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Abstract
Interrupted blood flow to regions of the heart causes damage to heart muscles, resulting in myocardial infarction (MI). MI 
is a major source of death worldwide. Accurate and timely detection of MI facilitates initiation of emergency revasculariza-
tion in acute MI and early secondary prevention therapy in established MI. In both acute and ambulatory settings, the elec-
trocardiogram (ECG) is a standard data type for diagnosis. ECG abnormalities associated with MI can be subtle, and may 
escape detection upon clinical reading. Experience and training are required to visually extract salient information present 
in the ECG signals. This process of characterization is manually intensive, and prone to intra-and inter-observer-variability. 
The clinical problem can be posed as one of diagnostic classification of MI versus no MI on the ECG, which is amenable 
to computational solutions. Computer Aided Diagnosis (CAD) systems are designed to be automated, rapid, efficient, and 
ultimately cost-effective systems that can be employed to detect ECG abnormalities associated with MI. In this work, ECGs 
from 200 subjects were analyzed (52 normal and 148 MI). The proposed methodology involves pre-processing of signals 
and subsequent detection of R peaks using the Pan-Tompkins algorithm. Nonlinear features were extracted. The extracted 
features were ranked based on Student’s t-test and input to k-Nearest Neighbor (KNN), Support Vector Machine (SVM), 
Probabilistic Neural Network (PNN), and Decision Tree (DT) classifiers for distinguishing normal versus MI classes. This 
method yielded the highest accuracy 97.96%, sensitivity 98.89%, and specificity 93.80% using the SVM classifier.

Keywords Myocardial infarction · Computer aided diagnostic system · Electrocardiogram · Pan Thompkins algorithm · 
Classifiers

1 Introduction

The heart is an essential organ composed primarily of mus-
cle tissue. The function of the coronary arteries is to sup-
ply oxygenated blood to the heart muscle. Thus, coronary 
artery disease obstructs the arteries, and reduces the blood 
supply to downstream muscle, potentially causing damage 
to the heart muscle and the possibility of myocardial infarc-
tion (MI) (Thomas 2015). If the extent of the MI is large, 
the affected poorly contracting wall segments can introduce 
increased mechanical stress to the heart, resulting in mor-
phological and conformational alterations in response, i.e., 
left ventricular remodeling, which results in inefficient pump 
functioning and contributes to heart failure. The MI seg-
ments can undergo substrate alterations, e.g. fibrosis, that 
renders the tissue arrhythmogenic, which can be lethal. 
Symptoms of acute MI involve breaking into cold sweats, 
chest pain, shortness of breath, feeling faint, nausea, as well 
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as discomfort that may radiate to the arm, shoulder, and 
neck (Setiawan et al. 2014). Major risk factors associated 
with MI are high cholesterol, diabetes, high blood pressure, 
physical inactivity, obesity, and unhealthy diets. These risk 
factors promote atherosclerotic plaque formation in the coro-
nary artery wall that results in arterial narrowing. As fat 
content in the plaque increases, it becomes vulnerable and 
susceptible to surface rupture. The latter triggers a second-
ary pathophysiological phenomenon that activates blood clot 
formation within the coronary artery lumen to interrupt the 
distal blood supply suddenly and completely, resulting in 
MI (Roger 2007).

In 2017, 800,000 Americans died from MI (WHO fact 
2012; Ley 2015). Of these, 280,000 had prior MI and the 
remainder were first-time presentations (Ley 2015) under-
scoring the need for accurate diagnostics. There are sev-
eral diagnostic instruments utilized to characterize MI. 
The diagnostic tests include the exercise stress test (EST), 
cardiac catheterization, and electrocardiogram (ECG). Car-
diac catheterization is an invasive procedure that requires 
expertise and training. In addition, patients are exposed to 
procedural risk, albeit small, as well as radiation and poten-
tially nephrotoxic contrast. With EST, ECGs are recorded 
during treadmill exercise, which can be associated with a 
very small risk of cardiac arrest (Robert et al. 2013). Hence, 
not all MI patients can undergo this test due to the associ-
ated risk. Thus, the standard ECG remains the most com-
mon diagnostic tool for detection of MI, especially in the 
acute setting. As the ECG abnormalities associated with 
MI, both acute and chronic, can be subtle, experts’ read-
ings are crucial to ensure the accuracy of interpretation. 
To overcome these drawbacks, computer aided diagnostic 
systems (CAD) should be designed to extract the pertinent 
parameters. These parameters can then be input to classifiers 
for the categorization of normal versus MI patients (Robert 
et al. 2013; Liu et al. 2014).

CAD tools are developed to detect a disorder and to mini-
mize intra- and inter-observer variability (Jahmunah et al. 
2019a, b). In general, CAD systems can be classified into 
online- and offline-based systems. Table 1 shows the sum-
marized works for MI detection using a CAD system.

2  Literature review

Herein, a novel algorithm involving an offline processing 
system for diagnosing MI with the ECG is described and 
discussed. Acquired ECG signals were subjected to CAD 
after pre-processing to remove noise. A nonlinear feature 
extraction (Paul et al. 2019) operation was implemented to 
extract suitable features from the signals. These features 
were then subjected to a feature selection process, wherein 
the system selected the best features which would improve 

analysis speed. Student’s t-test was utilized to obtain sig-
nificant features, which were ranked based on their t-values 
and then input to the classifier. The classifier was designed 
to distinguish between normal and MI signals.

3  Computer aided diagnostic systems (CAD)

ACAD system comprises four main units: preprocessing of 
signals, nonlinear feature extraction, selection of the most 
significant features, and classification of these selected fea-
tures into normal versus MI. Figure 1 illustrates a proposed 
CAD system.

3.1  Raw ECG signals

ECG signals were obtained from PhysioBank, the Physi-
kalisch-Techische Bundesanstalt (PTB) Diagnostic ECG 
database (Goldberger et al. 2000). This database contains 
publicly available digitized ECG data from patients with 
different heart diseases, for training of models. The signals 
were recorded using a PTB sample recorder. The database 
contained 52 healthy and 148 subjects with acute and/or 
chronic MI and the entire dataset was used in this study. The 
normal and MI signals were sampled at a rate of 1000 Hz. In 
this work, only Lead II ECG signals were considered.

3.2  Pre‑processing

At this phase, the discrete wavelet transform (DWT) was 
utilized for noise removal. DWT was employed to decom-
pose the signals, using the Daubechies wavelet 6 (db6). The 
approximate and detail coefficients with high and low pass 
filters were obtained to eliminate noise including baseline 
wander (0–0.5 Hz) and power-line interference (50–150 Hz) 
(Acharya et al. 2016a, b).

After DWT, empirical mode decomposition (EMD) (Pal 
and Mitra 2012) was then employed. Various intrinsic mode 
functions (IMFs) were obtained by decomposing the EMD 
signals, and low frequency components were removed using 
a notch filter. The denoised signals were reconstructed once 
the low frequency components were removed.

DWT is dependent on a prior choice of wavelet basis 
and taps on experts’ experience in determining the level of 
decomposition to extract the signals (Labate et al. 2013). 
EMD on the other hand, does not require the level of decom-
position to be set beforehand and hence, overcomes the 
limitations of DWT (Labate et al. 2013). After the baseline 
wander and power-line interference were removed, the Pan-
Tompkins algorithm was employed for R-peak detection 
(Pan and Tompkins 1985). Once the R point was detected, a 
two-second signal segmentation was done, considering 1749 
samples to the left of R peak and 250 samples to the right of 
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Table 1  A summary of studies using CAD systems for the classification of MI using ECG signals

Author (year published) Methods used Participant information Classification results

Bhaskar (2015) Artificial neural network
SVM classifier
Pan Tompkins algorithm
Wavelet transformation
Principal component analysis

N0: 52 (82 records)
N1: 148 (367 records)

SVM classifier
Acy: 91.1%
Neural network
Acy: 82.1%

Sharma et al. (2015) Multiscale energy and eigen space
Wavelet decomposition
SVM with radial basis function

N0: 52
N1: 148

SVM classifier with RBF kernel
Acy: 96%,
Spe: 99%,
Sen: 93%

Acharya et al. (2016a, b) Discrete wavelet transform
12 nonlinear features
T-test
k-NN classifier
Ten-fold cross-validation

N0: 52 (125 652 beats)
N1: 148 (485 753 beats)

Acy: 98.80%,
Spe: 96.27%,
Sen: 99.45%

Seenivasagam and Chitra (2016) Feed forward neural network
Particle swarm optimised neural net-

work
Classifiers

N0 + N1: 770 records Acy: 89.61%,
Spe: 88.98%,
Sen: 90.13%

Dohare et al. (2018) Clinical features
peak to peak amplitude, area, standard 

deviation, skewness, kurtosis and 
mean, are determined

SVM classifier
PCA

N0: 60
N1: 60

Acy: 96.66%,
Spe: 96.66%,
Sen: 96.66%

Kora (2017) Hybrid firefly
PSO
ANN structure
KNN, SVM, LMNN classifiers

N0: 18 (1500 normal)
N1: 26 (1306 beats)

Acy: 96.7%,
Spe: 95.89%,
Sen: 94.45%

Padhy and Dandapat (2017) 2-D multi lead ECG data matrix
3rd order tensor structure
Intra-beat, inter-beat, inter-lead relation-

ship of wavelet transformed MECG 
tensor

SVM classifier

N0: 52
N1: 148

Acy: 95.3%,
Spe: 96.0%,
Sen: 94.6%

Kumar et al. (2017) Flexible analytic wavelet transform
Sample entropy
least-squares support vector machine 

classifier

N0: 52 (10 546 beats)
N1: 148 (40 182 beats)

Least-squares support vector machine: 
classifier

Acy: 99.31%

Sadhukhan et al. (2018) Harmonic phase distribution pattern
Threshold-based, logistic regression 

classifiers
2 discriminative features

N0: 52 (79 records)
N1: 148 (368 records)

Acy: 95.6%,
Spe: 92.7%,
Sen: 96.5%

Sharma et al. (2018) Biorthogonal filter bank
Decomposition of signals
Fuzzy entropy, signal-fractal dimen-

sions, Rényi entropy
k-NN classifier
Ten-fold validation

N0: 52
N1: 148

Noisy dataset:
Acy: 99.62%
Clean dataset:
Acy: 99.74%

Bharadwaj et al. (2018) ECG sensor
Wavelet decomposition
ST segment detection

– Acy: 91.89%

Han and Shi (2019) Energy entropy + morphological features
Maximal overlap discrete wavelet packet 

transform
Area, kurtosis coefficient, skewness 

coefficient, standard deviation
SVM with radial basis kernel
Ten-fold validation

N0: 52
N1: 148

SVM with RBF kernel:
Acy: 93.5%,
Spe: 92.8%,
Sen: 93.7%
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Table 1  (continued)

Author (year published) Methods used Participant information Classification results

Zhang et al. (2019) Gramian angular field
Principal component analysis
fivefold cross validation

N0: 52
N1: 148

Acy: 99.49%,

Lin et al. (2020) Maximal overlap discrete wavelet 
transform

Variance, interquartile range, Pearson 
correlation coefficient, Hoeffding’s 
D correlation coefficient, Shannon 
entropy

k-nearest neighbour

– Acy: 99.57%,
Spe: 98.79%,
Sen: 99.82%

Type of technique: deep learning (normal vs MI)
Acharya et al (2017a, b, c, d, e) Convolutional neural network

Ten-fold validation
Training, testing, validation phases

N0: 52 (10 546 beats)
N1: 148 (40,182 beats)

With noise:
Acy: 93.5%,
Spe: 92.8%,
Sen: 93.7%
Without noise:
Acy: 95.2%,
Spe: 94.2%,
Sen: 95.5%

Reasat and Shahnaz (2018) Shallow convolutional neural network 
coupled with inception network

Geometric separability index
Compared against benchmark database

N0: 52
N1: 148

Acy: 84.54%,
Spe: 84.09%,
Sen: 85.33%

Liu et al. (2018a, b) Multiple-feature-branch Convolutional 
Neural Network

Patient-specific paradigm
Class-based, patient-specific experiment

N0: 52
N1: 148

Class-based detection:
Acy: 99.95%
Patient-specific experiment:
Acy: 98.79%

Liu et al. (2018a, b) Multi-lead Convolutional Neural 
Network

Five-fold validation

N0: 52 (80 records)
N1: 148 (368 records)

Acy: 96%,
Spe: 97.37%,
Sen: 95.40%

Lui and Chow (2018) Convolutional Neural Network
Recurrent neural network
Multi-layer perceptron classifier
Ten-fold validation

N0: 52 (80 records)
N1: 148 (368 records)

Spe: 97.7%,
Sen: 92.4%,
F1 score: 94.6%

Zhang et al. (2019) Autoencoder
Tree bag classifier
Ten-fold validation

N0: 52(80 records)
N1: 148 (368 records)

Acy: 99.9%,
Spe: 99.52%,
Sen: 99.98%

Tripathy et al. (2019) Deep neural network
Fourier–Bessel series expansion-based 

empirical wavelet transform
Five-fold validation
Statistical features

N0: 52 (72 records)
N1: 100 (100 records)

Acy: 99.74%%,
Spe: 99.60%,
Sen: 99.87%

Alghamdi et al. (2020) Convolutional Neural Network
VGG-M11, VGG-M12 networks
Transfer learning method

N0: 143
N1: 147

VGG-M12:
Acy: 99.22%,
Spe: 99.49%,
Sen: 99.15%

Baloglu et al. (2019) Deep convolutional neural network
10 layers

N0: 52
N1: 148

Acy: 99.78%

Lodhi et al. (2018) Convolutional Neural Network
Ten-fold validation

N0: 52 (31 722 beats)
N1: 100 (49 930 beats)

Acy: > 90%
Sen: > 94%
Spe: > 86%

Strodthoff and Strodthoff (2019) Convolutional Neural Network
Ten-fold validation
Comparison with long short-term 

memory model

N0: 52
N1: 127

Spe: 89.7%,
Sen: 93.3%

Feng et al. (2019) Convolutional Neural Network
Long short-term memory network
Ten-fold validation

N0: 52
N1: 148

Acy: 95.4%,
Spe: 86.5%,
Sen: 98.2%
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R peak at a 1 kilo Hertz sampling rate. Thus, a total of 2000 
sample points were selected for each ECG beat analysis.

Two-second segments were extracted, compris-
ing 16826 normal 3796 MI segments, respectively. Fig-
ure 2 shows the 2-s ECG signals in (a) normal and (b) MI.

Table 1  (continued)

Author (year published) Methods used Participant information Classification results

Venu et al. (2019) Convolutional Neural Network
5 layers

N0: 450 signals
N1: 720 signals

Acy: 87%

Haddadi et al. (2019) Discrete wavelet transform
Convolutional neural network

N0: 50
N1: 50

Acy: 94.83%,
Spe: 94.93%,
Sen: 94.75%

Han and Shi (2020) Multi-lead residual neural network
Intra-patient, inter-patient strategies
Five-fold validation

N0: 52
N1: 148

Intra-patient scheme:
Acy: 99.92%

Liu et al (2020) Multiple-feature-branch convolutional 
bi-directional recurrent neural network

Lead random mask optimisation
Class-based, subject-based five-fold 

validation

N0: 52
N1: 148

Class-based method:
Acy: 99.90%
Subject-based method:
Acy: 93.08%

Fu et al. (2020) Multi-lead mechanism coupled with 
convolutional neural network

and bidirectional gated recurrent unit
Temporal features, spatial features

N0: 52 (127 188 beats)
N1: 148 (632 940 beats)

Intra-patient performance:
Acy: 99.93%,
Spe: 99.63%,
Sen: 99.99%
Inter-patient performance:
Acy: 96.50%,
Spe: 93.34%,
Sen: 97.10%

Ribeiro et al. (2020) Deep neural network
12 leads

N0 + N1 = 2,322,513 
ECG recordings

F1 score: > 80%

Ramesh et al. (2020) Morphological, temporal, statistical 
features

Convolutional Neural Network

47 subjects Acy: 98%(arrhythmia classification)

Huang et al. (2020) Fast compression residual convolutional 
neural network

Maximal overlap wavelet packet trans-
form

47 subjects Acy: 98.79%(arrhythmia classification)

Type of classification: normal vs MI/CAD/CHF
Acharya et al. (2017a, b, c, d, e)
(3-Class)

Discrete cosine transform
Discrete wavelet transform
Empirical mode decomposition, IMFs
Locality preserving projection
k-nearest neighbour classifier

N0: 52
N1: 148
N2: 7

Discrete wavelet transform with k-NN 
classifier:

Acy: 98.5%,
Spe: 98.5%,
Sen: 99.7%

Acharya et al. (2017a, b, c, d, e)
(4-class)

Contourlet, shearlet transformations
Continuous wavelet transform
Entropies, 1st and 2nd order statistical 

features
Improved binary particle swarm optimi-

sation for feature selection
Analysis of variance, relief methods
Decision tree, k-nearest neighbour clas-

sifiers
Ten-fold validation

N0: 52
N1: 148
N2: 7
N3: 15

Contourlet transform:
Acy: 99.5%,
Spe: 99.2%,
Sen: 99.9%

Present study Pan Tompkins algorithm
Nonlinear features
T-test
SVM classifier

N0: 52
N1: 148

SVM classifier
Acy: 97.96%,
Spe: 93.80%,
Sen: 98.89%

Type of technique: machine learning (normal vs MI)
N0 normal subjects, N1 MI patients, N2 coronary artery disease (CAD) patients, N3 congestive heart failure (CHF) patients
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3.3  Feature extraction

Naturally, ECG signals are disorderly and vary over time. 
These characteristics cause the extraction of nonlinear 
features to be used preferably in the development of CAD 
systems for MI diagnosis. Time, frequency, and time–fre-
quency domain analyses are unable to detect the inher-
ent variations in the ECG, but nonlinear techniques can 
be used to extract characteristic features. Many studies 
have reported using various nonlinear methods (Jahmu-
nah et al. 2019a). The computational demands and time 
increase when nonlinear methods are utilized to obtain 
features from DWT coefficients, but it facilitates the 
extraction of large numbers of suitable features (Acha-
rya et al. 2017a; b, c, d, e). In our study, we extracted 
the following nonlinear features: Bispectrum, Recur-
rence Qualitative Analysis (RQA), Approximate Entropy, 
Permutation Entropy, Detrended Fluctuation Analysis, 
Fractal Dimension, Largest Lyapunov Exponent, Sample 
Entropy, Rényi Entropy, Hurst Exponent, Tsallis Entropy, 
Kolmogorov Sinai Entropy, Fuzzy Entropy, Modified 
Multiscale Entropy (MMSE), Wavelet Entropy, and cor-
relation Dimension.

3.3.1  Bispectrum

The Higher order spectrum (HOS) is a used to evaluate 
non-stationary and non-Gaussian signals (Acharya et al. 
2015, 2017a; b, c, d, e; Pham et al. 2020a, b). It detects 
the diversion from phase correlations and Gaussian level 
among frequency components of the signal (Jahmunah 
et al. 2019a, b; Acharya et al. 2015). HOS retains phase 
information as it is more immune to noise.

3.3.2  Recurrence qualitative analysis (RQA)

The RQA computes the total number of recurrences in 
order to calculate ECG signal complexity (Webber and 
Zbilut 1994). The RQA includes parameters of transitiv-
ity, determinism, laminarity, mean diagonal line length, 
the entropy of diagonal length, trapping time, recurrence 
time, recurrence rate, and recurrence time entropy (Zbilut 
and Webber 1992; Zbilut et al. 2002).

Fig. 1  Proposed CAD system

Fig. 2  Two seconds duration of ECG Signals: a normal and b MI



3233Accurate detection of myocardial infarction using non linear features with ECG signals  

1 3

3.3.3  Approximate entropy (ApEn)

This entropy helps to characterize the instability or irregu-
larity (Pincus 1991) in the ECG signal. The approximate 
entropy is higher for more irregularity.

3.3.4  Fractal dimension (FD)

It is a powerful tool used to measure the complexity of 
fractals by changing the measurement scale. The fractal 
patterns are characterized by quantifying their complexity 
as the ratio of change in the detail to the change in scale 
(Acharya et al. 2011).

3.3.5  Permutation entropy (PEnt)

Permutation entropy is a measure of random time series 
data depending upon the examination of the permutation 
pattern. It measures the complexity in ECG signals by cal-
culating the coupling between time series data (Bandt and 
Pompe 2002).

3.3.6  Detrended fluctuation analysis (DFA)

To obtain the self-similarity characteristics of ECG signals, 
DFA is used (Peng et al. 1996). The variants such as multi 
fractal DFA and root mean square (RMS) are implemented 
along with DFA features (Jahmunah et al. 2019a, b).

3.3.7  Hurst exponent (HE)

The Hurst Exponent (Hurst 1956) is an evaluation of self-
similarity and predictability in the ECG. If the magnitude 
of the Hurst exponent is high, it indicates a smoother and 
simpler signal (Acharya et al. 2019).

3.3.8  Largest Lyapunov exponent (LLE)

The LLE is evaluated to assess the degree of chaos existing 
in the signals (Rosenstein et al. 1993). If the value of LLE 
is higher, then the signals are more complex.

3.3.9  Sample entropy (SampEn)

This technique calculates the complexity and regularity of 
a physiological time series signal, and is not constrained by 
the pattern length (Richman and Randall 2000; Song and Liò 
2010). If the value of SampEn is high, then the time series 

signal is less predictable; if SampEn is of low value, then it 
implies that the signal is more predictable.

3.3.10  Tsallis entropy (TEnt)

It is used to calculate the differences and memory con-
sequences in the signal (Acharya et al. 2018a, b). Tsallis 
coefficients help in characterizing ECG bursts, spikes, and 
continuous rhythms.

3.3.11  Fuzzy entropy (FEnt)

Fuzzy entropy is used to estimate ECG signal unpredict-
ability (Acharya et al. 2018a, b). This entropy indicates 
the degree of randomness, and is calculated as the entropy 
of a fuzzy set whose elements have varying degrees of 
membership.

3.3.12  Kolmogorov‑Sinai entropy (K‑SEnt)

Kolmogorov Sinai entropy is used to calculate the uncer-
tainty in the ECG over time (Acharya et al. 2019; Ziv and 
Lempel 1977).

3.3.13  Multivariate multi‑scale entropy (MMSEn)

In MMSEn, nonstationary ECG signals are considered to 
calculate the intrinsic correlation and express the degree of 
correlation in the time series (Acharya et al. 2018b, a; Hu 
and Liang 2012).

3.3.14  Rényi entropy (RE)

Rényi entropy is commonly known as the generalized type 
of Shannon entropy. The sudden variations in the time series 
data can be elucidated through RE (Renyi 1961; Shannon 
1948).

3.3.15  Wavelet entropy (WE)

Wavelet entropy is used to measure the level of disorder as 
well as to compute the energy levels in the various frequency 
bands of the ECG signals (Rosso et al. 2001).

3.3.16  Correlation dimension (D2)

Correlation dimension calculates self-similarity in the ECG 
signals (Renyi 1961). The correlation integral C(r) is calcu-
lated first, and then the gap between N pairs of data points 
are measured (Jahmunah et al. 2019a, b).
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3.4  Feature selection

Feature selection determines the best features and inputs 
them to the classification algorithm, to increase the speed 
of the CAD system. In the current work, the t test is used 
to select highly significant features. The t-distribution is 
defined as a continuous probability distribution for calcu-
lating population mean when sample size is small and the 
variance of the population is unknown. The t distribution 
is similar to the normal distribution. It is bell-shaped and 
symmetrical about the mean (Student Biometrika 1908). 
Features with a p-value lower than threshold are consid-
ered to be significant (Acharya et al. 2013). Here, the 
significant level corresponds to the probability of reject-
ing the null hypothesis, given that the condition is true. 

Figure 3 presents the 45 nonlinear parameters that were 
extracted from the ECG signals of MI patients and normal 
subjects using lead II.

3.5  Classification

Classification of data is broadly grouped into two types: 
parametric and nonparametric classifiers. The parametric 
type classifies the data based upon the statistical distri-
bution of the class, whereas nonparametric classifiers 
rely upon conditions of the unknown density function. 
In this work, K-Nearest Neighbor and Decision Tree are 
implemented, and they are categorized as nonparametric 
classifiers.

Fig. 3  a and b indicate 45 non-linear parameters extracted from MI and normal ECG signals using lead II
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3.5.1  K‑Nearest Neighbor (KNN)

KNN is a nonparametric classification method. KNN clas-
sifies the test sample by estimating the distance between 
the training and testing set. The class of the test sample is 
decided based on the nearest samples present in the train-
ing set. The distance is estimated using Euclidean distance 
(Acharya et al. 2013).

3.5.2  Decision Tree (DT)

DT is a graph in which a branching technique is used to 
decide possible outcomes. The decision tree splits the com-
plex decisions into simpler decisions in order to extract the 
rules for the recognition of the class of data (Peng et al. 
1996). The output of the decision tree is a binary structure. 
Here the input and outputs are deliberated as the root and 
terminal/leaf nodes respectively.

3.5.3  Support vector machine (SVM)

This is a supervised learning tool which simultaneously min-
imizes the empirical classification error and maximizes the 
geometric margin. SVM classifiers have two types of data: 
separable and non-separable data. For non-separable data, 
kernels such as radial basis aid in the classification process 
(Liu et al. 2013).

3.5.4  Probabilistic Neural Network (PNN)

PNN is a supervised learning algorithm. It comprises an 
input layer, representing the feature vector. This input layer 
is totally interconnected to the concealed layer, wherein 
these layers connect to the output representing the choices in 
which the input data can be classified (Acharya et al. 2019).

The three classifiers are trained and tested using ten-fold 
cross-validation strategy.

4  Results

20,622 beats were segmented in total, from 52 normal and 
148 MI subjects. The two second segmentation was done in 
order to find the R-peak. Performance of the classifier was 
estimated based on the ranked features and was assessed by 
calculating the average accuracy, Positive Predictive Value 
(PPV), sensitivity, and specificity (Acharya et al. 2011). 
Table 2 provides a summary of the diagnostic performance 
for detection of MI versus normal using recurrence time, 
HOS, entropy, bispectrum, DFA, LLE, Hurst exponent, frac-
tal dimension, permutation entropy, MMSE, Tsallis entropy, 
wavelet entropy, sample entropy, and approximate entropy 
features extracted from ECG signals with a duration of two 

seconds. A feature is statistically significant if p < 0.05; the 
t value indicates ranking of features (Hagiwara et al. 2018; 
Bishop 2006) If the t-value is higher, it represents features 
that are more significant. Hence, there is an inverse relation-
ship between t-value and p-value.

Table 3 shows the best performance of KNN, DT, SVM, 
and PNN classifiers used in our study. The highest accu-
racy, sensitivity, and specificity values of 97.96%, 98.89%, 
93.81% were achieved respectively, with the SVM classifier.

5  Discussion

In this work, a nonlinear feature extraction method was 
investigated for the detection of normal versus MI from lead 
II ECG signals. This technique was used because it detects 
intrinsic complexity existing in the time series (Hurst 1956). 
Table 1 is a comparison of the results obtained from different 
CAD systems using a similar database.

From Table 1, it is apparent that various methods were 
proposed to develop CAD systems. The nonlinear analysis 
and time–frequency domain approaches were commonly 
employed (Hariharan et al. 2012). Hence, CAD systems 
along with a feature extraction technique yielded enhanced 
diagnostic accuracy as compared to single-type feature 
extraction techniques (Hagiwara et  al. 2018). Bhaskar 
(2015), Dohare et al. (2018), Kora (2017), Padhy and Dan-
dapat (2017), Sadhukhan et al. (2018), Bharadwaj et al. 
(2018), Han and Shi (2019), Seenivasagam and Chitra 
(2016) achieved lower classification accuracies as com-
pared to our study. Although Acharya et al. (2016a, b), 
Kumar et al. (2017), Sharma et al. (2018), Lin et al. (2020) 
achieved higher classification accuracies, the methods they 
had proposed are computationally intensive as compared 
to the Pan-Thompkins algorithm, which is computationally 
more efficient. Although Liu et al. (2018a, b), Zhang et al. 
(2019), Tripathy et al. (2019), Alghamdi et al. (2020), Han 
and Shi (2020), Fu et al. (2020), Ramesh et al. (2020), 
Huang et al. (2020) achieved relatively higher classifi-
cation accuracies than our study, these authors explored 
deep learning techniques, which require a lot of time to 
train the model as compared to our technique. Also, these 
authors have used small data sizes to validate their models; 
hence robustness is not guaranteed. Deep learning models 
should be validated with a larger data. Ribeiro et al. (2020) 
had employed a deep neural network with larger data, but 
still obtained a lower accuracy than our study. Acharya 
et al. (2017a, b, c, d, e) also achieved higher classification 
accuracies, but the authors investigated a different clas-
sification from our study. They did a 3-class classifica-
tion and 4-class classification study, respectively. Venu 
et al. (2019), Haddadi et al. (2019) had employed deep 
learning methods but still achieved lower accuracies than 
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Table 2  Range (Mean ± standard deviation) of features ranked using the t test

Parameters Normal MI

Mean Standard deviation Mean Standard deviation p Value t Value
T2 107.243 28.450 66.425 23.744 0 92.052
 < L > 13.517 5.151771 7.298457 3.397544 0 91.510
TT 18.783 7.33713 9.897124 4.942379 0 90.529
ENTR 0.367 0.129463 0.199021 0.105068 0 85.052
Vmax 205.136 99.09857 93.54796 70.68333 0 80.960
Fuzzy Entropy 0.523 0.175765 0.785387 0.206109 0 72.608
Fractal Dimension 1.080 0.042248 1.145388 0.056665 0 66.738
Trans 0.789 0.023603 0.770115 0.01662 0 60.347
Lmax 806.736 231.6037 525.355 267.7788 0 59.884
MMSE2 0.133 0.105154 0.276806 0.160778 0 52.509
MMSE3 0.180 0.140709 0.366986 0.212359 0 51.679
MMSE4 0.216 0.162438 0.431577 0.246438 0 51.275
MMSE5 0.246 0.173875 0.475803 0.265502 0 50.867
MMSE6 0.271 0.179371 0.502349 0.271802 0 50.119
Approximate Entropy 0.455 0.167186 0.667381 0.255679 0 48.886
MMSE1 0.076 0.060224 0.153577 0.096167 0 47.805
Permutation Entropy 1.137 0.050133 1.182912 0.055447 0 47.311
MAmp 8.57E+09 1.49E+10 2.62E+09 4.72E+09 0 43.017
H5 7.22E+12 1.24E+13 2.29E+12 4.16E+12 0 42.147
Wavelet Entropy − 2.5E+09 2.76E+09 − 1.2E+09 1.71E+09 1.1E–291 37.098
H1 1719.991 145.041 1635.583 131.6278 7.8E–261 35.005
Sample Entropy 0.381 0.082902 0.444815 0.110283 3.2E–241 33.615
Tsallis Entropy − 2.1E+08 1.96E+08 − 1.2E+08 1.39E+08 8.2E–223 32.261
H2 118.689 9.47417 113.7473 8.412088 3.2E–218 31.915
H4 1.14E+08 26,625 1.01E+08 25,219 3.8E–192 29.884
H3 979.602 86.752 939.748 79.654 3.7E–162 27.380
Awcoby 2.095 0.052 2.149 0.117 3.2E–159 27.124
T1 7.304 2.029 8.381 2.523 2.9E–131 24.555
K-S Entropy 0.414 0.108 0.363 0.121 2.6E–125 23.976
D2 0.657 0.236 0.791 0.325 1E–124 23.916
DET 0.974 0.032 0.948 0.066 4E–123 23.759
RR 0.147 0.038 0.131 0.042 6.59E–94 20.663
LAM 0.987 0.015 0.975 0.038 3.4E–78 18.800
Largest Lyapunov Exponent 10.805 1.311 11.228 1.347 2.1E–68 17.543
RTE 0.164 0.035 0.148 0.053 1.64E–67 17.424
Ent2 0.036 0.023 0.047 0.041 2.79E–59 16.288
Ent3 0.009 0.011 0.016 0.027 2.25E–54 15.573
Ent1 0.244 0.056 0.265 0.079 6.78E–52 15.199
DFA 0.598 0.155 0.642 0.186 6.91E–43 13.759
Hurst’s Exponent 0.773 0.063 0.788 0.067 3.96E–38 12.936
Awcobx 3.028 0.299 3.136 0.557 1.31E–30 11.519
RényiEntropy − 20.322 0.842 − 20.179 0.901 5.14E–19 8.918
EntPh 2.669 0.360 2.647 0.439 0.004 2.901
Wcoby 2.051 0.054 2.067 0.415 0.022 2.298
Wcobx 2.919 0.335 2.965 2.346 0.234 1.189
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our study. Hence, our method is technically sound as we 
have achieved a relatively high classification accuracy with 
the usage of a less computationally intensive algorithm. 
Therefore, a faster diagnosis of MI is possible.

It should be noted that recurrence time yielded more 
statistically significant features. The means for normal 
class features are greater than for the MI class. Figures 4, 
5, 6 indicate recurrence, bispectrum and cumulant plots, 
respectively. These plots are different for normal versus 
MI classes. Figure 4 shows recurrence plots for normal 
and MI. In this, the recurrence parameter indicates the 
degree of feature repetition in the ECG signals. In the plot, 
blue dots indicate recurrence at a specific time interval. 
Figure 5 represents bispectrum and contour plots. The 
cumulant and contour plots of normal and MI signals are 
presented in Fig. 6. It is evident that the recurrence plots 
are distinct in the normal and MI classes. Also, the pat-
terns in the bispectrum and cumulant plots are unique and 
show good separation between the two classes. Hence, 
the non-linear features used in our study are highly dis-
criminatory. There are some benefits and limitations of 
our study, following.

5.1  Benefits

1. The recommended system enables rapid diagnosis of 
MI.

2. The system has been validated by ten-fold cross-valida-
tion; hence it is reliable.

3. The system could be used to find anomalies associated 
with MI in real-time analysis.

4. The top few features exhibit a high degree of separation 
and hence, can be used to develop the index (Pham et al. 
2020a, b)

5.2  Limitations

1. Only a small data size can be used for this technique.
2. The manual extraction and selection of features can be 

a laborious task.

A CAD system is advantageous due to its versatility, 
rapidness, reliability, and the fact that it can be used to 
find anomalies associated with MI in real-time analysis.

Table 3  Best results of KNN, 
DT, SVM, PNN classifiers

The best results are shown in bold
N number of features, TrPo true positive, TrNe true negative, FaPo false positive, FaNe false negative,
Acy accuracy, Popv positive predictive value, Sen sensitivity, Spe specificity

Classifier N TrPo TrNe FaPo FaNe Acy Sen Spe Popv

kNN 42 16,554 3522 274 272 0.973523 0.983835 0.927819 0.983718
DT 39 16,381 3316 480 445 0.955145 0.973553 0.873551 0.971532
SVM 42 16,640 3561 235 186 0.979585 0.988946 0.938093 0.986074
PNN 43 16,413 2237 1559 413 0.904374 0.975455 0.589305 0.913254

Fig. 4  Recurrence plots for a normal and b MI
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Fig. 5  Bispectrum plots for a 
normal and b MI
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Fig. 6  Cumulant plots for a 
normal and b MI
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5.3  Challenges in myocardial infarction prediction

The features of ECG, including its peak deflections, time 
domain amplitude, and duration, provide information regard-
ing myocardial characteristics. The time domain features are 
not able to provide exact discrimination between normal 
and MI beats (Martis et al. 2014). The wavelet domain can 
be used to distinguish two dissimilar ECG signals with the 
same magnitude due to an increase in time resolution and 
a compromise in the frequency resolution. The challenge lies 
in selecting an optimal wavelet basis function.

Assuming that noise and ECG signals are seen in separate 
frequency components, linear models can be used. However 
when ECG signals and noise overlap the same frequency 
spectrum, random processes cannot be described using lin-
ear models (Chua et al. 2010). Nonlinear methods have some 
limitations including: (i) these techniques do not follow both 
principles of superposition and homogeneity, (ii) they are 
computationally rigorous, (iii) linear shift invariance is not 
valid for a nonlinear system, and (iv) reflection and sym-
metry properties are not followed.

6  Future work

The amplitude peaks provide information concerning car-
diac characteristics. However, minute alterations in peak 
deflection morphology and position cannot be identified 
clearly by visual inspection. In signal processing terms, the 
time domain features are not able to provide discriminative 
information for normal versus abnormal beats (Lih et al. 
2020; Clifford et al. 2006). Herein, we have listed differ-
ent non-linear features used by different authors for testing 
(Kannathal et al. 2006). The linear method provides satisfac-
tory classification accuracy. Hence, for future work, testing 
should be done on noise-free data using nonlinear methods, 

as they can be implemented even under noisy conditions 
(Ansari et al. 2017; Acharya et al. 2017a, b, c, d, e). Addi-
tionally, more data should be added to test our recommended 
model to improve performance.

6.1  ECG in mobile healthcare and telecare

Apart from modifications done for ECG algorithmic analy-
sis, there is additional scope for mobile healthcare technol-
ogy, wherein ECG signals are recorded with mobile devices 
(Constantinescu and Jinman 2012). Patients are connected 
to Holter-like devices for ECG signal recording. Any emer-
gency in patient health can be readily reported to the critical 
care unit. Adeli and Sankari (2011) invented a cost-effective 
mobile medical device for the purpose of real-time monitor-
ing of cardiac health. A future challenge is to develop an 
efficient remote monitoring device to rapidly provide infor-
mation about patient health and suitable treatments, using 
a decision support system (DSS) (Tamura 2012). There is 
a requirement for DSS in cardiac telecare, and a necessity 
for an ECG monitoring unit via wearable electrodes. This 
can help to capture data via a web-based unit, and can be 
employed for instantaneous screening of ECG signals by 
doctors. The system should be cost-effective, low in power 
consumption, and should be affordable to the patient (Ven-
katesan et al. 2018; Pandey et al. 2012) Fig. 7 presents the 
ECG recognition system in a clinical setting.

In this system, mobile devices and sensors are connected 
wirelessly through cloud computing devices. Without pro-
cessing ECG data, signals are sent to mobile devices from 
different sensing devices. As the data is not processed and 
is generated from different devices with continuous moni-
toring, it will require more space. To store large volumes 
of data, cloud storage space is utilized. The unknown data 
is sent to the developed model at the cloud for diagnosis. 

Fig. 7  Proposed ECG recognition system in a clinical setting
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The diagnostic results can be sent to healthcare centers and 
physicians (Acharya et al. 2018a, b).

The advent of cloud computing has enabled host software 
packs to analyze ECG data, including Software-as-a-Service 
(SaaS), Platform-as-a-Service (PaaS), and Infrastructure-
as-a-Service (IaaS). The SaaS layer is used for organizing 
custom-designed analysis of current and historic ECG data. 
The PaaS layers supervise the execution of software into 
three major units: (i) Workflow Engine, (ii) Container scal-
ing manager, and (iii) Aneka. The IaaS layers are self-ser-
vice models for monitoring, accessing, and managing remote 
datacenter infrastructures, such as compute, storage, and net-
working services (LeCun et al. 2015).

Deep learning is the part of machine learning methods in 
which hidden layers of neurons are used to construct inher-
ent features. For big datasets, deep learning methods can 
be used as it performs better than machine classification 
and classic analysis methods. The word “deep” is obtained 
from various hidden layers in an artificial neural network 
(ANN) (Fukushima and Miyake 1982). The ANN structure 
comprises the input, hidden, and output layers. Connec-
tion link is used to connect every nerve cell of one layer 
to every nerve cell of another layer. These computational 
nerve cells are composed of dendrites (input), axon (output), 
nucleus (activation function), node (soma), and synapses 
(weights) (Goodfellow et al. 2016). Here, the input signals 
are dendrites, weight models are synapses, and the activa-
tion function is the nucleus in the biological neuron. The 
ANN structure adversely affects the performance of clas-
sification due to susceptibility to translation and shift devia-
tion (LeCun and Bengio 1995). To overcome this drawback, 
a Convolutional Neural Network (CNN) can be used. The 
CNN ensures shift invariance and translation. CNN is a feed-
forward network which consists of pooling, convolution, and 
fully connected layers (Hinton and Salakhutdinov 2006; Lih 
et al. 2020; Murat et al. 2020).

Other deep learning techniques include the autoencoder, 
Recurrent Neural Network (RNN), and deep generative 
models, which are used to evaluate physiological signals. 
For the autoencoder, the input dimension is the same as 
the output, and it is an unsupervised neural network. The 
autoencoder has three layers: input, output, and hidden. For 
the autoencoder, encoding and decoding are two important 
steps (Hinton et al. 2006; Hopfield 1987).

The Deep Generative model comprises the Restricted 
Boltzmann Machine (RBM) and Deep Belief Network 
(DBN). The RBM consists of two layers: (i) visible and 
(ii) hidden layers. The DBN is the probabilistic model with 
various hidden layers. In RBM, the first layer is trained to 
reconstruct the input (Hinton et al. 2006).

The RNN is a recurrent network which follows a recursive 
approach. The Long Short-Term Memory (LSTM) network, 
which has the capability to learn long term dependencies, 

is a common type of RNN. The LSTM consists of three 
gates to incorporate memory block; they are: input, output, 
and forget gate. These gates assist in adding and removal of 
information from the network, based on cell state (Hopfield 
1987).

For future work, we intend to employ a deep learning 
model and use a larger dataset to train our model. We hope 
to integrate this developed model to the cloud system such 
that information about patient health from the acquired ECG 
signals could be sent to the clinicians to aid them in their 
diagnostic and treatment decisions.

7  Conclusion

MI is an irreversible damage to the myocardium due to coro-
nary artery blockage. The expansion of MI can be rapid if 
it is not treated expediently. If left untreated, further dam-
age can occur to myocardial function and the structure of 
left ventricle. The recommended approach to distinguish 
between normal and MI signals involves a non-invasive 
tool. In this work, nonlinear parameters were extracted from 
lead II ECG signals. The performance of each classifier was 
measured using accuracy, sensitivity, and specificity. The 
highest accuracy of 97.96% was achieved with the SVM 
classifier using nonlinear features with a ten-fold cross-
validation strategy. We have also proposed unique recur-
rence and HOS plots for normal and MI ECG classes to 
identify the two classes qualitatively. The proposed system 
outperforms other recently developed techniques, and has 
the potential to be readily deployed in hospitals and clinics, 
even in remote areas. CAD systems provide rapid and accu-
rate results, and can be implemented for real-time diagnosis 
of MI.
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