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Abstract
Surveillance drones are remarkable devices for monitoring, as they have strong spatial and remote sensing capabilities. 
The prompt detection of peripheral damage to the blades of wind turbines is necessary to reduce downtime and prevent the 
potential failure of wind farms. Computer vision breakthroughs with deep learning have developed and been refined over 
time, mainly using convolution neural networks. From this perspective, we suggest a deep learning model for monitoring 
and diagnosing the blade health of wind turbines based on images captured by surveillance drones. The main limitations 
of standard monitoring devices are their poor detection accuracy and lack of real-time performance, making it complex to 
obtain the attributes of blades from aerial images. Based on the foregoing, this study introduces a method for increasing 
detection accuracy when carrying out operations in real time using You Only Look at Once version 3 (YOLOv3). We train 
and evaluate three deep learning models on the wind turbine image dataset. We find that many aerial images are unclear 
because of blurred motion. As avoiding such low-resolution images for training can affect accuracy, we use a super-resolution 
convolution neural network to reconstruct a blurred picture as a high-resolution one. The computational results demonstrate 
that YOLOv3 outperforms traditional models in terms of both accuracy and handling time.

Keywords Wind turbine · Surveillance drones · Renewable energy · YOLOv3

1 Introduction

Wind energy has become a preferred method of generat-
ing renewable energy, since 1 MW of wind energy com-
pensates for roughly 2600 tons of annual CO2 emission (Al-
Khudairi and Ghasemnejad 2015). A Wind Turbine (WT) 
comprises rotatory blades, core, gear unit, generator unit, 
tower, and base structures. Sufficient wind forces the WT 
blades to spin, and then the generator produces electricity 
from that motion. Blades are now commonly made of glass 
fiber-hardened composites, which offer enhanced resilience, 
increased resistance to corrosion, and lower weight, as well 
as enabling larger dimensions for greater harvesting of wind 

energy (Light-Marquez et al. 2011). WT blades are subject 
to various hazards over their 20-year lifecycle, including 
fatigue-induced deterioration from shifting loads, heavy 
wind, rain, thunderstorms, and bird strikes (Mandell et al. 
2008). Since blades account for 15–20% of overall system 
cost, their damage may result in significant capital loss, 
unplanned downtime, and potential hazards. For this reason, 
greater focus has been placed on monitoring the condition 
of WT blades. Data collected from surveillance images may 
be used in condition-based maintenance schemes to effec-
tively manage survey times, eliminate potentially unneces-
sary replacements, and provide realistic guidance for future 
proposals (Pandit and Infield 2019).

Earlier studies considered monitoring the condition of 
WT blades by analyzing signals from installed sensors. 
Sutherland et al. (1994) reported two methods for monitor-
ing blade deterioration during testing: (1) coherent optical 
and (2) acoustic emissions (AE). Sørensen et al. (2002) sug-
gested using micro-bending fiber optic sensors to identify 
damage to blade joints. AG (2004) used AE sensors to track 
dynamics induced by damage to WT blades. Raišutis et al. 
(2008) introduced an ultrasonic, air-coupled approach with 
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a wave-guide for the same purpose. Jasinien et al. (2009) 
suggested a new method of inspection to recognize the shape 
and size of blade cracks that incorporates pulse-echo contact 
and immersion methods. Häckell and Rolfes (2013), Prowell 
et al. (2009) installed accelerometers to track blade condi-
tion, experimentally evaluating the efficacy of this method. 
More specialized sensors to monitor blade state include 
large-fiber composite sensing devices (Pitchford et al. 2007), 
Fiber-Bragg sensing devices (Lee et al. 2015), and Doppler-
Vibrometer beam scanning sensors (Ozbek et al. 2013). 
Besides advanced sensor implementations, signal process-
ing techniques have been introduced to improve control fea-
tures. Using Fiber-Bragg sensors, (Lee et al. 2015) designed 
an innovative signal translation algorithm to analyze three 
blade moment signals. Ozbek et al. (2013) suggested and 
simulated a concept for signal processing Doppler radars. 
An alternative technique to detect damage uses microwaves 
(Hosoi et al. 2015; Li et al. 2016a, b), which spread in die-
lectric materials with minimal attenuation.

Wang et al. (2016) introduced an information-driven 
method for detecting potential blade breakage using SCADA 
results. Wang and Zhang (2017) used surveillance drones 
to examine the state of WT blades, enhancing efficiency in 
wind farms. They used Haar-like attributes to describe rift 
regions and trained a multi-level system to classify dam-
age. Processing aerial images effectively, however, requires 
new, more powerful methods to accurately identify crack 
details. Deep learning in object detection has been broadly 
embraced with the use of efficient computing devices, such 
as Graphical Processing Units. Some potential deep-learning 
methods for recognizing objects include Faster R-CNN (Ren 
et al. 2015; Shihavuddin et al. 2019), Single Shot Detec-
tion (SSD) (Liu et al. 2016), and You-Only-Look-Once 
(YOLO) (Redmon and Farhadi 2017; Chen et al. 2019). Tu 
et al. (2019) described diagnostic techniques for diagnosing 
damage to turbine blades using the sound emitted by the 
blade as it passes the tower, namely the time-domain average 
sound signal and the short-term Fourier. Another acoustic 
emission approach to damage diagnostics was introduced by 
(Krause and Ostermann 2020), with the main benefit that it 
utilizes sound below 35 kHz and reduces atmospheric noise, 
which is often present in this frequency range. Reddy et al. 
(2019) suggested a system for the structural analysis of tur-
bine blades that involves classifying and identifying damage 
from images collected by drone, with a CNN model and 
annotated image dataset developed using python packages. 
Yu et al. (2020) suggested a fault-recognition system for WT 
blades in which hierarchical features of training images are 
derived from Deep CNN and provided to a classifier. Current 
approaches to detect damage to WT blades are summarized 
in Table 1. Their major drawbacks include the following:

– Manual examination involves much expense and risk.

– Installing sensors on active WTs significantly increases 
complexity and entails major capital expenditure.

– Likely sensor malfunctions reduce the expected quality 
of the signal and thus the performance of the monitoring 
methods.

– The low-resolution images taken by drone hinder detec-
tion performance in Deep-Learning assisted methods.

– The speed and accuracy of the predictions made by exist-
ing deep convolutional neural networks are poor.

The main objective of the proposed method is to address 
these drawbacks by using a novel, hybrid object detector. 
Surveillance drones are used to take aerial photographs of 
turbines as part of the planned review. The resulting low-
resolution images are used as input to Super-Resolution 
CNN, which convert them to super-resolution images. After 
a training process, the proposed YOLOv3 object detector is 
used to detect damage to WT blades. The main contributions 
of this work are summarized as follows:

– We suggest a novel damage detection method to identify 
different types of surface damage to WT blades.

– The proposed damage-detection system, based on 
YOLOv3, uses a three-layer network that can train dam-
age features automatically and adaptively.

– Laplace variance is used to classify images as blurry or 
clear.

– A SRCNN model is implemented to transform poor-
resolution aerial images to high-resolution aerial images.

Table 1  Traditional monitoring methods to detect blade damages

Researcher(s) Proposed method

 Sørensen et al. (2002) Fiber optic sensor
 AG (2004) Acoustic emission sensor
 Raišutis et al. (2008) Ultrasonic sensor with waveguide
 Jasinien et al. (2009) Pulse-echo contact and immersion
 Häckell and Rolfes (2013) Accelerometers
 Prowell et al. (2009) Accelerometers
 Pitchford et al. (2007) Large-fiber composite sensor
 Lee et al. (2015) Fiber Bragg sensor
 Ozbek et al. (2013) Doppler radars
 Hosoi et al. (2015); Li et al. 

(2016a, (2016b)
Microwave technique

 Wang et al. (2016) SCADA system
 Wang and Zhang (2017) Object detection using Haar-like 

attributes
 Tu et al. (2019) Acoustic emission method
 Krause and Ostermann (2020) Acoustic emission method
 Reddy et al. (2019) Convolutional neural network
 Yu et al. (2020) Deep CNN + Classifier
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– The proposed system achieves high detection accuracy 
and real-time operation.

The remainder of the article is organised as: In Sect. 2, the 
theoretical background of deep learning methods are dis-
cussed. Then, Sect. 3 explains about the implementation of 
proposed system. In Sect. 4, the experimental results are 
discussed. Finally, Sect. 5 concludes the paper with future 
directions

2  Theoretical background

Developments in deep learning specifically, in convolutional 
neural networks (CNN) for computer-vision applications 
have greatly increased the performance of feature classifica-
tion (Khalilpourazari and Khalilpourazary 2018) and object 
detection. Graphic Processing Units have also made a major 
contribution to CNN implementations by using paralleliza-
tion to solve the problems of real-time execution of data-
intensive activities (Khalilpourazari and Mohammadi 2018; 
Shehab et al. 2019). In fact, emerging patterns of heavy 
processing, such as video stream analysis, have now been 
allowed in cloud computing (Khalilpourazari et al. 2019; 
Abualigah et al. 2019), enabling analysis of video in real 
time by sophisticated deep-learning algorithms, as applied, 
for example, to surveillance (Khalilpourazari and Pasandi-
deh 2019; Abualigah et al. 2018). Deep-learning techniques 
are representation learning approaches at various levels of 
abstraction. They are acquired by writing simple but highly 
nonlinear frameworks that transform representation at one 
stage, starting with raw input, into representation at greater, 
much more complex stages (Shehab et al. 2020).

For classification problems, higher layers of representa-
tion amplify those input characteristics that are important 
for segregation and suppress insignificant variations. YOLO 
recognizes objects by splitting an image into grid blocks, as 
opposed to the region approach used by two-stage detectors. 
The function map of the YOLO output layer is intended to 
display bounding box coordinates, object scores, and class 
scores. YOLO (Redmon et al. 2016) also recognizes several 
objects with one inference, with consequently much higher 
speed of detection compared to traditional methods. Locali-
zation errors are nevertheless high due to grid unit process-
ing, and the precision of recognition is poor, making YOLO 
unsuitable for object-recognition applications. Redmon and 
Farhadi (2017) suggested YOLOv2 to address these issues, 
with detection efficiency improved by adopting a batch nor-
malization process for the convolution layers. YOLOv2 also 
incorporates an anchor box, multi-level training, and fine-
grained characteristics. Still, the detection accuracy for small 
objects remains low. Therefore, (Redmon and Farhadi 2018) 
introduced YOLOv3. YOLOv3 comprises convolution layers 

and a deep network for improved accuracy. It uses a residual 
skip relation to address the vanishing gradient problem in 
deep networks and a process of up-sampling and concatena-
tion to hold fine-grained features and identify small objects. 
The most notable feature is its identification at three different 
levels, as used in a pyramid network feature (Lin et al. 2017). 
This lets YOLOv3 track objects of different sizes. When an 
image with three channels is given as input (i.e., R, B, and 
G) into the YOLOv3 system, bounding box coordinates and 
scores of objects and classes are obtained. The outcomes 
from the three levels are mixed and analyzed using non-
maximum suppression. Next, the results of the final detec-
tion are determined. Hence, YOLOv3 is suitable for object-
recognition applications requiring precision and speed.

3  Proposed blade damage detector model

Generally, image classification is used to assign a picture 
under a certain category or class, whereas the purpose of 
object detection is to classify the location of target items 
in an image using bounding boxes, along with the object 
classification. The condition assessment of the WT blades 
can be performed by using YOLOv3 object detection 
model through the following steps. As shown in Fig. 1, pre-
processing of images from the surveillance drone can be 
performed as follows. First, the original drone inspection 
image collection is divided into two groups: (1) high-quality 
images that can be processed directly and (2) low-resolution, 
blurry images. The second, blurry images are transformed 
into a high-resolution image set through a super-resolution 
reconstruction process described briefly in Sect. 3.2. The 
transformed images are later combined with the original, 
high-resolution images and may be applied as a new image 
set for further processing. The original input images were 
also resized to 416 × 416 to accelerate the learning process. 
To extract WT blade damage features, the resized images 
are tested as input to the Darknet-53. The feature-pyramid-
network (FPN) method yields predictions over three distinct 
stages. Overall, YOLOv3 predictions contain the bounding 
box variables, object score, and class prediction. The pro-
cess of eliminating low confidence boxes is regarded as the 
non-maximum suppression process as shown in Fig. 2. Next, 
YOLOv3 extracts the anchors that overlay the ground truth 
subject under multiple thresholds and then give the classifi-
cation of each bounding box and related positioning.

3.1  Image pre‑processing unit

We used the variance of the Laplace distribution to dif-
ferentiate blurry from clear aerial images. The Laplace 
operator is chosen to calculate the image’s second-degree 
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differential in order to increase the contrast between neigh-
boring picture elements. Essentially, the Laplace operator 
is first used to convolute the image and then to determine 
the deviation. In sharp images, the border seems stronger, 
so the divergence significantly increases; in blurry images, 
by contrast, the edge detail is comparatively less, and so 
is the difference. Therefore, if the deviation is less than 
the specified threshold, the picture is considered blurred, 
while the picture is labeled clear if the divergence is 
greater than the stated threshold value (Fig. 3). The ini-
tial surveillance images are thus subdivided into blurry 
and clear image groups. Next, the blurry images are used 
as inputs to the SRCNN model, which transforms them. 
Finally, the transformed images are merged with the clear 
images from the initial dataset to form a new image dataset 
as shown in Fig. 1.

3.2  SRCNN reconstruction

Some aerial images are blurry as a result of drone body 
shuddering and imaging exposure issues, severely impeding 
the effective recognition of WT blade damage. Pre-process-
ing of images is a necessary step in the formation of the 
deep-learning training set. Dong et al. (2014) proposed the 
SRCNN model, which is a network training algorithm for 
pre-processing image data. The SRCNN algorithm effec-
tively addresses the above-described issues by changing 
poor-resolution pictures to super-resolution ones. Imple-
mentation of the SRCNN model typically comprises three 
stages: extraction of image patches, non-linear projection, 
and reconstruction of super-resolution image frames.

Image patches extraction This operation selects (overlap-
ping) maps from blurry image Y, representing each map as 
a high-dimensional vector. These vectors comprise a series 

Fig. 1  Damage detection model using YOLOv3

Fig. 2  Non-maximum suppres-
sion process
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of function maps, the number of which is proportional to 
the vector dimension. The standard procedure is to obtain 
patches from the initial surveillance pictures and employ 
a sequence of convolution filters. Every convolution filter 
can be considered a basis, and simple development can be 
included in the optimization network. The first layer opera-
tion is denoted as:

where W1 represents n1 filters of size (e x f1 x f1 ), ’e’ is the 
number of raster bands in the input, f1 is the map coverage 
of the filter, B1 is an n1-spatial segment, and ’ ∗ ’ represents 
convolution. The product of the convolution process con-
tains n1 attribute features, and the final image from the pri-
mary convolution level is achieved over the Rectified Linear 
Unit ReLU (max(0, x)) activation method (Nair and Hinton 
2010).

Non-linear projection An n1-dimensional attribute vec-
tor is obtained from each frame of images in the primary 
convolution section layer. The resulting n1-dimensional 
attribute vector in the second convolution layer is projected 
non-linearly to the n2-dimensional feature segment. Second 
layer processing is defined as:

where W2 denotes n2 filters of size n1 × f2 × f2 , and B2 repre-
sents a n2-spatial vector. The convolution product contains 
n2 feature maps.

 Reconstruction of super resolution image The last convo-
lution section layer integrates all the super-resolution frames 
created with the help of the upper layers to produce a super-
resolution model, the SRCNN network’s final image output. 
Therefore, the third layer process is:

(1)F1(Y) = maximum(0,W1 ∗ Y + B1)

(2)F2(Y) = maximum(0,W2 ∗ F1(Y) + B2)

where W3 denotes e filters of scale n2 × f3 × f3 and B3 repre-
sents a e-sized vector.

SRCNN structure The SRCNN network uses the bicu-
bic interpolation model to enlarge the collected, smeared 
surveillance picture to the desired size and register the 
interlaced image as Y. Super-resolution restoration aims 
to rebuild Y to an appropriately high-resolution rasterized 
image H, analogous to the actual image X. Through training, 
we will obtain the respective end-to-end mapping feature 
F(Y).

The fundamental arrangement of the SRCNN model is 
illustrated in Fig. 4, where it may be observed that the total 
structure contains a three-stage CNN. The primary con-
volution stage extracts the frames of images from Y and 
then identifies certain features with low resolution. The 
next convolutional layer produces features of high resolu-
tion using non-linear mapping. Lastly, the reconstruction of 
super-resolution images is accomplished by the third con-
volution layer, which is analogous to creating images near 
to the actual resolution. To achieve the mapping feature F 
between super-resolution images, it is necessary to train the 
system variable � = ( W1,W2,W3,B1,B2,B3 ) in the specific 
process. To learn these variables, the difference between the 
replicated photograph F(Y;�)and the actual image X with 
high-resolution must be minimized. The mean squared error 
(MSE) is taken as a function of loss, and expression for MSE 
is expressed as:

(3)F3(Y) = W3 ∗ F2(Y) + B3

(4)L(�) =
1

n

n∑

i=1

||F(Yi;�) − Xi||2

Fig. 3  Calculation of blurriness 
in the input images
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where n denotes the number of training examples, Xi is 
the actual image, Yi represents the poor-resolution refer-
ence image, and F(Yi;�) is the clear image produced by the 
SRCNN model.

3.3  Damage detection system using YOLOv3

Object recognition is a computer vision task that requires 
one or more targets to be located inside an image, in 
which each object can be labelled. A recent deep learn-
ing approach, Selective Search, has been employed to 
minimize the number of bounding boxes the algorithm 
needs to check, such as R-CNN and Fast R-CNN. Another 
technique, called Overfeat, consists of multi-stage picture 
scanning utilizing sliding window-like techniques. At the 

other side, YOLO approaches the problem of target rec-
ognition in a different way. This only transfers the entire 
image across the network once. SSD is another object 
detection algorithm that generates a deep-learning network 
for a picture once, but it is much slower than YOLOv3, 
although the latter retains relatively similar accuracy. The 
YOLO model family is a series of in-depth learning mod-
els intended to identify objects quickly. A single, function-
ing, neural network (formerly a GoogleNet-edition, later 
revised and recognized as DarkNet based on VGG) divides 
the input into a cell grid and each cell explicitly predicts 
a bounding box and the classification of objects. The out-
come is a significant number of bounding-rectangles, con-
solidated by a post-processing step into a final prediction 
as shown in Fig. 5.

Fig. 4  SRCNN network structure

Fig. 5  YOLOv3 architecture
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YOLOv3 uses the FPN concept to predict boxes at different 
scales. It uses a certain number of convolution layers and extra 
layers (residual-layers) to finish the procedure of detection and 
manages the attributes of the whole picture to predict every 
minimum bounding-rectangle. Meanwhile, it predicts the reali-
zation of top-to-bottom training across all classes of all bound-
ing rectangles, those that hold significant average accuracy and 
high efficiency in real-time. YOLOv3 begins the process by 
splitting the input surveillance image into N × N blocks and 
attaches a bounding rectangular anchor for every ground truth 
on the map. The network finds four parameters ( tx, ty, tw, th ) for 
each bounding box, as shown in Fig. 6, and then implements 
a method to predict four associated coordinates: the two midst 
coordinates (bx, by) of the bounding rectangle,(Cx,Cy) denotes 
the location of the grid, and the height bh and width bw . The 
minimum bounding rectangle prediction and the Intersection-
over-Union (IOU) equations are given as follows:

(5)bx =�(tx) + Cx

(6)by =�(ty) + Cy

(7)bw =pwe
tw

(8)bh =phe
th

(9)IOU =
area(BBdt ∩ BBgt)

area(BBdt ∪ BBgt)

where the IOU shown in expression  9 is the amount of vari-
ance between the device detected bounding rectangle and 
the ground truth rectangle. BBgt is the learning label-based 
ground truth rectangle, BBdt is the bounding rectangle for 
detection, and area (.) shows the region.

Network structure of YOLOv3 The main configura-
tion of the YOLOv3 system is shown in Fig. 7, which 
inherits its framework from Darknet-53. This network is a 
fusion of YOLOv2 (Zhao and Qu 2018), Darknet-19 (Ghe-
nescu et al. 2018), and ResNet (Szegedy et al. 2017). So, 
YOLOv3 mainly uses convolution kernels 1 × 1 and 3 × 
3, and some related structures with shortcuts. The input 
surveillance image is processed first, after which its size 
is changed to 416 × 416, and then it is processed using 
YOLOv3. 

1. The first section comprises two layers of convolution 
form. The size of input image is 416 × 416 × 3 and the 
kernel size is 3 × 3 × 64 and 3 × 3 × 32. The size of the 
output match function is reduced to 208 × 208 × 64 after 
completion of the convolution process.

2. The second section comprises three levels of convolu-
tion, followed by a residual layer. The convolution ker-
nel size is 3 × 3 × 128, 3 × 3 × 64, and 1 × 1 × 32, and 
the output map is reduced to 104 × 104 × 128 after com-
pletion of the convolution process.

3. The third section comprises five convolution layers with 
two layers of residual form. The scale of the convolution 
kernel is 3 × 3 × 256, 3 × 3 × 128, and 1 × 1 × 64, and 
the output function map is reduced to 52 × 52 × 256 after 
the process of convolution.

4. The fourth section comprises 17 convolution layers with 
eight residual layers. The convolution kernel size is 1 × 
1 × 128, 3 × 3 × 256, and 3 × 3 × 512, and the output 
function map is reduced to 26 × 26 × 512 after comple-
tion of the convolution process.

5. The fifth section contains 17 convolution layers and 
eight residual layers. The dimensions of the convolution 
kernel are 1 × 1 × 256, 3 × 3 × 1024, and 3 × 3 × 512. 
The output function map is reduced to 13 × 13 × 1024 
after completion of the convolution process.

6. The sixth section comprises eight convolution and four 
residual form layers. The convolution kernel size is 1 × 
1 × 512 and 3 × 3 × 1024, and the output function map 
stays the same after completion of the convolution pro-
cess.

7. The last section comprises three prediction networks. 
YOLOv3 predicts rectangular boxes on three various 
levels, and then extracts the attributes of these scales. 
The network prediction output is a 10 × 10 × (3 × (4 + 
1 + 6))tensor for four minimum rectangular box correc-
tions, one objectness projection, and six classifiers as 
shown in Table 2.Fig. 6  Bounding box detection
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Training The training of the YOLOv3 network is split 
into three activities, as follows. In Step 1, the size of the 
aerial image captured by surveillance drone, 5280 × 2970, 
is too large to be the network input. As such, the actual 
image size is changed to 416 × 416 in order to accelerate 
the training procedure. In Step 2, the VOC2007 (Rao et al. 
2019) dataset pattern is used to label the outer form of 

the leading edge (LE) erosion, the vortex generator (VG) 
Panel, the VG with vanished teeth, and the lightning recep-
tor to show up in a particular image. Lastly, in Step 3, the 
system variables of the YOLOv3 algorithm are initiated, 
and the network is trained to get variables for the identifi-
cation of specified objects.

Fig. 7  Overview of YOLOv3 network architecture
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Essential parameters This paper presents an additional 
study of the choice of three essential variables. Batch size: 
Theoretically, the greater the volume, the easier the prepara-
tion. Nonetheless, owing to hardware constraints, we cannot 
increase the value forever, so the authors attempted four dif-
ferent batch sizes of 8, 16, 64, and 128, respectively. When the 
batch size was chosen as 64, 16, 8 during preparation, there 
would be no loss of power, so we chose 64 as the batch size 
based on the above argument. Weight decay: To avoid overfit-
ting, we first set the correct rate of learning and then modified 
the decay measure from the constant value (0.01) to the final 
measure (0.0005). Ignore thresh: The value of the IOU thresh-
old defines the number of IOUs used in the loss estimation. 
If the pre-defined threshold is less, it will cause underfitting, 
whereas if the threshold limit is high, it obviously causes over-
fitting. Thus, the ignore thresh value is set as 0.65 on the basis 
of the above argument and the case at hand.

Selection of parameters The choice of the three variables 
listed above will influence the detection accuracy. It is there-
fore important to change these parameters to prevent under-
fitting and overfitting while training. To boost the precision 
of the typical detection, YOLOv3 adopts a multi-label cat-
egorization that is distinctly against the old interpretations 
that use a contradictory label. The logistic classifier is used to 
determine the objectness value for each bounding rectangle. 
For classification loss while testing, YOLOv3 uses a discrete 
cross-entropy loss for each number, which eliminates the MSE 
commonly exploited in past versions. The loss factor used in 
the YOLOv3 feature training is shown as follows:

where m represents the sample count, sm ∈ [0, 1]reflects the 
objectness value anticipated by the system, which calculates 
the expected likelihood that the mth sample is WT turbine 
blade damage. Additionally, gm shows the ground truth. It 
needs to be observed that gm ∈ (0, 1) is implied when the mth 
observation relates to the object class. Network variables are 
trained by reducing the loss to all samples, i.e.

∑
m
Loss(sm) . 

(10)Loss(sm) =

{
− log2 (sm) if gm = 1

− log2 (1 − sm) if gm = 0

In this article, the Adaptive Moment Estimation, shortly 
referred to as the Adam Optimization procedure (Kingma 
and Ba 2019), is used to change network parameters. Adam 
would be the first order optimization mechanism that can 
substitute the standard Stochastic gradient descent method 
and adjust network weights recursively, depending on train-
ing data. The model calculates the appropriate adaptive 
training score for various values by determining the gradi-
ent estimate of primary and secondary moments. It inte-
grates two optimization algorithms, including the advantage 
of a root-mean-square propagation and adaptive gradient 
algorithm (Ruder 2016), which are useful for improving 
the effectiveness of scattered gradients and efficiency of 
training.

4  Results and discussion

The general specifications of the personal computer engaged 
in this study are as follows: Intel(R) Xeon(R) CPU E5-2780, 
NVIDIA 1080 RTX as GPU, main frequency 2.80 GHz. The 
operating software is open source type Ubuntu 16.04, and 
Tensorflow is the platform for algorithm development.

Dataset In this study, the authors used surveillance drone 
images of the WT, a publicly available dataset. It is the only 
available WT image-set comprising a collection of 700 
images. This collection includes the 2017 and 2018 period 
inspection photos of the Nordtank WT installed at the DTU 
Wind Power test site in Roskilde, Denmark (Shihavuddin 
and Chen 2018). To increase the dataset, collected 300 more 
images from the internet from different sources. Those pic-
tures without part of the blade or a little part of the blade 
have been manually inspected and removed. The images 
in the dataset are classified as (a) VG panel, (b) VG panel 
with missing teeth, (c) LE corrosion, (d) Crack, (e)Light-
ning detector, (f) Damaged lightning detector. These classes 
are the static indicators of WT blades’ health. The reason 
for choosing these classes for analysis is that all of these 
damages provide improved visual characteristics and can be 
detected by the inspection team, and would be helpful if the 
program had to learn to do the same thing. For every class, 
Table 2 lists the number of annotations which are manually 
annotated and viewed as ground truths. Examples of manu-
ally annotated damage of WT blades are shown in Fig. 8.

Analysis of the SRCNN results The blurred image 
found by classification process was used as a test object 
for reconstruction of high-resolution images. The analysis 
of the SRCNN indicates that the restoration effect is influ-
enced by the count and the filter size, as well as the consid-
erable layers of the model. The authors referred to the con-
figuration of the SRCNN algorithm in (Dong et al. 2016; 
Zhou et al. 2018; Elsaid and Wu 2019). Simultaneously, 
standard models such as bicubic convolution interpolation 

Table 2  Dataset classification

Classes Training annota-
tions

Testing 
annota-
tions

VG panel 120 24
VG panel with missing teeth 80 24
LE corrosion 120 24
Crack 80 26
Lightning detector 140 28
Damaged lightning detector 60 20
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(Tian et al. 2012) and sparse coding (Druzhkov and Kus-
tikova 2016) are compared for test analysis.  Figure 9 is 
the plot of peak signal to noise ratio (PSNR) in decibels 
and backprops. It is evident from the plot that the SRCNN 
has the best PSNR values for various backprops when con-
trasting them with other models.

Analysis of the YOLOv3 results We base this research 
on the YOLOv3 model and configure the network. Several 
key variables are selected, in which the kernel function is 
set to 1 × 1 or 3 × 3, the step-size being 1, and the size of 
the batch set to 64. Variables are revised once per batch 
of testing instances and the coefficient of decay weight is 
0.0005. The adaptive rate of learning is calculated with a 

Fig. 8  a VG panel, b VG panel with missing teeth, c LE corrosion, d cracks, e lightning detector, f damaged lightning receiver

Fig. 9  PSNR vs back propaga-
tions
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rate of 0.01 and a highest iteration count of 5000. During the 
training process, the accuracy of state-of-the-art deep learn-
ing algorithms, Faster R-CNN, YOLOv2 and YOLOv3, in 
recognizing the training objects is measured, while the num-
ber of iterations is 500, 1000, 2000, 3000, 4000, and 5000, 
respectively. The findings are tabulated in Table 3, where it 
can be perceived that the average accuracy of detection of 
the three algorithms also improves steadily with the rise in 
iteration cycles, with the maximum accuracy of recogni-
tion of the YOLOv3 algorithm approaching 95.6%. After the 
training process, the model has been assessed with a test set 
consisting of 200 images.

From Table 4, it is also noted that the training time of 
YOLOv3 (90 Min) is comparatively shorter than other 
models such as Faster RCNN (220 Min) and YOLOv2 (120 
Min). The loss curves of all models were evaluated in the 
training process as shown in Fig. 10.

From Table 5, we can see that YOLOv3 has the best value 
of mean average precision and the least prediction time 
when compared with Faster R-CNN and YOLOv2 models. 
In conclusion, compared with Faster R-CNN and YOLOv2, 
the suggested model has better improvement in the detec-
tion accuracy of WT blade damage. The recognition results 
of such damage in the surveillance image are displayed in 
Fig. 11, from where it can be observed that the suggested 
algorithm in this paper will precisely locate the blade dam-
age. Meanwhile, it also verifies the validity of the WT blade 
damage detection algorithm implemented in this paper.

5  Conclusion

This paper proposes a YOLOv3-based model for the rec-
ognition of WT blade damage from surveillance drone 
images in order to resolve the poor detection accuracy 
problem associated with conventional methods. The pre-
sented scheme includes two major steps: during the first 
step, low-resolution drone images are identified and trans-
formed to a super-resolution images using the SRCNN 
method. In the second step, the advanced deep learning 
method YOLOv3 is used to detect damage to turbine 
blades in the aerial images. The YOLOv3 model, together 
with the SRCNN model, can precisely detect the loca-
tion and condition of damage to WT blades under vari-
ous directions, illumination intensities, and backgrounds. 
SRCNN’s peak signal-to-noise ratio was compared with 
other standard methods such as bi-cubic convolution inter-
polation and sparse coding. The test results showed that 
the proposed SRCNN had the highest peak signal-to-noise 
ratio compared to other models. Experiments were con-
ducted using state-of-the-art, deep-learning, object-detec-
tion techniques, and the findings show that the proposed 
YOLOv3 solution has the fastest average detection speed 

Table 3  Comparison of state-of-the-art deep learning models with 
respect to average accuracy

Iterations Average Accuracy (%)

Faster R-CNN (Shi-
havuddin et al. 2019)

YOLOv2 (Zhao 
and Qu 2018)

YOLOv3 
(Proposed 
method)

100 67 66 67
1000 71 70 72
2000 85 83 84
3000 91 91 92
4000 94 92 94
5000 95 93.5 96

Table 4  Comparison of training time and average processing time per 
image for different models

Model Training time (in 
Min)

Average process-
ing time per image 
(in s)

Faster R-CNN 220 0.652
YOLOv2 120 0.522
YOLOv3 90 0.20

Fig. 10  Comparison of Loss curves for three deep learning models

Table 5  Comparison of mean 
average precision

Model Mean 
average 
precision

Faster R-CNN 0.87
YOLOv2 0.90
YOLOv3 0.96
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of 0.20 s and the maximum average precision of 0.96. In 
future work, we will use own surveillance images to vali-
date the proposed method. Also, we will use advanced 
image augmentation methods such as Generative adver-
sarial networks to achieve the best performance from a 
proposed system.
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