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Abstract
In wireless sensor networks (WSNs), a mobile sink accumulate the data instead of routing directly to the sink to avoid the 
hotspot problem. In this process, it traverses a predetermined path by visiting a set of nodes called the rendezvous point 
(RP), and all the non-rendezvous points can transmit their data to the closest RP. Identifying the best collection of RPs and 
determining the mobile sink traveling path will decrease data loss and improve network performance. However, choosing 
a set of RPs and the route between them is a challenging task. It is more complicated in the event-driven applications due 
to the uneven data rate of SNs. In this context, we propose an extended ant colony optimization (ACO)-based mobile sink 
path construction for event-driven WSNs. In this, the best set of the RPs and the efficient mobile sink traveling path between 
them is determined. In addition to this, the RPs re-selection mechanism also adopted for balancing the energy between the 
nodes. After that, the virtual RPs are introduced to minimize the data transmissions between the sensor nodes and RPs. This 
process will improve WSNs’ performance in terms of reducing data losses while increasing network lifetime. The improved 
performance of the extended ACO-MSPD over existing is confirmed through simulation tests.

Keywords  Wireless sensor networks · Mobile sink path determination · Ant colony optimization · Network lifetime · 
Energy-hole problem

1  Introduction

Wireless sensor networks (WSNs) are composed of a finite 
set of sensor nodes (SN), and each node collects the stock-
pile data from the place where it was deployed and trans-
mit it to the base station (BS) or sink (Akyildiz et al. 2002; 
Praveen Kumar et al. 2019; Cui et al. 2020; Sah and Amgoth 
2020; Bhola et al. 2020). The data communications between 
the SN and BS uses either direct or multi-hop manner. Due 
to the energy constraint of the SNs, a multi-hop interface 
consumes more energy during the data transmissions (Yet-
gin et al. 2017). Notably, the SNs near the BS are more 

affected than the other nodes in the network, leading to the 
energy-hole problem (Salarian et al. 2014; Wen et al. 2017; 
Praveen Kumar et al. 2018; Zhao et al. 2020). The energy-
hole problem detaches the sink from network and stops the 
data gathering process. Therefore, it is imperative to balance 
the energy of the SNs among them to prolong the network 
lifetime and data gathering process. However, using single-
hop communication avoids the hotspot problem, and placing 
the BS with this requirement is very difficult. A mobile sink 
(MS) has been initiated to collect the data from the SNs by 
traveling over the network periodically. Visiting every node 
in the network is not a feasible solution, and it leads to an 
unacceptable delay of the MS.

The MS can visit a set of SNs instead of visiting all the 
nodes in the WSN to avoid delay of data collection called the 
rendezvous points (RPs) (Wen et al. 2017; Roy et al. 2020; 
Habib et al. 2018; Singh and Kumar 2020). The non-RPs 
of the WSNs transmit their stockpile data to the proximate 
RP. However, selecting such an finest set of RPs is a chal-
lenging task. The nodes around the MS traveling path are 
considered virtual rendezvous points (VRPs), which directly 
transmit their data to the MS rather than communicating 
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with the RPs. The best set of VPRs minimizes the multi-
hop transmissions between the node and RP along with the 
data loss and also handles the disconnected nodes (Zhang 
et al. 2015; Donta et al. 2020). Keeping the same SN as an 
RP for a longer time during data collection will unbalance 
the energy of the SNs. Especially, the nodes around the RPs 
are more extensive in this context. However, the selection 
and re-selection of RPs and VRPs is further arduous task. 
Besides, determining the best path between the RPs is also 
a challenging problem, and it is more complected in non-
uniform data constraints.

There are several articles published recently to address 
some of the above discussed challenges such as weighted 
rendezvous planning (WRP) (Salarian et al. 2014), energy-
aware path construction (EAPC) (Wen et al. 2017), ant 
colony optimization based Mobile sink path determination 
(ACO-MSPD) (Praveen Kumar et al. 2018), and hierarchical 
agglomerative clustering based data collection (HACDC) 
(Donta et al. 2020). In WRP Salarian et al. (2014), the 
Authors determine the RPs and the path between them. 
The path computation in the WRP is high, and it uses the 
traveling salesman (TSP) approach. The EAPC Wen et al. 
(2017) also identifies the RPs and the path between then, 
whereas the path computation strategy is low computational. 
The ACO-MSPD Praveen Kumar et al. (2018) mechanism 
included RP’s re-selection strategy along with RPs selection 
and also determine the path of MS with reasonable com-
putational complexity. The HACDC Donta et al. (2020) 
computes the VRPs selection strategy along with the RPs 
and path determination with low time complexity. In the 
literature, there is no algorithm to adopt the RPs and VRPs 
selection and re-selection, along with the MS traveling path. 
This article extends an existing ACO-MSPD (eACO-MSPD) 
for achieving better network performance. The objective of 
the proposed eACO-MSPD is to pick the best RPs and VRPs 
sets dynamically, along with the delay aware MS traveling 
path. Besides, the eACO-MSPD also adopts dynamic RPs 
and VRPs re-selection process for energy balancing between 
the nodes. The extended version of the eACO-MSPD algo-
rithm is compared with the ACO-MSPD through simulation 
tests and based on various metrics such as average networks 
energy consumption, fairness index, network lifetime, etc. 
The major contributions of the eACO-MSPD over the exist-
ing are summarized as follows.

–	 We consider the new probability functions to compute 
the best set of RPs.

–	 We propose a novel probability function to compute the 
efficient path of the mobile sink with minimal iterations 
of the ACO.

–	 We extended the algorithm with finest set of VRPs selec-
tion strategy for minimizing the unnecessary data trans-
missions between the nodes and RPs.

The remaining sections of this paper structured as follows. In 
Sect. 2 we presented the literature work. In Sect. 3 we high-
light the system model and problem formulation. In Sect. 4, 
we propose an algorithm for determining the visiting points 
(RPs) of MS followed by the visiting order. It also describes 
the VRPs selection and re-selection strategies. In Sect. 5, we 
evaluate the experimental results of the proposed algorithm. 
Finally, in Sect. 6, we concluded the report.

2 � Related work

In this section, we review recent and related algorithms for 
RPs selection and the path construction strategies for MS 
in WSNs.

In Zhang et  al. (2015), authors have proposed the 
NMCDC strategy for WSNs to collect data using MS effi-
ciently through RPs. This method adopts the hierarchical 
clustering and routing algorithm for selecting RPs. The 
NMCDC also proposes a low computational traveling path 
determination approach. However, this approach does not 
consider the RPs re-selection mechanism. A tree cluster 
routing algorithm has been introduced using a dynamic 
sorting approach for the MS to perform the data collection 
process (Chang and Shen 2016). The primary objective of 
this approach is to control the data transfer distance between 
the SNs. In this method, the authors did not adopt the RPs 
re-selection and VRP selection strategies. In Yang et al. 
(2016), the delay-aware low computational, high-throughput 
data collection approach is proposed for MS in the WSNs. 
This approach works for an arbitrary topological network 
with a minimum number of MSs. The VRP selection and 
RP re-selection strategies are not adopted in this approach. 
An efficient cluster head selection for MS to visit and col-
lect the data from it for WSN is proposed in Chauhan and 
Soni (2019). In this, the authors used low-energy adaptive 
clustering hierarchy (LEACH) to select the cluster heads. 
An efficient cluster head selection algorithm has been pro-
posed for WSNs for collecting the data using a mobile sink 
in Prabaharan and Jayashri (2020).

A variable dimension PSO (VD-PSO) has been pro-
posed in Wang et al. (2017) for WSNs. The VD-PSO was 
designed for MS to equilibrium the energy between the 
SNs efficiently. In this, each particle in the particle swarm 
optimization (PSO) was treated as the RP node. In other 
words, the dimensionality of the PSO indicates the num-
ber of RPs. This method is high computational because of 
the TSP. In Tang et al. (2017), clustering-based routing and 
cluster head selection method is proposed for MS in the 
WSNs. An integer non-linear programming (INLP) method 
is used to reduce the tour length of the MS. Authors in Jan 
et al. (2017) has proposed an energy-aware hole alleviating 
approach for WSNs using an MS. This method adopts a data 
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transmission route along with the MS’s optimal traveling 
distance under the non-uniform data sizes. The EAPC has 
been proposed in Wen et al. (2017) for identifying the best 
RPs set and the traveling path of the MS. This approach 
uses a convex hull method to construct the route of the MS. 
In Kumar and Kumar (2019), delay-aware data aggregation 
with improved lifetime mechanisms has proposed for WSNs 
using MS. Khan and Kumar (2020) has proposed an efficient 
data gathering process in the agriculture field using a mobile 
sink. This method mainly focuses on the sensor nodes’ path 
to the base station and data forwarding route to optimize the 
energy consumption of the sensor nodes and the mobile sink.

In Praveen Kumar et al. (2018), an ACO-MSPD algo-
rithm is proposed for MS path construction using ACO for 
MS under non-uniform data generation of the WSNs. This 
approach adopted RPs re-selection for efficient energy bal-
ancing and the dynamic traveling tour of the MS. A firefly 
based MS scheduling strategy has been developed in Yoga-
rajan and Revathi (2018) for WSNs to perform the energy 
balancing between the SNs by avoiding the data losses. 
This approach computes the optimal visiting order of the 
MS in the WSNs. An intelligent data gathering scheme 
(IDGS) has been proposed in Wang et al. (2019b) for effi-
cient data fusion from the SNs using MS for WSNs. This 
method uses a virtual grip mechanism to identify the visit-
ing points called cluster heads. Later, it determines a static 
path between them for data fusion. In He et al. (2019), an 
energy-aware MS traveling plan approach has proposed 
using multi-objective PSO for MS in WSNs. This method 
optimizes the traveling length by choosing the overlap points 
of the SNs instead of choosing the node’s location. In Wang 
et al. (2018), ACO based cluster head selection and path 
construction for mobile sink have determined for WSNs. 
This method does not involve the re-selection of RPs or VRP 
selection methods to improve performance. An opportunistic 
corona-based optimal routing strategy is proposed for mobile 
sink for efficient data collection in WSNs (Thyagarajan and 
Kulanthaivelu 2020). This method efficiently minimizes the 
energy-hole problem for WSNs.

A query-driven grid-based data collection scheme has 
been proposed in Khan et al. (2019) for improving the MS 
data dissemination process. In this, the algorithm chooses the 
cluster heads based on the virtual grid clustering approach. 
In Wang et al. (2019a), an energy-aware cluster-based RPs 
selection and mobile sink traveling path are proposed for 
WSNs. A load-balanced cluster head selection based on arti-
ficial bee colony (ABC) and differential evolution in Gupta 
and Saha (2020) for MS-based data collection in WSNs. The 
ABC has also been used for MS path determination in this 
approach. A fuzzy logic-based clustering algorithm has been 
used for cluster head selection for an MS for data collection 
from the SNs using MS for WSNs Verma et al. (2020). This 
method computes the CHs depending on the consumption of 

energy among the SNs in the WSNs. In Donta et al. (2020), 
a hierarchical clustering method has been used for for RP 
selection for data collection. In this approach, the authors 
used a statistical method to decide the best RPs based on 
the network size. The analytical method also determines the 
VRPs based on the chosen path of the MS. This method also 
provides the minimum computational complexity for the MS 
path construction. A data gathering maximization with least 
consumption of energy has been proposed in Kumar and 
Dash (2020) for WSNs.

From the above discussion, most of the existing 
approaches are focused on the RPs selection and MS trave-
ling paths. Of course, most of the methods are energy effi-
cient and efficiently manages the data losses, and there is a 
possibility to enhance the performance still. The proposed 
eACO-MSPD extended the probability functions of the RPs 
selection and re-selection strategies along with the MS path 
construction. It also adopts the VRPs selection for minimiz-
ing the data transmissions between the SNs and the RPs.

3 � System model and problem formulation

A graph G(S,D) is considered as a WSN, where S indicates 
set of SNs and the sink ( S0 ). All the n = (|S| − 1) SNs and 
the BS are randomly deployed at fixed locations. The n SNs 
are of the same category, but the nodes’ data collection is 
based on the event’s occurrence at various periods. The dis-
tance matrix of the SNs is indicated by D , which includes 
the S0 . The dij ∈ D indicate the Euclidean distance between 
two SNs i and j. In case, the SNs i and j are not in the com-
munication range r, then we consider the distance as ∞ . M 
is denoted as the set of RPs, where the RP is to collect data 
from SNs and VRPs. The set of VRPs is considered as V , 
where the VRPs transmits their data directly to MS or closest 
RP. The relation among the M,V and S are represented as 
(M ∪ V) ⊆ S∀M ≠ V . The MS collects the data from RPs 
or VRPs and submit them to the S0 . The MS travels from 
S0 by visiting M and returns to the BS called a tour. The 
MS travelling length is initialized before constructing the 
path i.e. �ml . The MS communication range indicated as ℝ . 
The MS tour length and time are computed as per the ACO-
MSPD (Praveen Kumar et al. 2018). The notations used in 
this article are listed in Table 1 for reader convenient.

The SN’s initial energy is considered as E0 , and it drains 
mainly during the data sensing, processing, and communi-
cations. The energy model for the proposed eACO-MSPD 
is to adopt the free space energy model (Amgoth and Jana 
2015; Praveen Kumar et al. 2018). The energy required for 
the amplification process is �a , energy require to process a 
bit of data is �t , and the circuit requires �r energy to receive a 
bit. The energy consumption (EC) of the node i, while trans-
ferring B bits to the node j is computed as shown in Eq. (1)
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The node i consumes energy as shown in Eq. (2) while 
receiving B bits from the node j.

The EC of a node i in the tour k during the data communica-
tion is calculated using Eq. (3)

where �i is the node i’s forwarding load, and it is computed 
using Eq. (4).

where �i is the packet size of the node i at a particular 
period, and Ci is the child nodes of i. The lifetime of the 
WSN ( N  ) is considered as the time till the first SN dies, 
and it is measured in terms of Minutes (Legakis et al. 2008; 
Praveen Kumar et al. 2018). It is computed, as shown in the 
Eq. (5).

where �k denotes the time taken to complete a tour by the 
MS, ⌈�⌉ indicates the total number of trips done by the MS 
when the first SN die. Therefore, the goal of the proposed 
eACO-MSPD is to prolong the N  and degrades the delay 
of data collection. Finally, the problem statement is to select 
the best set of RPs, i.e., set M , in order to maximize N  for 
event-driven applications, where the packet sizes are varied. 
The assumptions considered for the eACO-MSPD are listed 
as follows. 

1.	 The sink knew all the SN’s information such as position, 
available energy, etc.

2.	 The time spent by the MS at the RP is enough to collect 
the data.

3.	 The MS has enough space to store the collected data 
from the SNs.

4.	 No obstacle on the MS trajectory.

(1)Et(i, j) = (�t × B) + (�a × d2
ij
× B)

(2)Er(i) = �r × B

(3)

Eik =

{(
�i × Et(i, j)

)
+
(
(�i −�i) × Er(i)

)
iff Ci ≠ �

�i × (Et(i, j) + Er(i)) Otherwise

(4)�i =

⎧
⎪⎨⎪⎩

�
∑
j∈Ci

�j +�i

�
iff Ci ≠ �

�i Otherwise

(5)N =

⌈�⌉�
k=1

�k

Table 1   Notations used in this article

Notation Meaning

G A WSN
S Sensor nodes and base station
S0 Base station or sink
n Number of SNs
b Capacity of the buffer
D Distance matrix of the SNs
dij Distance between two SNs i and j
r Communication range of SNs
M RPs set
V VRPs set
�ml Maximum allowed MS traveling distance
ℝ Communication range of MS
E0 Initial energy of SNs
�a Energy for amplification
�t Energy for processing a bit
�r Energy to receive a bit
Et(i, j) Energy consumption to transfer data between two SNs i 

and j
Er(i) Energy consumption to receive data by node i
Eik EC of node i at kth tour
�i The node i’s forwarding load
�i The weight of node i
Ci The child nodes of i
N Network lifetime
⌈�⌉ Total number of tours completed by the MS
�k Time taken to complete a tour by the MS
T Directed spanning tree
AN(i) Set of adjacent nodes of i
�(Sp) Choice of the solution
�a
ij

Pheromone value between nodes i and j deposit by ant a
�ij Pheromone value between nodes i and j deposit by all the 

ants
(1 − �) Pheromone’s evaporation rate of unit time
m Total number of ants
� The decay of the pheromone
La Total trajectory distance by the ant a
Q Constant value
�ij Emphasis on the importance of heuristic data
pa
ij
(t) Probability to choose RP

�a
ij
(t) Probability of path construction

� Slope of line
�i Shortest distance form node i to MS path
� , � , � Relative information of heuristic data
�e Networks average EC
�e Standard deviation of EC
�t Average tour length
pi Number of packets filed by buffer at SN i
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4 � Extended ACO‑MSPD

The proposed extended ACO-MSPD (eACO-MSPD) is 
progressed using the construction of a directed spanning 
tree (DST) (Praveen Kumar et al. 2018), RP selection, and 
path construction of the MS. Later it computes the VRPs 
according to the selected MS path. During the iterations, the 
RP, VRPs, and route dynamically change according to the 
change in the data size and network properties.

4.1 � DST construction

The DST of a WSN is constructed as per the ACO-MSPD 
algorithm (Praveen Kumar et al. 2018). The goal of the 
DST is to circumvent the ambivalence in the data forward-
ing route to the MS. This data forwarding node selected 
by exchanging the data between the neighbor nodes. The 
DST construction phase generates a tree T  using the G 
using two rounds. Figure 1 shows the illustration of the 
DST construction. Figure 1a is an example WSN, consid-
ered as a graph ( G ). In Fig. 1a, the numbers inside the cir-
cles indicate the node identification number. The numbers 
outside the circles are indicated as the �i of each SN at 
time t. In the first round, the i chooses its forwarding node 
if �i < Max(�j), ∀j ∈ AN(i) , where AN(i) is the set of 
adjacent nodes of i. The node i chooses the nearest nodes a 
forwarding node when the two nodes are equal maximum 
weights. After the first round, the tree T  is shown in Fig. 1b. 
In this round, node 2 and node 10 are isolated. The node 2 is 
isolated because of high weight than its neighbor nodes 1, 3, 
and 6. Similarly, node 10 is isolated because of its neighbor 
(node 5 and node 11) are having the less weight then node 
10. If there are any isolated nodes in the G after the first 
round, they chose the neighbor nodes forwarding node with 
maximum weight. In this, two nodes are isolated to choose 
the neighbor nodes forwarding node with maximum weight. 
So, node 2 chose node 6 as its forwarding node because node 

6 parent node 9 has the highest weight. Similarly, the node 
can choose either node 5 or node 11, and here we choose 
node 5 because it is nearer. After processing the second 
round, the T  becomes as shown in Fig. 1c.

4.2 � RPs selection and MS path determination

The RPs selection and path determination of MS in the pro-
posed algorithm gives the best performance of the event-
driven WSNs. Similar to ACO-MSPD, the extended version 
also uses the ant colony optimization (Dorigo et al. 1996) 
approach to achieve the goal. In this phase, we consider G as 
an input, and the expected output is to determine M,V , and 
the path between SNs of M ∪ S0 . The DST tree T  is used to 
compute the forwarding weight w of an SN, and it is used in 
this phase to determine the RPs. The proposed eACO-MSPD 
uses the ACO to generate the solution by updating the ant’s 
pheromone value iteratively. The pheromone value �a

ij
 

between the node i and j is updated by an ant a using Eq. (6).

where (1 − �) is the pheromone’s evaporation rate of unit 
time, m indicates the total number of ants used in eACO-
MSPD. The notation �ij is the pheromone value between 
nodes i and j deposit by all the ants. The pheromone’s quan-
tity is computed using the Eq. (7). The decay of the phero-
mone � is in the range of (0, 1).

where La is the total trajectory distance by the ant a, and Q 
is a constant value, for example, 100. The probability func-
tion to choose a further node j from the node i is shown in 
Eq. (8).

(6)�a
ij
= (1 − �)�ij +

m∑
a=1

��a
ij

(7)��a
ij
=

{
0 if ant a does not use the edge i to j
Q

La
Otherwise
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Fig. 1   Illustration a an example WSN as a G . b The DST of the given G after the first round. c The DST of the given G after the second round 
(Praveen Kumar et al. 2018)
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The �ij indicates the emphasis on the importance of heuristic 
data, and it is computed as shown in the Eq. (9). The �ij also 
helps us to drive the best RPs set from the present network 
situation.

The SN, which is not yet visited by any ant a, is represented 
as � . The �(Sp) contains the choice of the solution, and a 
stochastic construction monitors it by using the � value. The 
relative importance of the �ij and �j are denoted using � and 
� , respectively. The ant a considers the next RP form the 
current node using the Eq. (8)’s the highest value. Once the 
algorithm chooses an RP, it starts calculating the MS trajec-
tory length. The probability function to construct the MS 
path is shown in the Eq. (10).

In case of exceeding the MS tour length, this approach 
removes the RP from M , and continues the same process 
with another node with the highest probability. In each round 
of the MS, depending on the variations of the data sizes, the 

(8)pa
ij
(t) =

⎧
⎪⎨⎪⎩

��
ij
�
�

ij
�
�

j∑
Ci�∈N(S

p ) �
�
ij
�
�

ij
�
�

j

iff Ci� ∈ �(Sp)

0 Otherwise

(9)�ij =
1

dij

(10)�a
ij
(t) =

⎧⎪⎨⎪⎩

��
ij
�
�

ij
�
�

j∑
Ci�∈N(M)

��
ij
�
�

ij
�
�

j

iff Ci� ∈ N(M)

0 Otherwise

proposed eACO-MSPD re-selects the RPs and re-constructs 
the trajectory path. After the path construction, the eACO-
MSPD initiates the VRPs section around the MS traveling 
route.

The major improvements over the probability functions 
pa
ij
(t) and �a

ij
(t) over the existing ACO-MSPD are the dis-

tance and weights. The probability function pa
ij
(t) consider 

distances between the SNs while choosing the RPs set. The 
distance parameter considers the RPs according to the Tml so 
that the RPs set selection process will be optimized. The 
probability function �a

ij
(t) uses the weight of the SNs while 

constructing the tour. Adding this parameter to the probabil-
ity function benefited from reducing the tour length of the 
MS by selecting an optimal set of RPs. The variations of the 
probability values during the RPs selections are listed in the 
Table 2.

4.3 � VRPs selection

The VRPs selection is the add-on to the traditional ACO-
MSPD in the proposed eACO-MSPD. It increases the data 
gathering speed by avoiding the data loss and unnecessary data 
transmissions between the SNs and the RPs. The VRPs are the 
SN, which transmit their data directly to the MS when the MS 
is in its communication range. The VRPs in eACO-MSPD 
are (V ∈ S) ∧ (V ⊈ M) . The VRP selection of the proposed 
algorithm depending on the MS transmission range and the 
available time using the SNs distance from the path � . The � 
is decided based on the data available at the SN vs its trans-
mission rate and the amount of the time MS available in SNs 

Table 2   Variation of probability values in ACO-MSPD and eACO-MSPD

S
i

�
i

�
i

ACO-MSPD (Praveen Kumar et al. 2018) (Fig. 3) eACO-MSPD (Fig. 4)

(a) (b) (c) (d) (e) (f) (g) (a) (b) (c) (d) (e) (f) (g)

1 14 14 0.04 0.052 0.061 0.07 0.08 0.08 0.089 0.05 0.044 0.069 0.091 0.072 0.08 0.104
2 20 49 0.07 0.086 0.101 0.115 0.13 Visited Visited 0.08 0.077 0.129 Visited Visited Visited Visited
3 15 15 0.05 0.053 0.063 0.07 0.08 0.08 0.092 0.04 0.045 0.066 0.094 0.0906 0.08 0.09
4 16 16 0.05 0.055 0.064 0.07 0.08 0.08 0.094 0.04 0.05 0.061 0.08 0.102 0.08 0.087
5 18 54 0.08 0.089 0.105 0.119 Visited Visited Visited 0.07 0.108 0.122 0.137 Visited Visited Visited
6 18 83 0.09 0.106 0.124 – – – – 0.098 0.114 – – – – –
7 16 16 0.05 0.055 0.064 0.07 0.083 0.083 0.094 0.07 0.052 0.085 0.084 0.075 0.083 0.131
8 21 37 0.07 0.077 0.091 0.103 0.116 0.116 0.08 0.093 0.087 0.106 0.113 0.113 Visited
9 23 190 0.13 0.148 Visited Visited Visited Visited Visited 0.132 Visited Visited Visited Visited Visited Visited
10 20 20 0.05 0.062 0.071 0.08 0.09 0.09 0.103 0.04 0.062 0.068 0.075 0.112 0.09 0.107
11 16 16 0.05 0.055 0.064 0.073 0.08 0.08 0.094 0.04 0.067 0.062 0.062 0.089 0.08 0.103
12 25 248 0.14 Visited Visited Visited Visited Visited Visited 0.1297 0.111 0.104 0.099 0.133 Visited Visited
13 19 19 0.05 0.059 0.069 0.079 0.09 0.09 0.101 0.04 0.059 0.052 0.061 0.076 0.09 0.108
14 14 14 0.04 0.052 0.06 0.07 0.08 0.08 0.089 0.042 0.051 0.046 0.054 0.067 0.08 0.121
15 16 16 0.04 0.055 0.064 0.07 0.08 0.08 0.094 0.05 0.067 0.049 0.057 0.071 0.08 0.147
S0 – – – – – – – – – – – – – – – –
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communication range. We choose the VRPs based on the � 
while MS traveling through the determined path.

Initially, we choose the path between two RP nodes from 
M and assume a line as shown in Fig. 2. Assume the RP loca-
tions as M1(x1, y1) and M2(x2, y2) . We choose the SNs one by 
one which are surrounded by M1M2 and determine whether 
they are in the communication range of the MS or not. The 
communication range is identified by comparing the minimum 
distance ( � ) between the S(xi, yi) to the M1M2 is less than or 
equal to the MS communication range. Firstly, we construct 
the line L using the M1M2 using Eq. (11) as shown below

where � indicate the slope of the L and it is computed as 
shown below.

after substituting the (x1, y1) and (x2, y2) , we assume the Eq. 
(12) gives a

b
 , where a and b are constants. After substituting 

the � value in Eq. (11), it become as shown in Eq. (13)

where the value of b ∗ y1 is a constant. Once the line L is 
determined, we find the shortest distance ( �i ) of the a node 
i to the L using Eq. (14).

If �i ≤ ℝ , then we consider node i as a VRP and add it to 
the V . In case 𝜉i > ℝ , the node i is not considered as a VRP 
at this stage. Repeat the above process until the MS start 
from base station and return it back to its starting position. 
These optimal set of VRPs will reduce the unnecessary data 
transmissions to the RPs and will reduce the unnecessary 
energy consumption.

(11)�(x − x1) − y + y1 = 0

(12)� =
y2 − y1

x2 − x1

(13)a ∗ (x − x1) − b ∗ y + b ∗ y1 = 0

(14)�i =
�a ∗ (xi − x1) − b ∗ yi + b ∗ y1�√

a2 + b2
∀ i ∈ (S ∩M)

4.4 � Illustration of eACO‑MSPD

The proposed and existing approaches are compared with 
an illustration for a better understanding. Table 2 shows the 
probability values of both ACO-MSPD and eACO-MSPD 
algorithms of each round while choosing the RP node from 
the SNs set. Figure 3 illustrates the first iteration of the ACO-
MSPD choosing the RP nodes and path construction. The 
proposed eACO-MSPDs RPs selection path construction is 
illustrated in Fig. 4. In both the illustrations, we consider the 
running example (Fig. 1a) with fifteen nodes and the maxi-
mum MS tour length i.e., �ml = 120 units . We assume that 
the SNs generate data unevenly and are deployed randomly. 
The relative information of the heuristic data such as � , � , 
and � , is considered as 0.2, 0.4, and 0.4, respectively. In both 
the existing and eACO-MSPD, the base station is considered 
as an RP, i.e., M = [S0].

The ACO-MSPD chooses the RPs to set a step by step 
process, as shown in Fig. 3. Each step calculates the prob-
ability value and chooses the node with the highest probabil-
ity as an RP node. After choosing the RP node, it constructs 
the tour between the RP set; if the tour length is between the 
selected RPs is less than the �ml , further repeat the same. If 
the tour length is more than the �ml , it removes the currently 
chosen node and chooses the next highest probability value.

The weight ( �i ), forwarding load ( �i ) and the probability 
( pa

ij
 ) of each node from the S0 is represented in Table 2. The 

illustration explains the first iteration of an artificial ant a 
from the sink S0 as shown in Fig. 4. Initially, M = [S0] is 
the RPs set of eACO-MSPD. Using Eq. (8), the maximum 
probability value is considered for choosing an RP in each 
step of the iteration process. From Table 2, the highest prob-
ability value return by the node S9 is chosen and used to 
construct the tour between the S0 and S9 . It return the tour 
length as 60 i.e < 120. Therefore, the node S9 is chosen as 
an RP and the RP set becomes Ma = [S0,S9] . After updat-
ing the probability function, the node S6 return the highest 
value. The tour length after choosing node S6 is 73 i.e < 120 . 
Therefore the Ma becomes [S0,S9,S6] . According to the 
updated probability values, the node S2 has the highest prob-
ability and tour length which is 89 i.e < 120. We can con-
sider i t  as  an RP and the RPs set  become 
Ma = [S0,S9,S6,S2] . The tour length after choosing the 
highest probability node S5 is 107 i.e < 120. Therefore the 
RP set becomes Ma = [S0,S9,S6,S2,S5] . After choosing 
the next highest probability value, return node i.e. S12 , the 
tour length is 133 i.e > 120. So, we do not consider it as an 
RP. The next highest probability returned by the node S8 , 
and tour length is 112 i.e < 120. Therefore the RPs set after 
this step is Ma = [S0,S9,S6,S2,S5,S8] . Similarly, we repeat 
the process until all the SNs are covered, and final RPs set 
is Ma = [S0,S9,S6,S2,S5,S8,S7] with the tour length of 
112.

M1

M2

S1

Fig. 2   Computing the minimum distance between the MS trajectory 
to the SN
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Fig. 3   First iteration of ACO-
MSPD’s RP selection and path 
construction a Ma

= [S0,S12] , 
b Ma

= [S0,S12,S9] , c 
Ma

= [S0,S12,S9,S6] , d 
Ma

= [S0,S12,S9,S6,S5] , e 
Ma

= [S0,S12,S9,S6,S5] , f 
Ma

= [S0,S12,S9,S6,S5,S8] , g 
Ma

= [S0,S12,S9,S6,S5,S8,S7]
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Fig. 4   First iteration of eACO-
MSPD’s RP selection and path 
construction a Ma

= [S0,S9] , 
b Ma

= [S0,S9,S6] , c 
Ma

= [S0,S9,S6,S2] , d 
Ma

= [S0,S9,S6,S2,S5] , e 
Ma

= [S0,S9,S6,S2,S5] , f 
Ma

= [S0,S9,S6,S2,S5,S8 , g 
Ma

= [S0,S9,S6,S2,S5,S8,S7]
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The SNs are generate the data non-uniformly based on 
the event occurrence. Due to this, the node weights change 
during the time. When the loads change, the previous RPs 
set needs to updated, and the re-selection of RPs is required 
to achieve the best performance. When the nodes change 
their weights, the DST reconstruction is also required. So, 
the whole eACO-MSPD algorithm needs to be repeated.

4.5 � Complexity analysis

The computational complexity of the proposed eACO-
MSPD is the combination of T  construction, RPs selection, 
MS path construction, VRPs selection and RPs and VRPs 
re-selection. The computational complexity of the DST tree 
T  with n nodes is O(n). The RPs selection and path deter-
mination use ACO and its time complexity is calculated as 
per the (Attiratanasunthron and Fakcharoenphol 2008), i. e 
O
(

1

�
(mnqlogn)

)
 . Here, m is the number of ants, q indicates 

the number of edges and � is the pheromone’s evaporation 
rate. The value of m is always less than n. The time complex-
ity for the VRPs selection is O(n). Therefore, the computa-
tional complexity of the eACO-MSPD is similar to ACO-
MSPD, i.e. O

(
1

�
(mnqlogn)

)
.

5 � Experimental results

The proposed eACO-MSPD algorithm’s performance is 
evaluated with the existing ACO-MSPD (Praveen Kumar 
et al. 2018) approach using simulation runs. The perfor-
mance of both the algorithms is tested for the SNs with two 
scenarios of data constraints i.e., uniform and non-uniform. 
The network EC, the standard deviation (SD) of EC, the 
lifetime of the network and the average trajectory length 
are computed and compared for both existing and proposed 
works. We consider two scenarios of the networks based 
on their size in terms of sq. m i.e. WSN#1 with the area 
20 × 20 m2 and WSN#2 with the area of 200 × 200 m2 . In 
the WSN#1, the n value various between 7 and 20, and 
in WSN#2, the n value varies from 100 to 200. Both the 
WSN#1 and WSN#2 use the tree topology.

The SNs data generation depends on the event occur-
rence, and it is assumed between 0 and 10 packets per sec-
ond in the simulations. The size of the each packet is con-
sidered as 30 bytes. The data transmission rate is considered 
to be 80–250 kbps (Amrizal et al. 2019). The MS traveling 
tour length is restricted and set to 35 m for WSN#1 and 300 
m for WSN#2. The initial energy ( E0 ) of all the SNs is equal 
and i.e., 100 J. The energy consumption of �t , �r are 42 mW 
(0.042 J) and 29 mW (0.029 J) respectively. The communi-
cation range of the SNs various in different simulations i.e. 
from 15 to 50 m. The relative heuristic information of the 

ACO such as � , � and � are 0.2, 0.4 and 0.4, respectively. 
The MS traveling speed during the data collection is set to 1 
meter per second. Both the ACO-MSPD and eACO-MSPD 
are simulated using Python programming.

5.1 � Network’s average energy consumption

The network’s average EC �e is computed until the first SN 
dies in the network to the energy consumed by all the SNs 
in the WSNs.

The �e is tested for both the scenarios by varying the 
n and deployed randomly. Figure 5 compares the existing 
ACO-MSPD and proposed eACO-MSPD under a uniform 
data generation of the SN in the network. From Fig. 5a, we 
observe that the EC of the SNs is degraded by 10–15% as 
compared to the ACO-MSPD approach, 12–38% as com-
pared to EAPC, and 15–45% as compared to WRP. Simi-
larly, Fig. 5b shows that the proposed method improves 
performance by reducing the �e by 8–15% approximately 
as compared to ACO-MSPD. Similarly, eACO-MSPDs 
AEC grew by 10–22% than EAPC and 12–36% than WRP. 
Figure 6 shows the �e of WSN#1 and WSN#2 under the 
non-uniform data constraints. As per the results shown in 
Fig. 6a, the proposed eACO-MSPD reduces the consumption 
of the energy by 9–17% for the WSN#1 compared to ACO-
MSPD, 11–23% compared to EAPC and 14–41% compared 
to WRP algorithms. From Fig. 6b, we found that the power 
consumption of the proposed eACO-MSPD is minimized 
around 6–13% compared to the ACO-MSPD. Similarly, 
the improvement over the EAPC and WRPs are 8–21% and 
11–37%, respectively.

5.2 � Standard deviation of EC

The standard deviation (SD) of the EC ( �e ) is used to meas-
ure the bottleneck of EC among the SNs in the WSNs. 
Higher the �e , more energy is consumed in the network and 
degrade the network lifetime and vice versa. Other words, 
the �e is directly proportional to �e and inversely propor-
tional to the N  . The �e in this approach is computed, as 
shown in the Eq. (16)

(15)�e =

n∑
i=1

�∑
k=1

Eik

� × n

(16)
�e =

��������
n∑
i=1

⎛⎜⎜⎝

�∑
k=1

Eik

�
− �e

⎞⎟⎟⎠

2

n
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The �e of the WSN#1 and WSN#2 are tested for both 
the uniform and non-uniform data scenarios of the WSNs. 
Figure 7 shows a comparison of �e under the uniform data 
scenario for both WSN#1 and WSN#2. From Fig. 7a, we 
observed that the proposed eACO-MSPD’s �e are always 
lower than the existing ACO-MSPD, EAPC, and WRP algo-
rithms. Similarly, from Fig. 7a the SD of the EC is better 
than the existing ACO-MSPD, EAPC, and WRP algorithms. 
The �e of the non-uniform data constraints are compared 
in Fig. 8. From Fig. 8a and b, we noticed that the proposed 
eACO-MSPD is always producing the less �e when com-
pared to the ACO-MSPD, EAPC and WRP algorithms. The 
improved performance of the eACO-MSPD is due to the 
optimal selection of RPs, and its path and optimal VRPs 
selection. The data collected with VRPs always balances the 
energy due to direct data transmission to the MS.

5.3 � Network lifetime

The lifetime of WSN ( N  ) is computed as the time (in min-
utes) from the start of simulation till the first node dies. It 
is an important measure to compare the performance of the 
network. Increasing N  also increases the WSNs perfor-
mance, vice versa. It is calculated using the Eq. (5).

The N  of the proposed eACO-MSPD is compared with 
the existing under uniform and non-uniform data scenar-
ios of WSN#1 and WSN#2. The N  of uniform data con-
straint of the networks are compared in Fig. 9. As shown 
in Fig. 9a, the N  in the proposed work improves approxi-
mately 8–57% for the uniform data constraints when com-
pared to WSN#1. The improvements in each of the exist-
ing methods are noticed compared to ACO-MSPD, EAPC, 
and WRP are 8–10%, 16–39%, and 19–57%, respectively. 
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Fig. 5   Network’s average EC under the scenario of uniform data rate a WSN#1, b WSN#2
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Fig. 6   Network’s average EC under the scenario of non-uniform data rate a WSN#1, b WSN#2
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Fig. 7   Standard deviation of node’s EC under the scenario of uniform data rate a WSN#1, b WSN#2
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Fig. 8   Standard deviation of node’s EC under the scenario of non-uniform data rate a WSN#1, b WSN#2
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Fig. 9   Network Lifetime under the scenario of uniform data rate a WSN#1, b WSN#2
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Figure 9b, we notice that the improvement of N  over the 
existing method is around 6–43% for the WSN#2 under 
the non-uniform data scenario. The improvements in 
each of the existing methods are noticed compared to 
ACO-MSPD, EAPC, and WRP are 6–11%, 13–29%, and 
17–43%, respectively. Figure 10 shows the N  of both 
WSN#1 and WSN#2 under the non-uniform data scenario. 
The improved performance of the WSN#1 under the non-
uniform scenario is shown in Fig. 10a. The improvement 
over the existing ACO-MSPD is 7–33% approximately. 
The improvements in each of the existing methods are 
noticed compared to ACO-MSPD, EAPC, and WRP are 
7–10%, 11–26%, and 14–33%, respectively. Figure 10b, 
we identified that the proposed method is approximately 
6–10% improved compared with the existing ACO-MSPD 
algorithm. Similarly, the performance improvement of 
the eACO-MSPD is 9–19% compared to the EAPC and 
12–27% compared to the WRP algorithms. These improve-
ments are observed based on the selection process of the 
RPs and VRPs and its re-selections.

5.4 � Buffer utilization

The buffer utilization (BU) is defined as the amount of 
the buffer used during the unit time. The BU is always 
directly proportional to the data gathering process. The 
buffer capacity also effects on choosing the number of 
RPs. Increasing the Buffer size will reduce the number of 
RPs. Due to this, the tour length of the MS also may be 
reduced. The average BU of the proposed work and exist-
ing are computed at time t using Eq. (17).

(17)
BU =

n∑
i=1

pi

b × n

In both scenarios, if the pi > b , the SN drop the packets. 
This situation arise mostly due to the delay of the MS visit. 
Figures 11 and 12 evaluates the buffer utilization of uni-
form and non-uniform data rates of the proposed and exist-
ing ACO-MSPD, EAPC, and WRP algorithms. Figure 11a, 
the buffer utilization of the small network with a uniform 
data rate is compared. The BU of the eACO-MSPD always 
higher compared to the existing ACO-MSPD, EAPC, and 
WRP algorithms. The performance improvement is observed 
approximately 1.5–3% compared to ACO-MSPD, 2.5–6.5% 
compared to EAPC, and 7–11.5% compared to the WRP 
algorithms. Similarly, Fig. 11b compare the BU of the more 
extensive network with more sensor nodes under the uniform 
data rate of the SNs. The percentage of the buffer utilization 
of eACO-MSPD improved by 2–3.8% than ACO-MSPD, 
4.5–6.5% than EAPC, and 6–11% than the WRP algorithms. 
The efficient buffer utilization indicates the efficient data 
gathering by the MS.

Figure 12 shows the buffer utilization of the proposed 
and existing ACO-MSPD, EAPC, and WRP algorithms 
under the non-uniform data constraints. Figure 12a, the 
buffer utilization of the small network with a uniform data 
rate is compared. The BU of the eACO-MSPD always 
higher compared to the existing ACO-MSPD, EAPC, 
and WRP algorithms. The performance improvement is 
observed approximately 2.5–3.8% compared to ACO-
MSPD, 4.5–7.5% compared to EAPC, and 10–14.5% com-
pared to the WRP. Similarly, Fig. 12b compares the BU of 
the more extensive network with more number of sensor 
nodes under the uniform data rate of the SNs. The per-
centage of the buffer utilization of eACO-MSPD improved 
by 2.8–4.3% than ACO-MSPD, 6.5–9% than EAPC, and 
9.5–17% than the WRP algorithms. The improvement of 
the buffer utilization also enhances the data gathering pro-
cess by increasing the NL and EC of the WSNs.
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Fig. 10   Network Lifetime under the scenario of non-uniform data rate a WSN#1, b WSN#2
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5.5 � Average tour length

The tour length of the MS is initialized before construct-
ing the trajectory. However, in all the cases, it need not 
cover the distance, which is fixed initially. As shown in 
the Illustration (Sect. 4.4) we initialize the tour length as 
120 units. But it cover only 112 units. Similarly, during 
each re-selection of RPs, the path length of the MS also 
changes. The average tour length ( �t ) is the ratio of the 
distance traveled by the MS until the first node dies and 
the � . It is computed using the Eq. (18).

(18)
�t =

⌈�⌉∑
k=1

�k

⌈�⌉

We have examined �t of WSN#2 under the non-uniform 
scenario and compared with the network having differ-
ent area sizes in Fig. 13a. The area sizes considered for 
both the existing and proposed varies from 100 to 500 sq. 
m. We observe from Fig. 13b that the proposed method 
slightly decreasing the value of �t . Similarly, the trans-
mission range of the SN is also an important parameter 
that affects �t . We examine the value of �t by varying the 
transmission range from 30 to 50 m. From Fig. 13b, we 
observe that the proposed eACO-MSPD gives the mini-
mum tour length compared to the existing ACO-MSPD, 
EAPC, and WRP algorithm. The minimum tour length of 
the MS will increase the data gathering process and reach 
the RPs before it overflows the buffer.

The improvement of the proposed algorithm is mainly 
because of introduction of the VRPs selection. The VRPs 
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Fig. 11   Buffer Utilization under the scenario of uniform data rate a WSN#1, b WSN#2
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Fig. 12   Buffer Utilization under the scenario of non-uniform data rate a WSN#1, b WSN#2
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directly transmit their data to MS instead of communicating 
with RPs when MS is in the range of SNs. In this case, the 
SNs energy and relay node usage are minimized. The prob-
ability function is also much crucial in the proposed work 
to choose the RPs. The probability function identifies the 
best RPs set with the minimum number of iterations of the 
ACO. The analysis of other ACO-MSPD parameters such as 
m, �, �, � , and � is does not varies in the proposed approach.

6 � Conclusion

In this article, we have extended an existing ACO-MSPD 
algorithm called eACO-MSPD for event-driven WSNs under 
the uneven data generation of the sensor nodes. The pro-
posed approach has adopted the feature of directed span-
ning tree construction to compute each node’s forwarding 
weight. The proposed eACO-MSPD determines the RPs 
set and path construction using a modified ACO algorithm. 
The probability function to choose the RPs from the sensor 
nodes and path construction is changed from the existing one 
to improve the network’s performance. The eACO-MSPD 
balances the energy among the sensor nodes by adopting 
the RPs re-selection strategy. This approach also enhanced 
the VRP selection, where the SNs directly transmit the data 
to the mobile sink instead of communicating with the RPs. 
The proposed and existing methods are compared with an 
illustration for a better understanding of the algorithm. The 
proposed eACO-MSPD algorithm performed better in terms 
of EC and lifetime is compared with the existing approaches. 
In the future, the proposed work extended by embedding 
wireless energy transmitter to the MS, and it recharge the 
critical sensor nodes in the WSNs.
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