkably well in terms 
of classification accuracy when compared to other state-of-
the-art approaches.

Fig. 9   Sensitivity analysis of classification accuracy w.r.t zeta ( � ) for various experimental datasets

Fig. 10   Sensitivity analysis of classification accuracy w.r.t DM for various experimental datasets
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As mentioned, we have evaluated the efficiency of our 
model on three widely-used databases. All these databases, 
as mentioned in Table  1, have a diversified range. We have 
obtained outstanding experimental results for our model 
compared to the ones obtained from other state-of-the-art 
frameworks. Thus, it shows that our proposed model is ver-
satile and robust in nature.

In future, we plan to extend our work for multi-class text 
classification by incorporating Transformer based models 
with some other attention mechanisms.

Acknowledgements  This work was supported by free academic credits 
from Google Cloud Platform.

References

Abid F, Li C, Alam M (2020) Multi-source social media data senti-
ment analysis using bidirectional recurrent convolutional neural 
networks. Comput Commun 157:102–115

Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by 
jointly learning to align and translate. ICLR, San Diego

Bengio Y, Ducharme R, Vincent P, Jauvin C (2003) A neural probabil-
istic language model. J Mach Learn Res 3:1137–1155

Bird S, Klein E, Loper E (2009) Natural language processing with 
Python: analyzing text with the natural language toolkit. O’Reilly 
Media, Inc., Newton

Bojanowski P, Grave E, Joulin A, Mikolov T (2017) Enriching word 
vectors with subword information. Trans Assoc Comput Linguist 
5:135–146

Bouazizi M, Ohtsuki T (2017) A pattern-based approach for multi-class 
sentiment analysis in twitter. IEEE Access 5:20617–20639

Cambria E (2016) Affective computing and sentiment analysis. IEEE 
Intell Syst 31:102–107

Cambria E, Poria S, Gelbukh A, Thelwall M (2017) Sentiment analysis 
is a big suitcase. IEEE Intell Syst 32:74–80

Chen T, Xu R, He Y, Wang X (2017) Improving sentiment analysis via 
sentence type classification using BiLSTM-CRF and CNN. Expert 
Syst Appl 72:221–230

Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P 
(2011) Natural language processing (almost) from scratch. J Mach 
Learn Res 12:2493–2537

Crowdflower (2016) Airline Twitter Sentiment. https​://data.world​/
crowd​flowe​r/airli​ne-twitt​er-senti​ment. Online accessed 01 Decem-
ber 2019

de Araujo PHL, de Campos TE, de Sousa MMS (2020) Inferring the 
source of official texts: can SVM beat ULMFiT?. Springer, Evora, 
pp 76–86

Devlin J, Chang M-W, Lee K, Toutanova K (2019) Bert: pre-training 
of deep bidirectional transformers for language understanding, 
NAACL-HLT, Association for Computational Linguistics

Glorot X, Bordes A, Bengio Y (2011) Domain adaptation for large-
scale sentiment classification: a deep learning approach. ICML, 
Bellevue, pp 513–520

Gupta C, Jain A, Joshi N (2019) A novel approach to feature hierarchy 
in aspect based sentiment analysis using OWA operator. Springer, 
Chandigarh, pp 661–667

Haddoud M, Mokhtari A, Lecroq T, Abdeddaïm S (2016) Combining 
supervised term-weighting metrics for SVM text classification 
with extended term representation. Knowl Inf Syst 3:909–931

Hermann KM, Blunsom P (2013) The role of syntax in vector space 
models of compositional semantics. Association for Computa-
tional Linguistics, Sofia, pp 894–904

Howard J, Ruder S (2018) Universal language model fine-tuning for 
text classification. Assoc Comput Linguist 1:328–339

Jean-François P (2017) Feature engineering for deep learning. https​
://mediu​m.com/insid​e-machi​ne-learn​ing/featu​re-engin​eerin​g-for-
deep-learn​ing-2b1fc​7605a​ce. Online accessed 15 December 2019

Jiang M, Liang Y, Feng X, Fan X, Pei Z, Xue Yu, Guan R (2018) Text 
classification based on deep belief network and softmax regres-
sion. Neural Comput Appl 29:61–70

Jianqiang Z, Xiaolin G (2017) Comparison research on text pre-
processing methods on twitter sentiment analysis. IEEE Access 
5:2870–2879

Joulin A, Grave E, Bojanowski P, Mikolov T (2017) Bag of tricks for 
efficient text classification. Association for Computational Lin-
guistics, Valencia, pp 427–431

Krishnamurthy G, Majumder N, Poria S, Cambria E (2018) A deep 
learning approach for multimodal deception detection. arXiv pre-
print arXiv​:1803.00344​

Le Q, Mikolov T (2014) Distributed representations of sentences and 
documents. In: Proceedings of machine learning research, pp 
1188–1196, Beijing

Liu R, Shi Y, Ji C, Jia M (2019) A survey of sentiment analysis based 
on transfer learning. IEEE Access 7:85401–85412

Maas AL, Daly RE, Pham PT, Huang D, Ng AY, Potts C (2011) Learn-
ing word vectors for sentiment analysis, Portland, Association for 
Computational Linguistics, pp 142–150

Manning CD, Manning CD, Schütze H (1999) Foundations of statisti-
cal natural language processing. MIT press, Cambridge

McCann B, Bradbury J, Xiong C, Socher R (2017) Learned in trans-
lation: contextualized word vectors. Association for Computing 
Machinery, California, pp 6294–6305

Merity S, Keskar NS, Socher R (2018) Regularizing and optimizing 
LSTM language models. ICLR

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013a) Dis-
tributed representations of words and phrases and their composi-
tionality. Association for Computing Machinery, New York, pp 
3111–3119

Mikolov T, Chen K, Corrado G, Dean J (2013b) Efficient estimation 
of word representations in vector space. In: Proceedings of work-
shop at ICLR

Mirończuk MM, Protasiewicz J (2018) A recent overview of the 
state-of-the-art elements of text classification. Expert Syst Appl 
106:36–54

Neelakantan A, Shankar J, Passos A, McCallum A (2015) Efficient 
non-parametric estimation of multiple embeddings per word in 
vector space. Association for Computational Linguistics, Doha, 
pp 1059–1069

Pan SJ, Yang Q (2009) A survey on transfer learning. IEEE Trans 
knowl Data Eng 22:1345–1359

Pathak AR, Agarwal B, Pandey M, Rautaray S (2020) Application of 
deep learning approaches for sentiment analysis. Springer, Sin-
gapore, pp 1–31

Pennington J, Socher R, Manning CD (2014) Glove: global vectors for 
word representation. Association for Computational Linguistics, 
Qatar, Valencia, pp 1532–1543

Pérez-Rosas V, Abouelenien M, Mihalcea R, Burzo M (2015) Decep-
tion detection using real-life trial data. Association for Computing 
Machinery, Seattle, pp 59–66

Peters ME, Ammar W, Bhagavatula C, Power R (2017) Semi-super-
vised sequence tagging with bidirectional language models. Asso-
ciation for Computational Linguistics, Vancouver, pp 1756–1765

Peters ME, Neumann M, Iyyer M, Gardner M, Clark C, Lee K, Zet-
tlemoyer L (2018) Deep contextualized word representations. In: 
Proceedings of NAACL-HLT, pp 2227–2237

https://data.world/crowdflower/airline-twitter-sentiment
https://data.world/crowdflower/airline-twitter-sentiment
https://medium.com/inside-machine-learning/feature-engineering-for-deep-learning-2b1fc7605ace
https://medium.com/inside-machine-learning/feature-engineering-for-deep-learning-2b1fc7605ace
https://medium.com/inside-machine-learning/feature-engineering-for-deep-learning-2b1fc7605ace
https://arxiv.org/abs/1803.00344


10287Bidirectional transfer learning model for sentiment analysis of natural language﻿	

1 3

Rane A, Kumar A (2018) Sentiment classification system of twitter 
data for US airline service analysis. IEEE, Tokyo, pp 769–773

Saif H, He Y, Fernandez M, Alani H (2016) Contextual semantics for 
sentiment analysis of Twitter. Inf Process Manag 52:5–19

Shaukat Z, Zulfiqar AA, Xiao C, Azeem M, Mahmood T (2020) Senti-
ment analysis on IMDB using lexicon and neural networks. SN 
Appl Sci 2:1–10

Soleymani M, Garcia D, Jou B, Schuller B, Chang S-F, Pantic M 
(2017) A survey of multimodal sentiment analysis. Image Vis 
Comput 65:3–14

Turney PD, Pantel P (2010) From frequency to meaning: vector space 
models of semantics. J Artif Intell Res 37:141–188

Vaswani A, Shazeer N, Parmar N, Jakob U, Jones L, Gomez AN, Kaiser 
Ł, Polosukhin I (2017) Attention is all you need. In: Advances in 
neural information processing systems, pp 5998–6008

Wang Y, Hou Y, Che W, Liu T (2020) From static to dynamic word 
representations: a survey. Int J Mach Learn Cybern 11:1611–1630

Wu Y, Li J, Wu J, Chang J (2020) Siamese capsule networks with 
global and local features for text classification. Neurocomputing 
390:88–98

Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhutdinov R, Zemel 
R, Bengio Y (2015) Show, attend and tell: neural image caption 
generation with visual attention. In: Proceedings of the 32nd 
international conference on machine learning, PMLR, vol 37, pp 
2048–2057

Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are 
features in deep neural networks?. Association for Computing 
Machinery, Montreal, pp 3320–3328

Young T, Hazarika D, Poria S, Cambria E (2018) Recent trends in 
deep learning based natural language processing. IEEE Comput 
Intell Mag 13:55–75

Zheng J, Cai F, Chen H, de Rijke M (2020) Pre-train, Interact, Fine-
tune: a novel interaction representation for text classification. Inf 
Process Manag 57:102215

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Bidirectional transfer learning model for sentiment analysis of natural language
	Abstract
	1 Introduction
	2 Literature survey
	2.1 Traditional methods for sentiment analysis
	2.2 Deep learning methods for sentiment analysis
	2.3 Transfer learning methods for sentiment analysis

	3 Datasets
	4 Index terms
	4.1 Word embeddings
	4.2 Pre-trained models

	5 Proposed model
	5.1 Forward language model
	5.2 Backward language model

	6 Experimental results
	6.1 Comprehensive comparison

	7 Conclusion and future work
	Acknowledgements 
	References




