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Abstract

Surveillance drones are remarkable devices for monitoring, as they have strong spatial and remote sensing capabilities.
The prompt detection of peripheral damage to the blades of wind turbines is necessary to reduce downtime and prevent the
potential failure of wind farms. Computer vision breakthroughs with deep learning have developed and been refined over
time, mainly using convolution neural networks. From this perspective, we suggest a deep learning model for monitoring
and diagnosing the blade health of wind turbines based on images captured by surveillance drones. The main limitations
of standard monitoring devices are their poor detection accuracy and lack of real-time performance, making it complex to
obtain the attributes of blades from aerial images. Based on the foregoing, this study introduces a method for increasing
detection accuracy when carrying out operations in real time using You Only Look at Once version 3 (YOLOvV3). We train
and evaluate three deep learning models on the wind turbine image dataset. We find that many aerial images are unclear
because of blurred motion. As avoiding such low-resolution images for training can affect accuracy, we use a super-resolution
convolution neural network to reconstruct a blurred picture as a high-resolution one. The computational results demonstrate
that YOLOV3 outperforms traditional models in terms of both accuracy and handling time.

Keywords Wind turbine - Surveillance drones - Renewable energy - YOLOv3

1 Introduction

Wind energy has become a preferred method of generat-
ing renewable energy, since 1 MW of wind energy com-
pensates for roughly 2600 tons of annual CO, emission (Al-
Khudairi and Ghasemnejad 2015). A Wind Turbine (WT)
comprises rotatory blades, core, gear unit, generator unit,
tower, and base structures. Sufficient wind forces the WT
blades to spin, and then the generator produces electricity
from that motion. Blades are now commonly made of glass
fiber-hardened composites, which offer enhanced resilience,
increased resistance to corrosion, and lower weight, as well
as enabling larger dimensions for greater harvesting of wind
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energy (Light-Marquez et al. 2011). WT blades are subject
to various hazards over their 20-year lifecycle, including
fatigue-induced deterioration from shifting loads, heavy
wind, rain, thunderstorms, and bird strikes (Mandell et al.
2008). Since blades account for 15-20% of overall system
cost, their damage may result in significant capital loss,
unplanned downtime, and potential hazards. For this reason,
greater focus has been placed on monitoring the condition
of WT blades. Data collected from surveillance images may
be used in condition-based maintenance schemes to effec-
tively manage survey times, eliminate potentially unneces-
sary replacements, and provide realistic guidance for future
proposals (Pandit and Infield 2019).

Earlier studies considered monitoring the condition of
WT blades by analyzing signals from installed sensors.
Sutherland et al. (1994) reported two methods for monitor-
ing blade deterioration during testing: (1) coherent optical
and (2) acoustic emissions (AE). Sgrensen et al. (2002) sug-
gested using micro-bending fiber optic sensors to identify
damage to blade joints. AG (2004) used AE sensors to track
dynamics induced by damage to WT blades. RaiSutis et al.
(2008) introduced an ultrasonic, air-coupled approach with
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a wave-guide for the same purpose. Jasinien et al. (2009)
suggested a new method of inspection to recognize the shape
and size of blade cracks that incorporates pulse-echo contact
and immersion methods. Hickell and Rolfes (2013), Prowell
et al. (2009) installed accelerometers to track blade condi-
tion, experimentally evaluating the efficacy of this method.
More specialized sensors to monitor blade state include
large-fiber composite sensing devices (Pitchford et al. 2007),
Fiber-Bragg sensing devices (Lee et al. 2015), and Doppler-
Vibrometer beam scanning sensors (Ozbek et al. 2013).
Besides advanced sensor implementations, signal process-
ing techniques have been introduced to improve control fea-
tures. Using Fiber-Bragg sensors, (Lee et al. 2015) designed
an innovative signal translation algorithm to analyze three
blade moment signals. Ozbek et al. (2013) suggested and
simulated a concept for signal processing Doppler radars.
An alternative technique to detect damage uses microwaves
(Hosoi et al. 2015; Li et al. 20164, b), which spread in die-
lectric materials with minimal attenuation.

Wang et al. (2016) introduced an information-driven
method for detecting potential blade breakage using SCADA
results. Wang and Zhang (2017) used surveillance drones
to examine the state of WT blades, enhancing efficiency in
wind farms. They used Haar-like attributes to describe rift
regions and trained a multi-level system to classify dam-
age. Processing aerial images effectively, however, requires
new, more powerful methods to accurately identify crack
details. Deep learning in object detection has been broadly
embraced with the use of efficient computing devices, such
as Graphical Processing Units. Some potential deep-learning
methods for recognizing objects include Faster R-CNN (Ren
et al. 2015; Shihavuddin et al. 2019), Single Shot Detec-
tion (SSD) (Liu et al. 2016), and You-Only-Look-Once
(YOLO) (Redmon and Farhadi 2017; Chen et al. 2019). Tu
et al. (2019) described diagnostic techniques for diagnosing
damage to turbine blades using the sound emitted by the
blade as it passes the tower, namely the time-domain average
sound signal and the short-term Fourier. Another acoustic
emission approach to damage diagnostics was introduced by
(Krause and Ostermann 2020), with the main benefit that it
utilizes sound below 35 kHz and reduces atmospheric noise,
which is often present in this frequency range. Reddy et al.
(2019) suggested a system for the structural analysis of tur-
bine blades that involves classifying and identifying damage
from images collected by drone, with a CNN model and
annotated image dataset developed using python packages.
Yu et al. (2020) suggested a fault-recognition system for WT
blades in which hierarchical features of training images are
derived from Deep CNN and provided to a classifier. Current
approaches to detect damage to WT blades are summarized
in Table 1. Their major drawbacks include the following:

— Manual examination involves much expense and risk.
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Table 1 Traditional monitoring methods to detect blade damages

Researcher(s) Proposed method

Sgrensen et al. (2002)
AG (2004)

Raisutis et al. (2008)
Jasinien et al. (2009)
Hickell and Rolfes (2013)
Prowell et al. (2009)
Pitchford et al. (2007)
Lee et al. (2015)

Ozbek et al. (2013)

Hosoi et al. (2015); Li et al.
(20164, (2016b)

Wang et al. (2016)
Wang and Zhang (2017)

Fiber optic sensor

Acoustic emission sensor
Ultrasonic sensor with waveguide
Pulse-echo contact and immersion
Accelerometers

Accelerometers

Large-fiber composite sensor
Fiber Bragg sensor

Doppler radars

Microwave technique

SCADA system

Object detection using Haar-like
attributes

Tu et al. (2019) Acoustic emission method

Krause and Ostermann (2020)

Reddy et al. (2019)

Yu et al. (2020)

Acoustic emission method
Convolutional neural network
Deep CNN + Classifier

— Installing sensors on active WTs significantly increases
complexity and entails major capital expenditure.

— Likely sensor malfunctions reduce the expected quality
of the signal and thus the performance of the monitoring
methods.

— The low-resolution images taken by drone hinder detec-
tion performance in Deep-Learning assisted methods.

— The speed and accuracy of the predictions made by exist-
ing deep convolutional neural networks are poor.

The main objective of the proposed method is to address
these drawbacks by using a novel, hybrid object detector.
Surveillance drones are used to take aerial photographs of
turbines as part of the planned review. The resulting low-
resolution images are used as input to Super-Resolution
CNN, which convert them to super-resolution images. After
a training process, the proposed YOLOV3 object detector is
used to detect damage to WT blades. The main contributions
of this work are summarized as follows:

— We suggest a novel damage detection method to identify
different types of surface damage to WT blades.

— The proposed damage-detection system, based on
YOLOVS3, uses a three-layer network that can train dam-
age features automatically and adaptively.

— Laplace variance is used to classify images as blurry or
clear.

— A SRCNN model is implemented to transform poor-
resolution aerial images to high-resolution aerial images.
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— The proposed system achieves high detection accuracy
and real-time operation.

The remainder of the article is organised as: In Sect. 2, the
theoretical background of deep learning methods are dis-
cussed. Then, Sect. 3 explains about the implementation of
proposed system. In Sect. 4, the experimental results are
discussed. Finally, Sect. 5 concludes the paper with future
directions

2 Theoretical background

Developments in deep learning specifically, in convolutional
neural networks (CNN) for computer-vision applications
have greatly increased the performance of feature classifica-
tion (Khalilpourazari and Khalilpourazary 2018) and object
detection. Graphic Processing Units have also made a major
contribution to CNN implementations by using paralleliza-
tion to solve the problems of real-time execution of data-
intensive activities (Khalilpourazari and Mohammadi 2018;
Shehab et al. 2019). In fact, emerging patterns of heavy
processing, such as video stream analysis, have now been
allowed in cloud computing (Khalilpourazari et al. 2019;
Abualigah et al. 2019), enabling analysis of video in real
time by sophisticated deep-learning algorithms, as applied,
for example, to surveillance (Khalilpourazari and Pasandi-
deh 2019; Abualigah et al. 2018). Deep-learning techniques
are representation learning approaches at various levels of
abstraction. They are acquired by writing simple but highly
nonlinear frameworks that transform representation at one
stage, starting with raw input, into representation at greater,
much more complex stages (Shehab et al. 2020).

For classification problems, higher layers of representa-
tion amplify those input characteristics that are important
for segregation and suppress insignificant variations. YOLO
recognizes objects by splitting an image into grid blocks, as
opposed to the region approach used by two-stage detectors.
The function map of the YOLO output layer is intended to
display bounding box coordinates, object scores, and class
scores. YOLO (Redmon et al. 2016) also recognizes several
objects with one inference, with consequently much higher
speed of detection compared to traditional methods. Locali-
zation errors are nevertheless high due to grid unit process-
ing, and the precision of recognition is poor, making YOLO
unsuitable for object-recognition applications. Redmon and
Farhadi (2017) suggested YOLOV2 to address these issues,
with detection efficiency improved by adopting a batch nor-
malization process for the convolution layers. YOLOV2 also
incorporates an anchor box, multi-level training, and fine-
grained characteristics. Still, the detection accuracy for small
objects remains low. Therefore, (Redmon and Farhadi 2018)
introduced YOLOv3. YOLOv3 comprises convolution layers

and a deep network for improved accuracy. It uses a residual
skip relation to address the vanishing gradient problem in
deep networks and a process of up-sampling and concatena-
tion to hold fine-grained features and identify small objects.
The most notable feature is its identification at three different
levels, as used in a pyramid network feature (Lin et al. 2017).
This lets YOLOV3 track objects of different sizes. When an
image with three channels is given as input (i.e., R, B, and
G) into the YOLOvV3 system, bounding box coordinates and
scores of objects and classes are obtained. The outcomes
from the three levels are mixed and analyzed using non-
maximum suppression. Next, the results of the final detec-
tion are determined. Hence, YOLOV3 is suitable for object-
recognition applications requiring precision and speed.

3 Proposed blade damage detector model

Generally, image classification is used to assign a picture
under a certain category or class, whereas the purpose of
object detection is to classify the location of target items
in an image using bounding boxes, along with the object
classification. The condition assessment of the WT blades
can be performed by using YOLOv3 object detection
model through the following steps. As shown in Fig. 1, pre-
processing of images from the surveillance drone can be
performed as follows. First, the original drone inspection
image collection is divided into two groups: (1) high-quality
images that can be processed directly and (2) low-resolution,
blurry images. The second, blurry images are transformed
into a high-resolution image set through a super-resolution
reconstruction process described briefly in Sect. 3.2. The
transformed images are later combined with the original,
high-resolution images and may be applied as a new image
set for further processing. The original input images were
also resized to 416 X 416 to accelerate the learning process.
To extract WT blade damage features, the resized images
are tested as input to the Darknet-53. The feature-pyramid-
network (FPN) method yields predictions over three distinct
stages. Overall, YOLOvV3 predictions contain the bounding
box variables, object score, and class prediction. The pro-
cess of eliminating low confidence boxes is regarded as the
non-maximum suppression process as shown in Fig. 2. Next,
YOLOV3 extracts the anchors that overlay the ground truth
subject under multiple thresholds and then give the classifi-
cation of each bounding box and related positioning.

3.1 Image pre-processing unit
We used the variance of the Laplace distribution to dif-

ferentiate blurry from clear aerial images. The Laplace
operator is chosen to calculate the image’s second-degree
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Image Pre-processing Unit

Clear
Images

Laplace Variance
Distribution
Method

Aerial
Image
Dataset

Blurry
Images

Fig. 1 Damage detection model using YOLOv3

Fig. 2 Non-maximum suppres-
sion process

differential in order to increase the contrast between neigh-
boring picture elements. Essentially, the Laplace operator
is first used to convolute the image and then to determine
the deviation. In sharp images, the border seems stronger,
so the divergence significantly increases; in blurry images,
by contrast, the edge detail is comparatively less, and so
is the difference. Therefore, if the deviation is less than
the specified threshold, the picture is considered blurred,
while the picture is labeled clear if the divergence is
greater than the stated threshold value (Fig. 3). The ini-
tial surveillance images are thus subdivided into blurry
and clear image groups. Next, the blurry images are used
as inputs to the SRCNN model, which transforms them.
Finally, the transformed images are merged with the clear
images from the initial dataset to form a new image dataset
as shown in Fig. 1.
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3.2 SRCNN reconstruction

Some aerial images are blurry as a result of drone body
shuddering and imaging exposure issues, severely impeding
the effective recognition of WT blade damage. Pre-process-
ing of images is a necessary step in the formation of the
deep-learning training set. Dong et al. (2014) proposed the
SRCNN model, which is a network training algorithm for
pre-processing image data. The SRCNN algorithm effec-
tively addresses the above-described issues by changing
poor-resolution pictures to super-resolution ones. Imple-
mentation of the SRCNN model typically comprises three
stages: extraction of image patches, non-linear projection,
and reconstruction of super-resolution image frames.
Image patches extraction This operation selects (overlap-
ping) maps from blurry image Y, representing each map as
a high-dimensional vector. These vectors comprise a series
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Fig.3 Calculation of blurriness
in the input images

Image with blurness

of function maps, the number of which is proportional to
the vector dimension. The standard procedure is to obtain
patches from the initial surveillance pictures and employ
a sequence of convolution filters. Every convolution filter
can be considered a basis, and simple development can be
included in the optimization network. The first layer opera-
tion is denoted as:

F(Y) = maximum(0, W, * Y + B)) (D

where W, represents n, filters of size (e x f; x f;), e’ is the
number of raster bands in the input, f is the map coverage
of the filter, B, is an n-spatial segment, and ’*’ represents
convolution. The product of the convolution process con-
tains 7, attribute features, and the final image from the pri-
mary convolution level is achieved over the Rectified Linear
Unit ReLLU (max(0, x)) activation method (Nair and Hinton
2010).

Non-linear projection An n-dimensional attribute vec-
tor is obtained from each frame of images in the primary
convolution section layer. The resulting n,-dimensional
attribute vector in the second convolution layer is projected
non-linearly to the n,-dimensional feature segment. Second
layer processing is defined as:

F,(Y) = maximum(0, W, * F|(Y) + B,) 2)

where W, denotes n, filters of size n; X f, X f,, and B, repre-
sents a n,-spatial vector. The convolution product contains
n, feature maps.

Reconstruction of super resolution image The last convo-
lution section layer integrates all the super-resolution frames
created with the help of the upper layers to produce a super-
resolution model, the SRCNN network’s final image output.
Therefore, the third layer process is:

Image with no blurness

F3(Y) = W3 = Fy(Y) + By 3)

where W, denotes e filters of scale n, X f3 X f; and B; repre-
sents a e-sized vector.

SRCNN structure The SRCNN network uses the bicu-
bic interpolation model to enlarge the collected, smeared
surveillance picture to the desired size and register the
interlaced image as Y. Super-resolution restoration aims
to rebuild Y to an appropriately high-resolution rasterized
image H, analogous to the actual image X. Through training,
we will obtain the respective end-to-end mapping feature
F(Y).

The fundamental arrangement of the SRCNN model is
illustrated in Fig. 4, where it may be observed that the total
structure contains a three-stage CNN. The primary con-
volution stage extracts the frames of images from Y and
then identifies certain features with low resolution. The
next convolutional layer produces features of high resolu-
tion using non-linear mapping. Lastly, the reconstruction of
super-resolution images is accomplished by the third con-
volution layer, which is analogous to creating images near
to the actual resolution. To achieve the mapping feature F
between super-resolution images, it is necessary to train the
system variable = (W, W,, Ws, B, B,, B3) in the specific
process. To learn these variables, the difference between the
replicated photograph F(Y;f)and the actual image X with
high-resolution must be minimized. The mean squared error
(MSE) is taken as a function of loss, and expression for MSE
is expressed as:

10) = = Y IIF(0) - X, @)
=1
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SRCNN 3-stage Network structure
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___________________________________

Fig.4 SRCNN network structure

where n denotes the number of training examples, X; is
the actual image, Y, represents the poor-resolution refer-
ence image, and F(Y;;0) is the clear image produced by the
SRCNN model.

3.3 Damage detection system using YOLOv3

Object recognition is a computer vision task that requires
one or more targets to be located inside an image, in
which each object can be labelled. A recent deep learn-
ing approach, Selective Search, has been employed to
minimize the number of bounding boxes the algorithm
needs to check, such as R-CNN and Fast R-CNN. Another
technique, called Overfeat, consists of multi-stage picture
scanning utilizing sliding window-like techniques. At the

\ 4

Test Input

Input image divided in to SxS grid

Fig.5 YOLOV3 architecture
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other side, YOLO approaches the problem of target rec-
ognition in a different way. This only transfers the entire
image across the network once. SSD is another object
detection algorithm that generates a deep-learning network
for a picture once, but it is much slower than YOLOV3,
although the latter retains relatively similar accuracy. The
YOLO model family is a series of in-depth learning mod-
els intended to identify objects quickly. A single, function-
ing, neural network (formerly a GoogleNet-edition, later
revised and recognized as DarkNet based on VGG) divides
the input into a cell grid and each cell explicitly predicts
a bounding box and the classification of objects. The out-
come is a significant number of bounding-rectangles, con-
solidated by a post-processing step into a final prediction
as shown in Fig. 5.

Bounding boxes generation

VG panel detection

Class probability Map
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YOLOV3 uses the FPN concept to predict boxes at different
scales. It uses a certain number of convolution layers and extra
layers (residual-layers) to finish the procedure of detection and
manages the attributes of the whole picture to predict every
minimum bounding-rectangle. Meanwhile, it predicts the reali-
zation of top-to-bottom training across all classes of all bound-
ing rectangles, those that hold significant average accuracy and
high efficiency in real-time. YOLOv3 begins the process by
splitting the input surveillance image into N X N blocks and
attaches a bounding rectangular anchor for every ground truth
on the map. The network finds four parameters (z,, 7, 1,,, t,,) for
each bounding box, as shown in Fig. 6, and then implements
a method to predict four associated coordinates: the two midst
coordinates (b,, by) of the bounding rectangle,(C,, Cy) denotes
the location of the grid, and the height b, and width b,,. The
minimum bounding rectangle prediction and the Intersection-
over-Union (IOU) equations are given as follows:

b, =o(t,) + C, 5)
b, =a(t,) + C, (6)
b, =p,e" (7
b, =pye" 3
area(BB,, N BB,,)
10U = 9)
area(BB,, U BB,,)
Cx
—
et
G
Anchor )

Ground truth bo%x

Ima;ge

Fig.6 Bounding box detection

where the IOU shown in expression 9 is the amount of vari-
ance between the device detected bounding rectangle and
the ground truth rectangle. BBgt is the learning label-based
ground truth rectangle, BBdt is the bounding rectangle for
detection, and area (.) shows the region.

Network structure of YOLOv3 The main configura-
tion of the YOLOvV3 system is shown in Fig. 7, which
inherits its framework from Darknet-53. This network is a
fusion of YOLOV2 (Zhao and Qu 2018), Darknet-19 (Ghe-
nescu et al. 2018), and ResNet (Szegedy et al. 2017). So,
YOLOvV3 mainly uses convolution kernels 1 X 1 and 3 X
3, and some related structures with shortcuts. The input
surveillance image is processed first, after which its size
is changed to 416 x 416, and then it is processed using
YOLOV3.

1. The first section comprises two layers of convolution
form. The size of input image is 416 X 416 X 3 and the
kernel size is 3 X 3 X 64 and 3 X 3 x 32. The size of the
output match function is reduced to 208 x 208 X 64 after
completion of the convolution process.

2. The second section comprises three levels of convolu-
tion, followed by a residual layer. The convolution ker-
nel sizeis 3 X3 X 128,3Xx3x64,and 1 X 1x 32, and
the output map is reduced to 104 x 104 x 128 after com-
pletion of the convolution process.

3. The third section comprises five convolution layers with
two layers of residual form. The scale of the convolution
kernel is 3 X 3 X 256,3x3x 128, and 1 X 1 X 64, and
the output function map is reduced to 52 X 52 X 256 after
the process of convolution.

4. The fourth section comprises 17 convolution layers with
eight residual layers. The convolution kernel size is 1 X
1x128,3 X3 %256, and 3 X 3 x 512, and the output
function map is reduced to 26 X 26 x 512 after comple-
tion of the convolution process.

5. The fifth section contains 17 convolution layers and
eight residual layers. The dimensions of the convolution
kernel are 1 X 1 X 256, 3 x 3 x 1024, and 3 X 3 X 512.
The output function map is reduced to 13 x 13 x 1024
after completion of the convolution process.

6. The sixth section comprises eight convolution and four
residual form layers. The convolution kernel size is 1 X
1 %512 and 3 x 3 x 1024, and the output function map
stays the same after completion of the convolution pro-
cess.

7. The last section comprises three prediction networks.
YOLOV3 predicts rectangular boxes on three various
levels, and then extracts the attributes of these scales.
The network prediction outputisa 10 x 10 x 3 X (4 +
1 + 6))tensor for four minimum rectangular box correc-
tions, one objectness projection, and six classifiers as
shown in Table 2.

@ Springer
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Fig.7 Overview of YOLOvV3 network architecture

Training The training of the YOLOvV3 network is split
into three activities, as follows. In Step 1, the size of the
aerial image captured by surveillance drone, 5280 x 2970,
is too large to be the network input. As such, the actual
image size is changed to 416 X 416 in order to accelerate
the training procedure. In Step 2, the VOC2007 (Rao et al.
2019) dataset pattern is used to label the outer form of
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the leading edge (LE) erosion, the vortex generator (VG)
Panel, the VG with vanished teeth, and the lightning recep-
tor to show up in a particular image. Lastly, in Step 3, the
system variables of the YOLOV3 algorithm are initiated,
and the network is trained to get variables for the identifi-
cation of specified objects.
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Table 2 Dataset classification

Classes Training annota-  Testing

tions annota-
tions

VG panel 120 24

VG panel with missing teeth 80 24

LE corrosion 120 24

Crack 80 26

Lightning detector 140 28

Damaged lightning detector 60 20

Essential parameters This paper presents an additional
study of the choice of three essential variables. Batch size:
Theoretically, the greater the volume, the easier the prepara-
tion. Nonetheless, owing to hardware constraints, we cannot
increase the value forever, so the authors attempted four dif-
ferent batch sizes of 8, 16, 64, and 128, respectively. When the
batch size was chosen as 64, 16, 8 during preparation, there
would be no loss of power, so we chose 64 as the batch size
based on the above argument. Weight decay: To avoid overfit-
ting, we first set the correct rate of learning and then modified
the decay measure from the constant value (0.01) to the final
measure (0.0005). Ignore thresh: The value of the IOU thresh-
old defines the number of IOUs used in the loss estimation.
If the pre-defined threshold is less, it will cause underfitting,
whereas if the threshold limit is high, it obviously causes over-
fitting. Thus, the ignore thresh value is set as 0.65 on the basis
of the above argument and the case at hand.

Selection of parameters The choice of the three variables
listed above will influence the detection accuracy. It is there-
fore important to change these parameters to prevent under-
fitting and overfitting while training. To boost the precision
of the typical detection, YOLOv3 adopts a multi-label cat-
egorization that is distinctly against the old interpretations
that use a contradictory label. The logistic classifier is used to
determine the objectness value for each bounding rectangle.
For classification loss while testing, YOLOv3 uses a discrete
cross-entropy loss for each number, which eliminates the MSE
commonly exploited in past versions. The loss factor used in
the YOLOV3 feature training is shown as follows:

_ | —log, (s,,) ifg, =1
Loss(s,,) = { —log, (1—3s,) ifg, =0

10)
where m represents the sample count, s,, € [0, 1]reflects the
objectness value anticipated by the system, which calculates
the expected likelihood that the mth sample is WT turbine
blade damage. Additionally, g,, shows the ground truth. It
needs to be observed that g,, € (0, 1) is implied when the mth
observation relates to the object class. Network variables are

trained by reducing the loss to all samples, i.e.} Loss(s,,).

In this article, the Adaptive Moment Estimation, shortly
referred to as the Adam Optimization procedure (Kingma
and Ba 2019), is used to change network parameters. Adam
would be the first order optimization mechanism that can
substitute the standard Stochastic gradient descent method
and adjust network weights recursively, depending on train-
ing data. The model calculates the appropriate adaptive
training score for various values by determining the gradi-
ent estimate of primary and secondary moments. It inte-
grates two optimization algorithms, including the advantage
of a root-mean-square propagation and adaptive gradient
algorithm (Ruder 2016), which are useful for improving
the effectiveness of scattered gradients and efficiency of
training.

4 Results and discussion

The general specifications of the personal computer engaged
in this study are as follows: Intel(R) Xeon(R) CPU E5-2780,
NVIDIA 1080 RTX as GPU, main frequency 2.80 GHz. The
operating software is open source type Ubuntu 16.04, and
Tensorflow is the platform for algorithm development.
Dataset In this study, the authors used surveillance drone
images of the WT, a publicly available dataset. It is the only
available WT image-set comprising a collection of 700
images. This collection includes the 2017 and 2018 period
inspection photos of the Nordtank WT installed at the DTU
Wind Power test site in Roskilde, Denmark (Shihavuddin
and Chen 2018). To increase the dataset, collected 300 more
images from the internet from different sources. Those pic-
tures without part of the blade or a little part of the blade
have been manually inspected and removed. The images
in the dataset are classified as (a) VG panel, (b) VG panel
with missing teeth, (c) LE corrosion, (d) Crack, (e)Light-
ning detector, (f) Damaged lightning detector. These classes
are the static indicators of WT blades’ health. The reason
for choosing these classes for analysis is that all of these
damages provide improved visual characteristics and can be
detected by the inspection team, and would be helpful if the
program had to learn to do the same thing. For every class,
Table 2 lists the number of annotations which are manually
annotated and viewed as ground truths. Examples of manu-
ally annotated damage of WT blades are shown in Fig. 8.
Analysis of the SRCNN results The blurred image
found by classification process was used as a test object
for reconstruction of high-resolution images. The analysis
of the SRCNN indicates that the restoration effect is influ-
enced by the count and the filter size, as well as the consid-
erable layers of the model. The authors referred to the con-
figuration of the SRCNN algorithm in (Dong et al. 2016;
Zhou et al. 2018; Elsaid and Wu 2019). Simultaneously,
standard models such as bicubic convolution interpolation
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f

Fig.8 a VG panel, b VG panel with missing teeth, ¢ LE corrosion, d cracks, e lightning detector, f damaged lightning receiver

(Tian et al. 2012) and sparse coding (Druzhkov and Kus-
tikova 2016) are compared for test analysis. Figure 9 is
the plot of peak signal to noise ratio (PSNR) in decibels
and backprops. It is evident from the plot that the SRCNN
has the best PSNR values for various backprops when con-
trasting them with other models.

Fig.9 PSNR vs back propaga-
tions

—o—Sparsa coding  —m—Bicubic nterpolation

Analysis of the YOLOv3 results We base this research
on the YOLOv3 model and configure the network. Several
key variables are selected, in which the kernel function is
setto 1 X 1 or 3 X 3, the step-size being 1, and the size of
the batch set to 64. Variables are revised once per batch
of testing instances and the coefficient of decay weight is
0.0005. The adaptive rate of learning is calculated with a

PSNR VS BACKPROPS
~u—SRCNN

@ Springer

5 6 7 8 9 10 11 12 i3 14 15
BACKPROPS X106



Wind turbine blade structural state evaluation by hybrid object detector relying on deep learning...

8545

Table 3 Comparison of state-of-the-art deep learning models with

respect to average accuracy

Iterations ~ Average Accuracy (%)
Faster R-CNN (Shi- YOLOvV2 (Zhao YOLOv3
havuddin et al. 2019) and Qu 2018) (Proposed

method)

100 67 66 67

1000 71 70 72

2000 85 83 84

3000 91 91 92

4000 94 92 94

5000 95 93.5 96

Table 4 Comparison of training time and average processing time per

image for different models

Model Training time (in Average process-
Min) ing time per image
(in's)
Faster R-CNN 220 0.652
YOLOv2 120 0.522
YOLOV3 90 0.20

rate of 0.01 and a highest iteration count of 5000. During the
training process, the accuracy of state-of-the-art deep learn-
ing algorithms, Faster R-CNN, YOLOv2 and YOLOV3, in
recognizing the training objects is measured, while the num-
ber of iterations is 500, 1000, 2000, 3000, 4000, and 5000,
respectively. The findings are tabulated in Table 3, where it
can be perceived that the average accuracy of detection of
the three algorithms also improves steadily with the rise in
iteration cycles, with the maximum accuracy of recogni-
tion of the YOLOV3 algorithm approaching 95.6%. After the
training process, the model has been assessed with a test set
consisting of 200 images.

From Table 4, it is also noted that the training time of
YOLOVv3 (90 Min) is comparatively shorter than other
models such as Faster RCNN (220 Min) and YOLOv2 (120
Min). The loss curves of all models were evaluated in the
training process as shown in Fig. 10.

From Table 5, we can see that YOLOV3 has the best value
of mean average precision and the least prediction time
when compared with Faster R-CNN and YOLOv2 models.
In conclusion, compared with Faster R-CNN and YOLOv2,
the suggested model has better improvement in the detec-
tion accuracy of WT blade damage. The recognition results
of such damage in the surveillance image are displayed in
Fig. 11, from where it can be observed that the suggested
algorithm in this paper will precisely locate the blade dam-
age. Meanwhile, it also verifies the validity of the WT blade
damage detection algorithm implemented in this paper.

Iterations Vs Loss
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Fig. 10 Comparison of Loss curves for three deep learning models

Table 5 Comparison of mean

np Model Mean
average precision average
precision
Faster R-CNN 0.87
YOLOv2 0.90
YOLOV3 0.96

5 Conclusion

This paper proposes a YOLOv3-based model for the rec-
ognition of WT blade damage from surveillance drone
images in order to resolve the poor detection accuracy
problem associated with conventional methods. The pre-
sented scheme includes two major steps: during the first
step, low-resolution drone images are identified and trans-
formed to a super-resolution images using the SRCNN
method. In the second step, the advanced deep learning
method YOLOV3 is used to detect damage to turbine
blades in the aerial images. The YOLOv3 model, together
with the SRCNN model, can precisely detect the loca-
tion and condition of damage to WT blades under vari-
ous directions, illumination intensities, and backgrounds.
SRCNN’s peak signal-to-noise ratio was compared with
other standard methods such as bi-cubic convolution inter-
polation and sparse coding. The test results showed that
the proposed SRCNN had the highest peak signal-to-noise
ratio compared to other models. Experiments were con-
ducted using state-of-the-art, deep-learning, object-detec-
tion techniques, and the findings show that the proposed
YOLOv3 solution has the fastest average detection speed
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Fig. 11 The detection of WT blade damages on test images using proposed model

of 0.20 s and the maximum average precision of 0.96. In
future work, we will use own surveillance images to vali-
date the proposed method. Also, we will use advanced
image augmentation methods such as Generative adver-
sarial networks to achieve the best performance from a
proposed system.
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