
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2021) 12:9127–9143
https://doi.org/10.1007/s12652-020-02610-x

ORIGINAL RESEARCH

Reliable verification of distributed encoded data fragments
in the cloud

Vikas Chouhan1 · Sateesh K. Peddoju1

Received: 30 March 2020 / Accepted: 10 October 2020 / Published online: 3 November 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Cloud storage services allow users to remotely store their data in a distributed environment and enjoy the cloud applications
ubiquitously. To maximize users’ trust, it also integrates a verification mechanism that guarantees the stored data’s correct-
ness. The storage application fragments the user data and stores them on multiple cloud storage servers. However, it suffers
from expensive data aggregation computations while processing verification services, and inevitably poses a data integrity
verification challenge. To avoid these expensive computations, we simplify the verification procedure without needing the
data aggregation, just by storing the evidence fragments and data fragments across the datacenters. In distributed environ-
ments, the storage correctness verification mechanism depends on the availability of storage servers. Therefore, the challenge
of proof/evidence availability may arise due to a server failure or data corruption, hence, decreasing the reliability of stor-
age correctness verification. Thus, the problem of proof reliability is introduced over the distributed data. A few techniques
proposed in the literature provide the data reliability; however, none of these existing works have considered the proof reli-
ability to the best of our knowledge. To address the new issue of proof reliability, in this paper, we utilize and leverage the
Erasure Coding (EC) to propose a reliable storage correctness verification solution that guarantees the retrieval of evidence
and minimizes the effect of server failure/unavailability. The experimental results demonstrate that the proposed approach
achieves reliability even after the loss of a certain number of fragments, ranging between 2 and 12 depending upon the
number of parity fragments used in the EC scheme. Extensive experiments are performed in real-time, and results show that
our proposed solution is highly efficient than well-known state-of-the-art verification schemes.

Keywords  Cloud computing · Cloud storage · Data auditability · Reliability · Third-party auditor · Erasure coding · Data
integrity · Cloud datacenter

1  Introduction

Cloud computing (Mell and Grance 2011) rapidly provisions
ubiquitous services as per the user requests via the Internet.
However, the multi-tenancy concept of the cloud allows
resources to be shared, leading to new security and privacy
concerns (Khan 2016; Singh and Chatterjee 2017). There-
fore, various insider and outsider attacks (Behl 2011; Gřivna
and Drápal 2019; Tabrizchi and Rafsanjani 2020; Punitha
and Indumathi 2020) occur in the cloud. These attacks can

alter stored data integrity. Hence, the user requires a verifi-
cation mechanism to validate the correctness of the stored
data. Today, we are surrounded by many devices (i.e., IoT
Sensors, Mobile, Laptop) that generate a massive amount of
data in real-time. These data can be outsourced by the client
to enjoy the ubiquitous services of the cloud. Cloud utilizes
resource optimization and allocation policies to enhance its
services and reduce the managing cost. In recent years, the
work in (Sangaiah et al. 2019a, b) targets to reduce energy
consumption while processing and transmitting the data.
The authors in work (Sangaiah et al. 2019a) introduce the
energy-aware solution to achieve information confidential-
ity for cyber-physical security. On the other hand, our work
is relatively towards the integrity verification of the stored
data and minimizing the impact of server failures. The stor-
age systems may experience the unavailability of customer’s
data and proof fragments mostly during peak times and may

 *	 Vikas Chouhan
	 vchouhan@cs.iitr.ac.in

	 Sateesh K. Peddoju
	 sateesh@ieee.org

1	 Department of Computer Science and Engineering, Indian
Institute of Technology Roorkee, Roorkee, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-020-02610-x&domain=pdf

9128	 V. Chouhan, S. K. Peddoju

1 3

lead to customer loss, which may subsequently impact the
business metrics. We believe that any cloud system trust
enhances if CSP deploys a reliable verification mechanism
to maximize the customer’s trust and minimize the impact
of server failures. For the expansion and leveraging of their
business and improving user’s trust, CSP should promise
to incorporate the reliable verification mechanism in the
storage service, which helps in data validation. Several
related works in the literature explain the audit mechanism
(Schwarz and Miller 2006; Wang et al. 2010, 2011, 2013,
2015; Yuchuan et al. 2014; Zhang et al. 2016; Hou et al.
2019; Premkamal et al. 2019; Jayaraman and Panneerselvam
2020) that employ the third-party to verify the correctness of
stored data. Few other works on data correctness verification
are based on signature matching mechanism (Ateniese et al.
2007; Bowers et al. 2009b; Wang 2015). These schemes can
verify the correctness of stored data, but they are incapa-
ble of providing proof reliability when servers fail or data
corrupt. Therefore, we focus on the reliability of the proof
fragments across distributed servers.

Cloud Service Providers (CSPs) such as Microsoft,
Google, Facebook deploy the Erasure Coding (EC) (Plank
et al. 2009; Li et al. 2016; Chouhan and Peddoju 2020)
technique, and that is better than 3-replication technique
(Weatherspoon and Kubiatowicz 2002; Li et al. 2016). The
purpose of using EC is to achieve data consistency, avail-
ability, and reliability. Therefore, the storage systems such as
Windows Azure Storage (WAS) (Huang et al. 2012), Goog-
le’s Colossus (successor of Google File System) (Ghemawat
et al. 2003), Facebook’s HDFS (Hadoop’s Distributed File
System) (Thusoo et al. 2010), Hadoop Adaptively Coded
Distributed File System (HACFS) (Xia et al. 2015), Hitch-
hiker (Rashmi et al. 2014), and IBM’s Parallel File System
(GPFS) (Schmuck and Haskin 2002) have agreed on erasure
coding concept.

It is important to note that the CSPs will lose the custom-
ers and their trust if they do not provide a reliable verifi-
cation mechanism. Hence, achieving high availability and
reliability are the prime concerns in the distributed environ-
ment; therefore, the study in this paper is important.

As the data size grows big, huge sized data fragments are
stored across the servers. During verification, these stored
fragments are required to generate the response against the
received verification request. Thus, the current verification
schemes suffer from expensive aggregation and computation
problems. Therefore, to avoid the burden of data aggrega-
tion and expensive computation operations, we proposed a
mechanism that simplifies the evidence extraction procedure
without data fragments aggregation.

To meet the reliability goal, we utilize and leverage the
EC technique. This technique achieves the reliability by
reconstructing the original data and proof even if some serv-
ers are unavailable or few fragments are corrupted. Thus, we

create the data and proof fragments and then distribute them
to multiple storage servers to achieve availability and reli-
ability. In this paper, we use the words proof and signature
interchangeably.

1.1 � Motivation

In the cloud environment, CSPs distribute and store the
encoded data fragments across the datacenters, which
inevitably pose a new data integrity verification challenge.
However, the users are not aware of their data because these
encoded fragments are not stored as it is in a single place.
Hence, the EC technique brings the auditability challenge
over the distributed secure encoded fragments. In the last
few years, limited erasure code-based verification studies,
e.g., Schwarz and Miller (2006), Wang et al. (2011), Zhang
et al. (2016), Li et al. (2017) and Vasilopoulos et al. (2018,
2019), have been conducted. Among them, the works such
as Schwarz and Miller (2006), Wang et al. (2011) and Vasi-
lopoulos et al. (2018, 2019) have considered the data reli-
ability, but they did not consider proof reliability and require
expensive computations during response generation. There-
fore, the existing techniques are not appropriate for reliable
auditing against such dispersed secure encoded fragments,
leading to the problem of integrity verification. Hence, it is
necessary to provide an auditing mechanism in the cloud due
to the lack of reliable auditing techniques over distributed
secure encoded fragments, which is the design objective of
our proposed approach.

1.2 � Contributions

To provide reliable storage correctness verification in the
cloud environment, we design our own challenge-and-
response queries according to the proposed framework that
verifies the integrity of remote data. In this paper, we made
the following contributions:

•	 We propose a novel reliable verification technique for
distributed encoded data fragments using the Erasure
Coding (EC) technique. It simplifies verification opera-
tion by avoiding aggregation of data fragments. To
achieve reliability, the EC technique enables support in
retrieving back the original data and proof even if some
fragments are lost. We also demonstrate the secure data
storing procedure to the Cloud Storage Servers (CSS) via
the compute server.

•	 We describe a concrete construction of proof retrievabil-
ity based on EC. The proposed approach determines the
signature and uses the EC technique to generate the data
and signature fragments. Then distributes them to the
distinct storage servers. Our proposed solution uses the
third-party to audit the stored data validity over distrib-

9129Reliable verification of distributed encoded data fragments in the cloud﻿	

1 3

uted encoded fragments without downloading the stored
data fragments.

•	 We perform extensive experiments in real-time and
discuss the performance analysis of operations, such as
challenge/response generation, encoding, decoding, reli-
ability, and proof extraction, followed by the comparative
analysis with various well-known state-of-the-art verifi-
cation schemes.

1.3 � Organization

The rest of the paper is organized as follows. Preliminar-
ies are defined in Sect. 2. In Sect. 3, we discuss the erasure
coding mechanism. Related work is summarized in Sect. 4.
In Sect. 5, we present the system model and design goals.
The proposed scheme is presented in Sect. 6. The imple-
mentation and evaluations are shown in Sect. 7. Finally, we
conclude the paper in Sect. 8.

2 � Preliminaries

In this section, we list the notations used throughout the
paper, shown in Table 1, and then describes the primitives
used in our proposed work.

2.1 � Security functions and file operations

This subsection defines the set of functions that are used in
security and file operations.

KeyGen(1�) This algorithm takes a security parameter
( 1�|� ∈ ℕ, i.e. , sequence of 1’s) as an input. This probabilis-
tic algorithm works as per the user requirements. It generates
the secret key {Sk} in the case of symmetric encryption and
generates a public and private key pair {Pk, Sk} in the case
of asymmetric encryption.

C ⟵ E(k, �) This encryption algorithm takes input as
the key k and file contents � , and generates the correspond-
ing ciphertext C.

� ⟵ D(k,C) This decryption algorithm takes input as
the key k and ciphertext C, and outputs the file contents �.

� ⟵ TagGen(�) This algorithm maps the input content
� , and outputs a fixed length tag �.

� ⟵ GenSig(�) This algorithm runs on both client and
compute server side. It takes data as an input, and generates
the corresponding signature � = {0, 1}∗.

� ⟵ ComFrag(�) This function runs at both client and
compute server, that takes an input data, and then returns
their fragments. The number of fragments in the set depends
on the Erasure Code encoding parameter ( �, �).

� ⟵ GetEvc(�) This function runs at client, which takes
data as an input, and then it computes and returns the cor-
responding metadata � . The metadata computation process
first calls the GenSig(�) algorithm to compute the corre-
sponding signature � . Then it calls ComFrag(�) function to
obtain the set of signature fragment �� . Further, it chooses
any one random fragment ��xth ∈ �� as an evidence, called
metadata �.

PUTx(�f , �
�

i
) This function runs at compute server, which

stores the ith data member ��
i
∈ �� with file name �f to the

corresponding storage server x, where x is a member of the
available storage server set SL.

��x
⟵ GetSigx(�f) This function runs at compute server,

which takes file name �f as an input.
This function calls the Cloud Storage Server (CSS) to

obtain a stored signature fragment (��x) from the storage
server x.

Validate(� , ��) This function, invoked by TPA, takes
input as the metadata � and a set of signature fragments �� .
It returns accept status if � belongs to the subset of �� or
reject otherwise.

Table 1   Notations Symbol Description Symbol Description

�f Filename � Set of fragments
� File content � Length of one data fragment
� Tag � Signature
C Ciphertext �� Set of signature fragments
C� Ciphertext of file content C� Encrypted signature
�ch Challenge �′

ith
Concatenation of �ith and C�ith

k Key Uid User ID
Sk Secret key Tid TPA ID
Pk Public key � Number of data fragments
� Metadata � Number of parity fragments
SL Set of available storage server � Total fragments, � + �

9130	 V. Chouhan, S. K. Peddoju

1 3

3 � Background: erasure coding (EC)

In this section, we discuss the EC mechanism that is required
to achieve the reliability.

The cloud datacenters ensure the reliability of stored data
and offer the least affected services even in the unavailability
of a certain number of storage servers. The traditional stor-
age system uses replication technique to provide reliability.
It is too expensive to use the replication system for the big
file in terms of storage and performance (Li et al. 2016).
Therefore, Erasure Coding (EC) (Plank et al. 2009; Li et al.
2016; Chouhan and Peddoju 2020) came into the light
because of its fault tolerance characteristics with least stor-
age cost (Weatherspoon and Kubiatowicz 2002). The pro-
cess of data encoding and decoding is shown in Fig. 1. EC
encoder partitions the input data into � parts, and then it
generates a set of encoded fragments � = {�1, �2, �3,… , ��}
where 𝛾 > 𝛼 . Each encoded fragment contains the portion
of original data. These encoded fragments consists of a sub-
set with � number of data fragments �d = {�d

1
, �d

2
, �d

3
,… , �d

�
}

and the subset with � number of parity fragments
�p = {�

p

1
, �

p

2
, �

p

3
,… , �

p

�
} . This scheme takes only 1/r addi-

tional storage space to offer reliability if the encoding rate r
( = �∕� ) is less than one. EC decoder is used to reconstruct
the actual data from these encoded fragments. Any subset
with � ∈ � number of fragments is sufficient to reconstruct
the actual data. It can tolerates the loss up to � number of
fragments (Li et al. 2016). Reed–Solomon (RS) (Reed and

Solomon 1960) code is one of the well-known EC technique
that is deployed in datacenters. This technique offers signifi-
cantly better reliability than the replication system (Li et al.
2016). The coding scheme is represented as RS(�, �) . RS
code applies � × � generator matrix of w bit words which
performs XOR and multiply operations in a Galois field with
2w different symbols ( GF(2w) ) (Reed and Solomon 1960).

In the proposed approach, we use the Reed–Solomon eras-
ure coding mechanism based on the input sequence of � and
� values to achieve the reliability, error recovery, and fault
tolerance of the data. We achieve the reliability by partition-
ing the data and proof into the fragments to tolerate the loss/
corruption of a few fragments. This process increases data
availability and reliability. We evaluate the probability of the
stored data availability, denoted by Pa , using Eq. 1 (Weath-
erspoon and Kubiatowicz 2002), where M and N denote the
number of currently unavailable servers and the total number
of servers, respectively,

4 � Related work

In this section, we review and analyze the existing works that
aim to perform the verification of the remote storage data.
We discuss the related works in these categories: Provable
Data Possession (PDP) based verification, Proof of Retriev-
ability (PoR) based verification, and Third-Party Auditor
(TPA) based verification.

4.1 � Provable data possession based verification

In the recent years, many works in the literature proposed the
verification techniques of stored data in the cloud (Ateniese
et al. 2007; Bowers et al. 2009b; Wang et al. 2013, 2015;
Wang 2015; Jayaraman and Panneerselvam 2020). All these
techniques verify the data integrity on untrusted storage
without downloading the entire file. Ateniese et al. (2007)
and Wang (2015) discussed the PDP scheme. This scheme
pre-processes the data before uploading, and it allows the
user to verify the server possession. However, it does not
guarantee the data retrievability. Recently, Jayaraman and
Panneerselvam (2020) introduced a privacy-preserving
PDP-based integrity checking framework for cloud data
that supports many functions such as public auditing, an
infinite number of audits, and data confidentiality. In the
case of distributed systems, the PDP scheme cannot verify

(1)

Probability of Data Availability, Pa =

�−�∑

i=0

(
M

i

)(
N −M

� − i

)

(
N

�

) .

Fig. 1   Process of the data encoding and decoding

9131Reliable verification of distributed encoded data fragments in the cloud﻿	

1 3

the storage integrity due to the failure or unreachability of
some servers.

4.2 � Proof of retrievability based verification

Juels and Kaliski (2007) and Bowers et al. (2009b) discussed
the PoR technique to verify the correctness of stored cloud
data. This technique uses sentinels (random-valued check
blocks) to enable spot-checking and it uses error-correcting
code technique to recover the file. Bowers et al. (2009a) pro-
posed a distributed cryptographic system called High-Avail-
ability and Integrity Layer (HAIL). This protocol employs
the Test and Redistribute (TAR) strategy and targets integ-
rity check using the PoRs scheme. However, PDP or PoR
schemes alone are incapable of providing data reliability
and recovery assurance. In other words, these PoR based
verification schemes do not directly support the integrity
verification of dispersed encoded fragments across the CSS
because it does not guarantee the data availability during
server failures. The mentioned schemes can verify the cor-
rectness of stored data, but they fail to provide proof reli-
ability guarantees when servers failure or data corruption
occurs.

4.3 � Third‑party auditor based verification

Several approaches have been proposed in the literature
that employ a third-party (e.g., Schwarz and Miller 2006;
Ateniese et al. 2007; Wang et al. 2010, 2011, 2016, 2020;
Yuchuan et al. 2014; Zhang et al. 2016; Yu et al. 2016; Garg
and Bawa 2017; Sookhak et al. 2017; Li et al. 2017; Vasilo-
poulos et al. 2019; Premkamal et al. 2019) for data integrity
verification. Wang et al. (2012) introduced a lightweight
cloud auditing mechanism. It includes components such as
data dispersal, token pre-computation, error localization,
dynamic update to correct the data error and encounter the
faulty server. This scheme uses a Reed–Solomon coding
scheme and homomorphic tokens to provide data integrity
and availability. Further, Wang et al. (2013) introduced a
TPA scheme to verify the integrity of outsourced data in the
cloud. TPA eliminates the integrity checking and verifica-
tion overhead from customers’ end. The third-party enables
trust in a cloud environment by establishing an agreement
between customers and providers. Besides, Wang et al.
(2011) introduced public auditing mechanism for dynamic
data by manipulating the classic Merkle Hash Tree for
block tag authentication. Moreover, they explored the bilin-
ear aggregate signature (Wang et al. 2011) to allow TPA
to perform the multiple auditing operations simultaneously.
It considered TPA to perform integrity verification of stor-
age data which differs from traditional PDP (Ateniese et al.
2007; Wang 2015) and PoR (Juels and Kaliski 2007; Bowers

et al. 2009b) models. The author used the error-correcting
code to tolerate failures in storage.

Later, Wang et al. (2016) introduced comprehensive
auditing and an identity-based integrity verification solution
to eliminate certificate management overhead. Sookhak et al.
(2017) introduced identity-based data auditing solutions
along with data privacy preservation. They also reduced the
system and managing the cost of the authentication frame-
work by using key-homomorphic cryptographic primitive.
Subsequently, Garg and Bawa (2017) presented an auditing
approach based on Relative Index and Time Stamped (RITS)
and Merkle Hash Tree (MHT). They reduced searching com-
plexity and guaranteed the freshness of data. The work in
Sookhak et al. (2017) introduced the Divide and Conquer
Table based data structure and utilized algebraic properties
to support data auditing for big data. However, this scheme
does not support distributed servers. To deal with shared
data, Gudeme et al. (2020) introduced an attribute-based
integrity verification mechanism for shared data in the cloud
environment. They simplified the key management by using
a unique public key for integrity verification. Besides, Wang
et al. (2020) introduced a blockchain-based private PDP
mechanism to provide distributed data integrity verification
in the cloud storage.

Recently, few studies in Zhang et al. (2016), Li et al.
(2017) and Vasilopoulos et al. (2018, 2019) demonstrated
data auditability using erasure codes. Zhang et al. (2016)
used an indistinguishability obfuscation mechanism to ver-
ify the data integrity and reduced computation overhead for
auditors. Later, Li et al. (2017) introduced a fuzzy identity-
based data verification scheme with error-tolerance proper-
ties. For their work, they used the biometric-based identity.
Vasilopoulos et al. (2018), first proposed a data reliability
solution and integrity verification of cloud data by exploiting
PDP with time-constrained operations. They affixed redun-
dant information with data to provide recovery from data
corruption. Later, they upgraded their solution in Vasilo-
poulos et al. (2019) for distributed storage using a time-lock
puzzle to guarantee data reliability.

In summary, we reviewed the most relevant literature
that verifies the data integrity of remote storage. Addition-
ally, we compared several existing works in Table 2 based
on various parameters such as public auditing, auditing
entity, proof reliability over distributed fragments, encoding
scheme, auditability over distributed EC fragments, number
of verification, data integrity, data recovery support, reduced
server dependency, maintaining the confidentiality of data,
privacy preservation, and data reliability. Only a few authors
in Schwarz and Miller (2006), Wang et al. (2011) and Vasi-
lopoulos et al. (2019) incurred the auditability over EC frag-
ments. However, none of them have addressed the issue of
proof reliability over distributed storage. The existing works
in Wang et al. (2011) and Vasilopoulos et al. (2018, 2019)

9132	 V. Chouhan, S. K. Peddoju

1 3

have been able to reduce the server requirements while
downloading the data. None of the existing works, except
Schwarz and Miller (2006), Wang et al. (2011) and Vasi-
lopoulos et al. (2018, 2019), incurred data reliability, and
recovery support.

The discussed solutions in the literature mainly focus
on TPA-based verification techniques, and a few of them
consider the reliability mechanism for data only. However,
our scheme focuses on the reliability of the proof fragments
across distributed servers. Thus any of the existing schemes
are not directly comparable to the proposed work. Therefore,
we present the functionality based comparison in Table 2.
Besides, we present a complexity-based comparison in
Sect. 7.2.6.

To the best of our knowledge, the existing literature has
not explored towards the reliability of stored proof or evi-
dence. Incited by the aforementioned discussions, the pro-
posed scheme focuses on proof reliability. Moreover, the
proposed scheme provides storage correctness assurance and
recoverability, even in case of the unavailability of a few data
fragments or storage servers.

5 � System model and design goals

In this section, we present the system model that describes
the proposed scheme. Then we present the design goals.

5.1 � System model

A representative system model of the proposed work is illus-
trated in Fig. 2. The model consists of the following entities:

Client/User (U): an entity that uses the cloud data storage
services. It initiates data auditing, uploading, download-
ing, and deleting requests. The user can be an individual
client or an enterprise.
Third-Party Auditor (TPA): a trusted entity that verifies
the integrity of stored user data on cloud storage servers.
Compute Server (CS): an entity that manages the clients’
data operations and handles TPA audit requests. It pro-
cesses the received user data, and then it computes the

Table 2   Functionality
comparison of verification
schemes

Labels 1–12 represent the following properties: (1) public auditing, (2) auditing entity, (3) proof reliability
over distributed fragments, (4) encoding scheme, (5) auditability over distributed EC fragments, (6) no.
of verification, (7) data integrity, (8) data recovery support, (9) reduced server dependency, (10) maintain
confidentiality of data, (11) privacy preservation, (12) data reliability
Abbreviations are defined as follows: U user/client, TPA third-party auditor, FIN finite, INF infinite, EC
erasure coding, RS Reed–Solomon, MDS maximum distance separable, Y Yes, N No, and “–” means not
mentioned

Scheme 1 2 3 4 5 6 7 8 9 10 11 12

Schwarz and Miller (2006) Y U/TPA N EC Y INF Y Y – N – Y
Ateniese et al. (2007) Y U/TPA N – N INF Y N N N N N
Ateniese et al. (2008) N U N – N FIN Y N N – Y N
Erway et al. (2009) N U N – N INF Y N N N N N
Wang et al. (2010) Y TPA N – N INF Y N N N Y N
Wang et al. (2011) Y U/TPA N EC Y INF Y Y Y – N Y
Chen (2013) N U N – N INF Y N N N N N
Chen et al. (2013) N U N – N INF Y N N N N N
Yuchuan et al. (2014) Y U/TPA N – N INF Y N N N N N
Yu et al. (2014) N U N – N INF Y N N – N N
Yu et al. (2015) N U N – N INF Y N N N N N
Zhang et al. (2016) Y TPA N EC N INF Y N – N Y N
Wang et al. (2016) Y TPA N – N INF Y N N N N N
Yu et al. (2016) Y U/TPA N – N INF Y – N Y Y N
Garg and Bawa (2017) Y U/TPA N – N INF Y N N N N N
Li et al. (2017) Y U/TPA N EC N INF Y N – N N N
Sookhak et al. (2017) Y U/TPA N – N – Y N N – Y N
Vasilopoulos et al. (2018) N U – MDS N – Y Y Y – – Y
Vasilopoulos et al. (2019) Y U/TPA – MDS Y – Y Y Y – – Y
Jayaraman and Panneerselvam (2020) Y TPA N – N INF Y N N Y Y –
Ours Y U/TPA Y RS Y INF Y Y Y Y Y Y

9133Reliable verification of distributed encoded data fragments in the cloud﻿	

1 3

corresponding fragments using EC. These fragments are
uploaded to the distinct CSS’s.
Cloud Datacenters: an entity which is operated by CSP
to store/retrieve user data.

The proposed scheme focuses on the verification mecha-
nism rather than security aspects. Thus, we assume that the
underneath communication between entities is secured via
IPSec or SSL/TLS.

5.2 � Design goals

We aim to design an efficient data verification mechanism
to achieve the following goals:

Storage Correctness Assurance: The proposed approach
aims to ensure the correctness of dispersed secure
encoded fragments across the cloud datacenters. It
enables the third-party verification mechanism. Subse-
quently, TPA verifies the integrity of stored data at any
time or periodically.
Error Correction and Fault Tolerance: The proposed
framework achieves data and signature availability and
reliability. It refers to the scenario where the verification
process should be unaffected even if some servers are
down. In addition, the compute server repairs the stored
data/signature when it finds an error during the recon-
struction phase.
Lightweight Communication: The verification process
exchanges minute evidence messages in the form of sig-
natures rather than actual data between entities.

6 � Proposed scheme

In this section, we present an overview of the proposed
work, followed by a detailed description of the scheme.

6.1 � Overview

This subsection presents an overview of the proposed
scheme that offers the stored data verification mechanism
using the EC technique. Specifically, we focus on the proof
availability and reliability against the unavailability of �
fragments or storage nodes.

We also demonstrate the proposed upload and dispersal
procedure in order to validate stored encoded fragments
during the verification phase. Apart from that, our scheme
supports efficient fault tolerance and high availability for
both data and proof fragments. It allows the data and proof
reconstruction from the minimum number of fragments, thus
providing fault tolerance and reliability. TPA and compute
server play a crucial role in this verification process. The cli-
ent and compute server both perform some crucial tasks dur-
ing the data uploading process to enable reliable auditability
over the encoded fragments. Subsequently, we present the
data verification procedure where TPA can verify the integ-
rity of the stored user data at any time or periodically. First,
we illustrate a file uploading scenario followed by a detailed
description of the proposed scheme.

6.1.1 � Data uploading scenario

This section demonstrates, through Fig. 3, the file upload-
ing scenario to achieve reliability during the verification
phase. The user initiates the uploading process. To achieve
confidentiality, first it encrypts the input data � with their
own secret key USk

 to get the encrypted data C� , and then it
generates the corresponding metadata � from C� . Further, it

Fig. 2   System model of the proposed work

Fig. 3   Data uploading scenario

9134	 V. Chouhan, S. K. Peddoju

1 3

encrypts � using dedicated TPA public key and sends this
encrypted metadata with some essential information, i.e.,
Uid , Sid,and � to the registered TPA. Meanwhile, the user
sends the encrypted data C� to the compute server. Subse-
quently, TPA decrypts the received encrypted data using its
own private key and then stores this decrypted information
for future data validation testing.

The compute server processes the received data to deter-
mine the corresponding tag and list of available storage
servers. Subsequently, it inserts the essential information,
i.e., � , �f  , Uid , S′L into the compute database. Then it gener-
ates the signature from the received data. Compute server
performs encoding operation simultaneously for both data
and signature. Data encoding module generates the set of
encoded data fragments {�1, �2, �3,… , ��} correspond-
ing to the received data C� and the signature encoding
module generates the set of encoded signature fragments
{�1, �2, �3,… , ��} corresponding to the input signature. Fur-
ther, the compute server merges the data and signature frag-
ments and then stores them at the distinct available storage
servers. It is noted that the proof fragments are stored along
with data fragments across the storage servers. Therefore, in
response generation against received verification requests,
our approach extracts only the proof fragments rather than
the data fragments. Thus, it avoids the burden of data frag-
ment aggregation.

Here we achieve the proof reliability using erasure cod-
ing. We store the � number of encoded signature fragments
along with the data fragments so that we can recover the
actual proof from any � number of signature fragments. It
can tolerate up to the � number of corrupted proof fragments.

6.2 � Description of the scheme

This subsection presents a comprehensive exhibition of the
proposed scheme. First, we discuss the metadata computa-
tion procedure, and then we describe the data uploading and
dispersal procedure, followed by the discussion on the data
verification procedure.

6.2.1 � Metadata computation

User preprocesses the encrypted data for the verification
purpose. Figure 4 shows the metadata computation process
where user generates the secret key Sk via KeyGen algo-
rithm. During computation process, it encrypts the data �
using the key Sk to get the corresponding ciphertext C� . Sub-
sequently, it executes the GenSig algorithm to compute the
signature � corresponding to the ciphertext C� . It calls the
algorithm ComFrag which takes � as an input and generates
the set of signature fragments �� . Eventually, user picks a
random element ��xth from the resultant set �� . This ��xth is
referred as a metadata �.

6.2.2 � Data uploading and dispersal procedure

In the data uploading procedure, four entities are primarily
involved, including User, Compute Server, Cloud Storage
Servers, and TPA. Initially, the client is registered with TPA
to get a particular cloud service where TPA has a list of
CSPs and corresponding compute servers. Figure 5 shows
the operation sequence of uploading and dispersal of user
data to ensure auditability over distributed encoded data. The
user initiates the data uploading process. First it encrypts the
data � with its own secret key Sk to create data ciphertext
C� . This data ciphertext is sent with the upload request to
the compute server. Further, it determines the tag � of C� by
calling TagGen algorithm and also extracts the metadata �
by executing the function GetEvc. Then it encrypts the meta-
data � with the TPA public key PkTPA

 . Subsequently, it sends
some essential information with the encrypted metadata C�
to the registered TPA. At TPA, it determines the metadata
by decrypting the received C� with its own secret key Sk and
then TPA securely keeps this metadata � . At the compute
server, it processes and stores the received encrypted data
in a way to provide reliable auditability over the securely
encoded data fragments. It executes Algorithm 1, which
fragments the received ciphertext C using EC technique and
distributes all these encoded fragments across the � storage
servers.

Fig. 4   Preprocess: compute metadata

Fig. 5   Operation sequence for uploading and dispersal of data

9135Reliable verification of distributed encoded data fragments in the cloud﻿	

1 3

Algorithm 1 takes the received ciphertext C as an input
and returns the status either success or failure. The algorithm
performs the following operations:

1.	 It calls the algorithm GenSig which takes ciphertext C
as an input and generates the corresponding signature �.

2.	 Then it parallelly executes the function ComFrag for
both C and � to get the set of data fragments � and set of
signature fragments �� , respectively.

3.	 Further, it generates the tag and filename correspond-
ing to the received data using Base64 or the preferred
encoding.

4.	 Now, the function getAvailSSList is executed to get the
list of available storage servers, stored in a set SL.

5.	 For each element of the set � , it performs the following
operations:

(a)	 It computes the hash value from the data fragment
�i where �i ∈ � , using SHA hash function. This
hash value is used as a key k.

(b)	 Then it encrypts the signature fragment ��i where
��i ∈ �� , with key k, to get the resultant ciphertext
C�i

(c)	 Then it appends the computed ciphertext C�i
 with

data fragment �i to get the new composite coded
fragment �′

i
.

(d)	 Then it calls the function PUTSLi to store �′
i
 at one

of the available storage server SLi ∈ SL with file-
name �f for all i where 1 ≤ i ≤ �.

(e)	 It appends the storage server address SLi of the
stored fragment to the set S′

L
 , and then it removes

the SLi entry from the set SL.

6.	 The algorithm finally inserts a tuple ⟨Uid, �, �f , S
′
L
⟩ into

the compute database and returns the status as either
success or failure. The algorithm returns a failure status
if it cannot store all the encoded fragments �′

i
 at some

storage servers, due to some server failure.

Our proposed procedure encodes the data and signature into
the fragments and distributes them across the datacenters to
achieve privacy and reliability. Further, it encrypts each sig-
nature fragment using the data fragment-based key to secure
the signature fragments. Finally, these fragments are used to
validate the storage integrity.

6.2.3 � Data verification/auditing procedure

This section illustrates the auditing procedure, shown in
Fig. 6, to validate the stored data fragments across the data-
centers. To audit the stored data integrity, the user sends the
audit request to the TPA and gets back its validity status.

9136	 V. Chouhan, S. K. Peddoju

1 3

Moreover, TPA periodically performs a validity check to
ensure the correctness of the stored data. This verification
procedure is divided into two phases, as discussed below.

Phase I: TPA Side Operations
In this phase, TPA plays the role of the verifier. It initi-
ates the challenge �ch request that supplies Uid, � to the
compute server and gets back the proof C��

 (encrypted
signature fragments set). It picks tag �i of particular file
that belongs to user Uid to create the challenge �ch , and
further sends it to the compute server and gets back the
resulting proof evidence C��

 :

 During validation check, TPA decrypts the received C��

with its own secret key Sk to get the resulting set of frag-
ments �� . Then it attempts to reconstruct the signature �′
from the received fragments set �� = {�1, �2, �3,… , ��} .
This reconstruction process uses the decoding module of
erasure code.
Decoding error may occur during the reconstruc-
tion process that represents the invalidity of the stored
information. To verify the integrity of stored data, it
calls the function Validate(� , ��) that returns the valid-
ity status as either accepted or rejected. The stored data
at CSP is valid if decoding operation finishes without
any error and metadata � is equivalent to any fragment
of the set �� . If � doesn’t match with any of the frag-
ment belonging to �� , the TPA performs the additional
operations. It selects all � fragments from �� and creates
a pair of the signature sets, each with � − 1 elements,
and both the sets must contain one distinct element that
is not present in other set. Then the stored metadata �
is inserted into both the sets to get the temporary pair
of fragment set

t1
��
�
= {

t1
��
1
,
t1
��
2
,
t1
��
3
,… ,

t1
��
�
} and

Challenge, �ch = {Uid || �i}.

t2
��
�
= {

t2
��
1
,
t2
��
2
,
t2
��
3
,… ,

t2
��
�
} . Then it attempts to

reconstruct the signature �′′
1

 and �′′
2

 from the set
t1
�′
�
 and

t2
�′
�
 , respectively. To decide the correctness of the stored

data, the proposed approach compares �′ and �′′
1
 . If result

is false, then we need to compare �′ and �′′
2

 . Stored data
is corrupted when both the comparisons return the false
result; otherwise, stored data is uncorrupted.

Phase II: Compute Server Side Operations
This phase generates a response against the received veri-
fication challenge. Upon receiving the challenge �ch , it
invokes the Algorithm 2, which extracts the stored sig-
nature fragment from any � storage servers, and then it
creates a response message corresponding to the received
challenge.

Evidence extraction: The evidence extraction procedure
for verification is demonstrated using Algorithm 2, which
runs at the compute server. This algorithm takes �f  , S′L , PkTPA

as input and returns the ciphertext of the extracted signature
fragments set C��

 as a response. The signature fragment is
stored on all the � number of servers, and � is the minimum
number of server access required to get all � fragments.
These fragments are sufficient to reconstruct the original
signature to achieve proof reliability. Therefore, the signa-
ture fragments are retrieved from any � number of storage
servers, which belong to the set of available storage servers,
S′
L
 are sufficient to achieve reliability. The following steps

are involved in the evidence extraction procedure:

1.	 For each element in the set S′
L
 , it performs the following

operations in parallel, at � number of storage servers:

Fig. 6   Verification procedure of
erasure fragments

9137Reliable verification of distributed encoded data fragments in the cloud﻿	

1 3

(a)	 It calls the function GetSigS�
Li

(�f) to obtain the
stored signature fragments ��i . The function
GetSigS′

Li

 fetches the stored signature fragments by
executing the Algorithm 3. This is deployed on the
storage server nodes.

(b)	 Then it appends the ��i to the signature fragment
set ��.

(c)	 The count variable keeps track of the number of
accessed fragments. If fragments are retrieved
from � number of storage servers, the algorithm
performs the break operation to exit from the loop
and performs the subsequent steps.

2.	 Further, it encrypts the resulting signature set �� with the
public key PkTPA

 of TPA to get the encrypted signature
fragments set C��

.
3.	 Then, it returns this encrypted signature set C��

.

The CSS node executes Algorithm 3 to retrieve the stored
signature fragment. This algorithm takes filename �f as input
and returns the stored signature fragment. The following
steps are involved in retrieving the stored signature fragment.

1.	 First, it calls the function ReadFile(⋅) . This function
reads the file �f and returns the file contents � , where �
is the stored fragment �′

xth
.

2.	 Then it extracts the data fragment �xth and signature frag-
ment C�xth

 from �.
3.	 Now, the function H(⋅) returns the hash value of the

input data �xth . This hash value is used as a key to decrypt
the encrypted signature fragment which helps in storage
correctness identification.

4.	 This decrypted signature fragment ��xth is returned to the
caller.

9138	 V. Chouhan, S. K. Peddoju

1 3

During a minor corruption/loss of fragments, The CSP
initiates the recovery process. Before sending the TPA
response, the compute server attempts to decode �� to ensure
that all the fragments are uncorrupted. If the compute server
is unable to decode the signature from any � number of frag-
ments, it tries to recover the actual signature from all the
� fragments. Even if it cannot decode and reconstruct the
signature from all these � fragments, it tries to recover the
original signature from the stored data fragments. Then it
retrieves any � data fragments from the storage servers,
decodes them, and tries to reconstruct the stored data. If a
decoding error occurs, it requires all � number of data frag-
ments as input to the decoding module to recover the origi-
nal data. After recovering the original data, it calls the Algo-
rithm 1 to compute the signature and data fragments, and
then stores them to the storage servers. This reconstruction
and recovery process enables fault tolerance to the storage.

In this verification phase, the data is secured from the
TPA. Suppose, TPA wants to retrieve the stored data from
the cloud storage. TPA will not be able to retrieve because
it can deal only with the signature fragments. Our scheme
retrieves a signature fragment from any � out of � storage
servers, to create the required response. Thus, we achieve
proof reliability in constructing a response against the
received challenges.

7 � Performance evaluation

In this section, we discuss the implementation setup includ-
ing packages and libraries, followed by the performance
analysis and results.

7.1 � Implementation details

Experimental setup: The testing environment comprises of
Intel®CoreTM i7-3770 CPU @ 3.40 GHz processor with 8
cores, 8 GB RAM, Ubuntu 14.04 64-bit operating system
with Python2.7-dev package, and various Python-based
libraries for each entity. Our implementation setup uses the
Python language and the MySQL database. We consider the
SHA-256 secure hash algorithm for generating cryptographic
hash value, PyECLib-1.2.0 library with liberasurecode-dev
for constructing encoded fragments, and Advanced Encryp-
tion Standard (AES) for symmetric-key encryption/decryp-
tion algorithms using Python’s crypto library. Any customiz-
able storage datacenter can be used for storing and retrieving
the data. Our implementation uses Dropbox as a data center,
where we create multiple Dropbox accounts. These accounts
are used as storage servers to store the encoded fragments.

We implement cloud storage data verification technique
over the distributed encoded fragments and perform exten-
sive experiments in real-time. Our implementation com-
prises multiple modules including User, TPA, Compute
Server, and Datacenters. Each module is implemented on a
separate machine. The user can request uploading, auditing,
downloading, deleting, and viewing the stored files through
the designed command-line tool. Further, the command line
operations are offered to the users, such as EOF to exit from
the command prompt, upload < source file > to upload the
source file to the cloud, ls command to view the list of the
stored filenames, download < file name > to download the
file from the cloud, audit < file name > to audit the stored
file and delete < file name > to remove the file from the
cloud storage.

In our experiments, the compute server performs the
CSS’s computation jobs because, at present, Dropbox does
not allow the users to run the algorithm on the top of their

Fig. 7   Reliability achieved with RS encoding Fig. 8   Recovery of the unavailable fragments during server failures

9139Reliable verification of distributed encoded data fragments in the cloud﻿	

1 3

storage servers. Therefore, the compute server first retrieves
the extracted signatures from the CSS and performs the
requested auditing operations on the local compute machine
for the testing purpose. We create an app for each Dropbox
account and generate the app keys and secrets for accessing
permissions, which is a standard mechanism used to access
the Dropbox account. Further, we also generate self-signed
certificates via OpenSSL in order to authenticate all the
entities.

7.2 � Performance analysis and results

In this subsection, first, we discuss the availability and reli-
ability results with various input variables. Then, we ana-
lyze the computation cost of various operations for proof
verification. We also analyze the execution time for encod-
ing, decoding, and signature fragment extraction operations.
Later, we analyze the operation cost of signature fragments.
Then we present the comparative analysis between the

proposed technique and other state-of-the-art techniques of
data verification.

We consider the testing datasets for conducting the exper-
iments. These datasets contain multiple files that are cre-
ated with random contents, and the size of files belongs to
{22∗i ; 5 ≤ i < 15} bytes, giving file range of 20 to 218 Kilo-
bytes. We grouped these files into two sets, i.e., small and
large, for analyzing the execution costs. In our experiments,
the Python timeit module is used to evaluate execution time.

7.2.1 � Reliability analysis

We analyze the data availability with RS encoding on vari-
ous ( � , � ) pairs. Assume that the total existing servers be
N = 100000 and let M = 20% are unavailable.

Figure 7 shows the achieved reliability in terms of data
availability. We consider the number of data fragments
ranging between 3 and 16 and the number of parity frag-
ments ranging between 2 and 12. Then we use all the

(a) (b)

Fig. 9   Execution time of challenge generation and integrity proof operations during verification

(a) (b)

Fig. 10   Execution time for metadata and response generation

9140	 V. Chouhan, S. K. Peddoju

1 3

combinations that can be generated from the data fragments
� = {3, 4, 5, 6, 8, 10, 12, 14, 16} and the parity fragments
� = {2, 3, 4, 6, 8, 10, 12} to analyze the data availability. The
minimum availability Pa = 0.2713 is achieved at RS(16, 2)
and maximum availability Pa = 0.999999943 at RS(3, 12) .
As can be seen from the Fig. 7, it achieves almost 99.99%
of data availability and high reliability at � = 10 and 12 .
Further, the reliability increases with the increase in the
parity fragments. In particular, at � = 3 and � = 2 , the RS
encoding provides the data availability with 0.94 probability
and can tolerate the loss of two fragments. These encoding
parameters take limited parity costs; thus, we use RS(3, 2)
for evaluating the execution time of various operations on
data and signature fragments.

Further, we examined the impact of server failures dur-
ing response generation operation, as presented in Fig. 8.
As seen in the graph, it can guarantee the recovery of the
evidence up to 40% of server failures.

7.2.2 � Computation cost analysis of various operations
for proof verification

We repeat each operation 1000 times to evaluate minimum,
average, and maximum execution time. Then we consider
the average time to present the result of these operations.
First, we evaluate the computation cost of challenge gen-
eration and integrity proof operations in Fig. 9. The verifier
executes these operations where verification operation takes
constant time in microseconds ranging between 7−16 μs
because it is independent of data size. Since the challenge
generation operation requires extremely less time relative to
Proof operations, we scale the execution cost of challenge
generation by 105 in the graph. We then present the compu-
tation cost for metadata and response generation operations
in Fig. 10, which depends on the input data size. As can be
seen in Fig. 10a, both take constant time ( < 0.9ms ) for data

size up to 64 KB, and then the execution time exponentially
increases with the increase in data size for larger files in
Fig. 10b. However, these operations take a minimal amount
of time in milliseconds (ms). Metadata generation operation
works on the user-side while the response generation opera-
tion performs on the cloud server.

7.2.3 � Encoding, decoding and signature extraction analysis

The compute server executes all the operations such as
data encoding and decoding operations to store and retrieve
the user data to/from the CSS’s. We use Reed–Solomon,
RS(� = 3, � = 2) scheme to evaluate the execution time of
these encoding and decoding operations. Moreover, we also
evaluate the extraction time of all the stored signature frag-
ments from the CSS corresponding to the input dataset. We
repeat these operations 1000 times to evaluate minimum,
average, and maximum execution time. We consider the

(a) (b)

Fig. 11   Execution time of data encoding, decoding, and signature fragments extraction

Fig. 12   Execution time of various operations on signature fragments

9141Reliable verification of distributed encoded data fragments in the cloud﻿	

1 3

average time to present the results of these operations. Fig-
ure 11 shows the execution time of these operations corre-
sponding to the input dataset. As can be seen in Fig. 11, the
execution time for data encoding, decoding, and signature
fragments extraction time is very low ( < 6.74ms ) for data
size up to 1 MB. Then the time for encoding and signature
fragment exponentially increases with the increase in data
size. However, decoding time doesn’t increase at the rate
of encoding time due to more computation overhead in the
encoding phase (Plank et al. 2009).

The signature extraction process runs simultaneously on
each server due to the parallelism achieved because of the
stored signature (single fragment) extraction process at one
CSS is independent of the other.

7.2.4 � Operation cost analysis of the signature fragments

We measure the execution cost of operations like encoding,
decoding, encryption, decryption, and verifying the signa-
ture fragments. We repeat these operations 1000 times to
evaluate minimum, average, and maximum execution time.
We consider the average execution time to present the results
of these operations. Figure 12 shows these various opera-
tions with the minimum, average, and maximum execution

time in microseconds ( μs ). The verification operation is per-
formed on the TPA, and all other operations are executed on
the compute server. The average execution time of signature
encoding and decoding operations are approximately 5 μs ,
and the average encryption and decryption execution time of
signature fragment are approximately 37 μs . The verification
process takes approximately 7−19 μs . These operations take
a very minute amount of time which is in microseconds ( μs).

7.2.5 � Complexity analysis

This subsection analyses the complexity of various com-
putation operations. In the proposed approach, O(�) is the
server’s computation complexity. It is computed by extract-
ing the signature fragment using a hash and a decryption
operation. To produce the empirical evidence, these opera-
tions are simultaneously executed on the � number of CSS
where alpha is a constant. One hash function takes the input
that is the length of a fragment and produces an output of
constant length with O(�) complexity. Whereas, decryption
operation completes in constant time.

The proposed scheme has constant client computation
complexity and client storage complexity because the client
does not need to store any metadata, and the client doesn’t

Table 3   Operation complexity
comparison between the
proposed and existing
verification schemes

n is the file blocks, c is the sampled blocks, � is the data blocks, � is the length of the fragment, s is the
block segments, d is the authorized users, � is the data blocks, and “–” means not mentioned

Scheme Client
storage com-
plexity

Communica-
tion complex-
ity

Client compu-
tation complex-
ity

Server
computation
complexity

Verifier
computation
cost

Schwarz and Miller (2006) O(1) O(n) O(1) O(n) O(1)
Ateniese et al. (2007) O(1) O(1) O(1) O(1) O(c)
Ateniese et al. (2008) O(1) O(1) O(1) O(1) O(1)
Erway et al. (2009) O(1) O(log n) O(log n) O(clog n) O(clog n)
Wang et al. (2010) O(1) O(clog n) O(s) O(clog n) O(clog n)
Wang et al. (2011) O(1) O(log n) O(log n) O(log n) O(1)
Chen (2013) O(1) O(log n) O(1) O(1) O(1)
Chen et al. (2013) O(1) O(log n) O(1) O(1) O(1)
Yuchuan et al. (2014) O(1) O(1) O(n) O(c) O(c)
Yu et al. (2014) O(1) O(log n) O(log n) O(log n) O(log n)
Yu et al. (2015) O(1) O(log n) O(log n) O(log n) O(log n)
Zhang et al. (2016) O(1) O(clog n) – O(clog n) O(clog n)
Wang et al. (2016) O(1) O(c + s) – O(c) O(c + s)
Yu et al. (2016) O(1) O(c) – O(c) O(c)
Garg and Bawa (2017) O(1) O(clog n) – O(clog n) O(clog n)
Li et al. (2017) O(1) O(c + s) – O(c) O(d.c + s)
Sookhak et al. (2017) – O(c) O(c) O(cn) O(c)
Vasilopoulos et al. (2019) O(s.�) – O(2n) O(2n) O(2n)
Ours O(1) O(1) O(1) O(�) O(1)

9142	 V. Chouhan, S. K. Peddoju

1 3

perform any computation. It only initiates the verification
request to the TPA. The proposed scheme has a constant
verifier computation cost at TPA because TPA performs
the signature matching operation which takes only constant
time. Our scheme’s communication complexity takes con-
stant time to communicate proofs with a client because it
sends only the small signature fragments for correctness
verification.

7.2.6 � Comparative analysis of various verification schemes

Table 3 compares the operation complexity of the proposed
approach with the existing verification schemes based on
various parameters such as client storage complexity, com-
munication complexity, client computation complexity,
server computation complexity, and verifier computation
cost. From the table, we can see that the Vasilopoulos et al.
(2019) has maximum client, server, and verifier computation
cost and maximum client storage complexity while Schwarz
and Miller (2006) has maximum communication cost dur-
ing the data verification. However, the proposed scheme
takes constant time, i.e., O(1) to perform all these opera-
tions except server computation costs during the verifica-
tion. Besides, our scheme considers proof reliability over
distributed fragments. Hence, we can conclude that the pro-
posed approach is relatively better than other state-of-the-art
approaches.

8 � Conclusion

To conclude, this research introduces a novel technique for
the reliable verification of encoded fragments stored across
the cloud datacenters. RS(�, �) , a type of eraser coding, is
innovatively used in this research work for creating data
and signature fragments. The proposed technique achieves
high availability and reliability of signature by storing its
fragments in a distributed fashion similar to the data. We
perform extensive experiments in real-time and discuss the
performance analysis of various operations. Experimental
results vividly demonstrate the availability and reliability
matrices as per the various combinations of data and parity
fragments. Results show that RS(3, 2) provides 0.94 prob-
ability of data availability with least parity cost and signifi-
cantly high reliability up to 99.99% with parity fragments 10
and 12. Hence, high availability and reliability of signature,
along with the data, leads to reliable verification of the dis-
tributed fragments of data, even in the case of unavailability
of a set of servers in the cloud. In the future, we will explore
our work by adopting the blockchain technology to establish
direct trust between the users. So, the user does not need to
depend on the third-party to validate stored data integrity.

References

Ateniese G, Burns R, Curtmola R, Herring J, Kissner L, Peterson Z,
Song D (2007) Provable data possession at untrusted stores. In:
Proceedings of the 14th ACM conference on computer and com-
munications security. ACM, New York, NY, USA, pp 598–609

Ateniese G, Di Pietro R, Mancini LV, Tsudik G (2008) Scalable and
efficient provable data possession. In: Proceedings of the 4th inter-
national conference on security and privacy in communication
networks. ACM, New York, NY, USA, pp 1–10 (Article number
9)

Behl A (2011) Emerging security challenges in cloud computing: an
insight to cloud security challenges and their mitigation. In: 2011
World Congress on information and communication technologies.
Mumbai, MH, India, pp 217–222

Bowers KD, Juels A, Oprea A (2009a) HAIL: a high-availability and
integrity layer for cloud storage. In: Proceedings of the 16th ACM
conference on computer and communications security. ACM, New
York, NY, USA, pp 187–198

Bowers KD, Juels A, Oprea A (2009b) Proofs of retrievability: theory
and implementation. In: Proceedings of the 2009 ACM workshop
on cloud computing security. ACM, New York, NY, USA, pp
43–54

Chen L (2013) Using algebraic signatures to check data possession in
cloud storage. Future Gener Comput Syst 29(7):1709–1715

Chen L, Zhou S, Huang X, Xu L (2013) Data dynamics for remote
data possession checking in cloud storage. Comput Electr Eng
39(7):2413–2424

Chouhan V, Peddoju SK (2020) Investigation of optimal data encod-
ing parameters based on user preference for cloud storage. IEEE
Access 8:75105–75118

Erway C, Küpçü A, Papamanthou C, Tamassia R (2009) Dynamic
provable data possession. In: Proceedings of the 16th ACM con-
ference on computer and communications security. ACM, New
York, NY, USA, pp 213–222

Garg N, Bawa S (2017) RITS-MHT: relative indexed and time stamped
Merkle hash tree based data auditing protocol for cloud comput-
ing. J Netw Comput Appl 84:1–13

Ghemawat S, Gobioff H, Leung ST (2003) The google file system.
In: Proceedings of the nineteenth ACM symposium on operating
systems principles. ACM, New York, NY, USA, pp 29–43

Gřivna T, Drápal J (2019) Attacks on the confidentiality, integrity and
availability of data and computer systems in the criminal case law
of the Czech Republic. Digit Investig 28:1–13

Gudeme JR, Pasupuleti SK, Kandukuri R (2020) Attribute-based public
integrity auditing for shared data with efficient user revocation in
cloud storage. J Ambient Intell Humaniz Comput 1–14

Hou H, Yu J, Hao R (2019) Cloud storage auditing with deduplication
supporting different security levels according to data popularity.
J Netw Comput Appl 134:26–39

Huang C, Simitci H, Xu Y, Ogus A, Calder B, Gopalan P, Li J, Yekha-
nin S (2012) Erasure coding in windows azure storage. In: Pro-
ceedings of the 2012 USENIX conference on annual technical
conference. USENIX Association, pp 15–26

Jayaraman I, Panneerselvam AS (2020) A novel privacy preserving
digital forensic readiness provable data possession technique for
health care data in cloud. J Ambient Intell Humaniz Comput 1–14

Juels A, Kaliski BS Jr (2007) Pors: proofs of retrievability for large
files. In: Proceedings of the 14th ACM conference on computer
and communications security. ACM, New York, NY, USA, pp
584–597

Khan MA (2016) A survey of security issues for cloud computing. J
Netw Comput Appl 71:11–29

Li P, Jin X, Stones RJ, Wang G, Li Z, Liu X, Ren M (2016) Parallel-
izing degraded read for erasure coded cloud storage systems using

9143Reliable verification of distributed encoded data fragments in the cloud﻿	

1 3

collective communications. In: 2016 IEEE Trustcom/BigDataSE/
ISPA, Tianjin, China, pp 1272–1279

Li Y, Yu Y, Min G, Susilo W, Ni J, Choo KKR (2017) Fuzzy identity-
based data integrity auditing for reliable cloud storage systems.
IEEE Trans Dependable Secur Comput 16(1):72–83

Mell P, Grance T et al (2011) The NIST definition of cloud computing.
NIST Spec Publ 800(145):1–4

Plank JS, Luo J, Schuman CD, Xu L, Wilcox-O’Hearn Z et al (2009) A
performance evaluation and examination of open-source erasure
coding libraries for storage. Fast 9:253–265

Premkamal PK, Pasupuleti SK, Alphonse P (2019) A new verifi-
able outsourced ciphertext-policy attribute based encryption for
big data privacy and access control in cloud. J Ambient Intell
Humaniz Comput 10(7):2693–2707

Punitha AAA, Indumathi G (2020) A novel centralized cloud infor-
mation accountability integrity with ensemble neural network
based attack detection approach for cloud data. J Ambient Intell
Humaniz Comput 1–12

Rashmi K, Shah NB, Gu D, Kuang H, Borthakur D, Ramchandran K
(2014) A “hitchhiker’s” guide to fast and efficient data reconstruc-
tion in erasure-coded data centers. SIGCOMM Comput Commun
Rev 44(4):331–342

Reed I, Solomon G (1960) Polynomial codes over certain finite fields.
J Soc Ind Appl Math 8(2):300–304

Sangaiah AK, Medhane DV, Bian GB, Ghoneim A, Alrashoud M, Hos-
sain MS (2019a) Energy-aware green adversary model for cyber-
physical security in industrial system. IEEE Trans Ind Inform
16(5):3322–3329

Sangaiah AK, Sadeghilalimi M, Hosseinabadi AAR, Zhang W (2019b)
Energy consumption in point-coverage wireless sensor networks
via bat algorithm. IEEE Access 7:180258–180269

Schmuck FB, Haskin RL (2002) GPFS: a shared-disk file system for
large computing clusters. In: Proceedings of the conference on file
and storage technologies. USENIX Association, Berkeley, CA,
USA, pp 231–244

Schwarz TSJ, Miller EL (2006) Store, forget, and check: using alge-
braic signatures to check remotely administered storage. In: 26th
IEEE international conference on distributed computing systems
(ICDCS). Lisboa, Portugal, p 12

Singh A, Chatterjee K (2017) Cloud security issues and challenges: a
survey. J Netw Comput Appl 79:88–115

Sookhak M, Yu FR, Zomaya AY (2017) Auditing big data storage in
cloud computing using divide and conquer tables. IEEE Trans
Parallel Distrib Syst 29(5):999–1012

Tabrizchi H, Rafsanjani MK (2020) A survey on security challenges
in cloud computing: issues, threats, and solutions. J Supercomput
76:9493–9532

Thusoo A, Shao Z, Anthony S, Borthakur D, Jain N, Sen Sarma J, Mur-
thy R, Liu H (2010) Data warehousing and analytics infrastructure
at facebook. In: Proceedings of the 2010 ACM SIGMOD interna-
tional conference on management of data. ACM, New York, NY,
USA, pp 1013–1020

Vasilopoulos D, Elkhiyaoui K, Molva R, Onen M (2018) POROS:
proof of data reliability for outsourced storage. In: Proceedings
of the 6th international workshop on security in cloud computing.
Association for Computing Machinery, New York, NY, USA, pp
27–37

Vasilopoulos D, Önen M, Molva R (2019) PORTOS: proof of data reli-
ability for real-world distributed outsourced storage. In: Obaidat
MS, Samarati P (eds) Proceedings of the 16th international joint
conference on e-business and telecommunications, ICETE 2019—
volume 2: SECRYPT, Prague, Czech Republic, July 26–28, 2019.
SciTePress, Setúbal, pp 173–186

Wang H (2015) Identity-based distributed provable data possession
in multicloud storage. IEEE Trans Serv Comput 8(2):328–340

Wang C, Wang Q, Ren K, Lou W (2010) Privacy-preserving public
auditing for data storage security in cloud computing. In: 2010
Proceedings IEEE INFOCOM, San Diego, CA, USA, pp 1–9

Wang Q, Wang C, Ren K, Lou W, Li J (2011) Enabling public audit-
ability and data dynamics for storage security in cloud computing.
IEEE Trans Parallel Distrib Syst 22(5):847–859

Wang C, Wang Q, Ren K, Cao N, Lou W (2012) Toward secure and
dependable storage services in cloud computing. IEEE Trans Serv
Comput 5(2):220–232

Wang C, Chow SSM, Wang Q, Ren K, Lou W (2013) Privacy-preserv-
ing public auditing for secure cloud storage. IEEE Trans Comput
62(2):362–375

Wang B, Li B, Li H (2015) Panda: public auditing for shared data with
efficient user revocation in the cloud. IEEE Trans Serv Comput
8(1):92–106

Wang Y, Wu Q, Qin B, Shi W, Deng RH, Hu J (2016) Identity-based
data outsourcing with comprehensive auditing in clouds. IEEE
Trans Inf Forensics Secur 12(4):940–952

Wang H, Wang XA, Xiao S, Liu J (2020) Decentralized data out-
sourcing auditing protocol based on blockchain. J Ambient Intell
Humaniz Comput 1–12

Weatherspoon H, Kubiatowicz J (2002) Erasure coding vs. replication:
a quantitative comparison. In: Revised papers from the first inter-
national workshop on peer-to-peer systems. Springer, London,
UK, pp 328–338

Xia M, Saxena M, Blaum M, Pease DA (2015) A tale of two erasure
codes in HDFS. In: Proceedings of the 13th USENIX conference
on file and storage technologies. USENIX Association, Berke-
ley, CA, USA, pp 213–226

Yu Y, Ni J, Au MH, Liu H, Wang H, Xu C (2014) Improved security
of a dynamic remote data possession checking protocol for cloud
storage. Expert Syst Appl 41(17):7789–7796

Yu Y, Zhang Y, Ni J, Au MH, Chen L, Liu H (2015) Remote data pos-
session checking with enhanced security for cloud storage. Future
Gener Comput Syst 52(C):77–85

Yu Y, Au MH, Ateniese G, Huang X, Susilo W, Dai Y, Min G (2016)
Identity-based remote data integrity checking with perfect data
privacy preserving for cloud storage. IEEE Trans Inf Forensics
Secur 12(4):767–778

Yuchuan L, Shaojing F, Ming X, Dongsheng W (2014) Enable data
dynamics for algebraic signatures based remote data possession
checking in the cloud storage. China Commun 11(11):114–124

Zhang Y, Xu C, Liang X, Li H, Mu Y, Zhang X (2016) Efficient pub-
lic verification of data integrity for cloud storage systems from
indistinguishability obfuscation. IEEE Trans Inf Forensics Secur
12(3):676–688

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Reliable verification of distributed encoded data fragments in the cloud
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Organization

	2 Preliminaries
	2.1 Security functions and file operations

	3 Background: erasure coding (EC)
	4 Related work
	4.1 Provable data possession based verification
	4.2 Proof of retrievability based verification
	4.3 Third-party auditor based verification

	5 System model and design goals
	5.1 System model
	5.2 Design goals

	6 Proposed scheme
	6.1 Overview
	6.1.1 Data uploading scenario

	6.2 Description of the scheme
	6.2.1 Metadata computation
	6.2.2 Data uploading and dispersal procedure
	6.2.3 Data verificationauditing procedure

	7 Performance evaluation
	7.1 Implementation details
	7.2 Performance analysis and results
	7.2.1 Reliability analysis
	7.2.2 Computation cost analysis of various operations for proof verification
	7.2.3 Encoding, decoding and signature extraction analysis
	7.2.4 Operation cost analysis of the signature fragments
	7.2.5 Complexity analysis
	7.2.6 Comparative analysis of various verification schemes

	8 Conclusion
	References

