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Abstract
This paper aims to analayze and reason about group communicating social commitments in Multi-Agent Systems (MASs). 
In fact, this paper presents Computation Tree Logic Group Commitments ( CTLGC ), a temporal logic of group commitments 
for agent communications which extends computation tree logic (CTL) to reason about group social commitments and their 
fulfillments simultaneously. To do so, we classify groups of communicating agents into divisible and indivisible. After that, 
we divide group commitments into two categories: one-to-group and group-to-one commitments. Then, we advocate the 
necessary social accessibility relations that are needed to capture the semantics of each type of group commitments. There-
after, we use Benthem’s Correspondence Theory for modal logics to prove the soundness and completeness of the proposed 
CTL

GC logic. Particularly, we present a set of reasoning postulates in CTLGC and correspond them to their related classes 
of frames. We use the NetBill protocol, a concrete example from business domain to illustrate each reasoning postulate. 
Furthermore, we adopt the interpreted systems as an underlying formalism over which our developed postulates are inter-
preted. When correspondence exists, this confirms that the CTLGC logic generated by any subset of the proposed postulates 
is sound and complete with respect to models that are built on the corresponding frames. By so doing, we provide a novel, 
consistent, formal and computationally grounded semantic to reason about group communicating social commitments and 
their fulfillments in MASs and prove the soundness and completeness of the proposed logic.

Keywords  Multi-agent systems · Communicative social commitments · Group social commitments · Correspondence 
theory · Soundness · Completeness

1  Introduction

One of the major aspects of Multi-Agent-Systems (MASs) 
is communication. Using communication, agents plan their 
actions and behaviors to reach their target goals (Khattabi 
et  al. 2020). Moreover, autonomous and heterogeneous 
agents employ Agent Communication Languages (ACLs) 
to interact with each other and exchange messages (Dour-
lens et al. 2012; Dignum and Greaves 2000; Al-Saqqar et al. 

2015). Consequently, there is a crucial need to develop a for-
mal and consistent semantics for those ACLs (El-Menshawy 
et al. 2012; EL Kholy et al. 2017; Marey et al. 2015).

In the literature, there have been many frameworks devel-
oped to find standards for agent communications (Singh 
1998; Dignum et al. 2007; El-Menshawy et al. 2012; Wozna-
Szczesniak and Szczesniak 2018; EL Kholy et al. 2017; 
Singh 2000; Islam and Azim 2018). In fact, Searle’s speech 
acts theory (Searle 1969) was the first attempt to introduce 
a standard semantics for ACLs. This semantic, which is 
known as the mental approach, attempts to investigate and 
provide a reasonable trade off between some agent commu-
nication aspects like: Belief-Desire-Intention (BDI) (Acay 
et al. 2019). Furthermore, this approach considers commu-
nications as actions that should be carried out by agents to 
reach their target goals. However, mental techniques concen-
trate on interacting agents’ minds. In fact, these approaches 
assume that agents can figure out how others think (Singh 
1998). Consequently, mental techniques fail to investigate 
whether a given agent behaves based on a specific semantics 
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or not. Therefore, those techniques suffer from a well known 
problem called semantics verification (Wooldridge 2002). 
Further, mental approaches suffer from lack of interoper-
ability among heterogeneous systems (Singh 1998).

To fix the aforementioned problems of ACL seman-
tics, MAS community did a major shift towards social 
approaches (Singh 1998; Souri et al. 2019). In fact, new 
formal semantics for ACLs were carried out using social 
approaches (Alberti et al. 2004; Fornara et al. 2008; Yolum 
and Singh 2004; Agha and Palmskog 2018; Kouvaros et al. 
2019; Souri et al. 2019, 2019; Telang et al. 2019). More 
concrete, social approaches employed social commitments to 
provide robust frameworks that model interactions between 
agents in MASs (Bentahar et al. 2010; Desai et al. 2009; 
Günay and Yolum 2013; Singh 2000; El-Menshawy et al. 
2018; Drawel et al. 2018).

Social approaches for ACLs using social commitments 
have a set of actions called commitment actions. These 
actions represent different states of commitments, such 
as: creation, assignment, fulfillment, violation, delegation, 
release and cancellation (Singh 1999). Manipulating com-
mitments and negotiating them gives commitment-based 
approaches a powerful capability and flexibility to express 
interactions between agents in MASs (Singh 1999; Christie 
et al. 2018).

Social commitments have been successfully used in many 
real applications, such as: specifying and verifying service 
composition contracts (Bataineh et al. 2017), verifying secu-
rity protocols (Al-humaikani et al. 2019), modeling business 
process (Desai et al. 2009), introducing artificial institutions 
(Fornara et al. 2008), developing programming languages 
(Günay and Chopra 2018; Winikoff 2007), Web-based appli-
cations (Venkatraman and Singh 1999; Bentahar et al. 2013), 
Blockchain applications (Singh 2018), modeling, specify-
ing and verifying multi-agent interaction protocols (Baldoni 
et al. 2010; Desai et al. 2007; Mallya and Singh 2007; Yolum 
and Singh 2004; Günay et al. 2019).

Several frameworks were introduced to formalize col-
lective (group) commitments (Castelfranchi 1995; Garion 
and Cholvy 2007; Wright 2012; Boella et al. 2010). How-
ever, none of them classifies groups of agents. Furthermore, 
none of them addresses group-to-one social commitments 
and its fulfillment. In Castelfranchi (1995), Castelfranchi 
classified commitments into internal, social and collective. 
He defined internal commitment as a relationship between 
a given agent and its action. Furthermore, he considered 
social commitment as a relationship between two agents. 
Moreover, he defined the collective (group) commitments 
as “a set of agents is Internally committed to a certain inten-
tion and (usually) there is mutual knowledge about that,” 
which makes the definition closer to the mental approaches 
previously explained. The other frameworks followed the 

same approach of Castelfranchi (Castelfranchi 1995) in their 
formalism of collective commitments.

Moreover, Bozena Wozna-Szczesniak and Ireneusz 
Szczesniak in Wozna-Szczesniak and Szczesniak (2018) 
extended our work in El Kholy et al. (2015) and introduced 
a new real-time conditional and unconditional social com-
mitment logic called (RTCTLC). In this work, the authors 
defined their semantics over the Duration Communication 
Interpreted System (DCIS), which is a system with an arbi-
trary integer duration on transitions. Such transitions allow 
them to model various levels of deadlines and minimize 
the extra verification work due to the use of unit measure 
steps. RTCTLC has the ability to express and reason about 
(conditional, unconditional and group) commitments with 
their fulfillments and real-time constraints. For group com-
mitments reasoning, they only investigated one-to-group 
conditional and unconditional commitments and their ful-
fillments. Moreover, the authors did not address soundness 
and completeness of RTCTLC.

In this article, we introduce, CTLGC , a new temporal 
logic which extends the branching time logic CTL (Clarke 
and Emerson 1981) with modalities to analyze and reason 
about unconditional single and group commitments and their 
fulfillments simultaneously. To do so, we adopt Commu-
nication Interpreted Systems (CIS) (Bentahar et al. 2012; 
El-Menshawy et al. 2012)—an extension of the interpreted 
systems formalism introduced in Fagin et al. (1995) to model 
MASs. Particularly, we use the modified version of CISs 
that we have redefined in Al-Saqqar et al. (2014). Moreo-
ver, we classify groups of interacting agents into divisible 
and indivisible groups. In case of divisible groups, every 
agent can make or receive a commitment. In this context, we 
investigate two types of group commitments (one-to-group 
and group-to-one). We provide the necessary accessibility 
relation for each type. On the other hand, using the notion of 
indivisible group of agents; there is one commitment either 
from or towards the group. Thus, we address such commit-
ment in a similar way to one-to-one commitment. In this 
framework, we only consider Unconditional Communicative 
Social Commitments (UCSC). To express an UCSC, we use 
the following notation: Ci→j� which means that an agent i, 
who makes the commitment (the debtor), commits towards 
agent j, who receives the commitment (the creditor), that 
( � ), the content of the commitment, holds (Bentahar et al. 
2010). Some researchers used different notations (see for 
example: (Desai et al. 2007, 2009; Singh 2000), but with 
the same meaning.

Example 1  A merchant (merch) commits to deliver the 
requested goods to a customer (cust). This commitment can 
be expressed as follows: Cmerch→cust� , where � means deliver 
the requested goods.
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Based on the communicative commitments notation 
(Bentahar et al. 2012), we introduce the notation of group 
social commitments. In fact, the idea of communicative 
commitments can be expressed as follows: if agent i asks 
to communicate with agent j, i and j should share a com-
munication channel. This channel represents a shared 
variable between them. In this context, a communication 
channel is established between i and j if they have a shared 
variable, whereas agent i fills the channel in the current 
state w and agent j receives the message in the possible 
state w′ . Therefore, both agents will have the same value 
for the shared variable which shows that the message has 
been delivered from i to j. Based on that, in group social 
commitments, for agent i to communicate with group of 
agents � , a communication channel between i and every 
member in � , if � is divisible, is shared. On the other 
hand, if � is indivisible, only one communication chan-
nel between � and i is shared and information is passed 
through the channel. The concept of divisible and indivis-
ible groups will be explained later in Sect. 4. By doing 
so, we expand communicative social commitments from 
handling single (one-to-one) commitment into handling 
a group of commitments. Furthermore, we provide the 
necessary accessibility relations to express the different 
cases of group commitments. Consequently, we introduce 
an intuitive semantics for group social communicative 
commitments.

1.1 � Motivations

Nowadays, in the current settings, plenty frameworks man-
age interactions between agents in MASs through social 
commitments (Agha and Palmskog 2018; Kouvaros et al. 
2019; Souri et al. 2019, 2019; Telang et al. 2019; Bentahar 
et al. 2012; Günay and Yolum 2013). However, none of 
them classify group of agents. Moreover, there is no com-
prehensive framework that handles all aspects of group 
commitment at the same time (i.e., group-to-one and one-
to-group). To motivate our study in capturing and reason-
ing about group social commitments, let us consider the 
following examples:

Example 2  Assume that a merchant promises to deliver the 
required goods to all its requesting customers.

Example 3  All tenants in our building promise the landlord 
to pay their rents before the fifth day of each month.

To reason about the cases in examples 2 and 3, we need 
a logic that can capture and reason about a group of com-
mitments and their fulfillments simultaneously.

1.2 � Paper contribution

In this paper, we aim to enrich the area of communicative 
social commitments from new perspectives. In particular, 
we aim to introduce a new consistent, formal and compu-
tationally grounded semantic to reason about group com-
municating social commitments and their fulfillments. In 
particular, we aim to:

•	 Classify group of agents into divisible and indivisible 
groups. In divisible group, each agent can perform or 
receive a commitment. Where, in the case of indivis-
ible group, one commitment can be carried out from or 
towards the group (i.e., the whole group can be consid-
ered as one agent).

•	 Redefining the social accessibility relation to reason 
about group commitments and their fulfillments.

•	 Advocate a new temporal logic of group uncondi-
tional social commitments for agent communications, 
CTL

GC , which extends computation tree logic (CTL) 
with modalities to reason about group unconditional 
social communicating commitments and their fulfill-
ments simultaneously.

•	 Developing a set of reasoning postulates to reason 
about group commitment and their fulfillments.

•	 Proving the soundness and completeness of CTLGC 
using correspondence theory (van Benthem 1984).

Figure 1 depicts the overall proposed approach.

1.3 � Paper organization

The remainder of this paper is organized as follows. In 
Sect. 2, we illustrate the concept of interpreted systems 
(Fagin et al. 1995). After that, in Sect. 3, we explain the 
term “Frame Definability” that will be used later in prov-
ing the correspondence between the proposed set of rea-
soning postulates and certain class of frames. In Sect. 4, 
we first classify group of agents into divisible and indi-
visible. Then, we illustrate the necessary accessibility 
relations to handle one-to-group and group-to-one com-
mitments. In Sect. 5, the syntax and semantics of the pro-
posed CTLGC logic is demonstrated. In Sect. 6, the NetBill 
protocol is introduced as an application example. Then 
we develop a set of reasoning postulates to reason about 
group social commitments and their fulfillments and cor-
respond them to their related classes of frames. After that, 
the soundness and completeness of CTLGC is proven using 
correspondence theory (van Benthem 1984). Finally, in 
Sect. 7, we present the conclusions and future directions.
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2 � Interpreted systems

Interpreted Systems (ISs) formalism was developed by Fagin 
et al. (1995) as a modeling tool to model the temporal evolu-
tion of synchronous and asynchronous MASs. Moreover, IS 
is exploited to model other types of agents such as autono-
mous and heterogeneous agents which communicate by 
exchanging messages (El-Menshawy et al. 2012).

IS formalism consists of a set of agents, AG = {1,… , n} . 
Every agent i ∈ AG is characterized by a set of local states 
LOi . The local state of each agent i is denoted by loi ∈ LOi . 
At any given time, each local state has the agent complete 
information about the system. Every agent i owns a set 
of local actions ACi to reason about the temporal evolu-
tion of the MAS, and it also has a local protocol function 
PRi ∶ LOi → 2

ACi that defines the set of actions that could 
be carried out in a certain local state. �i is a local evolution 
function that identifies the transitions for a given agent i 
between its local states. The local evolution function �i is 
defined as follows: �i ∶ LOi × ACi → LOi.

A given subset of the Cartesian product of all local 
states of n agents, LO

1
×⋯ × LOn , is the set of all global 

states GL in a given MAS. A global state �� ∈ GL is a 
tuple �� = (lo

1
,… , lon) that shows a “snapshot” of MAS. 

For a given agent i, its local state in the global state �� is 

denoted by loi(��) . INT ⊆ GL is the set of initial global 
states. The global evolution function of MAS is denoted 
as: � ∶ GL × ACT → GL , where ACT = AC

1
×⋯ × ACn and 

each element a ∈ ACT  is a joint action, which is a tuple 
of actions. The set of atomic propositions is �p . Finally, 
VL is a valuation function for those propositions such that 
VL ∶ GL → 2

�p.
The original version of ISs formalism developed by Fagin 

et al. (1995) has been extended by Bentahar et al. (2012) and 
El-Menshawy et al. (2012). The extended version of IS 
allows us to reason about communicative social commitment 
(i.e., commitment established by communication between 
interacting agents in MAS). In particular, Bentahar et al. 
(2012) and El-Menshawy et al. (2012) introduced the notion 
of shared variables (i.e., interacting agents in MAS should 
share a communication channel (shared variable) in order to 
communicate and deliver messages between them). To do 
so, they assign a set of local variables VARi for each agent 
i ∈ AG . Interacting agents use these variables (communica-
tion channels) for sending and receiving messages. To have 
a shared variable between interacting agents i and j, 
VARi ∩ VARj ≠ � , indicates that there is a communication 
channel between the two agents. The value of a variable x in 
the set VARi at local state loi(��) is represented by lox

i
(��) . For 

the shared variable x ∈ VARi ∩ VARj , loxi (��) = lox
j
(��)� 

Fig. 1   A schematic view of the 
proposed approach
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means that the value of variable x for the agent i in loi(��) is 
equal to the value of variable x for agent j in loj(��)� . If 
loi(��) = loi(��)

� , then lox
i
(��) = lox

i
(��)� for all x ∈ VARi . On 

the other hand, for the unshared variables (y), for all 
y ∈ VARj − VARi we have loy

j
(��) = lo

y

j
(��)�.

The social accessibility relation introduced in Bentahar 
et al. (2012); El-Menshawy et al. (2012) has been redefined 
in our work (Al-Saqqar et al. 2014). In Al-Saqqar et al. 
(2014), we allow interacting agents to use their unshared 
variables also to communicate. The new definition captures 
the intuition that there exists some (shared variables) com-
munication channels between agent i (the debtor) and agent 
j (the creditor). In other words, agent i sends the message via 
the channel in (��) , and agent j receives the message content 
in (��)� . After receiving the message, all the shared variables 
between the interacting agents should have the same values 
(i.e., lox

i
(��) = lox

i
(��)� = lox

j
(��)� ∀x ∈ VARi ∩ VARj).

The idea of shared and unshared variables is depicted 
in Figure 2, where two agents i and j are communicating 
using communication channel as follows: Agent i : VARi = 
{ x

1
, x

2
, x

3
, x

4
 }; Agent j: VARj = { x

1
, x′

2
, x′

3
, x′

4
 }. The vari-

able x
1
 is the shared variable between the two interacting 

agents. The variables x
2
, x

3
, x

4
, x′

2
, x′

3
 and x′

4
 are the unshared 

variables between i and j. When communication channel is 
created, the value of the shared variable x

1
 for agent j in the 

global state �� is modified to be equal to the value of vari-
able x

1
 for i in the global state ��′ . This demonstrates the 

message passing via the shared channel (i.e., establishing 
a commitment).

The proposed model M is derived from the standard ver-
sion of ISs (Fagin et al. 1995) and its extension in Al-Saqqar 
et al. (2014).

D e f i n i t i o n  1   ( M o d e l  o f  CTL
GC  )  A  m o d e l 

M = (W, INT ,Rt, {∼i→j |(i, j) ∈ AG2},VL) is a tuple that 
belongs to the set of all models � , where:

•	 W ⊆ LO
1
×⋯ × LOn is the set of reachable global states.

•	 INT ⊆ W  is a set of initial global states.
•	 Rt ⊆ W ×W  is the transition relation defined by 

(w,w�) ∈ Rt if and only if there exists a joint action 
(a

1
,… , an) ∈ AC such that �(w, a

1
,… , an) = w�.

•	 For every pair (i, j) ∈ AG2 , ∼i→j⊆ W ×W  is the social 
accessibility relation denoted by w ∼i→j w

� iff 
VARi ∩ VARj ≠ � such that ∀x ∈ VARi ∩ VARj we have 
lox

i
(w) = lox

i
(w�) = lox

j
(w�).

•	 VL ∶ W → 2
�p is a valuation function.

3 � Frame correspondence

Correspondence theory for modal logic (van Benthem 1984) 
investigates the relationship between a given classes of frames 
and modal languages (Al-Saqqar et al. 2016). To illustrate the 
idea of corresponding a class of frames to a given modal for-
mulae, we recall the notion of frame correspondence. Simi-
lar to our work in Al-Saqqar et al. (2016), we first introduce 
frame, model, frame property and validity.

Definition 2  (Frame) A frame FR = (S, RE), where S is a 
nonempty set of states and RE is binary relation based on S. 
(Al-Saqqar et al. 2016).

Definition 3  (Model) Let FR = (S,  RE) be a frame, a 
model M is based on the frame FR if M = (FR,VL) for 
a given valuation function VL , where VL is defined as: 
VL ∶ S ×�p → {T ,F} , and �p is a set of atomic proposi-
tions (Al-Saqqar et al. 2016).

Definition 4  (Frame Validity) Let FR = (S,RE) be a frame, 
a modal formula � is valid on FR , defined by FR ⊧ 𝜑 , if 
M ⊧ 𝜑 for all models M based on FR . (Blackburn et al. 
2006).

Remark 1  If a frame FR satisfies a certain formula � , then 
FR satisfies every substitution instance of � . Consequently, 
to prove that FR ⊭ □𝜑 → 𝜑 , it is enough to prove that 
FR ⊭ □p → p where p is any substitution instance of � 
(Huth and Ryan 2004).

Definition 5  (Frame Property) A frame FR = (S, RE) has 
property Pr (e.g., serial or symmetric) with respect to a par-
ticular relation RE as long as RE has property Pr . (Al-Saqqar 
et al. 2016).

Therefore, we could have serial, symmetric, reflexive ... etc 
frames depending on the frame property.

Fig. 2   Typical social accessibility relation ∼i→j
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4 � Group social commitments

To introduce the notion of group communicative social com-
mitment, let us consider the following motivating example. 
Assume that university X announced a 5% decrement in 
student fees starting from next semester. This means, creat-
ing a commitment from university X towards each student 
to deduce 5% from her/his fees next semester. To reason 
about such commitment, we need a formalization that can 
reason about group social commitments. To do so, we first 
introduce the following classification of a group of agents.

Definition 6  (Group of Agents) Assume � is a set {1, ..., n} 
of agents. The group � can be classified into:

•	 Divisible Group, if there exists a commitment for each 
member of the group.

•	 Indivisible Group, if there exists one commitment 
towards the whole group. (i.e., the whole group is consid-
ered as one agent). So, to reason about such commitment, 
we will use the normal (one-to-one) social commitment.

To reason about group commitments, we classify them 
into:

•	 One-to-Group Commitments.
•	 Group-to-One Commitments.

4.1 � One‑to‑group commitments

In one-to-group commitment, agent i (the debtor) com-
mits toward a group of agents � that � (the content of the 
commitment) holds. Formally, Ci→�� . To reason about 
such commitment, we investigate the case that an agent i 
commits toward a divisible group of agents and the case 
that i commits toward an indivisible group of agents. The 
following motivating example illustrates the idea of com-
mitting from one agent towards a divisible group of agents.

Example 1  In a well-known company, the general manager 
commits to increase the salaries of his employees by 10% 
starting from next month.

In this example, the general manager commits toward 
each member of the group (company employee) to increase 
her/his salary by 10% starting from next month. By so doing, 
each member of this group will have an increment of 10% 
next month. We consider this commitment as committing 
from one agent (general manager) towards a divisible group 
(company employees). On the other hand, Example 2 illus-
trates the case that committing one agent towards an indivis-
ible group of agents.

Example 2  In a general assembly, the chair of computer sci-
ence department commits to build a new research lab next 
year for graduate students. In this example, all graduate 
students in computer science department will have a new 
research lab next year (i.e., one commitment from the chair 
towards the group). Depending on definition 6, this com-
mitment is considered from one agent (chair of computer 
science department) towards indivisible group of agents 
(graduate students in the department).

To reason about one-to-(divisible) group commitment, 
we introduce the following definition.

Definition 7  (One-to-Group Commitment)

•	 Ci→�� (read as, i commits toward everyone in � that � 
holds): we say that Ci→�� holds iff i commits to all mem-
bers of � that � holds. Formally, Ci→�� ≡

⋀
j∈�

 Ci→j�.

To capture the semantics of Ci→�� , we define the follow-
ing accessibility relation:

Definition 8   

•	 ∼i→� =
⋃
j∈�

 ∼i→j.

The social accessibility relation ∼i→� from a global state 
w to another global state w′ (i.e., w ∼i→� w� ) has the intuition 
that there is a communication channel between (the debtor) 
agent i and every (creditor) j in � such that agent i fills the 
channel in w, and every j in � receives the message (chan-
nel’s content) in w′ . After receiving the message, the shared 
variables between agent i and every j will have the same 
values.

Figure 3 depicts the idea of committing from one agent 
towards a divisible group of agents � . In this figure, agent 
i (the debtor) commits towards the group � that � holds 
where ( � = {j

1
, j
2
} ). To accomplish such commitments, two 

communication channels between i and j
1
 and j

2
 will be 

established, therefore, the message will be delivered from 
i to j

1
 and j

2
 (i.e., a separate commitment from i towards 

each j in �).

4.2 � Group‑to‑one commitments

In group-to-one commitments, a group of agents � commits 
towards agent j that � holds. To investigate group-to-one 
commitments, we follow the same scenario in analyzing 
one-to-group commitments. Let us start by the following 
motivating example.
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Example 3  Our family is planning to travel to France next 
summer. To book the tickets, each member of the family 
should pay the price of her/his ticket to the travel agency. 
In this example, each member of the group (our family) has 
a commitment towards the travel agency (agent) to pay the 
ticket price. Consequently, we have commitments from a 
group of agents � to one. To reason about such commit-
ments, we introduce the following definition:

Definition 9  (Committing from Group-to-One)

•	 C�→j� (read as, everyone in � commits toward j that � 
holds): we say that C�→j� holds iff every member in 
group � commits toward j that � holds. Formally, C�→j� 
≡

⋀
i∈�

 Ci→j�.

To capture the semantics of C�→j� , we introduce the fol-
lowing social accessibility relation.

Definition 10   

•	 ∼�→j =
⋃
i∈�

 ∼i→j.

The new social accessibility relation (w ∼�→j w
�) cap-

tures the intuition that there exists a communication channel 
between every group member (debtor) i in � and (the credi-
tor) j where each agent i fills the communication channel in 
global state w, and agent j receives the message in global 
state w′ . After receiving the message, all the shared vari-
ables between each agent i in � and agent j will have the 
same values.

Figure 4 illustrates the idea of committing from a (divis-
ible) group of agents to one. In this figure, each agent i in � 

(which consists of two agents {i
1
, i
2
} ) commits towards agent 

j that � holds. To accomplish such commitments, a shard 
channel between each i and j is established, where each i 
fills the channel in w and j receives the channel’s content 
in w′ . Consequently, a separate message is delivered from 
each i to j (i.e., a separate commitment from each i towards 
j). Note that � should hold on every accessible state w′ from 
w using ∼i→j.

On the other hand, to investigate the case of committing 
from an indivisible group-to-one, let us conider the follow-
ing example.

Example 4  A research group in our department commits 
toward their supervisor to finish a research paper within 
three months.

In this example, all members of the research group will 
collaborate with each other to finish the paper in three 
months. Thus, Example 4 is counted as committing from 
indivisible group (research group) to one agent (supervisor) 
(i.e., one-to-one commitment).

5 � The CTLGC logic

For the sake of specification and verification, Clarke and 
Emerson introduced a branching-time logic, called Com-
putation Tree Logic (CTL) (Clarke and Emerson 1981). 
Unlike Linear Temporal Logic (LTL), where at any given 
time there is one possible future (Pnueli 1977), CTL has 
a tree-like (branching) structure, where at any given time 
there are different possible futures (Clarke and Emerson 
1981). Moreover, CTL adds a path quantifier either A 
(“along all paths”) or E (“there exists one path”) before 
any single operator from the normal temporal operators 
(Clarke and Emerson 1981). However, CTL does not 
have the capability to reason about social communicating 

Fig. 3   An example of Ci→��

Fig. 4   An example of C�→j�
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commitments and their fulfillments. Therefore, in this 
work, we extend CTL with modalities to reason about 
single, group unconditional commitments and their ful-
fillments in a new logic called CTLGC.

In this section, we will discuss the CTLGC syntax and 
semantics. The syntax of CTLGC is defined as follows:

Definition 11  (Syntax of CTLGC)

Where:

•	 p,¬,∨,E,X,U and G are the same CTL (Clarke and 
Emerson 1981) modalities.

•	 Social commitment formulae C , are special state formu-
lae in CTLGC which capture social properties using the 
modal connectives Ci→j� , Ci→� and C�→j standing for 
“commitment”, “commitment towards a divisible group” 
and “commitment from a divisible group” respectively.

Ci→j� is read as “agent i commits towards agent j that 
� ” (Bentahar et al. 2012). Ci→�� is read as agent i commits 
toward everyone in � that � . C�→j� is read as everyone in 
� commits toward j that � . Furthermore, we use the follow-
ing abbreviation:

•	 ⊥ ≜ � ∧ ¬�.

Since the main fragment of the CTLGC logic is the CTL logic 
(Clarke and Emerson 1981), we only recall the semantics of 
single commitment, group (one-to-group and group-to-one) 
commitments and their fulfillments.

Definition 12  (Satisfaction of CTLGC ) Using the model M , 
the satisfaction of a CTLGC formula � in a global state w, 
represented by (M,w) ⊧ 𝜑 , is recursively defined as follows:

•	 (M,w) ⊧ Ci→j𝜑 iff for all global states w� ∈ W  s.t. 
w ∼i→j w

� , we have (M,w�) ⊧ 𝜑;
•	 (M,w) ⊧ Ci→𝛺𝜑 iff for all global states w� ∈ W  s.t. 

w ∼i→� w� , we have (M,w�) ⊧ 𝜑;
•	 (M,w) ⊧ C𝛺→j𝜑 iff for all global states w� ∈ W  s.t. 

w ∼�→j w
� , we have (M,w�) ⊧ 𝜑;

•	 (M,w) ⊧ Fu(Ci→j𝜑) iff there exists w� ∈ W s.t. w� ∼i→j w 
and (M,w�) ⊧ Ci→j𝜑;

•	 (M,w) ⊧ Fu(Ci→𝛺𝜑) iff there exists w� ∈ W  s.t. 
w� ∼i→� w and (M,w�) ⊧ Ci→𝛺𝜑;

•	 (M,w) ⊧ Fu(C𝛺→j𝜑) iff there exists w� ∈ W  s.t. 
w� ∼�→j w and (M,w�) ⊧ C𝛺→j𝜑.

�∶∶=p | ¬� | � ∨ � ∣ EX� ∣ E(�U�) ∣ EG | C | Fu
C∶∶=Ci→j� | Ci→�� | C�→j�

Fu∶∶=Fu(Ci→j�) | Fu(Ci→��) | Fu(C�→j�)

The semantics of CTLGC state formulae is identified in 
the model M as the semantics of the standard CTL (Clarke 
and Emerson 1981) with modalities for reasoning about 
social commitments, group social commitments, fulfill-
ment and group fulfillment.

The state formula Ci→j� holds in the model M at the 
global state w if and only if the content � is satisfied in 
each accessible state w′ captured by the social accessibility 
relation ∼i→j . When agent i commits towards agent j that � 
holds, the social accessibility relation ∼i→j from a global 
state w to global state w′ has the intuition that a commit-
ment from i towards j exists if there is a communication 
channel (shared variables) between them where i fills the 
channel with message content at w, and j receives the mes-
sage at w′ and the values of the shared variables for j at w′ 
equal the values of the shared variables for i at w.

The state formula Ci→�� holds in the model M at w 
if and only if the content � is satisfied in each accessible 
state w′ captured by the social accessibility relation ∼i→� . 
If agent i (the debtor) commits toward a divisible group � 
that � holds, the social accessibility relation ∼i→� has the 
intuition that, a communication channels exist between 
agent i and every agent j in � where i fills each channel at 
w and every j in � receives the channel’s contents at w′ . 
Thus, the values of the shared variables for every j at w′ 
equals the values of the shared variables for i at w which 
means that the message has been sent from i to every j in 
� through the communication channels. When i delivers 
a message to every j in � , this reflects the fact that i has a 
commitment towards every j in the group �.

The state formula C�→j� holds in the model M at w 
if and only if the content � is satisfied in every acces-
sible state w′ captured by the social accessibility relation 
∼�→j . The social accessibility relation ∼�→j has the intui-
tion that, when a communication channel exists between 
every agent i in � and agent j such that every i fills the 
channel at w and j receives the channel’s content at w′ . 
Consequently, the values of the shared variables for j at 
w′ equal the values of the shared variables for every i at w 
which shows that the messages have been transferred from 
� to j through the communication channels. Therefore, 
every i in � has a commitment towards j.

The state formula Fu(Ci→j�) holds in the model M if 
and only if, there exists a global state w′ satisfying the 
commitment from which the global state w can be reached 
by the social accessibility relation ∼i→j . The semantics 
of Fu(Ci→j�) has the intuition that: if a global state w is 
socially accessible from a commitment global state w′ then 
w is a fulfillment state.

The state formula Fu(Ci→��) holds in the model M 
if and only if, there exists a global state w′ satisfying the 
group commitment Ci→�� from which the global state w 
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can be reached by the social accessibility relation ∼i→� . 
The semantics of Fu(Ci→��) has the intuition that: a global 
state w is a one-to-group fulfillment state if it is socially 
accessible from a one-to-group commitment global state 
w′.

The state formula Fu(C�→j�) holds in the model M if and 
only if, there exists a global state w′ satisfying the C�→j� 
from which the global w can be reached by the social acces-
sibility relation ∼�→j . The semantics of Fu(C�→j�) has the 
intuition that: a global state w is a group-to-one fulfillment 
state if it is socially accessible from a group-to-one commit-
ment global state w′.

6 � Corresponding reasoning postulates

After presenting the CTLGC logic from the semantics per-
spective, in this section, we want to investigate CTLGC from 
the Soundness and Completeness perspectives. In particu-
lar, to prove the soundness and completeness of the CTLGC 
logic, we want to apply correspondence theory for modal 
logic (van Benthem 1984). To do so, we follow the follow-
ing procedure:

•	 Develop a set of reasoning postulates in CTLGC logic to 
reason about group commitments and their fulfillments.

•	 Correspond each postulate to a certain frame and prove 
such correspondence.

•	 Use the above correspondence in proving the soundness 
and completeness of the CTLGC logic.

•	 Illustrate each postulate using an example from the Net-
Bill payment protocol (Sirbu 1997) and show how similar 
these postulates are addressed in the literature.

6.1 � Running example

In this section, we introduce the NetBill protocol (Sirbu 
1997), taken from the business domain, for selling and 
buying encrypted software goods on the Internet. Figure 5 
depicts the main steps of the protocol. The NetBill is a 
good example to illustrate how can we apply commitments 

in verifying and specifying protocols in business domains 
(Yolum and Singh 2004, 2000). This protocol mainly con-
sists of two interacting agents: the merchant (merch) and the 
customer (cust).

The protocol works as follows: At the beginning, both the 
customer and merchant should confirm themselves using a 
certain public-key. After that, the customer sends a request 
for a special quote. The merchant replies by sending the 
requested quote. At this moment, the customer has two 
choices either accepts the quote or rejects it. In the case that 
the customer accepts the quote (i.e., makes a commitment to 
pay towards the merchant). Then, the merchant delivers the 
requested goods in an encrypted format withholding their 
key. At that moment, the customer sends an Electronic Pay-
ment Order (EPO). This EPO contains a list of the received 
software goods. Hereafter, the merchant verifies the EPO 
using the NetBill server and sends a receipt to the customer. 
This receipt contains the key to decrypt the received goods. 
Finally, when the key is received, the customer decrypts the 
purchased software goods.

From the previous protocol scenario, we can investigate 
the following commitments (Al-Saqqar et al. 2016): 

1.	 Ccust→merch Payment. This commitment implies that 
the customer (cust) commits toward the merchant 
(merch) to pay the required amount of money (Pay-
ment). When the customer actually pays the money, this 
means that the customer fulfills the commitment (i.e., 
Fu(Ccust→merchPayment)).

2.	 Cmerch→cust Delivery. This commitment means that the 
merchant (merch) commits toward the customer (cust) 
to deliver the required software goods (Delivery) (with-
out the key). Once the merchant sends the receipt with 
the key, this implies that it fulfills the commitment (i.e., 
Fu(Cmerch→custDelivery)).

	   Using the CTLGC logic, we can extend the above 
commitments to have, for example, a commitment from 
one customer towards a group of merchants to pay the 
required amount of money. Also, a commitment from 
a merchant towards all its customers to deliver the 
required goods. Further, we can express the commitment 

Fig. 5   The NetBill payment 
protocol
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from a group of customers towards a given merchant to 
pay their required amounts of money and so on.

6.2 � Correspondence

In the previous section, we introduced the NetBill proto-
col (Sirbu 1997) as a running example. In this section, we 
propose a set of reasoning postulates in CTLGC and cor-
respond them to certain classes of frames. By doing so, we 
can use the correspondence theory for modal logic (van 
Benthem 1984) to prove the soundness and completeness 
of the CTLGC logic. Similar to our work in Al-Saqqar et al. 
(2016), at the beginning, each reasoning postulate is given 
a name, formalization and meaning. After that, every pos-
tulates is corresponded to a certain class of frames with the 
necessary proofs. Thereafter, we illustrate the crucial needs 
of each postulate in MASs with an example from the Net-
Bill protocol. Further to that, we show how those postulates 
were tackled in the literature. For valid postulates, as they 
correspond to all potential frames, we will not address their 
correspondence. 

	Pos1.	 [Strong consistency / single commitment]

Formalization: Ci→j� → ¬Ci→j¬�.
Meaning: If a commitment is satisfied, then it is not pos-

sible to commit to the negation of its content.
Correspondence: For each frame FR = (W,∼i→j) , 

FR ⊧ Ci→j𝜑 → ¬Ci→j¬𝜑 iff FR is serial.

Proof  (⇐) Assume that FR = (W,∼i→j) is serial, and 
let M = (W,∼i→j,VL) be a model based on FR . Given 
w
1
∈ W  , we must prove that (M,w

1
) ⊧ Ci→j𝜑 → ¬Ci→j¬𝜑 . 

Assume that (M,w
1
) ⊧ (Ci→j𝜑) ∧ (Ci→j¬𝜑) . Using the 

semantics of Ci→j� , for all global states w
2
∈ W  such that 

w
1
∼i→j w2

 , we have (M,w
2
) ⊧ 𝜑 ∧ ¬𝜑 . Thus, we have con-

tradiction. So, (M,w
1
) ⊧ Ci→j𝜑 → ¬Ci→j¬𝜑.

(⇒) Assume that FR is not serial. We must show 
FR ⊭ Ci→j𝜑 → ¬Ci→j¬𝜑 . Since FR is not serial, using 
Remark 1, it might be the case that (M,w

1
) ⊧ Ci→jp ∧ Ci→j¬p . 

Therefore, FR ⊭ Ci→jp → ¬Ci→j¬p , as desired. 	�  ◻

Discussion: This postulate indicates that an agent cannot 
commit to reason about � and ¬� at the same time, which 
is reasonable and valid. This postulate is integrated in Al-
Saqqar’s postulates (Al-Saqqar et al. 2016), Singh’s postu-
lates (Singh 2008), and El Kholy’s rules (EL Kholy et al. 
2014). 

	Pos2.	 [Strong consistency / one-to-group commitment]

Formalization: Ci→�� → ¬Ci→�¬�.

Meaning: If a one-to-group commitment is satisfied, 
then it will not be possible to commit to the negation of its 
content.

Correspondence: For each frame FR = (W,∼i→�) , 
FR ⊧ Ci→𝛺𝜑 → ¬Ci→𝛺¬𝜑 iff FR is serial.

Proof  (⇐) Assume that FR = (W,∼i→�) is serial, 
and let  M = (W,∼i→�,VL) be  a  model  based 
on FR .  Given w

1
∈ W  ,  we need to prove that 

(M,w
1
) ⊧ Ci→𝛺𝜑 → ¬Ci→𝛺¬𝜑  .  A s s u m e  t h a t 

(M,w
1
) ⊧ (Ci→𝛺𝜑) ∧ (Ci→𝛺¬𝜑) . Using the semantics of 

Ci→�� , for all global states w
2
∈ W  such that w

1
∼i→� w

2
 , 

we have (M,w
2
) ⊧ 𝜑 ∧ ¬𝜑 . Thus, we have contradiction. So, 

(M,w
1
) ⊧ Ci→𝛺𝜑 → ¬Ci→𝛺¬𝜑.

(⇒) Assume that FR is not serial. We must show 
FR ⊭ Ci→𝛺𝜑 → ¬Ci→𝛺¬𝜑 . Since FR is not serial, 
using an argument by contraposition, then it might be 
the case that (M,w

1
) ⊧ Ci→𝛺p ∧ Ci→𝛺¬p . Therefore, 

FR ⊭ Ci→𝛺p → ¬Ci→𝛺¬p , as desired. 	�  ◻

Discussion: This postulate demonstrates the fact that an 
agent cannot commit towards a group of agents to reason 
about � and ¬� at the same time. 

	Pos3.	 [Strong consistency / group-to-one commitment]

Formalization: C�→j� → ¬C�→j¬�.
Meaning: If a group-to-one commitment is satisfied, 

then it will not be possible to commit to the negation of its 
content.

Correspondence: For each frame FR = (W,∼�→j) , 
FR ⊧ C𝛺→j𝜑 → ¬C𝛺→j¬𝜑 iff FR is serial.

Proof  (⇐) Assume that FR = (W,∼�→j) is serial, 
and let  M = (W,∼�→j,VL) be  a  model  based 
on FR .  Given w

1
∈ W  ,  we need to prove that 

(M,w
1
) ⊧ C𝛺→j𝜑 → ¬C𝛺→j¬𝜑  .  A s s u m e  t h a t 

(M,w
1
) ⊧ (C𝛺→j𝜑) ∧ (C𝛺→j¬𝜑) . Using the semantics of 

C�→j� , for all global states w
2
∈ W  such that w

1
∼�→j w2

 , 
we have (M,w

2
) ⊧ 𝜑 ∧ ¬𝜑 . Therefore, we have contradic-

tion. Thus, (M,w
1
) ⊧ C𝛺→j𝜑 → ¬C𝛺→j¬𝜑.

(⇒) Assume that FR is not serial. We need to show 
that FR ⊭ C𝛺→j𝜑 → ¬C𝛺→j¬𝜑 .  Since FR  is  not 
serial, using Remark 1, then it might be the case that 
(M,w

1
) ⊧ C𝛺→jp ∧ C𝛺→j¬p . So, FR ⊭ C𝛺→jp → ¬C𝛺→j¬p , 

as desired. 	�  ◻

Discussion: This postulate illustrates the fact that a group 
of agents cannot commit to reason about � and ¬� simulta-
neously towards the same agent. 

	Pos4.	 [R-Conjoin / single commitment]
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Formalization: (Ci→j�1
) ∧ (Ci→j�2

) → Ci→j(�1
∧ �

2
).

Meaning: If agent i individually commits to reason about 
�
1
 and �

2
 then i would become committed to reason about 

both �
1
 and �

2
.

Proof  Given w
1
∈ W  ,  we need to  prove that 

(M,w
1
) ⊧ (Ci→j𝜑1

) ∧ (Ci→j𝜑2
) → Ci→j(𝜑1

∧ 𝜑
2
) . Assume 

that (M,w
1
) ⊧ ((Ci→j𝜑1

) ∧ (Ci→j𝜑2
)) ∧ ¬(Ci→j(𝜑1

∧ 𝜑
2
)) . 

Using the semantics of single commitments, for 
al l  global states w

2
∈ W  such that  w

1
∼i→j w2

 , 
w e  h a v e  (M,w

2
) ⊧ (𝜑

1
∧ 𝜑

2
) ∧ ¬(𝜑

1
∧ 𝜑

2
)  .  S o , 

(M,w
2
) ⊧ (𝜑

1
∧ ¬𝜑

1
) ∨ (𝜑

2
∧ ¬𝜑

2
) . So, we have a contra-

diction. Therefore, (Ci→j�1
) ∧ (Ci→j�2

) → Ci→j(�1
∧ �

2
) . 	

� ◻

Discussion: This postulate demonstrates the fact that 
an agent i can have more than one commitment towards an 
agent j at the same time. From the NetBill, assume that the 
merchant commits towards the customer to send a receipt 
and also commits toward the same customer to deliver the 
goods, then the merchant would be committed towards the 
customer to send the receipt and deliver the goods. Formally, 
(Cmerch→cust Reciept ) ∧ (Cmerch→cust Delivery) → Cmerch→cust 
(Delivery ∧ Reciept) . This postulate is integrated in Al-
Saqqar’s postulates (Al-Saqqar et al. 2016), Singh’s postu-
lates (Singh 2008), Chopra’s postulates (Chopra and Singh 
2015), and El Kholy’s rules (EL Kholy et al. 2014). 

	Pos5.	 [R-Conjoin / one-to-group commitment]

Formalization: (Ci→��1
) ∧ (Ci→��2

) → Ci→�(�1
∧ �

2
).

Meaning: An agent i would become committed towards 
a group of agents to reason about both �

1
 and �

2
 at the same 

time if i individually commits towards this group to reason 
about �

1
 and �

2
.

Proof  Given w
1
∈ W  ,  we need to  prove that 

(M,w
1
) ⊧ (Ci→𝛺𝜑1

) ∧ (Ci→𝛺𝜑2
) → Ci→𝛺(𝜑1

∧ 𝜑
2
) . Assume 

that (M,w
1
) ⊧ ((Ci→𝛺𝜑1

) ∧ (Ci→𝛺𝜑2
)) ∧ ¬(Ci→𝛺(𝜑1

∧ 𝜑
2
)) . 

Using the semantics of Ci→�� ,  for all  global 
states  w

2
∈ W  such that  w

1
∼i→� w

2
 ,  we have 

(M,w
2
) ⊧ (𝜑

1
∧ 𝜑

2
) ∧ ¬(𝜑

1
∧ 𝜑

2
)  .  S o ,  (M,w

2
) ⊧ 

(�
1
∧ ¬�

1
) ∨ (�

2
∧ ¬�

2
) . Thus, we have contradiction. Con-

sequently, (Ci→��1
) ∧ (Ci→��2

) → Ci→�(�1
∧ �

2
) . 	�  ◻

Discussion: The idea of this postulate is that an agent 
i is capable to have more than one commitment towards 
the same group of agents � at the same time. Assume 
that the merchant commits towards a group of customers 
to deliver the goods and also commits towards the same 
group to send a receipt, then the merchant would be com-
mitted towards the group of customers to deliver the goods 

and send the receipt. Formally, (Cmerch→�cust Delivery) ∧ 
(Cmerch→�cust Reciept) → Cmerch→�cust (Delivery ∧ Reciept) . 

	Pos6.	 [R-Conjoin / group-to-one commitment]

Formalization: (C�→j�1
) ∧ (C�→j�2

) → C�→j(�1
∧ �

2
).

Meaning: a group of agents � would become com-
mitted towards an agent j to reason about both �

1
 and �

2
 

simultaneously if � individually commits to reason about 
�
1
 and �

2
.

Proof  Given w
1
∈ W  ,  we need to  prove that 

(M,w
1
) ⊧ (C𝛺→j𝜑1

) ∧ (C𝛺→j𝜑2
) → C𝛺→j(𝜑1

∧ 𝜑
2
) . Assume 

that (M,w
1
) ⊧ ((C𝛺→j𝜑1

) ∧ (C𝛺→j𝜑2
)) ∧ ¬(C𝛺→j(𝜑1

∧ 𝜑
2
)) . 

Using the semantics of C�→j� ,  for all  global 
states  w

2
∈ W  such that  w

1
∼�→j w2

 ,  we have 
(M,w

2
) ⊧ (𝜑

1
∧ 𝜑

2
) ∧ ¬(𝜑

1
∧ 𝜑

2
)   .  T h u s , 

(M,w
2
) ⊧ (𝜑

1
∧ ¬𝜑

1
) ∨ (𝜑

2
∧ ¬𝜑

2
) . So, we have contradic-

tion. Therefore, (C�→j�1
) ∧ (C�→j�2

) → C�→j(�1
∧ �

2
) . 	

� ◻

Discussion: This postulate demonstrates the fact that a 
group of agents � have the ability to have more than one 
commitment towards the same agent j at the same time. 
Assume that a group of merchants commits towards a 
given customer to deliver the goods and the same group 
also commits towards the same customer to send a receipt, 
then the group of merchants becomes committed towards 
the customer to deliver the goods and send the receipt. 
Formally, (C�merch→cust Delivery) ∧ (C�merch→cust Reciept) 
→ C�merch→cust (Delivery ∧ Reciept) . 

	Pos7.	 [Single commitment’s chain]

Formalization: (Ci→j�) ∧ (Ci→j(� → �)) → Ci→j�.
Meaning: Single social commitments are closed under 

implication.

Proof  Suppose that (M,w
1
) ⊧ (C

i→j
𝜑) ∧ (C

i→j
(𝜑 → 𝜓))

∧¬(Ci→j�) . Using the semantics of single commit-
ment, for all w

2
∈ W  such that w

1
∼i→j w2

 , we have 
(M,w

2
) ⊧ 𝜑 ∧ (𝜑 → 𝜓)  .  U s i n g  M o d u s  p o n e n s , 

(M,w
2
) ⊧ 𝜓  . Since w

1
∼i→j w2

 , then (M,w
1
) ⊧ Ci→j𝜓 

which is a contradiction with our assumption. Therefore, 
(Ci→j�) ∧ (Ci→j(� → �)) → Ci→j� . 	�  ◻

Discussion: This postulate demonstrates that CTLGC is 
closed under implication. This postulate is integrated in Al-
Saqqar’s postulates (Al-Saqqar et al. 2016), Singh’s postu-
lates (Singh 2008), and El Kholy’s rules (EL Kholy et al. 
2014). 

	Pos8.	 [One-to-Group commitment chain]
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Formalization: (Ci→��) ∧ (Ci→�(� → �)) → Ci→��.
Meaning: One-to-Group commitments are closed under 

implication.

Proof  Suppose that (M,w
1
) ⊧ (C

i→𝛺𝜑) ∧ (C
i→𝛺(𝜑 → 𝜓))

∧¬(C
i→��) . Using the semantics of (Ci→��) , for all w

2
∈ W 

such that w
1
∼i→� w

2
 , we have (M,w

2
) ⊧ 𝜑 ∧ (𝜑 → 𝜓) . 

Using Modus ponens, (M,w
2
) ⊧ 𝜓  . Since w

1
∼i→� w

2
 , 

then (M,w
1
) ⊧ Ci→𝛺𝜓  which is a contradiction. Thus, 

(Ci→��) ∧ (Ci→�(� → �)) → Ci→�� . 	�  ◻

Discussion: This postulate shows that one-to-group com-
mitments using CTLGC are closed under strict implication. 

	Pos9.	 [Group-to-one commitment chain]

Formalization: (C�→j�) ∧ (C�→j(� → �)) → C�→j�.
Meaning: Group-to-one commitments are closed under 

implication.

Proof  Suppose that (M,w
1
) ⊧ (C𝛺→j

𝜑) ∧ (C𝛺→j
(𝜑 → 𝜓))

∧¬(C�→j�) . From the semantics of (C�→j�) , for all w
2
∈ W 

such that w
1
∼�→j w2

 , we have (M,w
2
) ⊧ 𝜑 ∧ (𝜑 → 𝜓) . 

Using Modus ponens, (M,w
2
) ⊧ 𝜓  . Since w

1
∼�→j w2

 , 
then (M,w

1
) ⊧ C𝛺→j𝜓 which is a contradiction. Therefore, 

(C�→j�) ∧ (C�→j(� → �)) → C�→j� . 	�  ◻

Discussion: This postulate demonstrates that group-
to-one commitments using CTLGC are closed under strict 
implication. 

	Pos10.	 [Weaken single commitment]

Formalization: Ci→j(�1
∧ �

2
) → Ci→j�1

.
Meaning: If i commits to a conjunction of both �

1
 and 

�
2
 , i also commits to each part of the conjunction.

Proof  Given w
1
∈ W  ,  we need to  prove that 

(M,w
1
) ⊧ Ci→j(𝜑1

∧ 𝜑
2
) → Ci→j𝜑1

 . Let us assume that 
(M,w

1
) ⊧ Ci→j(𝜑1

∧ 𝜑
2
) ∧ ¬(Ci→j𝜑1

) . Using the semantics 
of Ci→j� , for all global states w

2
∈ W  such that w

1
∼i→j w2

 , 
we have (M,w

2
) ⊧ (𝜑

1
∧ 𝜑

2
) . Therefoe, (M,w

2
) ⊧ 𝜑

1
 . Since 

w
1
∼i→j w2

 , (M,w
1
) ⊧ Ci→j𝜑1

 which is a contradiction. 
Thus, the postulate. 	�  ◻

Discussion: This postulate conveys the fact that if an 
agent i commits to a conjunction towards agent j, i also 
commits to each part of the conjunction. From the Net-
Bill, if the merchant commits to sending both the receipt 
and the required goods, then the merchant commits to 
send the receipt. Formally, Cmerch→cust (Receipt ∧ Deliv-
ery) → Cmerch→cust Receipt . This postulate is integrated in 

Al-Saqqar’s postulates (Al-Saqqar et al. 2016), Singh’s 
postulates (Singh 2008), Chopra’s postulates (Chopra and 
Singh 2015), and El Kholy’s rules (EL Kholy et al. 2014). 

	Pos11.	 [Weaken one-to-group commitment]

Formalization: Ci→�(�1
∧ �

2
) → Ci→��1

.
Meaning: If an agent i commits to a conjunction 

towards a group of agents � , i also commits to each part 
of the conjunction.

Proof  Given w
1
∈ W  ,  we want  to  prove that 

(M,w
1
) ⊧ Ci→𝛺(𝜑1

∧ 𝜑
2
) → Ci→𝛺𝜑1

 .  A s s u m e  t h a t 
(M,w

1
) ⊧ Ci→𝛺(𝜑1

∧ 𝜑
2
) ∧ ¬(Ci→𝛺𝜑1

) . Using the semantics 
of Ci→�� , for all global states w

2
∈ W such that w

1
∼i→� w

2
 , 

we have (M,w
2
) ⊧ (𝜑

1
∧ 𝜑

2
) . Therefoe, (M,w

2
) ⊧ 𝜑

1
 . Since 

w
1
∼i→� w

2
 , (M,w

1
) ⊧ Ci→𝛺𝜑1

 which is a contradiction. 
Thus, the postulate. 	�  ◻

Discussion: This postulate demonstrates the fact that 
that if an agent i commits to a conjunction towards a group 
of agents � , i also commits to each part of this conjunc-
tion. For example, if a merchant i commits to a group 
� to sending both the required goods and the receipt, 
then the merchant commits to send the goods. Formally, 
Cmerch→�cust (Delivery ∧ Receipt) → Cmerch→�cust Delivery. 

	Pos12.	 [Weaken group-to-one commitment]

Formalization: C�→j(�1
∧ �

2
) → C�→j�1

.
Meaning: If a group of agents � commit to a conjunc-

tion, � also commits to each part of the conjunction.

Proof  Given w
1
∈ W  ,  we need to  prove that 

(M,w
1
) ⊧ C𝛺→j(𝜑1

∧ 𝜑
2
) → C𝛺→j𝜑1

 .  A s s u m e  t h a t 
(M,w

1
) ⊧ C𝛺→j(𝜑1

∧ 𝜑
2
) ∧ ¬(C𝛺→j𝜑1

) . Using the semantics 
of C�→j� , for all global states w

2
∈ W such that w

1
∼�→j w2

 , 
we have (M,w

2
) ⊧ (𝜑

1
∧ 𝜑

2
) . Therefore, (M,w

2
) ⊧ 𝜑

1
 . 

Since w
1
∼�→j w2

 , (M,w
1
) ⊧ C𝛺→j𝜑1

 which contradicts our 
assumption. Thus, the postulate. 	�  ◻

Discussion: This postulate coveys the fact that if a 
group of agents � commits to a conjunction, � also com-
mits to each part of the conjunction. For example, if a 
group of merchants commits to sending both the required 
goods and the receipt towards a customer, then the mer-
chants commit to send the goods. Formally, C�merch→cust 
(Delivery ∧ Receipt) → C�merch→cust Delivery. 

	Pos13.	 [Single commitment consistency]

Formalization: ¬Ci→j⊥ , where ⊥ is read as “constant false 
proposition”.
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Meaning: Agent i cannot commit to false.
Correspondence: For each frame FR = (W,∼i→j) , 

FR ⊧ ¬Ci→j⊥ iff FR is serial.

Proof  (⇐) Assume that FR = (W,∼i→j) is serial and 
let M = (W,∼i→j,VL) be a model based on FR . Given 
w
1
∈ W  , we need to prove that (M,w

1
) ⊧ ¬Ci→j⊥ . Assume 

that (M,w
1
) ⊧ Ci→j⊥ . Using the semantics of single com-

mitment, for all global states w
2
∈ W  such that w

1
∼i→j w2

 , 
we have (M,w

2
) ⊧ ⊥ (i.e., (M,w

2
) ⊧ (𝜑 ∧ ¬𝜑)) which is a 

contradiction. Therefore, (M,w
1
) ⊧ ¬Ci→j⊥.

(⇒) Assume that FR is not serial. We must show 
FR ⊭ ¬Ci→j⊥ . Since FR is not serial, then it could be the 
case that (M,w

1
) ⊧ Ci→j⊥ . Therefore, FR ⊭ ¬Ci→j⊥ . 	

� ◻

Discussion: This postulate illustrates the fact that an 
agent cannot commit to false, which is reasonable. This 
postulate is integrated in Al-Saqqar’s postulates (Al-Saqqar 
et al. 2016), Singh’s postulates (Singh 2008), Chopra’s pos-
tulates (Chopra and Singh 2015), and El Kholy’s rules (EL 
Kholy et al. 2014). 

	Pos14.	 [One-to-group commitment consistency]

Formalization: ¬Ci→𝛺⊥.
Meaning: Agent i cannot commit to false towards a group 

of agents �.
Correspondence: For each frame FR = (W,∼i→�) , 

FR ⊧ ¬Ci→𝛺⊥ iff FR is serial.

Proof  (⇐) Assume that FR = (W,∼i→�) is serial and 
let M = (W,∼i→�,VL) be a model based on FR . Given 
w
1
∈ W , we need to prove that (M,w

1
) ⊧ ¬Ci→𝛺⊥ . Assume 

that (M,w
1
) ⊧ Ci→𝛺⊥ . Using the semantics of one-to-

group commitment, for all global states w
2
∈ W  such that 

w
1
∼i→� w

2
 , we have (M,w

2
) ⊧ (𝜑 ∧ ¬𝜑)) which is a con-

tradiction. Therefore, (M,w
1
) ⊧ ¬Ci→𝛺⊥.

(⇒) Assume that FR is not serial. We need to show that 
FR ⊭ ¬Ci→𝛺⊥ . Since FR is not serial, then it could be the 
case that (M,w

1
) ⊧ Ci→𝛺⊥ . Therefore, FR ⊭ ¬Ci→𝛺⊥ . 	

� ◻

Discussion: This postulate illustrates the fact that an 
agent i cannot commit to false towards a group of agents. 
The validity of this postulate comes from the fact that an 
agent cannot commit to false. 

	Pos15.	 [Group-to-one commitment consistency]

Formalization: ¬C𝛺→j⊥.
Meaning: A group of agents � cannot commit to false.

Correspondence: For each frame FR = (W,∼�→j) , 
FR ⊧ ¬C𝛺→j⊥ iff FR is serial.

Proof  (⇐) Assume that FR = (W,∼�→j) is serial and 
let M = (W,∼�→j,VL) be a model based on FR . Given 
w
1
∈ W , we need to prove that (M,w

1
) ⊧ ¬C𝛺→j⊥ . Assume 

that (M,w
1
) ⊧ C𝛺→j⊥ . Using the semantics of group-to-

one commitment, for all global states w
2
∈ W  such that 

w
1
∼�→j w2

 , we have (M,w
2
) ⊧ (𝜑 ∧ ¬𝜑)) which is a con-

tradiction. Therefore, (M,w
1
) ⊧ ¬C𝛺→j⊥.

(⇒) Assume that FR is not serial. We must show 
FR ⊭ ¬C𝛺→j⊥ . Since FR is not serial, then it could be the 
case that (M,w

1
) ⊧ C𝛺→j⊥ . Therefore, FR ⊭ ¬C𝛺→j⊥ , as 

desired. 	� ◻

Discussion: This postulate demonstrates the fact that a 
group of agents cannot commit to false. 

	Pos16.	 [Fulfillment for single commitment]

Formalization: Fu(Ci→j�) → �.
Meaning: If a single commitment is fulfilled, then its 

content is satisfied.

Proof  The proof is straightforward from the semantics of 
single fulfillment. 	�  ◻

Discussion: This postulate illustrates the fact that if an 
agent i fulfills its commitment, the content of this com-
mitment is satisfied simultaneously, which is reasonable. 
For example, from the NetBill, when the merchant deliv-
ers the required goods, then the delivery holds. Formally, 
Fu(Cmerch→cust Delivery) → Delivery . This postulate is inte-
grated in Al-Saqqar’s postulates (Al-Saqqar et al. 2016), 
Chesani’s postulates (Chesani et al. 2013), Yolum and 
Singh axioms (Yolum and Singh 2004), Chopra and Singh 
postulates (Chopra and Singh 2015), and El Kholy’s rules 
(EL Kholy et al. 2014) . 

	Pos17.	 [Fulfillment for one-to-group commitment]

Formalization: Fu(Ci→��) → �.
Meaning: When one-to-group commitments are ful-

filled, their contents hold.

Proof  Assume that (M,w
1
) ⊧ Fu(Ci→𝛺𝜑) . We want to prove 

that (M,w
1
) ⊧ 𝜑 . Using the semantics of Fu(Ci→��) , there 

exists w
2
∈ W  such that w

2
∼i→� w

1
 and (M,w

2
) ⊧ Ci→𝛺𝜑 . 

Using the semantics of Ci→�� , we have (M,w
1
) ⊧ 𝜑 . So, we 

are done. 	�  ◻

Discussion: The postulate illustrates the fact that when 
an agent fulfills the commitment toward a group of agents, 
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the contents of those commitments hold at the same state. 
For example, once the merchant delivers the requested goods 
to all the customers, then the delivery holds. Formally, 
Fu(Cmerch→�cust Delivery) → Delivery . 

	Pos18.	 [Fulfillment for group-to-one commitment]

Formalization: Fu(C�→j�) → �.
Meaning: When a group-to-one commitments are ful-

filled, their contents hold.

Proof  Assume that (M,w
1
) ⊧ Fu(C𝛺→j𝜑) . We want to prove 

(M,w
1
) ⊧ 𝜑 . Using the semantics of Fu(C�→j�) , there exists 

w
2
∈ W such that w

2
∼�→j w1

 and (M,w
2
) ⊧ C𝛺→j𝜑 . Using 

the semantics of C�→j� , we have (M,w
1
) ⊧ 𝜑 . So, we are 

done. 	�  ◻

Discussion: This postulate is reasonable because when a 
group of agents fulfill the commitments, the content of those 
commitments hold at the same state. For example, when a 
group of customers pays the agreed amount of money to a 
merchant (i.e., fulfill their commitments), then the payments 
hold. Formally, Fu(C�cust→merch Pay) → Pay . 

	Pos19.	 [Weaken single fulfillment]

Formalization: Fu(Ci→j(�1
∧ �

2
)) → Fu(Ci→j�1

).
Meaning: When an agent i fulfills a conjunction towards 

an agent j, agent i fulfills every part of the conjunction.

P r o o f   S u p p o s e  t h a t 
(M,w

1
) ⊧ Fu(Ci→j(𝜑1

∧ 𝜑
2
)) ∧ ¬Fu(Ci→j𝜑1

)  .  U s i n g 
the semantics of Fu(Ci→j�) , there exists w

2
∈ W  such 

that w
2
∼i→j w1

 and (M,w
2
) ⊧ Ci→j(𝜑1

∧ 𝜑
2
) and for all 

w ∈ W  such that w ∼i→j w1
 (M,w) ⊧ ¬Ci→j𝜑1

 . Using 
Pos10, a contradiction exists when w = w

2
 . Thus, 

(M,w
1
) ⊧ Fu(Ci→j(𝜑1

∧ 𝜑
2
)) ∧ Fu(Ci→j𝜑1

) . So, we are 
done. 	�  ◻

Discussion: This postulate is reasonable, as when an 
agent i fulfills a conjunction, i also fulfills each part of 
the conjunction. From the NetBill, when the merchant 
fulfills the commitment of delivering both the receipt and 
the requested goods, then the merchant fulfills delivering 
the receipts. Formally, Fu(Cmerch→cust(Receipt ∧ Delivery )) 
→ Fu(Cmerch→cust Receipt). This postulate is integrated in Al-
Saqqar’s postulates (Al-Saqqar et al. 2016). 

	Pos20.	 [Weaken one-to-group fulfillment ]

Formalization: Fu(Ci→�(�1
∧ �

2
)) → Fu(Ci→��1

).

Meaning: When an agent i fulfills a conjunction towards 
a group of agents � , agent i also fulfills every part of the 
conjunction.

P r o o f   S u p p o s e  t h a t 
(M,w

1
) ⊧ Fu(Ci→𝛺(𝜑1

∧ 𝜑
2
)) ∧ ¬Fu(Ci→𝛺𝜑1

)  .  U s i n g 
the semantics of Fu(Ci→��) , there exists w

2
∈ W  such 

that w
2
∼i→� w

1
 and (M,w

2
) ⊧ Ci→𝛺(𝜑1

∧ 𝜑
2
) and for 

all w ∈ W  such that w ∼i→� w
1
 , (M,w) ⊧ ¬Ci→𝛺𝜑1

 . 
Using Pos11, a contradiction exists when w = w

2
 . Thus, 

(M,w
1
) ⊧ Fu(Ci→𝛺(𝜑1

∧ 𝜑
2
)) ∧ Fu(Ci→𝛺𝜑1

) . 	�  ◻

Discussion: The postulate demonstrates the fact that 
when agent i fulfills a conjunction towards a group of 
agents � , agent i fulfills each part of the conjunction as 
well. From the NetBill, when the merchant fulfills the com-
mitments of delivering the requested goods and the receipt 
to all customers, then the merchant fulfills delivering the 
goods. Formally, Fu(Cmerch→�cust

 (Delivery ∧ Receipt)) 
→ Fu(Cmerch→�cust Delivery). 

	Pos21.	 [Weaken group-to-one fulfillment]

Formalization: Fu(C�→j(�1
∧ �

2
)) → Fu(C�→j�1

).
Meaning: If a group of agents � fulfills a conjunc-

tion towards an agent i, � also fulfills every part of the 
conjunction.

P r o o f   A s s u m e  t h a t 
(M,w

1
) ⊧ Fu(C𝛺→j(𝜑1

∧ 𝜑
2
)) ∧ ¬Fu(C𝛺→j𝜑1

)  .  U s i n g 
the semantics of Fu(C�→j�) , there exists w

2
∈ W  such 

that w
2
∼�→j w1

 and (M,w
2
) ⊧ C𝛺→j(𝜑1

∧ 𝜑
2
) and for 

all w ∈ W  such that w ∼�→j w1
 (M,w) ⊧ ¬C𝛺→j𝜑1

 . 
Using Pos12, a contradiction exists when w = w

2
 . Thus, 

(M,w
1
) ⊧ Fu(C𝛺→j(𝜑1

∧ 𝜑
2
)) ∧ Fu(C𝛺→j𝜑1

) . 	�  ◻

Discussion: This postulate illustrates the fact that if a 
group of agents � fulfills a conjunction towards an agent j, 
� also fulfill every part of the conjunction. For example, if 
all merchants fulfill their commitments of delivering both 
the required goods and the receipts to a given customer, 
then the merchants fulfill delivering the goods. Formally, 
Fu(C�merch→cust (Delivery ∧ Receipt)) → Fu(C�merch→cust 
Delivery). 

	Pos22.	 [Consistency for single fulfillment]

Formalization: ¬Fu(Ci→j⊥).
Meaning: A single social commitment to false cannot 

be fulfilled.

Proof  Assume that (M,w
1
) ⊧ Fu(Ci→j⊥) . Using the seman-

tics of Fu(Ci→j) , there exists w
2
∈ W  such that w

2
∼i→j w1
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and (M,w
2
) ⊧ Ci→j⊥ which contradicts Pos13. So, we are 

done. 	�  ◻

Discussion: This postulate is reasonable since there is no 
possibility to fulfill a commitment that will never happen. 
This postulate is integrated in Al-Saqqar’s postulates (Al-
Saqqar et al. 2016) and El Kholy’s rules (EL Kholy et al. 
2014). 

	Pos23.	 [Consistency for one-to-group fulfillment]

Formalization: ¬Fu(Ci→𝛺⊥).
Meaning: A one-to-group committing to false cannot be 

fulfilled.

Proof  Assume that (M,w
1
) ⊧ Fu(Ci→𝛺⊥) . From the seman-

tics of Fu(Ci→�) , there exists w
2
∈ W  such that w

2
∼i→� w

1
 

and (M,w
2
) ⊧ (Ci→𝛺⊥) which is a contradiction with Pos14. 

Thus, we are done. 	�  ◻

Discussion: Similar to the previuos postulate, there is no 
possibility to fulfill a one-to-group commitment that will 
never happen. 

	Pos24.	 [Consistency for group-to-one fulfillment]

Formalization: ¬Fu(C𝛺→j⊥).
Meaning: A group-to-one committing to false cannot be 

fulfilled.

Proof  Assume that (M,w
1
) ⊧ Fu(C𝛺→j⊥) . Using the seman-

tics of Fu(C𝛺→j⊥) , there exists w
2
∈ W such that w

2
∼�→j w1

 
and (M,w

2
) ⊧ (C𝛺→j⊥) which is a contradiction with Pos15. 

So, we are done. 	� ◻

Discussion: This postulate also indicates that there is no 
possibility to fulfill a group-to-one commitment, which will 
never happen.

6.3 � Soundness and completeness

After introducing the reasoning postulates, in this section, 
we want to demonstrate how to use correspondence theory 
for modal logic (van Benthem 1984) to prove the sound-
ness and completeness of the CTLGC logic. A key point of 
soundness and completeness of a given MAS is to show its 
suitability for capturing logic (Varga and Várterész 2008).

Typically, a given logic is considered semantically 
sound if truth theorems are derived from truth statements 
(Blackburn et  al. 2006). Moreover, Varga (Varga and 
Várterész 2008) defines soundness as “whenever its deci-
sion system is solved for a given set of formulas, then this 
formula set has a special semantic property.” Where, an 

MAS system is considered complete, if any truth deduc-
tion is expressed as a formal proof in the logic (Black-
burn et al. 2006). Furthermore, the relationship between 
modal logic and possible world semantics can be presented 
by the fact that modal axioms represent the properties of 
the accessibility relations (Blackburn et al. 2006). For 
instance, “A formula is provable in S4  iff it is true in all 
models based on frames whose accessibility relation is 
transitive and reflexive” is a typical modal completeness 
theorem (Blackburn et al. 2006).

To the best of our knowledge, Segerberg(1971) intro-
duced the early completeness theorem in modal logic as 
follows: “Modal logic L is determined by a class K of 
Kripke frames” (van Benthem 1984). This theorem illus-
trates the relationship between a given modal language 
L represented by a set of axioms and a certain class K 
of Kripke frames. In this perspective, two approaches 
have been utilized to prove soundness and completeness. 
The first approach starts with a certain set K of Kripke 
frames looking for an axiomatisation L of its model theory, 
whereas the second approach starts with a given modal 
logic L looking for a set K of Kripke frames with respect 
to which it is complete (Blackburn et al. 2006).

In this context, correspondence theory (van Benthem 
1984) plays a major role in the theory of modal logic 
during the last three decades (Al-Saqqar et  al. 2016). 
More concretely, correspondence theory for modal logic 
addresses the relationship between classes of frames and 
modal language in a systematic way (Indrzejczak 2008). In 
particular, correspondence theory for modal logic reflects, 
in a formal way, correspondence (relation) between a given 
modal logic L and a certain class K of Kripke frames 
(Indrzejczak 2008). The existence of such correspondence 
yields in obtaining a set of soundness and completeness 
theorems (Singh 2008).

In this work, we follow the same approach of our previous 
work in Al-Saqqar et al. (2016) to prove the soundness and 
completeness of the proposed CTLGC logic. As illustrated 
in Al-Saqqar et al. (2016) and (Singh 2008), when corre-
spondence between the proposed reasoning postulates and 
certain class of frames exists, this ensures the soundness and 
completeness of the CTLGC logic. Consequently, we reach 
the following theorem.

Theorem 1  For CTLGC , the logic generated by any subset 
of postulates {Pos1 − Pos24} is sound and complete with 
respect to models that are based on the corresponding 
classes of frames.

By doing so, we can ensure that CTLGC is a consistent 
and efficient logic that can handle single and group com-
mitments and their fulfillments. So, it can be used to design 
reliable MASs.
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7 � Conclusion and future work

In this work, we provided a new consistent, sound and com-
plete formalism to reason about group social commitments 
and their fulfillments in MASs. In particular, we introduced 
CTL

GC , a new temporal logic for agent communication 
which extended CTL to allow reasoning about group social 
commitments and their fulfillment simultaneously. To do so, 
we first classified groups of interacting agents into divisible 
and indivisible. Furthermore, we introduced the necessary 
accessibility relations that are needed to capture the seman-
tics of each group. After that, we provided the syntax and 
semantics of the proposed logic.

Then, we followed Benthem’s correspondence theory 
(van Benthem 1984) for modal logic to prove the soundness 
and completeness of the proposed CTLGC logic. In particu-
lar, we developed a set of reasoning postulates in CTLGC 
and corresponded them to their related classes of frames. 
Consequently, we proved that the CTLGC logic is sound and 
complete with respect to models that are built on their cor-
responding classes of frames. Moreover, to illustrate the 
proposed postulates and their importance in real life applica-
tions, we used the NetBill protocol from the business setting.

As future directions, we plan to investigate the proposed 
CTL

GC logic in the presence of uncertainty. In addition to 
that, we plan to address the problem of model checking 
CTL

GC by providing the required dedicated algorithms and 
implementing them on top of a symbolic model checker to 
gain verification results.

Finally, we plan to integrate knowledge with group com-
mitments in one logic. Consequently, the new logic can rea-
son about knowledge and group social commitments and 
analyses their interactions.
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