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Abstract
Internet of Things (IoT) for Intelligent Manufacturing of Smart Farming gained significant attention from researchers to 
automate various farming applications called Smart Farming (SF). The sensors and actuators deployed across the farm 
using which farmers receive periodic farm information related to temperature, soil moisture, light intensity, and water used, 
etc. The clustering-based methods are proven energy-efficient solutions for Wireless Sensor Networks (WSNs). However, 
by considering long-distance communications and scalable networks of IoT enabled SF; the present clustering solutions 
cannot be feasible and having higher delay and latency for various SF applications. To focus on requirements SF applica-
tions, an efficient and scalable protocol for remote monitoring and decision making of farms in rural regions called CL-IoT 
protocol proposed. A cross-layer-based clustering and routing algorithms have designed to reduce network communication 
delay, latency, and energy consumption. The cross-layer-based optimal Cluster Head (CH) selection solution proposed to 
overcome the energy asymmetry problem in WSN. The parameters of different layers like a physical, medium access con-
trol (MAC), and network layer of each sensor used to evaluate and select optimal CH and efficient data transmission. The 
nature-inspired algorithm proposed with a novel probabilistic decision rule functions as a fitness function to discover the 
optimal route for data transmission. The performance of the CL-IoT protocol analyzed using NS2 by considering the energy-
efficiency, computational-efficiency, and QoS-efficiency factors. Compared to state-of-art IoT-based farming methods, the 
CL-IoT reduces energy consumption, communication overhead, and end-to-end delay up to a certain extent and maximizes 
the network throughput.

Keywords  Cross-layer · Clustering · Intelligent manufacturing · Nature-inspired algorithm · Smart farming · Internet of 
Things

1  Introduction

Since the last decade, the emerging Internet of Things 
(IoT) paradigm received significant researcher’s attention 
for intelligent manufacturing based real-time applications. 
One such application is Intelligent Manufacturing of Smart 
Farming (IMSF) of IoT to automate the farming process to 
grow agricultural productivity and conserves supplies like 
power, water, etc. As the IoT delivered the novel dimension 

for the precision farming domain, it should be transforma-
tive and user friendly for end-users. The farm conditions 
such as soil depreciation, exhausting lands, excess weather, 
etc. having severe negative impacts on farm productivity 
that leads to overall ecosystem failure of the country. As 
approximately 70% of families are having the main source 
of income remains agriculture in India, lower farm pro-
ductivity directly affects the national ecosystem. Farming 
becomes a vital source for the human being in the Indian 
subcontinent due to farm products like food, raw materials, 
and grains. The recent advancement in technology offers 
automation and flexibility in improving productivity and 
minimizing extra labor. The IoT paradigm has initiated an 
appropriate base for precision farming, but it requires several 
challenges consideration while real-time implementation in 
Indian agricultural regions (rural areas). In such farming 
regions, the implementation of IoT enabled SF solutions 
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leads to challenges like connectivity, availability, scalabil-
ity, and reliability. The connectivity challenge in rural areas 
recently addressed using WiFi-based Long Distance (WiLD) 
with affordable deployment cost (Bhagwat et al. 2004; Che-
brolu et al. 2007; Hussain et al. 2016). Other than WiLD, fog 
computing and cloud computing presented for effective and 
efficient IoT enabled methods for rural agriculture (Tordera 
et al. 2016; Armbrust et al. 2010). But the use of these 
techniques solves connectivity problem, but may introduce 
another challenge of excessive energy consumption of sen-
sor devices. As the sensor nodes are resource-constrained, 
the design and deployment of IoT enabled SF applications 
should be resource-efficient while satisfying the Quality of 
Service (QoS) requirements.

Recently several solutions of SF proposed using Wireless 
Sensor Network (WSN) deployment due to a cost-effective 
approach (Kassim et al. 2014; Zhu et al. 2011). The WSN-
based methods introduced in two categories such as simula-
tion-based and real-time based. The WSN characteristics like 
minimum energy consumption, secure, digital data transmis-
sion, actuators, and/or sensors integration allow to WSN-
assisted IoT SF applications. Farming applications such as 
fertilizer controlling, soil monitoring, irrigation monitoring, 
environment monitoring, crop quality monitoring, weather 
monitoring, etc. implemented using WSN (Ojha et al. 2015). 
And hence IoT enabled farming considers WSN as a core 
part while implementing above farming applications. Using 
WSN for smart farming should address network-level prob-
lems such as energy-efficiency, computational-efficiency, 
and QoS-efficiency. The network-level problems mainly 
related to the methods of clustering and data transmission 
that are yet to solve for scalable agricultural applications. In 
SF, the sensors deployed across the farm collects the peri-
odic on-field data and transmit wirelessly towards the remote 
station for farm monitoring and decision-making processes. 
As the sensors are resource-constrained, the process of data 
collection and multi-hop transmission should be efficient in 
terms of energy consumption and Quality of Service (QoS) 
performances of data transmission. The clustering-based 
solutions proven to be energy efficient in WSNs, this moti-
vates the intelligent manufacturing of energy-efficient SF. 
The recent simulation-based methods were using conven-
tional clustering techniques such as LEACH (Heinzelman 
et al. 2000), TEEN (Manjeshwar et al. 2001), SEP (Smar-
agdakis et al. 2004), DEEC (Qing 2006), etc. which may not 
be the long term solution for scalable farming conditions.

Novel solution Cross Layer-IoT (CL-IoT) introduced in 
this paper to address the challenges of optimal clustering and 
data transmission concerning to intelligent manufacturing 
of SF applications. The problem of optimal Cluster Head 
(CH) selection has formulated in this paper by considering 
the parameters of different layers. It means the cross-layer 
approach parameters used to compute the probability of each 

sensor node while performing the clustering and routing 
operations. After the initial cluster formation, the optimal 
CH selected for each cluster by performing each sensor node 
cross-layer probability evaluation. The cross-layer param-
eters utilized to improve the energy-efficiency with mini-
mum clustering and routing overhead. The data transmission 
process designed in this paper by using the nature-inspired 
algorithm to minimize the data forwarding delay and energy 
consumption. The nature-inspired algorithm designed with 
novel probabilistic decision rule functions to elect the accu-
rate and efficient route for data transmission. The CL-IoT 
protocol proposed to achieve a trade-off among the energy 
consumption of the CHs and delay (QoS) in forwarding the 
data packets by considering the SF applications. In Sect. 2 
presents a brief review of related works on real-time preci-
sion farming, simulation-based precision farming, and recent 
clustering solutions of WSNs. In Sect. 3 presents the design 
of CL-IoT with system model, problem formulation, cluster-
ing, and data transmission techniques for SF applications. In 
Sect. 4 presents the experimental results. In Sect. 5 presents 
the conclusion and future work.

2 � Related work

Since from last decade several works introduced for preci-
sion farming, some of them are designed real-time basic 
with limited set of sensor nodes, some are designed on simu-
lation-basic using the clustering and other mechanisms with 
small to large farm areas and sensor nodes.

2.1 � Real‑time precision farming

The recent works introduced the real-time design and 
deployment of WSNs for precision farming. Dan et  al. 
(2015) proposed the real-time design and implementa-
tion for the Greenhouse conditions controlling applica-
tion. They used the Zigbee as communication technology 
in their implementation where sensor nodes deployed to 
acquire the greenhouse environmental data and transmit 
that to control nodes. They designed control nodes to moni-
tor the farm application according to periodic data received 
from the sensor nodes. Thus they considered the phases like 
data sensing, data transmission, and data analysis. Baran-
wal et al. (2016) introduced real-time smart farming to cope 
up with problems like rodent’s detection and crop protec-
tion from threats. They designed real-time crop monitor-
ing using periodical data collection and processing opera-
tions. For electronic devices and sensor devices integration, 
they used a python script. Furthermore, Mat et al. (2016) 
deployed various sensors in the farm region for real-time 
irrigation monitoring. They used sensors like CO2, humid-
ity, moisture, and temperature and administered the test in a 
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hot environment for the empirical study of scheduled irriga-
tion system and an automated irrigation system. Lerdsuwan 
et al. (2017) proposed a recent energy-efficient technique for 
real-time data transmission. They designed an algorithm to 
reduce the sensor node’s energy consumption with assured 
QoS performance for IoT enabled smart agriculture. Farzad 
Kiani et al. (2018) deployed various sensor nodes in the 
agricultural region to monitor the temperature, soil moisture, 
and humidity. The process of water supply automated via 
their approach and works as per the actual needs. It helps to 
minimize water consumption. However, the real-time meth-
ods are presented with a very limited set of sensors and farm 
area which is not suitable for actual SF. Lack of scalability, 
energy-efficiency, and fault tolerance of these methods sug-
gests designing the simulation-based techniques before its 
real-time deployments.

2.2 � Simulation‑based precision farming

Due to constraints at the real-time implementation of preci-
sion farming, other researchers presented simulation-based 
precision farming using various energy-efficient methods 
recently. Khedo et al. (2014) introduced the PotatoSense 
method for precision farming. They implemented and eval-
uated the PotatoSense for the automatic potato farm con-
trolling via simulations. The design of PotatoSense based 
on the different energy-efficient algorithms and the Hybrid 
Energy-Efficient Distributed (HEED) clustering approach. 
Nikolidakis et al. (2015) proposed Equalized Cluster Head 
Election Routing Protocol (ECHERP) as an energy-efficient 
solution. They designed and simulated ECHERP for the irri-
gation monitoring farm application. Sonam Maurya et al. 
(2017) introduced another simulation-based approach for 
precision farming. The hybrid routing solution proposed for 
recurrent threshold values for effective precision farming 
services. The design of the hybrid routing method based on 
various data transmission types like fuzzy clustering and 
direct data transmission. They achieved energy consump-
tion reduction by threshold-based routing operations. Yousef 
Hamouda et al. (2018) analyzed the problem of sampling 
interval selection for energy-efficiency in applications of 
smart farming using WSNs. With this connection, the sen-
sor nodes sense the soil moisture and temperature during 
each time interval in a particular farm region. Variable sam-
pling interval then computed according to temperature and 
soil data periodically. Parganiha et al. (2018) proposed the 
clustering approach using the method of hybrid coverage to 
minimize the energy utilization for smart farming applica-
tions. The least clustering cost technique was considered by 
them to select the Cluster Head (CH) and the best number 
of sensor nodes as Cluster Members (CM). Fathallah et al. 
(2018) recently introduced a novel algorithm for smart farm-
ing using the Routing Protocol for Low power and lossy 

networks (RPL). They defined as Partition Aware-RPL (PA-
RPL) for smart farming. The routing has built according to 
the partition of farmland that raises the efficient in-network 
aggregation. Agrawal et al. (2019) proposed a novel product 
density model to estimate the energy demands at the base 
station by considering precision agriculture application. 
Moreover, an Enhanced Duty Cycling technique designed 
using residual energy parameters. Most of these techniques 
rely on conventional solutions of clustering and data trans-
missions that cannot solve the problems of SF entirely by 
considering the long communication distances.

2.3 � Clustering and data transmission methods

This section presents the recent algorithms of clustering 
and data transmissions based on different techniques like 
fuzzy systems, nature-inspired algorithms, etc. Neamatol-
lahi et al. (2017) proposed the fuzzy-model-based cluster-
ing algorithm FHRP (Fuzzy-based Hyper Round Policy) to 
improve the network lifetime of WSNs. The distance from 
BS and residual energy parameters exploited as input to 
fuzzy model to compute the HR length. Zhang et al. (2017) 
proposed energy-efficient routing protocol for WSN called 
E2HRC (Energy-Efficient Heterogeneous Ring Clustering). 
The E2HRC algorithm designed to enhance the performance 
of existing RPL (Routing Protocol for Low-power and Lossy 
Networks). Behera et al. (2018) modified the LEACH pro-
tocol to enhance the network lifetime performance of IoT 
applications. In LEACH, the author proposed the thresh-
old limit for CH selection along with parallel power level 
switching among the sensor nodes. Kaur et al. (2018) intro-
duced the GSTEB (General Self-organizing Tree-based 
Energy Balance) routing protocol to improve inter-cluster 
data aggregation. The improved ACO (Ant Colony Optimi-
zation) algorithm exploited to select the efficient CH nodes. 
The hybrid soft computing algorithm used to transmit data 
from CHs to the sink node. Kaur et al. (2018) proposed 
PSO (Particle Swarm Optimization) based novel cluster-
ing algorithm for WSNs to address the problems related to 
unequal and UFC (Fault-Tolerant Clustering) called PSO-
UFC. Anthony Jesudurai et al. (2018) proposed IEECHS 
(Improved Energy Efficient Cluster Head Selection) for IoT 
enabled WSNs. Wang et al. (2018) proposed another recent 
clustering protocol for energy consumption reduction in IoT 
enabled WSNs, they designed the algorithm of uneven clus-
ter formation to achieve energy efficiency and load balanc-
ing. Preeth et al. (2018) proposed the FEEC-IIR clustering 
protocol which is based on FEEC (Fuzzy-based Energy-
Efficient Clustering) and IIR (Immune-Inspired Routing) 
methods for WSN-assisted IoT applications. The adaptive 
fuzzy-based decision-making function was used for effi-
cient CH selection. Aftab et al. (2019) introduced the HSCS 
(Hybrid Self-organized Clustering Scheme) algorithm by 
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for IoT enabled drone-based cognitive networks; they used 
the hybrid solution using DA (Dragonfly Algorithm) and 
GSO (Glowworm Swarm Optimization) techniques. Faizan 
Ullah et al. (2019) proposed the energy-efficient clustering 
and routing algorithm based on three-layer hybrid cluster-
ing by. The limit control packets exchange among the nodes 
at each round to select the lower layer head. Saranraj et al. 
(2019) proposed clustering protocol with the main focus on 
optimal CH selection by utilizing the distance with other 
sensor nodes and the current status of energy. The schedul-
ing of nodes as a cluster member and CH depends on its 
distance and current consumption factors to enhance the 
network’s lifetime. Micheletti et al. (2019) proposed novel 
clustering technique for heterogeneous WSNs by combining 
definitions of the CH routing tree and CH rotation to balance 
the energy consumption of node. Chalapathi et al. (2019) 
introduced the clustering optimized for IoT enabled WSNs 
in which they proposed the time synchronization protocol 
E-SATS (Efficient and Simple Algorithm for Time Synchro-
nization). Behera et al. (2020) proposed I-SEP (Improved-
Stable Election Protocol), they implemented a threshold-
based cluster head selection for a heterogeneous network. 
All the clustering methods mainly focused on to achieve the 
energy efficiency for WSNs/or WSN-assisted IoT applica-
tions. Achieving the trade-offs among various challenges of 
SF applications using these protocols is a challenging task.

2.4 � Research motivation and contributions

The recent progress and methods show that the clustering 
techniques already acceptable solutions to achieve energy 
efficiency via the optimal CH selection and stable clustering. 
The intelligent manufacturing of IoT assisted SF is, however, 
challenging using those methods due to factors such as den-
sity, farm area, long-distance communications, higher delay/
latency, and packet losses. The SF applications requirements 
concerning with the energy efficiency, lower latency, and 
lower data transmission delay. This work motivates us to 
present the IMSF solution by considering the requirements 
of different layers while selecting CH and forming stable 
clusters to address the energy asymmetry problem for SF 
applications. The contributions are:

•	 The protocol CL-IoT differs from the above protocols as 
it mainly focused on scalability and efficiency (energy 
and QoS) trade-offs for SF applications in this paper 
through the cross-layer clustering and data transmission 
solution.

•	 Cross-layer based evaluations of sensor nodes and selects 
the optimal and stable CH node using a simple heuristic 
technique with minimum clustering and CH selection 
overhead.

•	 Nature-inspired algorithm based inter-cluster and intra-
cluster data transmissions via optimal and stable route 
formation.

•	 Extensive performance evaluations via the simulation 
studies of proposed and existing works on various farm-
ing conditions and applications.

.

3 � CL‑IoT: intelligent manufacturing of smart 
farming

This section presents the complete design of proposed CL-
IoT protocol to address the SF applications key requirements 
such as energy-efficiency, lower latency, and lower com-
munication delay. First we present the generalized system 
model and problem definition followed by protocol design-
ing assumptions, cross-layer clustering for optimal CH 
selection, nature-inspired algorithm based data transmission.

3.1 � System model

Figure 1 showing the WSN-assisted IoT network for SF 
applications using the actuators and Gateway node. The N 
number of sensor nodes (red color) S =

{
S1, S2,… SN

}
 ran-

domly deployed in farm area which are indicated by IoT 
nodes in this paper. Each IoT node may consist of group 
different farm sensors such as soil moisture, temperature, 
humidity, light intensity, and wind speed. The network is 
divided into M number of clusters and having blue color 
Cluster Heads (CHs) Q =

{
CH1,CH2 …CHM

}
 . The data 

received and aggregated at each CH node further transmitted 
to the green color Gateway/Sink/Base Station (BS) node. All 
the communications performed using the Zigbee interface 
(IEEE 802.15.4. standard). By considering this model of 
SF, we formulate the two key problems to address in this 
paper such as:

•	 The communications in precision agriculture are long-
distance which consumes more energy for data transmis-
sion of IoT nodes. Therefore the energy-efficient required 
especially in farm fields IoT nodes. The energy- effi-
ciency can be achieved by selecting the optimal CH node 
and address the energy asymmetry problem.

•	 Discovering the data transmission paths with the goal 
of minimum transmission delay and latency with mini-
mum energy consumption is optimization problem of this 
work.

Along with this, proposed system model having some 
assumptions such as:
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•	 Network consists of on-field sensor nodes and two Gate-
way/Sink/BS nodes deployed opposite sides to address 
the long-distance communication problems.

•	 The sensor nodes are temperature, soil moisture, relative 
humidity, or light intensity to monitor the SF applica-
tions.

•	 The sensor nodes are homogenous and deployed ran-
domly across the farm field.

•	 The sensor nodes are static and having a unique ID with 
energy constraints.

•	 The both sink nodes are outside of the farm field without 
energy constraints.

•	 The multi-hop and symmetric manner communications 
applying among the sensors in network.

•	 After deployment of network, K-means algorithm used 
for initial pre-defined M number clusters formation of 
network.

•	 We assume that each sensor in the IoT node periodically 
collects the data and fused at the local unit to transmit 
towards CH node.

Table 1 demonstrates the list of notations with their sig-
nificance used in CL-IoT protocol.

3.2 � Optimal CH selection

After the portioning of N number of sensor nodes into the 
M number of groups or clusters, the optimal CH selection 
proposed in this paper. Each cluster consist of Z number 
of IoT nodes i.e. Hj = {h1, h2,… hZ} , where Hj is set of 
IoT nodes belongs to the jth cluster. The energy-efficient 
CH selection and energy asymmetry problem is solved by 
considering the parameters of different layers. Figure 2 and 
Algorithm 1 shows the functionality of proposed cross-layer 

CH selection method. As the sensor nodes are aware about 
the gateway nodes location information, the CL-IoT protocol 
initiates the process of CH selection in scattered manner. As 
showing in figure and Algorithm 1, for each cluster the opti-
mal CH selection process performed periodically by com-
puting the each sensor nodes probability values. By using 
the parameters from network layer denoted as P1

i
 , physical 

Fig. 1   Proposed System model 
of SF

Table 1   List of notations

Notation Significance

N Number of IoT nodes in network
S Set of N number of IoT
M Number of clusters
Q Set of M number of cluster heads
Hj Hj is set of IoT nodes belongs to the jth cluster
Z Number of IoT nodes in each cluster
BS Gateway or Sink node
dmax Maximum geographical distance
P1

i
Network layer probability of ith sensor node

P2

i
Physical layer probability of ith sensor node

P3

i
MAC layer probability of ith sensor node

Pi Cross-layer probability of ith sensor node
RRt Beacon packet receiving rate at timet
Y Number of neighbors
RSSIt RSSI threshold at current timet
RSSIi RSSI value of ith node
PRi Reception of packets in bytes at ith node
BW Total buffer size in bytes
s Source node either CH or Cluster member
d Destination node either CH or BS
a Forwarding ant
DRa

s,d
Probabilistic decision rule function
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layer denoted as P2

i
 , and MAC layer denoted P3

i
 , the prob-

ability value Pi computed for each ith sensor node in jth
current cluster. From the network layer, the geographical 
distance from ith sensor node to associated gateway node i.e. 
sink is computed. From physical layer two parameters com-
puted such as residual energy and Received Signal Strength 
Indicator (RSSI). From the MAC layer, queue optimization 
parameter computed. The layer-wise parameters computa-
tions elaborated below.

1. Network layer: the shortest geographic distance of 
current node hi  towards to the gateway node BS reduces 
the energy consumption, network latency, and overall 

transmission delay. Thus the probability value ith sensor 
node at network layer is computed as:

where dmax any positive maximum distance value. In this 
work, we set 1000 m as maximum allowable distance. The 
distance parameter at network layer among sensor node and 
BS/CH is estimated using Received Signal Strength Indica-
tory (RSSI) (Kaur et al. 2018; Nayak et al. 2017).

2. Physical layer: For WSNs, two important parameters at 
physical layer computed for each IoT node such as residual 
energy and RSSI. Most of clustering protocols are based on 

(1)P1

i
= 1 −

(
dist

(
hi,BS

)

dmax

)

Fig. 2   Architecture of cross-
layer-based optimal CH selec-
tion
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sensor nodes energy for CH selection. The higher residual 
energy of IoT node is given more priority for CH selection. 
For the computation of remaining energy, we used the prin-
cipal request radio model. The remaining energy of ith node 
is computed at time t as:

where Ei
initial

 and Ei
consumed

 ith node initial energy and cur-
rently consumed energy. The remaining energy value com-
puted in range of 0.001 to 0.5 Joules. As the initial energy 
set is 0.5 Joules for each node.

Along with the energy-efficiency, we want to make sure 
the efficient Packet Delivery Ratio (PDR), therefore we com-
puted the RSSI value for each IoT node. The threshold based 
probability value computed for RSSI parameter of each IoT 
node. The CL-IoT computes the RSSI threshold which is 
nothing but the average beacon packet receiving rate RR 
from Y  number of neighbors at current time t  . The RSSI 
threshold at current time t is computed as:

The RSSI value of ith node is compared with RSSIt and 
accordingly the probability value set.

If the RSSI value is hi more than RSSIt , it mean it will 
get good PDR performance and hence set the maximum 
probability value else the minimum probability value set to 
achieve the reliability in CH selection. Finally, the probabil-
ity value ith node at physical layer is computed as:

3. MAC Layer: To avoid the congestion situations and 
excessive energy consumption due to such congestions the 
queue optimization parameter computed from the MAC 
layer. The MAC layer queue optimization parameter helps to 
enhance the PDR performance and minimize the energy con-
sumption by measuring the level of congestion at each IoT 
node. The MAC layer probability value of ith node is then 
computed by means of queue optimization computation as:

where, PRi reception of packets in bytes at ith node and 
BW  is total buffer size in bytes.

(2)Ri = Ei
initial

− Ei
consumed

(3)RSSIt =

(
RRt

Y

)

(4)RSSIi = 0.99, if RSSI
(
hi
)
> RSSIt

(5)RSSIi = 0.25, if RSSI
(
hi
)
< RSSIt

(6)P2

i
= RSSIi + Ri

(7)P3

i
=

PRi

BW

Finally, the combined probability value computed as 
showing in Algorithm 1 by calling function getProbability() . 
The layers probabilities summarized by one probability 
value showing in Eq. (8). IoT nodes elected as the CHs based 
on the higher probability value P . The probability value of 
ith node is computed as:

Each IoT nodes computed probability value is in range 
of [0, 1]. The w1 − w3 represents the weighting parameters 
for network, physical, and MAC layer probability values 
respectively. Thus during the CH selection process, these 
weighting factors justify the specific effect while computing 
the nodes probability values. The summation of all weight-
ing factors should be 1, i.e. w1 + w2 + w3 = 1.

Algorithm 1 further shows that if the first two nodes hav-
ing the similar probability value at current time t, then the 
node with higher residual energy is elected as the CH node 
and broadcast their CH selection status to all other nodes. 
The remaining all nodes joins as CMs to elected CH once 
receiving the CH selection status packet. The normal nodes 
may receive the status packets from more than one IoT nodes 
and hence those nodes join the CHs with higher RSSI value. 
After the cluster formation and CH selection process, the 
unique IDs assigned to each cluster. According to the Time 
Division Multiple Access (TDMA) channel access sched-
ules, the set of CHs elections periodically announce in net-
work to solve the CH energy asymmetry problem.

3.3 � Cluster heads updating

As the WSN-assisted SF applications are resource con-
strained, CL-IoT updating the CHs in dynamically to achieve 
the uniform energy consumption and load balancing. The 
process of CH updating performed periodically according 
to TDMA timeslots by observing:

•	 If current CH failed due to natural disasters, then re-
election of CH initiated.

•	 If current CH probability value suppressed by any other 
CM probability value in same cluster, then current CH 
relinquish its role and become the CM, and then CM with 
highest probability value becomes the new CH as noticed 
in Algorithm 1.

To reduce the congestion and energy consumption at 
CH nodes, the CL-IoT protocol checks that if any CH node 
received the same data packet which already received previ-
ously, then it drop that redundant data packet.

(8)Pi = w1 × P1

i
+ w2 × P2

i
+ w3 × P3

i
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3.4 � Data transmission using nature inspired 
algorithm

After the clustering, the intra-cluster and inter-cluster trans-
mission tasks performed according to TDMA schedules. The 
key objectives are optimizing the data transmission process 
by minimizing the inter-cluster and intra-cluster communica-
tion costs in terms of energy-efficiency and computational-
efficiency. Routing optimization is a multi-objective opti-
mization problem and solved by using the nature-inspired 
algorithms. Ant Colony Optimization (ACO) is a well-
known nature-inspired algorithm. As the ACO has better 

performance on multi-path optimization problem, it is used 
to optimize links in intra-cluster and inter-cluster data trans-
missions in this paper.

In general, ant colony expressed as the colonies of insects 
with very high capability to examine and utilize their condi-
tions notwithstanding their very limited displacement way 
i.e. walking compared to other species i.e. flying. The envi-
ronment utilized by them for storage, processing, and shar-
ing the data among all the ants in the colony. According to 
this behavior, the ACO algorithm proposed the first time by 
Dorigo et al. (1999). Many studies proposed recently based 
on ACO for optimal clustering and multi-objective routing 

Algorithm 1: Cross-Layer-based CH Selection    

Inputs: 

: set of IoT nodes belongs to j  cluster, j ∈ M

Outputs: 

1. While 

2. For each cluster  at 

3.        For each 

4. : compute network layer probability  

5. : compute physical layer probability  

6. : compute MAC layer probability  

7.

8.                      Update routing table entries of   node with its  value 

9.         End for 

10. Fetch and descending order sort all IoT nodes probability values in 

11. If 1

12.     If ) 

13.
14.     Else  

15.

16.     End If 

17. Else 

18.

19.

20. until next periodic interval  

21. End For 

22. Update CH at next time interval 

23. If 

24.       Update 

25. Else  

26.        Keep old 

27. End if 

28. End While  



7785CL-IoT: cross-layer Internet of Things protocol for intelligent manufacturing of smart farming﻿	

1 3

(Domínguez-Medina et al. 2010; Mohajerani et al. 2015; 
Jiang et al. 2018; Li et al. 2019). The CL-IoT proposed an 
ACO-based routing scheme to enhance the QoS and mini-
mize the energy consumption for WSN-assisted intelligent 
manufacturing of smart farming applications.

We proposed new probabilistic decision rule function to 
improve performance of data transmission by working on 
more accuracy to make a choice using the cross-layer param-
eters. Algorithm 2 presents the ACO algorithm basic steps 
for optimal route selection.

Algorithm 2: ACO-based data transmission  
Input

Output 

1. Define objective function 

2. Initialization of pheromone evaporation rate 

3. While ( ) 

4.    For each node 

5.       Compute new solution using Eq. (9) 

6.       Evaluate new solution  

7.        Select best route with pheromone 

8.        Update pheromone 

9.    End For 

10.  Continues the Daemon actions to establish the optimal route between  to 

11. End While 

12. Return optimal route selected  

As noticed in Algorithm 2, the route selection or next-hop 
selection is based on the probability computation in ACO 
(Eq. 9). It allows the node s to evaluate the available choices 
within its coverage area by computing the cross-layer prob-
ability value of each choice. Then node s select the next node 
h with the highest probability value. The algorithm is also 
depends on the choice of pheromone. In existing cases, ini-
tially random routes selected by ants and leave the amount of 
pheromone � in such routes; however the pheromone quantity 
is not fixed.

In smart precision agriculture, the periodic events are 
raised by CM or CH nodes for data transmission towards 
CH or G node respectively. On detection of such events, the 
source node s ∈ CMorCH wants to send number packets 
towards the intended destination d ∈ CHorG . Each packet is 
transmitted to next hop via ant. The ants select the next relay 
node based on two functions such as amount of pheromone 
and cross-layer probability value of node. The cross-layer 
probability value is computed similar way as discussed in 

where �(s, h) function used to compute the pheromone 
value among node s and h ., �(s, h) is the heuristic value 
related nodes cross-layer probability value, n is the total 
sensor nodes inside the range of node s . The relative influ-
ence of the heuristic information and pheromone trail is 
controlled by the parameters of � and � , and tabuh is the 
packet identities already received by h . For each link (s, h) , 
the pheromone trails T  connected with values ranging in 
between � ∈ [0,1] . The second function is related to the heu-
ristic value � of node h is computed as:

where Ph is probability value of hnode computed using 
Eq. (8) which is based on the parameters such as geographi-
cal distance, residual energy, RSSI value, and MAC layer 
link optimization parameters. The computation of all the 
parameters is similar to one used for clustering process 

(10)�(s, h) =

�
Ps

�−1

∑
h∈n

�
Ph

�−1

above section for optimal CH selection (using Eq. 8). Both 
values computed during the process where ant a moves from 
node s to h using below proposed probabilistic decision rule 
function DRa

s,h
:

(9)

DRa
s,h

=

�
[�(s,h)�].

�
�(s,h)�

�

∑
h∈n [�(s,h)

�].
�
�(s,h)�

� , if a not belongs to tabuh

0, otherwise
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except the geographic distance parameter. For route selec-
tion, the geographic distance is computed from h to d as:

where, Δ any positive maximum distance value. In this work, 
we set 1000 m as maximum allowable distance. P1

h
 is net-

work layer probability value of node h.
The probability of selecting the next hop is computed 

by using the cross-layers parameters as discussed above 
section. This helps to achieve a more accurate and efficient 
route formation for data transmissions in the network. Using 
this rule, s selects the next hop h to forward current farm 
information until the intended destination node d . As com-
pared to existing methods, we used a similar ACO solution; 
however, we optimized the function probabilistic decision 
rule by computing the heuristic function �(s, h) using cross-
layer parameters rather than just relying on residual energy 
of node. The proposed route formation algorithm allows 
selecting the accurate next-hop selection and delivering the 
optimized results in terms of energy-efficiency, computa-
tional-efficiency, and QoS-efficiency.

4 � Experimental results and discussions

4.1 � Network scenarios

The implementation and evaluation of the proposed CL-
IoT protocol for SF was carried out in a network simulator 
(NS2). The networks were designed with varying numbers 
of IoT nodes deployed randomly in square farm area of size 
1000 × 1000 m. Table 2 gives a list of simulation parameters. 
The symbols represent the units like m represents meters, nJ 

(11)P1

h
= 1 −

(
dist(h, d)

Δ

)

represents nanoJule, m/s represents meters per second, kbps 
is kilo bytes per second, and CBR is constant bit rate.

4.2 � CL‑IoT evaluations with state‑of‑arts

The performance of CL-IoT compared with three state-of-
art protocols such as LEACH (Heinzelman et al. 2000) as 
baseline protocol, Energy-Efficient Cntroid-based Routing 
Protocol (EECRP) (Shen et al. 2017), and FEEC-IIR (Preeth 
et al. 2018). Along with the conventional LEACH protocol, 
two recent protocols EECRP and FEEC-IIR considered for 
the performance evaluation. The functionality of FEEC-IIR 
already studied in section II. The functionality of EFFC-IIR 
demonstrated as:

•	 After network deployment, the clustering (K-means) 
applied to initially divide the network into different clus-
ters.

•	 For optimal CH selection, adaptive fuzzy-based decision-
making technique designed along with TOPSIS. The 
fuzzy rules designed in this process to select the optimal 
CH for the current cluster by considering the three main 
criteria and six sub-criteria.

•	 After clustering, the immune-inspired optimization tech-
nique introduced for reliable data transmission in within 
cluster and among the clusters. The data transmission 
algorithm using this optimization algorithm focused on 
communication cost reduction.

The EECRP protocol selected for performance evaluation 
due to its applicability for the long-distance communication-
based IoT applications. In brief, the EECRP designed with 
aim of higher energy efficiency with energy resources man-
agement algorithm for WSN-assisted IoT networks. The key 
functions of EECRP are:

•	 The clustering performed using the energy centroid posi-
tion and nodes residual energy,

•	 The design of the optimization algorithm based on CH 
nodes and total dead nodes proposed, and.

•	 The protection technique introduced to minimize the 
long-distance communications to minimize the CH 
node’s energy consumption.

The functionality of the FEEC-IIR protocol is similar to 
the proposed CL-IoT, except the fuzzy logic approach used 
in the CH selection and IIR optimization algorithm used for 
data transmission. CL-IoT protocol compared with state-of-
art protocols in three performance criteria’s as discussed ear-
lier (energy, computational, and QoS efficiency). Upcoming 
sub-sections present the simulation results and their analysis.

Table 2   Default network parameters

Parameter Value

IoT nodes 100–500
Farm area 1000 m × 1000 m (1 km2 i.e. 

~ 247 Acre).
Number of gateways 2
Gateways location 1000 m × 1100 m and 1100 

m × 1000 m  
Bandwidth 20 kbps  
Packet size 512 bytes
Node deployment Random
Mobility speed 0 m/s  
Data type CBR
Initial energy 5e+8 nJ 
Transmitter energy consumption 1.67e−8 nJ
Receiver energy consumption 3.61e−8 nJ 
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4.3 � Energy efficiency

Energy-efficiency of CL-IoT protocol evaluated using two 
main performance parameters such as network lifetime and 
average energy consumption. Before computing the network 
lifetime, it is required to compute average energy consump-
tion. After end of simulation, first total remaining energy of 
entire network Etot computed as:

where Einitial
i

 represents initial of  ith node, Econsumed
i

 repre-
sents consumed energy of i th node. Total number of nodes 
in network represented by N . Using the outcome of Eq. (12), 
the performance of average energy consumed Eavg computed 
as:

Network lifetime and energy consumption parameters are 
related to each other, hence network lifetime is computed in 
rounds as:

where Rtot is total remaining energy of network and � is con-
trol parameter to get the number of rounds.

Energy efficiency performance concerning average 
energy consumption and network lifetime are demon-
strated in Figs. 3 and 4 respectively. Figure 3 proves the 
CL-IoT energy-efficiency concerning the average energy 
consumption as compared to all existing methods. Figure 4 

(12)Etot =

N∑

i=1

Einitial
i

− Econsumed
i

(13)Eavg =
Etot

N

(14)NL =
|||
|

Rtot

�

|||
|

demonstrates that CL-IoT protocol prolonged the network 
lifetime significantly as well, especially high-density net-
works. This is due to the cross-layer-based and less overhead 
clustering process of CL-IoT. The CL-IoT protocol uses the 
local clustering functionality which minimizes the energy 
consumptions and clustering overhead.

The nature-inspired algorithm of CL-IOT for data trans-
mission makes sure the minimization of overall network cost 
in CL-IoT. Among the other protocols, the energy efficiency 
of the FEEC-IIR protocol shows the higher as compared 
to the other EECRP and LEACH protocols as the fuzzy 
model used the various parameters to select the optimal CH 
node. In EECRP only residual energy and centroid loca-
tion parameters utilized to select the CH node which is not 
sufficient to reduce the energy consumption; however, its 
performance is better compared to conventional LEACH 
protocol. The LEACH protocol selects the CH nodes based 
only on the energy threshold parameter which is not scalable 
and energy-efficient for the long-distance communication 
applications.

4.4 � QoS‑efficiency

Along with energy-efficiency analysis, QoS-efficiency is also 
the key requirements for SF applications. QoS-efficiency is 
evaluated using average communication delay and Packet 
Delivery Ratio (PDR) parameters. The average communi-
cation delay parameter calculates the average time among 
the packet generation time at all sources and time of packet 
received at the all destination nodes. It is computed as:

(15)delay =

∑Z

i=1
di
t
+ di

p
+ di

pc
+ di

q

N

Fig. 3   Performance evaluation of average energy consumption

Fig. 4   Performance evaluation of network lifetime
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where Z is number of total transmission links, di
t
 is transmis-

sion delay of i th link, di
p
 is propagation delay of i th link, di

pc
 

is processing delay of  i th link, and di
q
 is transmission delay 

of i th link.
PDR is also major QoS performance metrics that is com-

puted as the ratio of successfully received packets at all the 
destinations by total number of generated packets at all the 
sources during entire simulation period. The PDR is com-
puted as:

where Pr represents total successfully received packets at 
all destinations and Pg represents total generated packets at 
all the sources.

Average end to end delay performance observed in Fig. 5 
under a varying number of IoT nodes. The performance of 
CL-IoT evaluated concerning average communication delay 
against the existing methods. Delay is a key requirement for 
IMSF applications, therefore lower the delay better the farm 
monitoring and productivity. With the increased density, 
high data traffic, and congestion, the average delay value 
also increased. But the CL-IoT protocol achieved the lower 
average communication delay performance compared to 
state-of-art protocols. The clustering and data transmission 
algorithms of CL-IoT are based on the optimal selection 
approach using cross-layer parameters which shows a great 
impact on average delay performance. The nature-inspired 
algorithm using novel probabilistic decision rule function in 
CL-IoT accurately selects precise routes for data forwarding 
with minimum communication cost and higher PDR (Fig. 6). 
CL-IoT protocol delivered more robust and consistent data 
forwarding IoT nodes based on RSSI based link quality 
parameters along with distance and energy parameters.

(16)PDR =

(
Pr

Pg

)

× 100

Figure 6 demonstrates the PDR performance measurement 
and evaluation compared to state-of-art protocols for vary-
ing number of IoT nodes. As discussed earlier, the CL-IoT 
protocol achieved higher PDR performance compared to all 
methods evaluated. Due to the increased IoT nodes density 
and network congestions, the performance of PDR decreased, 
but CL-IoT achieved higher PDR for all network scenarios. 
This is due to the cross-layer approach used in CL-IoT for 
the optimal CH selection and data transmission with the 
main focus on the selection of stable CH nodes and routes 
for data transmission. Due to the proposed nature-inspired 
approach the accurate data forwarding nodes selected which 
leads to reliability of data packets communicated between 
the intended source and destination pairs in the network 
compared to existing methods. On the other side, among the 
existing methods, FEEC-IIR shows better results compared 
to LEACH and EECRP protocols due to the optimization 
algorithm designed to achieve higher data reliability with 
minimum communication overhead. In the EECRP protocol, 
the distance and energy parameters were used to establish 
the routes without considering link quality and congestions

4.5 � Computational efficiency

The computation efficiency evaluated in terms of average 
communication cost and communication overhead of proto-
cols under the varying IoT nodes. The communication cost 
measured in this regards by means of Packet Loss Ratio 
(PLR). The communication cost (CC) increases in network 
due to congestions and frequent paths disconnection and 
hence it is measured as:

(17)CC = 1 −

(
Pr

Pg

)

Fig. 5   Performance evaluation average end-to-end delay

Fig. 6   Performance evaluation of PDR
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The Communication Overhead (CO) calculated as the 
ratio of routing packets to the data packets counted during 
entire simulation period. It is computed as:

where, RTt represents routing packets counted and DTt rep-
resents data packets counted at time t.

Figure 7 demonstrates the performance evaluation of 
the CL-IoT protocol against the existing protocols in terms 
of average communication cost for SF applications. As the 
density increases, the communication cost performance also 
significantly increases due to frequent routes disconnections, 
frequent re-transmissions, and congestions. But as observed 
in Fig. 8, the CL-IoT reduces the communication cost values 
compared to other protocols with a significant margin. This 
is because of appropriate parameter utilization in CL-IoT of 
IoT nodes while selecting CH or data forwarder compared to 
other methods. The cross-layer technique in CL-IoT reduces 
the CH re-election rounds as well as routes disconnections 
and hence it resulted in reduced communication cost values

The performance of communication overhead demon-
strated in Fig. 8 with varying density of IoT nodes. The com-
munication overhead of CL-IoT reduced compared to all 
existing protocols due to the reasons discussed above. The 
parameters used in CL-IoT minimize the processes required 
for optimal CH selection and route formation as compared 
to existing protocols, and hence this leads to reduced com-
munication cost and communication overhead for CL-IoT 
protocol. The reduced processes of route formations lead to a 
reduction in frequent route disconnections, re-transmissions, 
and congestions and hence reduction of unnecessary routing 
packets as well. Routing packets has increases in the net-
work due to frequent re-clustering and route re-construction 
tasks. The reduction of routing packets minimizes the overall 

(18)CO =
∑

t

(
RTt

DTt

)

network communication overhead performance for CL-IoT 
protocol compared to state-of-art protocols.

Table 3 demonstrates the average performance analysis 
of all four protocols in terms of energy-efficiency, QoS-
efficiency, computational-efficiency using the network 
lifetime, avg. end-to-end delay, and communication over-
head parameters respectively. It is observed in Table 2, 
the energy-efficiency of CL-IoT protocol improved by 220 
rounds. Similarly, QoS-efficiency achieved via the reduc-
tion in communication delay by 0.59 ms and computational-
efficiency achieved by reduction is communication overhead 
by 0.43 rate. The performance improvement of CL-IoT is 
significant by considering the scalable farming applications.

5 � Conclusion and future work

The aim of this paper to present the intelligent manufac-
turing of IoT enabled SF concerning to energy-efficiency, 
QoS-efficiency, and computational-efficiency for small to 
large farming applications. The proposed CL-IoT protocol 
designed and evaluated against the state-of-arts protocols 
such as conventional LEACH clustering protocol, recent 
EECRP, and FEEC-IIR protocols. The CL-IoT focused on 
two aspects such as optimal CH selection and robust data 

Fig. 7   Performance evaluation of communication cost

Fig. 8   Figure performance evaluation of communication overhead

Table 3   Average performance analysis

Protocols Energy-efficiency 
(rounds)

QoS-effi-
ciency (ms)

Computational-
efficiency (rate)

LEACH 3247 6.8933 3.9
EECRP 3544 6.3267 2.9289
FEEC-IIR 3740 5.2444 2.6167
CL-IoT 3960 4.6544 2.1878
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transmissions using the cross-layer parameters. The existing 
protocols use energy and distance in general for clustering 
and data transmissions which did not solve the problems 
of long-distance communications in farming applications. 
In CL-IoT, the sensor nodes evaluated by considering net-
work, physical, and MAC layer parameters to achieve more 
stable and precise clustering as well as data transmissions. 
For data transmission, we utilized the ACO as a nature-
inspired algorithm to establish more reliable routes with 
the aim of computational, QoS, and energy-efficiency. The 
experimental results prove that CL-IoT overcome the prob-
lems of existing solutions by enhancing the network lifetime 
and PDR performances and minimizing the average end-
to-end delay, average energy consumption, communication 
cost, and communication overhead performances. For future 
work, we suggest directions to extend CL-IoT protocol such 
as (1) designing the appropriate data aggregation solution 
at CH nodes by considering the real-time farm monitoring 
application using fuzzy logic rules to keep the important 
data and discard the redundant data, (2) investigation of CL-
IoT by designing the simulation scenarios like simulation 
time, farm size, data rate, etc., (3) security is another chal-
lenge for IoT applications, so the future step for the CL-IoT 
protocol will be the secure data transmissions of farm data 
using the lightweight approach in presence of attackers, and 
(4) re-designing optimal CH selection algorithm using an 
efficient nature-inspired algorithm to further optimize the 
performances of CL-IoT protocol.
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