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Abstract
Reversible ternary logic is a promising new research for the future of quantum computing, which has several advantages 
over the binary ones. In this paper, an effective design of reversible ternary coded decimal (TCD) adder/subtractor is pro-
posed. For this purpose, at first, we propose a new reversible ternary full-adder, called comprehensive reversible ternary 
full-adder, using the ternary logic capabilities that can sum four ternary values and produce two ternary outputs. Moreover, 
we implement a 3-qutrit ripple carry adder (RCA). Then, we propose a quantum realization of TCD error detector circuit. 
Next, a novel quantum reversible TCD adder and a novel quantum reversible TCD subtractor are designed and implemented 
using the proposed 3-qutrit RCA and the proposed TCD error detector. Finally, by merging these two circuits, we propose an 
effective quantum realization of reversible TCD adder/subtractor. The results of evaluations show that the proposed circuits 
are superior or similar to related counterpart works in terms of constant input, garbage outputs, hardware complexity and 
quantum cost criteria.

Keywords  Quantum realization · Reversible circuit · Ternary coded decimal (TCD) · Full-adder · Ternary coded decimal 
detector

1  Introduction

According Moore’s law that the number of transistors will 
be doubled on the chipsets every 18–24 months, the area 
occupied and energy losses of the chipsets are very impor-
tant parameters. One of the methods suggested to reduce the 
occupied area, increasing speed, and reducing the complex-
ity of the chipsets, is the use of multi-value logic (MVL) 
in circuit design. Ternary logic is one of the most popular 
multi-value logic that has attracted researchers in the recent 
years (Mc Hugh and Twamley 2005). Another issue that is 
very important in the design of integrated circuits which is 
increasingly getting significant, is the issue of power con-
sumption and energy losses reduction otherwise the smallest 
loss of energy in VLSI circuits causes too much heat and 
thus reduces the life and efficiency of the circuits. A solution 

that has attracted the attention of many digital designers in 
the recent years is reversible circuits. Bennett (1973) has 
proven that circuit design in reversible form can remove the 
energy losses caused by missing information in the circuit. 
A circuit is reversible if the number of inputs is equal the 
number of outputs and there is a one-to-one correspondence 
between inputs and outputs (Amirthalakshmi and Raja 2018; 
Ariafar and Mosleh 2019; Islam et al. 2009; Karthikeyan and 
Jagadeeswari 2020; Noorallahzadeh and Mosleh 2019a, b; 
PourAliAkbar and Mosleh 2019).

Due to the prominent features of quantum reversible 
MVL circuits, so far many circuits including adders/sub-
tractors (Asadi et al. 2020; Deibuk and Biloshytskyi 2015b; 
Haghparast et al. 2017; Khan 2008a; Khan and Perkowski 
2007; Khan 2002; Lisa and Babu 2015; Monfared and 
Haghparast 2016, 2017a, b; Panahi et al. 2018), multipli-
ers (Monfared and Haghparast 2019; Panahi et al. 2019), 
comparators (Deibuk and Biloshytskyi 2015a; Khan 2008b; 
Monfared and Haghparast 2015) as well as various base cir-
cuits and synthesis methods(Barbieri and Moraga 2020; 
Haghparast et al. 2017; Hu and Deibuk 2018; Khan 2014, 
2020; Mercy Nesa Rani and Datta 2020; Mohammadi et al. 
2008; Niknafs and Mohammadi 2013) have been designed 
and implemented. Full-adders are essential components of 
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arithmetic and logic units and are the basis of almost all 
computing circuits so that designing an efficient full-adder 
can improve the efficiency of digital systems.

So far, several quantum reversible ternary full-adders 
have been designed which will be discussed in more details 
in Sect. 3. One of the major problems of all previous designs 
is the absence of full use of the capacity of the full-adder. 
A full-adder at the base of r is called comprehensive full-
adder, if it is capable of receiving (r + 1) inputs and produce 
two outputs with different values. In this paper, we use this 
potential and propose a new reversible ternary full-adder 
which is called comprehensive reversible ternary full-adder 
(CRTFA). The most prominent feature of the proposed cir-
cuit compared to all previous traditional reversible ternary 
full-adders is that it does not produce an extra digit in con-
secutive additions and can therefore perform computations 
with the least circuit complexity and fastest speed com-
pared to existing traditional reversible ternary full-adders. 
To show performance of the proposed quantum reversible 
ternary full-adder, an effective design of quantum revers-
ible ternary coded decimal adder/subtractor is designed and 
implemented.

The contributions of this work is summarized as follows:

•	 Introducing a novel approach for designing reversible 
ternary full-adder.

•	 Presenting a new reversible 3-qutrit ripple carry adder 
(3-qutrit RCA) using the proposed reversible ternary full-
adder.

•	 Proposing a new reversible ternary coded decimal error 
detector circuit.

•	 Providing effective circuits of reversible ternary coded 
decimal adder and subtractor using the proposed revers-
ible 3-qutrit RCA and reversible ternary coded decimal 
error detector.

•	 Developing a novel design of the reversible ternary coded 
decimal adder/subtractor using the proposed circuits.

The paper is composed of the following sections: In the 
second section, an overview of ternary logic, reversible 
logic, and quantum reversible ternary circuits are proposed. 
In the third section, we will review the previous reversible 
ternary full-adder/subtractor as well as reversible ternary 
code decimal adder/subtractor circuits. The proposed cir-
cuits including comprehensive reversible ternary full-adder 
as well as reversible ternary coded decimal adder, subtractor 

and adder/subtractor are provided in the fourth section. The 
full comparisons are presented in the fifth section. Finally, 
the paper finalizes with conclusions and future works.

2 � Foundations of the research

In this section, we first introduce a background of ternary 
logic. In the following, the reversible logic is introduced, 
and finally, the quantum reversible ternary gates will be 
presented.

2.1 � Ternary logic

Designing the first computational machines using ternary 
logic precedes the design of binary machines. Developed 
by Thomas Fowler in 1840 and Brusentzov in the 1950s and 
1970s, these machines had a high speed and a low power 
consumption. With the advent of quantum computers, pre-
dictions suggest that reversible ternary logic will again be 
widely used for computing. In ternary logic, the smallest 
unit of memory is called Qutrit which can store three values 
of 0, 1, and 2 such that each of these values is represented 
by 3 × 1 vectors as |0 ≥ [1 0 0]T, |1 ≥ [0 1 0]T, |2 ≥ [0 0 1]T 
are displayed.

In general, a ternary n-Qutrit memory unit has 3n discrete 
states that are displayed as |0 0… 0 > , |0 0… 1 > and … |2 
2… 2 > . In addition, all possible states of a ternary n-Qutrit 
system can be obtained by Tensor multiplication (Klimov 
et al. 2003).

A ternary GF3 is a algebraic structure containing a set 
of elements {0, 1, 2} with two addition and multiplication 
operations as in Table 1. It should be noted that GF3 opera-
tions are ternary (Monfared and Haghparast 2017a).

2.2 � Reversible logic

One of the main factors in designing VLSI circuits is the 
issue of power consumption and energy losses. Landauer 
relied on the thermodynamic technology to show that the 
design of digital circuits using conventional logic known as 
irreversible logic causes an unintended waste of electrical 
energy. In addition, he showed that the heat energy produced 
by the loss of one bit of information during processing is 
equal KTLn2 where K = 1.3807 × 10−23 (J/K) Boltzmann 
constant, and T absolute temperature (K) (Landauer 1961).

Table 1   (a) The addition and 
(b) multiplication of two ternary 
number

(a) Addition 0 1 2 (b) Multiplication 0 1 2

0 0 1 2 0 0 0 0
1 1 2 0 1 0 1 2
2 2 0 1 2 0 2 1
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Bennet (1973) proved that in order to avoid energy loss 
in computational circuits, processes must be reversible; 
This means if one uses reversible logic gates, there will be 
no additional power consumption and no energy will be 
wasted. A gate is reversible if the number of inputs is equal 
the number of outputs and there is a one-to-one correspond-
ence between them which means that the input vector can be 
obtained by output vector (Perkowski et al. 2001).

Feedback and fan-out in reversible logic are not allowed 
(fan-out = 1). The main application of reversible logic is 
in quantum computing because quantum circuits must be 
reversible. This method has been widely used in various 
fields of research such as optical computing, very low power 
CMOS design, DNA computing, quantum computing, ther-
modynamic technology, bioinformatics and nanotechnology 
(Biswas 2008; Babu and Mia 2016). Several criteria have 
already been proposed for the synthesis of reversible cir-
cuits, some of which are(Islam et al. 2009):

Gate count (GC) It is a measure that refers to the total 
number of reversible gates used in circuit design.

Number of constant inputs (CI) This criterion refers to 
the number of inputs that must be set to a constant value (0 
or 1) to synthesize the logical function.

Number of garbage outputs (GO) Unwanted or unused 
outputs of the reversible gate (or circuit) are known as 
garbage outputs. In the other words, outputs that are only 
needed to maintain reversibility are called garbage outputs.

Quantum cost (QC) This criterion indicates the cost of 
a reversible logic circuit in terms of basic quantum gates.

Delay The delay of a logic circuit is the maximum num-
ber of gates in the path from each input line to each output 
line.

Hardware complexity (HC) This criterion refers to the 
total number of logical operations in a reversible circuit. In 
hardware complexity, the following terms are used:

α	� Number of two-input Ex-OR gates
β	� Number of two-input AND gates
γ 	� Number of NOT gates
T	� total logical calculation

2.3 � Quantum reversible ternary gates

In this section, the most important quantum reversible ter-
nary gates are introduced.

(A) Quantum reversible ternary shift gate

If Z is initialized with values of 0, 1 or 2, then Z (01) 
replaces 0 and 1, Z (02) replaces 0 and 2, and finally Z (12) 
replaces values 1 and 2 (Table 2) (Khan and Perkowski 
2007; Khan 2006). Conversions Z (+ 1) and Z (+ 2) sum up 
the initial states by values 1 and 2 (Table 3). As shown in 

Fig. 1, A is a quantum ternary shift gate input and the P is 
output that is Z conversion of the input A where Z can be 
one of the five above mentioned values, that is {Z (01), Z 
(02), Z (12), Z (+1), Z (+2)}.

Each of these conversions has a name based on what they 
do (Table 4), and the quantum cost of each of these conver-
sions is 1.

(B) Quantum reversible ternary Muthukrishnan-Stroud gate 
(M-S gate)

A quantum reversible ternary M-S gate with two inputs that 
performs Z = {+ 1, + 2, 01, 02, 12} operation on one of the 
inputs where the other input having a value of 2. The quan-
tum cost of this gate is also 1.

In addition, this gate was first introduced by Muth-
ukrishnan and Stroud (2000), as shown in Fig. 2.

Table 2   Different displacement functions in quantum reversible ter-
nary logic

Inputs Buffer Self single-shift Self dual-shift Self-shift
Z Z (01) Z (02) Z (12)

0 0 1 2 0
1 1 0 1 2
2 2 2 0 1

Table 3   Quantum reversible ternary addition functions

Inputs Buffer Single-shift Dual-shift
Z Z (+ 1) Z (+ 2)

0 0 1 2
1 1 2 0
2 2 0 1

Z P= Z transform of AA

Fig. 1   Schematic representation of a quantum reversible ternary shift 
gate

Table 4   Different functions in quantum reversible ternary logic and 
their names

Operations Symbol Transform

Single-shift X + 1 Z (+1)
Dual-shift X + 2 Z (+2)
Self-shift 2X Z (12)
Self-single-shift 2X + 1 Z (01)
Self-dual-shift 2X + 2 Z (02)
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(C) Quantum reversible ternary Feynman gate

Feynman’s quantum reversible ternary gate is presented 
in both normal and controlled modes as shown in Fig. 3a, 
normal condition is a quantum reversible ternary 2 × 2 gate 
where the first output is equal the first input and the second 
output is the sum of two inputs in the base 3. Its quantum 
cost is 4 (Khan 2006)

As shown in Fig. 3b, in the controlled mode, that is a 3 × 3 
quantum reversible ternary gate. The first output is the first 
input, the second output is the second input, and the third 
output is sum of second and third inputs in base 3 provided 

the first input has a value of 2, and otherwise it results in the 
third input. The quantum cost of this gate is also 4.

(D) Generalized quantum ternary gate (GTG)

The generalized quantum ternary gate is one of the most 
applicable quantum reversible ternary basic gates. It is a 
quantum reversible ternary 2 × 2 gate which its quantum 
realization is shown in Fig. 4. Depending on the value of 
the first input, three different basic operations can be per-
formed on the other input, including {12, 02, 01, + 1, +2} 
(Khan 2004) .

(E) Quantum reversible ternary Toffoli gate

This gate, which is one of the important quantum reversible 
ternary gates, has been used in circuits in three different 
forms as follows (Miller et al. 2004):

Normal quantum reversible ternary Toffoli gate In this 
form, it has three main inputs and one implicit constant input 

B Z Q=

A P=A

{Z transform of B if A=2
B Otherwise

Fig. 2   Quantum reversible ternary M-S gate (Muthukrishnan and 
Stroud 2000)

P=A

Q=A+B

A

B +1

+2

+2

+1A

B Q=A+B

P=A

(a)
A

B

C +1

+2

+2

+1

P=A

Q=B

R= B+C ,if A=2
C      ,Otherwise{

2A

B

C

P=A

Q=B

R= B+C ,if A=2
C      ,Otherwise{

(b)

Fig. 3   Different representations of the quantum reversible ternary Feynman gate and its implementation using the M-S gate. a Normal mode and 
b controlled mode (Khan 2006)

PA

B Y

+1

Z

+1

X Q=
X transform of B if A=0
Y transform of B if A=1
Z transform of B if A=2{

A

B

P

X
Y
Z

X transform of B if A=0
Y transform of B if A=1
Z transform of B if A=2

Q={
(b)(a)

Fig. 4   GTG quantum reversible ternary gate a circuit structure and b its implementation using M-S gate (Khan 2004)
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whose two general symbols are shown in Fig. 5a. As can be 
seen, when two inputs A and B are 2, output R performs the 
Z transform of the input C. Moreover, as shown in Fig. 5b, 
the quantum cost of this gate is 5.

General quantum reversible ternary Toffoli gate In this 
form, it has three main inputs and one implicit constant input 
whose general symbol is illustrated in Fig. 6a. As can be 
observed, when two inputs A and B are equal the values 
specified in the corresponding circles, the output R performs 
Z transform on the input C. The quantum cost of this gate as 
shown in Fig. 6b, for each circle not equal 2, two units are 
added to the quantum cost of a Normal quantum reversible 
ternary Toffoli gate, which is 5.

Four-input quantum reversible ternary Toffoli gate This 
gate has 4 main inputs and two implicit constant inputs 
whose general symbol is demonstrated in Fig. 7a. In this 

form, when the three inputs A, B and C are equal 2, the 
output S performs Z transform on the input D. As shown 
in Fig. 7b, the quantum cost of this gate is 9. In addition 
to calculate the quantum cost of this gate, for each circle 
that is opposite 2, two units are added to this quantum cost.

(F) Quantum reversible ternary C2NOT gate

This quantum reversible ternary base gate was first intro-
duced by Mandal et al. (2011). This gate has three main 
inputs. If inputs A and B are values 2 and 1, or 1 and 2, then 
the input C will be inverted (NOT (C)). Figure 8a shows the 
symbol of a quantum reversible ternary C2NOT gate and 
Fig. 8b shows its realization using the M-S gate. Moreover, 
its quantum cost is 8.

A

B

C

P=A

Q=B

Z transform of C if A=B=2
C OtherwiseZ R={

2

2A

B

C

P=A

Q=B

Z transform of C if A=B=2
C OtherwiseZ R={

(a)

(b)

A

B

0

Q=B

0+2+1

Z

+1

C

+2

P=A

Z transform of C if A=B=2
C Otherwise

R={

Fig. 5   Normal quantum reversible ternary Toffoli gate a two different symbols and b realization using M-S gate (Miller et al. 2004)

A

B

C

P=A

Q=B

Z R={
2

2

Z transform of C if A=x1 & B=x2
C Otherwise

+a1

+a’2+a2

+a’1A

B

C

P=A

Q=B

Z transform of C if A=x1 & B=x2
C OtherwiseZ R={

x2

x1

(b)(a)

Fig. 6   General quantum reversible ternary Toffoli gate a general symbol and b realization using the normal quantum reversible ternary Toffoli 
gate (Miller et al. 2004)
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3 � Previous works

Since the circuits presented in this paper have led to the 
implementation of the two main circuits of reversible 
ternary full-adder/subtractor and reversible ternary code 
decimal (TCD) adder/subtractor, this section reviews the 
background of these two main circuits.

3.1 � An overview of reversible ternary coded 
decimal adder/subtractor

Because many people use the decimal system, so comput-
ing in the decimal system is one of the branches of com-
puting in computer science. One way to implement it is to 
perform all the calculations in ternary and then convert the 
ternary results to decimal. This method requires that the 
decimal numbers be converted into ternary first. Compute 
on them and convert them to decimal, which is very time 
consuming and complex. To solve this problem, we con-
vert these decimal numbers into ternary code to perform 
all computes directly on that code; which is called Ternary 
Code Decimal (TCD).

Table 5 assigns each 3-qutrit code to a decimal digit. A 
decimal K-digit, requires 3 K-qutrit in TCD for presenta-
tion. For example, the number 396 is displayed in TCD 
with 9 qutrits as 010100020 where each 3-qutrit group 
represents a decimal digit. Whenever a decimal number 
in a TCD is between 0 and 9, it is equivalent to its ternary. 
But a TCD number greater than 9 isn’t equivalent to a 

A

B

0

Q=B

0+1

Z

+1

D

P=A

C

0 +1+1

+2 +2

+2 +2 0

R=C

Z transform of D if A=B=C=2
D OtherwiseS={

A

B

D

P=A

Q=B

Z transform of D if A=B=C=2
D OtherwiseZ S={

2

2

C R=C2

(b)(a)

Fig. 7   Four-input Toffoli quantum ternary-reversible gate a general symbol and b realization using M-S gate (Miller et al. 2004)

A

B

0

Q=B

+1

12

+1

+1

C

+1

P=A12

12

12

Not(C) ,if A!=B and A,B!=0
C          ,OtherwiseR={

A

B

C

P=A

Q=B

{Not(C), if A!=B and A,B!=0
C OtherwiseR=

(b)(a)

Fig. 8   Quantum reversible ternary C2NOT gate a general symbol and b realization using M-S gate (Mandal et al. 2011)

Table 5   3-qutrits ternary code decimal equivalent to decimal values

Ternary Code Decimal Decimal 
values

0 0 0 0
0 0 1 1
0 0 2 2
0 1 0 3
0 1 1 4
0 1 2 5
0 2 0 6
0 2 1 7
0 2 2 8
1 0 0 9



7751A novel reversible ternary coded decimal adder/subtractor﻿	

1 3

ternary number. Thus the ternary numbers 101 through 
222, which are not in Table 5, have no meaning in TCD.

Haghparast et al. (2017) presented a reversible TCD-
adder. Its overall architecture is shown in Fig. 9. As can 
be seen, two 3-qutrit adder were used in the implementa-
tion of the scheme, which, after error detection by the 
Error Detector module, corrected for the output of the first 
3-qutrit full-adder by another 3-qutrit adder by added with 
the number 17 = (122)3. However, if the output of the first 
3-qutrit adder is within the permissible range of 0–9, then 
the second 3-qutrit adder will be added with the number 0 
so that the output does not change.

In this design, 3-qutrit adders is designed, once with a 
carry input and again without a carry input, with quantum 
costs of 42 and 35, respectively, and the Error Detector 
module, which is one of the most important parts of any 
TCD adder, is designed in two different ways, as illustrated 
in Figs. 10 and 11.

In Fig. 10, all unauthorized states for Z0, Z1, and Z2, 
which are the outputs of first adder, are investigated, and if 

one of these states is generated, the number 17 is generated 
to be added to the output of the first adder, until the final 
output is corrected. The final quantum cost of the Error 
Detector circuit in this paper by this method is 38.

In the second method presented in Fig. 11, the permis-
sible states for Z0, Z1, and Z2 are examined, and in the 
absence of these states, the number 17 is generated to be 
added to the output of the first adder, until the final output 
is corrected. The final quantum cost of the Error Detector 
circuit in this paper by this method is 21. Finally, using the 
above circuits, two different designs for TCD adder are 
presented which have a quantum cost of 115 and 98.These 
quantum costs include, respectively, the first 3-qutrit adder 
with carry input (quantum cost 42), the second 3-qutrit adder 
without carry input (quantum cost 35), and finally two dif-
ferent perspectives for the Error Detector block (quantum 
costs 38 and 21).

Panahi et al. (2018) presented a reversible TCD adder. 
The overall architecture is illustrated in Fig. 12. As shown 
in Fig. 12, in the implementation of this design, as in the 

3-Qutrit Ternary Parallel adder

3-Qutrit Ternary Parallel adder

Quantum TCD
Error Detector

A0A1A2 B0B1B2

Cin

Z0Z1Z2

O0

O1

O2

S0S1S2

Cout

S3

Fig. 9   Reversible TCD adder block diagram provided by Haghparast et al. (2017)
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previous design, two 3-qutritadder were used which, after 
error detection by the Error Detector block, corrected the 
output of the first 3-qutrit adder by another 3-qutrit adder 
will be added with 17 = (122)3. However, if the output of 
the first 3-qutrit adder is within the permissible range of 0 
to 9, then the second 3-qutrit adder will be added with the 
number 0 so that the output does not change.

In this design, 3-qutrit adder is designed in three differ-
ent blocks with different conditions that have a quantum 
cost of 29, 22 and 14, respectively. The Error Detector 
block, which is one of the most important parts of any 

TCD adder, is also designed with the quantum cost of 
16 shown in Fig. 13 and is exactly the same as the Error 
Detector block of the previous article. That is, when an 
error occurs in the output of the first adder, this circuit pro-
duces a number 17 to correct the error in the next adder.

Finally, using the above circuits, a scheme for TCD 
adder is presented which has a quantum cost of 67. This 
quantum cost comprises the first 3-qutrit adder block with 
quantum cost 29, the second 3-qutrit adder block with quan-
tum cost 22 and finally the Error Detector block with quan-
tum cost 16. The third 3-qutrit adder block, is used for 9’s 

Fig. 10   Quantum representa-
tion of reversible ternary Error 
Detector circuit(approach#1) 
provided by Haghparast et al. 
(2017)
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Fig. 11   Quantum representa-
tion of reversible ternary Error 
Detector circuit (approach#2) 
provided by Haghparast et al. 
(2017)
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complement in decimal subtraction. So they first get the 9’s 
complement of B and then add the result to the digit A. Now 
if the result is invalid, it must be added by 18 to make the 
result valid. Finally, in this paper, a reversible TCD adder/
subtractor circuit with a quantum cost of 91 is obtained.

4 � Proposing reversible ternary circuits

In this section, we first introduce a novel reversible ternary 
full-adder, called Comprehensive Reversible Ternary Full-
Adder (CRTFA). Then we implement a reversible 3-qutrit 

Reversible

3-qutrit

Ternary

Adder

Reversible

3-qutrit

Ternary

Adder

Reversible
Invalid TCD

Codes
Detector

+2

+2

+1

ZM=0

0

0

0

0

0

0

c0

s2

s1

s0

a2

a1

a0

b2

b1

b0

s2

s1

s0

cout

0

0

0

c0

a2

a1

a0

b2

b1

b0

Fig. 12   Reversible TCD adder block diagram provided by Panahi et al. (2018)

Fig. 13   Quantum representa-
tion of reversible ternary Error 
Detector block provided by 
Panahi et al. (2018)
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adder with 3-input, by three CRTFAs. Next, we present 
quantum reversible ternary coded decimal adder as well 
as a reversible ternary coded decimal error detector cir-
cuit. In the following, a reversible ternary coded decimal 
adder and a reversible ternary coded decimal subtractor 
are designed. Finally, by merging the last two circuits, we 
introduce an effective design of reversible ternary coded 
decimal adder/subtractor.

4.1 � Proposing reversible 3‑qutrit ripple carry adder

As discussed in previous section, one of the major problems 
of the previous reversible ternary full-adders is the absence 

of full use of the capacity of the ternary full adder; a full 
adder at the base of r is called a comprehensive full-adder 
if it is capable of receiving (r + 1) inputs and produce two 
outputs with different values. This important potential is 
being applied here and a comprehensive reversible ternary 
full-adder, called CRTFA is suggested which is capable of 
utilizing the full capacity of ternary computation. The most 
prominent feature of the proposed full-adder is that unlike all 
previous designs, it does not produce an extra digit in con-
secutive summaries; thereby computation is done with low-
est circuit and fastest speed compared to existing full-adders. 
Moreover, using the proposed full-adder, we implement a 

Fig. 14   Quantum realization 
of a the reversible ternary half-
adder, b the reversible ternary 
semi half-adderblock#1 and c 
the reversible ternary semi half-
adder block#2
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reversible 3-qutrit ripple carry adder (3-qutrit RCA) which 
is able to sum three 3-qutrit numbers.

To design a reversible ternary full-adder with the above 
attributes, that is, a reversible ternary full-adder that can 
compute sum of three 1-qutrit and one Cin and produce one 
1-qutrit and one Cout, we utilize the proposed reversible 
ternary half-adder in Fig. 14a. As Fig. 14a shows, quantum 
cost of this half-adder is 6 and it has one constant input 
and one garbage output. Moreover, two special cases of the 
proposed half-adder are given in Fig. 14b, c which are dis-
cussed in the following. The proposed half-adder, which 
is the basis of our designs in this article, works correctly 
for all of its input states. The proposed reversible ternary 
full-adder using three proposed half-adders is illustrated 
in Fig. 15.

By connecting three proposed full-adders, we can eas-
ily design a reversible 3-qutrit RCA (as seen in Fig. 16).

With a simple look at Fig. 16 and since the quantum 
cost of each CRTFA block is 18, therefore, the quantum 
cost of the proposed reversible 3-qutrit RCA is 54. This 
circuit is called the General 3-qutrit RCA.

Given that we suppose to use the proposed reversible 
RCA for designing reversible ternary coded decimal adder, 
so the values of C2, C1and C0 can only be 000 or 122, 
hence the values of A2, B2 and C2 will never be 2 and the 
values of C0 and C1 will never be 1. And since to imple-
ment any of the Qutrits, we have to use the half-adder at 
a quantum cost of 6, thus the semi half-adder block#1 in 
Fig. 14b can be used to generate A2, B2 and C2, which 
has a quantum cost of 5 and the semi half-adder block#2 
in Fig. 14c can be used to generate C0 and C1, which has 

a quantum cost of 3. With the explanations provided if 
we were to remove never-to-be-seen scenarios from our 
general design, the quantum cost of the reversible 3-qutrit 
RCA for reversible ternary coded decimal adder is 45. This 
circuit is called the Optimized 3-qutrit RCA.

4.2 � Proposing reversible ternary error detector 
circuit

In this section, we introduce the proposed reversible ternary 
Error Detector circuit, which is one of the most important 
parts of the reversible ternary code decimal adder. The pro-
posed circuit is illustrated in Fig. 17 that its quantum cost is 
15. This circuit works as follows: when an error occurs in the 
output of the first reversible 3-qutrit RCA, the Error detector 
circuit produces the number 17 to correct the error in the 
second reversible 3-qutrit RCA, but there are no other adders 
in this design, and all of that happens in the first adder. Just 
like the block diagram in Fig. 18. To implement this circuit, 
we first assume that the output is invalid. That is, we set the 
value of the constant input, which is supposed to detect the 
error, to 2. And then we examine the condition of the TCD 
number, which includes the following two conditions:

1.	 If Z2 (most valuable qutrit) is 0, that’s true.
2.	 If Z2 = 1, then the number is true if Z1 and Z0 are both 

0. Figure 17 is exactly the way to implement these terms 
and generate numbers 17 or 0 to correct the existing 
TCD number at the output.
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Cin=D {
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Fig. 15   Quantum realization of a the comprehensive reversible ternary full-adder along with b its block diagram
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So the circuit designed in Fig. 17 can be analyzed as 
follows:

1.	 If v = 0, then the output is valid and the values of C2C1C0 
will be equal 000.

2.	 If v = 2, the output is invalid and the values of C2C1C0 
will be 122 (i.e. 17), to reproduce the correct value by 
adding this value to the inputs.

4.3 � Proposing reversible TCD adder

Since the comprehensive reversible ternary full-adder that 
has been discussed in this article, instead of the addition of 
two numbers and a Cin, it brings out the sum of three num-
bers and one Cin. Therefore, in cases where we want to sum 
multiple sequential numbers, this kind of adder can be used. 
As it is observed in the previous designs, there are need 
two adders to design a reversible TCD adder. Therefore, 
due to the specific feature of the proposed adder, by using 
a proposed adder module can be done sum of two previous 
sequential additions. The block diagram of this operation is 
shown in Fig. 18.

Since the output of Fig. 18 is constantly changing, only 
when V = 0 output is valid and if V = 2, the output has an 

invalid value, which must be corrected. Note that in the 
designed circuit, V can never be 1.

In the block diagram of Fig. 18, two main blocks are 
observed. The adder block, which is a 3-qutrit RCA adder, 
is once designed generally (General Design), and again 
designed without cases that never occur (Optimized Design) 
and the detector block is represented by a new design that is 
better than earlier designs in terms of quantum cost.

4.4 � Proposing reversible TCD subtractor

When we want to perform the subtraction operation using 
the addition operation, we will face with two challenges as 
follows:

1.	 The subtraction operation must be implemented by addi-
tion operation

2.	 The subtraction result may be a negative number while 
TCD values are inherently for unsigned numbers.

To solve these two problems, we operate in the following 
way. Assume A and B be two TCD number.

If A > B then A − B = A +
(

B̄ + 1
)

 and the result is 
between 0 and 9,while the result on the right side of this 
equation has a Carry more than the left side of it. To remove 

Comprehensive Reversible Ternary Full-adder
(CRTFA)

CI=0

Z0

Garbage 
outputs

Cin {C0

B0

A0

Comprehensive Reversible Ternary Full-adder
(CRTFA)

CI=0

Z1

Garbage 
outputs

{C1

B1

A1

Comprehensive Reversible Ternary Full-adder
(CRTFA)

CI=0

Z2

Garbage 
outputs

{C2

B2

A2

Carry

Fig. 16   Block diagram of the proposed reversible 3-qutrit RCA​
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this Carry, we need to add it by the value 2. Since the posi-
tion of the Carry is 27, we have to add the result by the value 
54, that is:

To implement the above formula using a reversible 
3-qutrit RCA with 3-input, the following must be done:

A − B = A +
(

B̄ + 1
)

+ 54 = A + B̄ + 55

Fig. 17   Quantum representation 
of the proposed error detection 
and correction block

z2
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z0 +2

+2

+2 +1 +2 +2 +1 +1

+1

+1

0

0

+2

+2

+1

s2

s1

s0

2 +1 +1

c2

c1

c0

v

Condition 1 Condition 2

(a)	 Inputs A remain unchanged.
(b)	 Inputs B must be 2’s complemented.
(c)	 The inputs C are given the maximum value, namely: 

2223 = 2610 which is, of course, the 2’s complement of 
0003 = 010.

(d)	 We also fill the input of a Cin with a maximum value, 
means 2 (2’s complement of 0).

e)	 Increase the Cout output (which has 27th position) by one 
unit.

Thus, the above formula is implemented with the 3-qutrit 
adder with 3-input provided as follows:

If A < B, then A − B = A +
(

B̄ + 1
)

 and the result is 
negative andit will exceed 9. So the result of TCD and its 
ternary is not equal. Therefore, we acted exactly like the 
solution to the first problem and just instead of the number 
2610 = 2223 to the inputs C, the number 910 = 1003(that is 
2’s complement of numbers 1710 = 1223) is used. The fol-
lowing formula illustrates the proposed method for solving 
this challenge:

A + B̄ + 55 =
[

A + B̄ + 26(C = 222) + 2(Cin = 2)
]

+ 27(Cout = Cout + 1)

A + B̄ + 38 =
[

A + B̄ + 9(C = 100) + 2(Cin = 2)
]

+ 27(Cout = Cout + 1)
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By performing the above formula on negative numbers, 
Cout assigns a value of 2. So this (Cout = 2) indicates that 
the number is negative and the 3-qutrit final output is 10’s 
complemented of result. For example, if we want to get 
3–5 in TCD method, we will do the following:

As shown in the example above, the leftmost number is 
2 (the value shown in red) which indicates that the result 
is negative. And the number shown in green is (022) = 8. 
That’s the 10’s complement of 8 is 2. So the result will 
be − 2.

The blocks in Fig. 19 are exactly the blocks proposed 
in the Figs. 17 and 16. So if we take them generally, this 
TCD subtractor will have a quantum cost of (77 = (3 * 
18) + 15 + 8). But if we eliminate situations that never hap-
pen, its quantum cost will be reduced to 70. The V output 
also represents the validity or invalidity of the output as 
in the previous design.

3 − 5 = 3(010)3 + 5(012)3 + 38(1102)3 = (010)3 + (210)3 + (1102)3 = (2022)3

4.5 � Proposing reversible TCD adder/subtractor

Now, with the explanation given in the preceding sections, 
if we add a Select base to the above circuits, a new circuit 
can be designed that is both reversible TCD adder and 

subtractor. Just like in Fig. 19, if Select = 2, subtraction of 
two TCDs is performed, otherwise, when Select = 0 or 1, 
the addition of two TCDs is performed.

As shown in Fig. 20, just like a subtractor, the blocks 
in Fig. 20 are exactly the blocks introduced in the previ-
ous parts in Figs. 17 and 16. So if we take them generally 
(General Design), this TCD subtractor will have a quantum 
cost of (77 = (3 * 18) + 15 + 8) and if we eliminate situa-
tions that never happen (Optimized Design), its quantum 
cost will be reduced to 70.

Reversible 3-trit RCA

Reversible Ternary 
Error Detector 

A0A1A2 B0B1B2

Cin

Z0Z1Z2

O0

O1

O2

S0S1S2S3

C0C1C2

V ( Valid / not Valid )

0

0

0

2

Fig. 18   Proposed reversible TCD adder block diagram
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5 � Results and comparisons

As seen in the previous parts, a reversible TCD adder, 
subtractor, or adder/subtractor composes two main blocks 
the reversible 3-qutrit RCA and Error Detector. The first 
comparison is made between reversible 3-qutrit RCAs. A 
comprehensive comparison of reversible 3-qutrit RCAs is 
given in Table 6.

As can be seen in Table 6, Haghparast et al. (2017) and 
Panahi et al. (2018) used two reversible 3-qutrit adders 
with 2-input (A2A1A0 and B2B1B0) to implement the TCD 
adder that their specifications come in different colors in 
the Table 6, and as can be seen, it performs best in the 
most important indicator (the quantum cost) of the Opti-
mized circuit provided.

As mentioned earlier, two adders are used in the previ-
ous designs, as the first adder combines two decimal num-
bers and one Cin to create one output, so the first adder 
does not need to be a Cout design. The second adder has 
two states: first, if the output of the first adder is correct 
(a number between 0 and 9), the second adder adds it to 
zero, and if the first adder’s output is false, the second 
adder adds it to seventeen. In both cases, the second adder 
does not require a Cin design. But since we use a single 
adder instead of two separate adders, we need both Cin 
and Cout.

Since we have used three full-adder modules for our 
design, each of them has three half-adder modules. While 
in the design presented by Panahi et al. (2018), each adder 
is designed as a module. Therefore, our design has a more 
complete form and the number of constant inputs to our 
scheme and, consequently, the number of garbage outputs, 
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Reversible Ternary 
Error Detector 

A0A1A2 B0B1B2
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02

02
02
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Fig. 19   Proposed reversible TCD subtractor block diagram
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Reversible 3-trit RCA
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Fig. 20   Proposed reversible TCD adder/subtractor block diagram

Table 6   Comparison of the 
proposed reversible 3-qutrit 
RCA with previous designs

Design in #Constant inputs #Garbage 
outputs

Quantum cost Hardware complexity

Haghparast et al. (2017) 3 + 3 3 + 4 35 + 42 10ε + 25γ + 12ε + 30γ
Panahi et al. (2018) 1 + 0 3 + 4 22 + 29 1ε + 21γ + 4ε + 25γ
Proposed (General Design) 3 9 54 9ε + 45γ
Proposed (Optimized Design) 3 9 45 7ε + 38γ

Table 7   Comparison of the 
proposed reversible ternary 
Error Detector with previous 
designs

Design in #Constant 
inputs

#Garbage 
output

Quantum cost Hardware complexity

Haghparast et al. (2017) (Approach #1) 6 3 38 12ε + 26γ
Haghparast et al. (2017) (Approach #2) 6 3 21 8ε + 13γ
Panahi et al. (2018) 4 1 16 6ε + 10γ
Proposed Design 4 0 15 6ε + 9γ
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is greater than Panahi’s design. But the most important fea-
ture that is quantum cost, in the proposed Optimized Design 
(eliminating situations that never happen) is lower than pre-
vious designs.

The second comparison is between the reversible ternary 
Error Detector blocks that is provided in Table 7.

As can be seen in Table 7, in the proposed design, all 
the evaluation criteria are optimized better than the other 
circuits. The number of garbage outputs in this circuit is 
zero because in the circuit designed in this section, the only 
garbage output available is used to verify the correct circuit 
result.

In the third comparison of this section, we look at the 
reversible TCD adder. The results of these comparisons are 
presented in Table 8.

By looking at Table 8, it is clear that OPTIMIZED-
DESIGN is the best quantum cost circuit ever offered.

In the fourth and final comparison in this section, we 
intend to compare the reversible TCD adder/subtractor pre-
sented in this paper with the only one presented by Panahi 
et al. (2018). Table 9 shows these comparisons easily.

As shown in Table 9, since the previous circuit in Panahi 
et al. (2018) was not modular, they had to add new blocks 
to design the new circuit. While the circuit presented in this 
article has made this feature without any changes to the circuit 
principle. In addition, the circuit presented for all 300 states 

shows the correct answer while the previous circuit has 122 
correct states in sum mode and 200 correct states in subtrac-
tion mode.

6 � Conclusions and future works

In this paper, at first, using the available potentials in the ter-
nary logic, a new reversible ternary full-adder is designed. 
This circuit, considered as the basic circuit in this article, con-
sists of three half-adders that are connected in series. The half-
adder circuit is also designed in two special cases, which we 
call the semi half-adder block #1 and block #2. Comprehensive 
full adder that designed in this article is capable of adding up 
to three numbers and one Cin at a time and producing one out-
put and one Cout. Therefore, it is very useful in places where it 
is necessary to have successive additions. One of them is TCD 
adder/subtractor, because the structure of this circuit consists 
of two consecutive adders. The TCD adder circuit presented in 
this article is better than the previous one provided by Panahi 
in terms of quantum cost 10% and finally, the TCD adder/
subtractor circuit presented in this article is 23% better than 
the previous circuit (which is true for special cases) in term of 
quantum cost, which presented by Panahi et al. (2018).

For future works, the proposed designs in this paper can 
be applied for designing complicated circuits in quantum 

Table 8   Comparison of the 
proposed reversible TCD adder 
with previous designs

Design in #Constant 
inputs

#Garbage 
outputs

Quantum cost Hardware complexity

Haghparast et al. (2017) (Approach #1) 12 10 115 34ε + 81γ
Haghparast et al. (2017) (Approach #2) 12 10 98 30ε + 68γ
Panahi et al. (2018) 5 8 67 11ε + 56γ
Proposed (General Design) 7 9 69 15ε + 54γ
Proposed (Optimized Design) 7 9 60 13ε + 47γ

Table 9   Comparison of the 
proposed reversible TCD adder/
subtractor with the previous 
design

Design in #CI #GO QC Valid values for Correct 
modes for

A B Cin Sum Sub

Panahi et al. (2018) 9 12 91 0–9 0–9 0–1 122 200
Proposed (General Design) 7 10 77 0–26 0–26 0–2 300 300
Proposed (Optimized Design) 7 10 70 0–9 0–9 0–2 300 300
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reversible ternary logic like compressors, multipliers and 
dividers.
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