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Abstract
Feature selection is an essential stage in many data mining and machine learning and applications that find the proper subset 
of features from a set of irrelevant, redundant, noisy and high dimensional data. This dimensional reduction is a vital task 
to increase classification accuracy and thus reduce the processing time. An optimization algorithm can be applied to tackle 
the feature selection problem. In this paper, a �-hill climbing optimizer is applied to solve the feature selection problem. �
-hill climbing is recently introduced as a local-search based algorithm that can obtain pleasing solutions for different opti-
mization problems. In order to tailor �-hill climbing for feature selection, it has to be adapted to work in a binary context. 
The S-shaped transfer function is used to transform the data into the binary representation. A set of 22 de facto benchmark 
real-world datasets are used to evaluate the proposed algorithm. The effect of the �-hill climbing parameters on the con-
vergence rate is studied in terms of accuracy, the number of features, fitness values, and computational time. Furthermore, 
the proposed method is compared against three local search methods and ten metaheuristics methods. The obtained results 
show that the proposed binary �-hill climbing optimizer outperforms other comparative local search methods in terms of 
classification accuracy on 16 out of 22 datasets. Furthermore, it overcomes other comparative metaheuristics approaches in 
terms of classification accuracy in 7 out of 22 datasets. The obtained results prove the efficiency of the proposed binary �
-hill climbing optimizer.

Keywords  Feature selection · �-hill climbing optimizer · S-shape transfer function · Optimization · Dimensionality 
reduction

1  Introduction

Data mining research community works on designing and 
improving techniques for data classifications (Mashrgy et al. 
2014; Al-Abdallah et al. 2017), pattern recognition (Ma 
and Xia 2017), and machine learning (Lee and Lee 2006; 
Doush and Sahar 2017; Sawalha and Doush 2012). Some 

data mining problems contain huge data with thousands 
of features. In many cases, only a set of proper features is 
needed while the others are redundant, irrelevant or noisy. 
Picking a subset of these features to accurately represent the 
entire set of features can largely affect the performance of 
machine learning algorithms in different properties such as 
time complexity and classification accuracy (Hu et al. 2006).
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Feature selection (FS) is choosing a relevant set of fea-
tures from a large group of features to represent a record 
in a dataset. The feature selection technique is applied in 
many applications like text classification (Forman 2003; 
Deng et al. 2019), text mining (Jing et al. 2002; Ravisankar 
et al. 2011), image recognition (Goltsev and Gritsenko 
2012), image retrieval (Rashedi et al. 2013; Dubey et al. 
2015), bioinformatic data mining (Saeys et  al. 2007; 
Urbanowicz et  al. 2018), and many others reported in 
(Bolón-Canedo and Alonso-Betanzos 2019).

There are three types of feature selection techniques 
based on the evaluation criteria: filter-based, wrapper-
based, and embedded-based methods (Li et  al. 2017). 
Firstly, filter-based feature selection methods give a score 
for each feature in the dataset using a statistical measure 
[e.g., information gain (Shang et al. 2013), Chi-squared 
test (Liu and Setiono 1995), or ReliefF (Robnik-Šikonja 
and Kononenko 2003)]. Then these features are ranked 
based on their score. As a result, the features with the 
higher ranking are kept, while the features with lower rank 
are removed. Secondly, wrapper-based feature selection 
methods use search algorithms (e.g., genetic algorithm 
or particle swarm optimization) to evaluate the generated 
subset of features. After completing the search process, 
one of the classifiers (e.g., k-nearest neighbor (Park and 
Kim 2015), naive bayes (Bermejo et al. 2014), decision 
trees (Sindhu et al. 2012), etc.) is used to evaluate the 
quality of the chosen subset of features in term of accu-
racy. Finally, the integration of a wrapper-based and a fil-
ter-based method is known as an embedded-based method 
in which the searching algorithm is embedded in the clas-
sifier such as the k-nearest neighbor algorithm (kNN). 
Then it guides the classifier to pick some features that can 
achieve higher accuracy.

In the context of optimization, the FS is considered not 
easy to solve combinatorial optimization problem (Gheyas 
and Smith 2010). The complexity of the FS problem comes 
from selecting the relevant set of features from a plenty pos-
sible subsets. For example, the power-set of the set A of 
size N features contains 2N − 1 possible subsets of features. 
Therefore, as the number of features increase the number of 
solutions to look for the problem increases exponentially. 
The picked set of features is modeled using a function 
which is guided by the accuracy of the classification and the 
number of used feature. The FS solution is conventionally 
expressed as a binary array of the selected features.

The brute-force method can be used to solve the FS prob-
lem where all possible subsets generated and evaluated, then 
the relevant subset is identified (Lai et al. 2006). This type 
of algorithm cannot be used when we have a large number 
of features. Heuristic algorithms can be utilized to obtain 
the optimal set for the FS problem (Zhong et al. 2001). This 
type of algorithms can find efficiently the subset of relevant 

features. However, the quality of this acceptable subset is not 
necessarily guaranteed (Talbi 2009). Therefore, researchers 
use metaheuristic-based algorithms to find an optimal por-
tion of relevant features in a feasible time with high clas-
sification accuracy.

Metaheuristic-based algorithms can be used to solve 
different kinds of optimization problems using self-learn-
ing operators that is configured with operators to efficiently 
explore and exploit possible solutions, hoping to attain 
the best solution (Blum and Roli 2003). Metaheuristic-
based algorithms can be classified into population-based 
and local search-based algorithms (Blum and Roli 2003). 
Population-based algorithms examine several search space 
regions concurrently and improve them iteratively wishing 
to obtain the optimal solution. Examples of population-
based algorithm for FS include genetic algorithm (Ghareb 
et al. 2016), differential evolution (Mlakar et al. 2017), ant 
lion optimizer (Emary et al. 2016), grey wolf optimiza-
tion (Emary et al. 2016), ant colony optimization (Kabir 
et al. 2012), competitive swarm optimizer (Gu et al. 2018), 
firefly algorithm (Zhang et al. 2018; Al-Abdallah et al. 
2017), grasshopper optimization algorithm (Mafarja et al. 
2018b, 2019), bat algorithm (Mafarja et al. 2018b), whale 
optimization algorithm (Mafarja and Mirjalili 2018), drag-
onfly optimization (Mafarja et al. 2018a), crow search 
algorithm (Sayed et al. 2019), gravitational search algo-
rithm (Taradeh et al. 2019), and harmony search algorithm 
(Moayedikia et al. 2017)

Local search-based algorithms, the focal point of this 
paper, consider one solution at a time. Let’s call this the 
initial solution. It will be modified repetitively using an 
operator which allow visiting nearby values until a peak 
local value is found. A local search-based algorithm is 
capable of thoroughly investigate a specific region of the 
initial solution and find the local optima. Such algorithms 
have a limitation of not exploring multi-search space 
regions concurrently. Therefore, some random strategies 
are employed to empower the local search-based approach. 
In the literature, FS is tackled by several local search-
based algorithms such as tabu search (Zhang and Sun 
2002), GRASP (Bermejo et al. 2011), iterated local search 
(Marinaki and Marinakis 2015), variable neighborhood 
search (Marinaki and Marinakis 2015), and stochastic 
local search method (Boughaci and Alkhawaldeh 2018).

Due to the complex nature of FS problems, most FS-
based algorithms are either a modification of a metaheuris-
tic algorithm or a hybridization of two or more metaheuris-
tic algorithms. Examples of modified metaheuristic 
algorithms that are used to solve FS problems are binary 
ant lion optimizer using S-shaped function and V-shaped 
function (Emary et al. 2016), binary grey wolf optimiza-
tion using crossover and sigmoidal function (Emary et al. 
2016), binary dragonfly optimization using time-varying 
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transfer functions (Mafarja et al. 2018a), and chaotic crow 
search algorithm (Sayed et al. 2019). Examples of hybrid 
metaheuristics are the hybridization of the ant colony opti-
mization with the wrapper and filter approaches (Kabir 
et al. 2012), and the integration of the gravitational search 
algorithm with evolutionary crossover and mutation opera-
tors (Taradeh et al. 2019).

�-hill climbing is a local search-based algorithm that is 
recently introduced Al-Betar (2017). It is an improved ver-
sion of the hill-climbing algorithm with a � operator that is 
governed by the � parameter to diversify the search as well 
as a neighboring operator called N  to intensify the search. 
The � operator empowers the �-hill climbing to intelligently 
escape the local optima by searching different regions and 
digging deeply into the regions of the search space. Due to 
its simplicity, the algorithm is adapted in a broad range opti-
mization problems such as ECG and EEG signal denoising 
(Alyasseri et al. 2017a, b, 2018), generating substitution-
boxes (Alzaidi et al. 2018), gene selection (Alomari et al. 
2018b), economic load dispatch problem (Al-Betar et al. 
2018), mathematical optimization functions (Abed-alguni 
and Alkhateeb 2018; Abed-alguni and Klaib 2018), multi-
ple-reservoir scheduling (Alsukni et al. 2017), sudoku game 
(Al-Betar et al. 2017), text document clustering (Abualigah 
et al. 2017a, b), and cancer classification (Alomari et al. 
2018a). �-hill climbing produces successful outcomes for a 
broad range of optimization problems. It produces pleasing 
results for many real-world problems, and such algorithm 
can be used to tackle the FS problem.

In this paper, a binary version of �-hill climbing opti-
mizer is developed to tackle the problem of feature selection. 
The algorithm is evaluated using 22 UCI machine learning 
benchmark datasets that are used widely in the literature. 
The evaluation is discussed using four measurement crite-
ria which are the fitness function, the classification accu-
racy, the number of relevant features, and the elapsed CPU 
time. The impact of the parameter settings ( � and N  ) for the 
binary �-hill climbing optimizer is carefully analyzed and 
studied. Furthermore, the effect of using different transfer 
functions as well as the different classifiers on the efficiency 
of the binary �-hill climbing is studied. The comparative 
evaluation is conducted against three local search meth-
ods using the same datasets on the four evaluation criteria. 
Interestingly, the proposed binary �-hill climbing optimizer 
excel other comparative local search methods 16 out of 22 
datasets. On the other hand, it overcomes other comparative 
metaheuristics methods approaches in 7 out of 22 datasets 
and very-closed to the best results for the remaining 15 data-
sets. The binary �-hill climbing optimizer can be considered 
as a very important addition to the body of knowledge in the 
machine learning and classifications domain as it produces 

very promising outcomes when compared against other 
methods.

The rest of the paper is organized as follows: in sect. 2, 
the procedural steps of the proposed binary �-hill climbing 
algorithm is provided. The parameter setting analysis and 
comparative evaluations of the work are discussed in sect. 3. 
Finally, the conclusion is presented and the possible future 
research directions are shown in sect. 4.

2 � Binary ˇ‑hill climbing optimizer 
for feature selection

Metaheuristic-based methods can be local search-based or 
population-based. Most of the techniques applied to resolve 
the feature selection problem are population-based meth-
ods such as swarm-based algorithms or evolutionary-based 
algorithm.

�-hill climbing optimizer is an enhanced variant of the 
basic hill climbing algorithm. It is a local search-based 
method proposed in Al-Betar (2017) to escape from 
being stuck into a local optima. �-hill climbing optimizer 
can be initiated with a random or heuristic solution [say 
x = (x1, x2,… , xn) ]. In each step, the current solution can 
be improved using three operators: (i) N -operator which 
is controlled by N  parameter to exploit a specific region 
on the search space, (ii) �-operator which is controlled by � 
parameter to examine the solution space, and (iii) S-operator 
that utilizes the principle of survival-of-the-fittest. Normally, 
the search process of �-hill climbing optimizer is halted once 
the maximum number of iterations/time is reached.

The �-hill climbing optimizer can be applied for discrete 
or continuous search spaces. The variables of the feature 
selection problem are assigned by binary values (i.e., being 
selected or not). Therefore, a new operator called T -operator 
(i.e., transfer operator) is proposed to transfer the variable 
into binary using the sinusoidal function. Consequently, the 
new version of �-hill climbing optimizer is called binary 
�-hill climbing optimizer. The algorithm pseudo-code is 
shown in Algorithm 1 and it is flow-charted in Fig. 1. The 
steps and the four operators are described as follows:

Step 1: Initialize binary �-hill climbing and feature 
selection parameters— The parameters of the binary �
-hill climbing for feature selection are set in this step. 
The problem of feature selection is known to have a 
binary search space. Therefore, the solution is modeled 
as a binary vector x = (x1, x2,… , xn) of n features. The 
value of xi = 1 means that the feature i is considered. The 
parameters of the binary �-Hill climbing optimizer are N  
and � . The parameter N ∈ [0, 1] controls the neighboring 
operator ( N -operator) which is responsible for determin-
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ing the adjustment bandwidth to modify current solution 
to a neighboring solution. The � parameter controls the 
�-operator which determines the intensity of utilizing 
exploration in the neighboring solution. The last param-
eter of the proposed binary �-hill climbing optimizer is 
the maximum number of iterations which is Maxitr.
Step 2: Construct the initial solution— The initial solu-
tion x = (x1, x2,… , xn) is randomly constructed from the 
binary domain as follows: 

 where U[0, 1] generates a random number between 0 and 
1. In order to evaluate the initial solution, the set of fea-
tures in the current solution are evaluated using the objec-
tive function formulated in Eq. (1) (Emary et al. 2016). 

 where the classification error rate is expressed as �R(D) . 
In this study, the kNN classifier is used to find the clas-
sification error rate (Liao and Vemuri 2002). Note that |R| 
is how many features are selected, |N| is the count of the 
entire features, � refers to the role of classification rate 
and the length of feature subset, � ∈ [0, 1] .
Step 3: Improvement loop— The enhancement of the cur-
rent feature selection solution ( x ) is achieved by using 

xi ←

{
1 U[0, 1] ≥ 0.5

0 otherwise.

(1)f (x) = ��R(D) + (1 − �)
|R|
|N|

four operators which are used to yield a neighboring solu-
tion (i.e., x′).

N -operator— This operator is responsible for moving 
the present solution x to the near by solution x′ using 
Eq. (2). This operator is governed by the likeliness of 
picking N  parameter where N ∈ [0, 1] . The probabil-
ity determines the adjustment of the decision variables 
(features) in the current solution. A greater value of 
N  aid in a furthest movement from the neighboring 
solution x′ . The pseudo-code for N -operator is shown 
in line 5 of Algorithm 1. Formally, let xi be given the 
value of vi(k) of kth position, then the following present 
how to allocate the value of x′

i
 : 

 where xi,k ±N  is the neighboring value of xi,k.
�-operator— This operator is utilized for increasing 
the regions covered from the search space. It utilizes 
the idea of invariable mutation to the present solution. 
As shown in Eq. (3), ∀i ∈ (1, 2,… , n) , the xi decision 
variable is picked at random to be adjusted using the 
� parameter. This is pseudo-coded in lines from 6 to 
10 in Algorithm 1. 

(2)x�
i
= xi,k ±N

(3)x�
i
←

{
xr U[0, 1] ≤ �

x�
i

otherwise.

Fig. 1   Binary �-hill climbing 
optimizer for feature selection



7641Binary ‑hill climbing optimizer with S‑shape transfer function for feature selection﻿	

1 3

 Note that the � parameter determines how often the 
uniform mutation is used. Also, xr is a random value 
which is either 0 or 1.
T -operator— As aforementioned, the feature selec-
tion problem deals with a binary values for the deci-
sion variables. Therefore, the sinusoidal function (or 
S-shape function as shown in Fig. 2) is adapted to 
transform continuous solutions into binary. To elabo-
rate, the Sigmoidal function (Kennedy and Eberhart 
1997) is formulated in Eq. (4): 

 The value of the decision variables in the neighboring 
solution is re-assigned a binary value using Eq. (5). Let 
r be function that generates at random a value bounded 
by 0 and 1 (i.e., r ∈ [0, 1] ), the value of x′

i
 of the feature 

i will be re-assigned as follows: 

S-operator— The quality of the neighboring solution 
x
′ is assessed by applying the objective function f (x�) 

which is formulated in 1. The neighboring solution x′ 
is interchanged by the current one x , if it is better (i.e., 
f (x�) ≤ f (x) ). The pseudo-code for the S-operator is 
presented in the lines from 20 to 22 of Algorithm 1.

Step 4: Stop criterion— The proposed binary �-hill 
climbing is iterated until a stop criterion is reached. The 
stop criterion used in this study is based on the number 
of iteration Max_Itr defined at Step 1.

(4)T
(
x�
i

)
=

1

1 + e−x
�
i

∀i = (1, 2,… , n)

(5)x�
i
=

{
1 r < T

(
x�
i

)

0 Otherwise)

Step 5: kNN classifier— The accuracy of the obtained 
solution by binary �-hill climbing is evaluated using 
a kNN classifier. kNN is an effective non-parametric 
method that is utilized for classification and regression. 
The kNN starts by storing all the training data instances. 
After that, a pairwise computation is applied to calcu-
late the similarity between the training instances when 
compared against the unseen instances (Chen et al. 2009; 
Weinberger and Saul 2009). Then selecting the k-closest 
instances. This operation is done repetitively for all the 
unseen instances.
In order to compute the classification accuracy and error 
rate measurements, Eqs. (6) and (7) are used. Classifica-
tion accuracy is a statistical measure which defines the 
ability of the classifier to correctly use the picked features 
to precisely label a given tuple into a class. It can be com-
puted using Eq.(6). 

 where TP (true positive) denotes identifying correctly the 
class using a precise set of features. TN (true negative) 
denotes identifying correctly that it is not the class using 
a correct set of features. FP (false positive) denotes iden-
tifying incorrectly that it is the class. Finally, FN (false 
negative) denotes identifying incorrectly that it is not the 
class.
The classification error rate calculated in Eq.(7) is used 
to determine the percentage of features that are incor-
rectly assigned. It will be part of the formulated objective 
function. 

(6)Accuracy =
TP + TN

TP + TN + FP + FN

(7)�R(D) = 1 − Accuracy

Fig. 2   S-shape function
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2.1 � Computational complexity of the proposed 
method

The time complexity required for the proposed binary �-hill 
climbing algorithm is measured by analyzing the pseudo-code 
given in Algorithm 1 in terms of big-O notation. The binary �
-hill climbing pseudo-code can be divided into three parts: (i) 
The initial phase (from line 1 to line 3 in Algorithm 1); (ii) The 
improvement phase (from line 5 to line 24 in Algorithm 1); 
and (iii)The classifier phase (the line 25 in Algorithm 1).

The time complexity of the initial phase is O(n) for the con-
struction of the initial solution. The f(x) calculation is based on 
the kNN classifier which computes the classification error rate 
and thus its complexity is O(n2) . Therefore, the time complex-
ity for the initial phase is O(n2).

The time complexity of the second phase (i.e., improvement 
phase) rely upon number of iterations ( Max_Itr ) and the time 
required for N -operator, �-operator, T -operator, and S-opera-
tor. The time complexity of the N -operator is O(1) while the 
complexity of the �-operator is O(n) . Furthermore, the time 
complexity of the T -operator is also O(n) while S-operator 
requires O(n2) . In brief, the time complexity of the second 
phase is O(Max_Itr ⋅ n2).

The time complexity of the classifier phase is O(n2) which 
is the time required to execute the kNN classifier. as a wrap-up, 
the time complexity required to execute the developed binary 
�-hill climbing is O(Max_Itr ⋅ n2).

3 � Experiments and results

A comprehensive experimental analysis is conducted in this 
section to investigate the proposed binary � HC algorithm 
efficiency when solving the problem of feature selection. 

The experiments are divided as follows: (i) the effect of two 
parameters of binary � HC (i.e., N  and � ) on the algorithm 
performance is studied in sect. 3.2.1 and 3.2.2; (ii) the influ-
ence of different transfer functions on the efficiency of the 
proposed binary � HC algorithm is presented in sect. 3.2.3; 
(iii) the performance of the proposed binary � HC algorithm 
using different classifiers is summarized in sect. 3.2.4; (iv) 
The effect of training/testing against k-fold cross validation 
models on the performance of the proposed algorithm is 
provided in Sec.3.2.5 ; and (v) the efficiency of the binary 
� HC algorithm is compared against other local search-
based algorithms in sect. 3.3, it is compared against recent 
metaheuristic methods in sect. 3.4, and it also compared 
against filter-based approach in sect. 3.5. It should be noted 
that the attributes of the datasets utilized in the algorithm 
assessment are summarized in sect. 3.1.

The binary � HC algorithm was implemented using 
MATLAB (R2014a) and tested on a laptop with 2.80 Intel 
Core i7 with 16 GB RAM. The operating system installed 
on the laptop is Microsoft Windows 10. In all the experi-
ments each dataset is splitted at random into two portions: 
training which is 80% of the instances and testing which is 
the remaining 20%. This split is used as it has been widely 
adapted by several state-of-the-art methods (Mafarja et al. 
2019; Alsaafin and Elnagar 2017; Li et al. 2011; Wieland 
and Pittore 2014)

3.1 � Dataset

The proposed binary � HC algorithm is evaluated using 
twenty-two datasets collected from the UCI data repository. 
A brief of the datasets characteristics is presented in Table 1. 
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The summary shows for each dataset the FS problem name, 
the number of features, and the instances count.

3.2 � Evaluation of the proposed binary ˇ HC 
algorithm

A sensitivity analysis for the proposed binary � HC algo-
rithm is performed to investigate the effect of different 
operators on the convergence of the algorithm. Twenty-three 
experimental scenarios are designed as shown in Table 2. 
In this table, these scenarios are divided to four groups as 
follows: firstly, five scenarios (Sen1–Sen5) are designed to 
study the influence of the N  parameter on the performance 
of the binary � HC algorithm. The next five experimental 
scenarios (Sen6–Sen10) investigate the convergence behav-
ior of the binary � HC algorithm by tunning the � parameter. 
The third group of experimental scenarios (Sen11–Sen18) 
are designed in order to investigate the influence of the dif-
ferent transfer functions on the the proposed binary � HC 
algorithm efficiency. The effect of the classifiers on the 
behavior of the developed binary � HC algorithm is inves-
tigated in the last three scenarios (Sen19–Sen21). Finally, 
the last two scenarios (i.e., Sen22, and Sen23) are designed 
in order to study the influence of data splitting techniques 

Table 1   The characteristics of the datasets

Dataset No. of features No. of instances

Small Tic-tac-toe 9 958
Breastcancer 9 699
HeartEW 13 270
Exactly2 13 1000
Exactly 13 1000
M-of-n 13 1000
WineEW 13 178
CongressEW 16 435
Vote 16 300
Zoo 16 101
Lymphography 18 148
SpectEW 22 267
BreastEW 30 596
IonosphereEW 34 351
KrvskpEW 36 3196
WaveformEW 40 5000
SonarEW 60 208

Medium Clean1 166 476
Semeion 265 1593
PenglungEW 325 73

Large Colon 2000 62
Leukemia 7129 72

Table 2   Twenty three 
experimental scenarios to 
evaluate the sensitivity of 
binary � HC algorithm

Experimental 
scenario

N � Trans. fun. Classifiers Notes

Sen1 0.005 0.05 S2 kNN
Sen2 0.05
Sen3 0.1
Sen4 0.5
Sen5 0.9
Sen6 0.9 0 S2 kNN
Sen7 0.005
Sen8 0.05 Sen8 = Sen5
Sen9 0.1
Sen10 0.5
Sen11 0.9 0.5 S1 kNN
Sen12 S2 Sen12 = Sen8
Sen13 S3
Sen14 S4
Sen15 V1
Sen16 V2
Sen17 V3
Sen18 V4
Sen19 0.9 0.5 S2 kNN Sen19 = Sen12
Sen20 SVM
Sen21 decision tree
Sen22 0.9 0.5 S2 kNN+traninig Sen22 = Sen19
Sen23 kNN+fold
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(i.e., training/testing against k-fold cross-validation) on the 
performance of the proposed � HC algorithm. It should be 
noted that 20 independent replications is conducted for each 
experimental scenario, and the maximum number of itera-
tions is 500. As suggested in (Emary et al. 2016), the value 
of the k parameter in the kNN algorithm is set to 5. Note that 
the bold results obtained in all result tables refers to the best 
results obtained. 

3.2.1 � Study the effect of the N  parameter

The parameter N  influence on the performance of the binary 
� HC algorithm is investigated in this section. Five experi-
mental scenarios are designed with different settings of N  
(i.e., Sen1 ( N=0.005), Sen2 ( N=0.05), Sen3 ( N=0.1), 
Sen4 ( N=0.5), and Sen5 ( N=0.9)). In general, a higher 
value for the N  parameter leads to a higher exploitation 
and makes the algorithm dig deeper in the searched region. 
Tables 3, 4, 5, and 6 provide the average (Avg) and the stand-
ard deviation (Stdv) of the results obtained by running Sen1 
to Sen5 in terms of the classification accuracy, the fitness 
value, the selected features, and the elapsed CPU time. Note 
that the best results in these tables are highlighted in bold 
font.

Table 3 shows the behavior of the proposed binary � HC 
algorithm with different values of the parameter N  in terms 
of classification accuracy. The highest average values are 
the best. As shown in Table 3, the two scenarios (i.e., Sen3 
and Sen5) obtained the best results on 6 datasets. While the 
three other scenarios (i.e., Sen1, Sen2, and Sen4) obtain the 
best results on 4, 5, and 5 datasets respectively. Based on the 
above findings, it is not clear which scenario configuration 
is the most efficient. In other words, no real impact of the 
parameter N  on the performance of binary �HC. In addi-
tion, the standard deviation values recorded in Table 3 show 
the robustness of the proposed algorithm. Clearly, the five 
experimental scenarios has low standard deviation values in 
all datasets, with a better performance for Sen5.

Table 4 present the influence of different values of the 
parameter N  on the performance of the binary � HC algo-
rithm in terms of fitness value. The best outcomes achieved 
are highlighted in bold font (lowest is the best).Clearly, 
Table 4 shows that the efficiency of the binary � HC algo-
rithm in the five experimental scenarios (Sen1 to Sen5) is 
almost the same. The two experimental scenarios Sen3 and 
Sen4 achieved the best results in 6 datasets, while Sen1 get 
the utmost results in 5 datasets. In addition, Sen1 and Sen5 
achieved the best results in 4 datasets. The lowest standard 
derivation values in all datasets happened in Sen1 to Sen 5. 

Table 3   The classification 
accuracy results obtained by 
binary � HC algorithm with 
varies N  values

Dataset Sen1 ( N
=0.005)

Sen2 ( N=0.05) Sen3 ( N=0.1) Sen4 ( N=0.5) Sen5 ( N=0.9)

Avg Stdv Avg Stdv Avg Stdv Avg Stdv Avg Stdv

Tic-tac-toe 0.780 0.012 0.786 0.024 0.781 0.017 0.800 0.009 0.776 0.006
Breastcancer 0.974 0.005 0.969 0.007 0.961 0.002 0.957 0.006 0.967 0.003
HeartEW 0.786 0.015 0.824 0.012 0.798 0.023 0.859 0.017 0.821 0.012
Exactly2 0.719 0.018 0.709 0.018 0.717 0.017 0.703 0.019 0.707 0.011
Exactly 0.917 0.147 0.966 0.105 1.000 0.002 0.969 0.095 0.967 0.100
M-of-n 0.988 0 1.000 0 1.000 0 1.000 0 1.000 0
WineEW 0.970 0.009 0.989 0.008 0.972 0.007 0.976 0.016 0.976 0.015
CongressEW 0.959 0.007 0.956 0.005 0.975 0.012 0.954 0.006 0.964 0.006
Vote 0.961 0.009 0.953 0.009 0.955 0.006 0.965 0.008 0.948 0.006
Zoo 0.915 0.019 0.977 0.038 0.926 0.029 0.874 0.015 0.947 0.009
Lymphography 0.801 0.030 0.829 0.022 0.841 0.028 0.872 0.038 0.886 0.029
SpectEW 0.859 0.010 0.838 0.013 0.769 0.009 0.838 0.015 0.854 0.013
BreastEW 0.955 0.007 0.955 0.011 0.959 0.008 0.958 0.006 0.960 0.007
IonosphereEW 0.933 0.013 0.940 0.013 0.947 0.011 0.949 0.010 0.928 0.013
KrvskpEW 0.981 0.001 0.983 0.004 0.985 0.002 0.974 0.007 0.984 0.003
WaveformEW 0.756 0.007 0.760 0.011 0.763 0.010 0.764 0.007 0.772 0.008
SonarEW 0.931 0.021 0.913 0.022 0.953 0.010 0.951 0.017 0.928 0.017
clean1 0.912 0.017 0.887 0.018 0.911 0.016 0.906 0.010 0.919 0.014
semeion 0.979 0.003 0.979 0.005 0.989 0.003 0.984 0.004 0.986 0.003
PenglungEW 0.909 0.018 0.897 0.019 0.872 0.026 0.884 0.040 0.873 0.025
Colon 0.868 0.027 0.785 0.028 0.735 0.031 0.721 0.016 0.810 0.021
Leukemia 0.894 0.026 0.971 0.006 0.869 0.020 0.936 0.022 0.965 0.012
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These experimental scenarios obtain almost the same results 
over 20 runs.

The results of Sen1 to Sen5 on the proposed algorithm in 
terms of the selected features are outlined in Table 5. Again 
lowest values (i.e., best) are point up using bold font. The 
developed binary � HC algorithm efficiency using Sen5 out-
performs the other four scenarios (Sen1–Sen4) as it achieves 
the best results on 7 datasets. While the other scenarios 
Sen1, Sen2, Sen3, and Sen4 get the best results on 3, 4, 6, 
and 2 datasets respectively.

Similarly, the impact of the parameter N  by utilizing dif-
ferent configurations on the efficiency of the proposed binary 
� HC algorithm in terms of the elapsed CPU time is recorded 
in Table 6. Clearly, higher values of the parameter N  leads 
to a lower CPU time. In other words, the two experimental 
scenarios (Sen4 and Sen5) achieved the lowest CPU time on 
8 datasets, while the other three scenarios Sen1, Sen2, and 
Sen3 obtained the lowest CPU time on 3, 1, and 2 datasets 
respectively.

In summary, the best results for the proposed � HC algo-
rithm for most datasets in terms of the classification accu-
racy, , the selected features, and the elapsed CPU time is 
happened when N  = 0.9. Furthermore, the performance of 
the proposed � HC algorithm using different configurations 
of the parameter N  is almost the same on all datasets in 

terms of the fitness value. As a result, in the next experi-
ments the parameter N  value is set to 0.9.

3.2.2 � Study the effect of parameter ˇ

The impact of the � parameter on the performance of the 
binary � HC algorithm is studied in this section using five 
various settings ( �=0, �=0.005, �=0.05, �=0.1, and �=0.5). 
As a result, five empirical scenarios (Sen6–Sen10) are 
devised. The value of the parameter N  is set to 0.9 based on 
the previous experiment conducted in sect. 3.2.1. Generally 
speaking, a larger � value results in a greater exploration 
rate. Tables 7, 8, 9, and 10 present the mean and the standard 
deviation of the results by running the scenarios from Sen6 
to Sen10 in terms of the classification accuracy, the fitness 
value, the selected features,and the elapsed CPU time. The 
obtained finest outcomes are highlighted in bold font.

Table 7 summarizes the experimental results of run-
ning Sen6 to Sen10 in terms of the classification accuracy. 
Table 7 show that the efficiency of the binary � HC algo-
rithm is enhanced by increasing the the parameter � value. 
In other words, Sen10 attained the best results on 10 out 
of 20 datasets, while the other scenarios Sen9, Sen8, and 
Sen7 achieved the finest outcomes on the datasets 7, 3, and 2 
respectively. However, the performance of Sen6 is the worst 

Table 4   The fitness values 
obtained by binary � HC 
algorithm with varies N  values

Dataset Sen1 ( N
=0.005)

Sen2 ( N=0.05) Sen3 ( N=0.1) Sen4 ( N=0.5) Sen5 ( N=0.9)

Avg Stdv Avg Stdv Avg Stdv Avg Stdv Avg Stdv

Tic-tac-toe 0.224 0.011 0.219 0.023 0.224 0.017 0.205 0.010 0.228 0.006
Breastcancer 0.031 0.004 0.036 0.007 0.044 0.003 0.047 0.006 0.038 0.003
HeartEW 0.216 0.015 0.180 0.012 0.206 0.021 0.145 0.017 0.182 0.013
Exactly2 0.283 0.017 0.294 0.017 0.285 0.018 0.301 0.018 0.295 0.011
Exactly 0.086 0.146 0.038 0.103 0.005 0.002 0.035 0.094 0.037 0.099
M-of-n 0.016 0 0.005 0 0.005 0 0.005 0 0.005 0
WineEW 0.035 0.009 0.016 0.007 0.033 0.007 0.028 0.016 0.028 0.015
CongressEW 0.043 0.007 0.046 0.005 0.028 0.013 0.048 0.006 0.038 0.006
Vote 0.042 0.009 0.050 0.010 0.048 0.007 0.037 0.008 0.054 0.006
Zoo 0.088 0.018 0.027 0.038 0.076 0.029 0.129 0.015 0.056 0.009
Lymphography 0.201 0.030 0.173 0.022 0.161 0.028 0.117 0.037 0.130 0.029
SpectEW 0.144 0.010 0.164 0.013 0.231 0.008 0.164 0.015 0.148 0.013
BreastEW 0.049 0.007 0.048 0.011 0.045 0.008 0.046 0.006 0.043 0.007
IonosphereEW 0.070 0.013 0.063 0.013 0.056 0.011 0.054 0.010 0.074 0.014
KrvskpEW 0.023 0.002 0.021 0.004 0.018 0.001 0.029 0.007 0.021 0.003
WaveformEW 0.246 0.008 0.243 0.011 0.240 0.011 0.238 0.007 0.230 0.008
SonarEW 0.073 0.020 0.090 0.022 0.050 0.010 0.053 0.017 0.075 0.017
clean1 0.091 0.017 0.116 0.018 0.092 0.016 0.097 0.010 0.085 0.014
semeion 0.026 0.003 0.026 0.005 0.015 0.003 0.021 0.004 0.019 0.004
PenglungEW 0.093 0.018 0.105 0.019 0.130 0.026 0.118 0.040 0.129 0.025
Colon 0.135 0.027 0.216 0.028 0.266 0.030 0.280 0.016 0.192 0.020
Leukemia 0.109 0.026 0.033 0.006 0.134 0.020 0.068 0.022 0.039 0.012
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when it is compared with other scenarios (i.e., Sen7, Sen8, 
and Sen10). This is because the parameter � is neglected in 
this scenario, and thus the source of exploration is not used. 
Furthermore, the standard derivation values are recorded in 
Table 7. It can be observed that Sen10 is more robust than 
the other scenarios on almost all the datasets as it obtains 
the same results over 20 runs.

Table 8 presents the results of examining the performance 
of the binary � HC algorithm by utilizing various values of 
the parameter � in terms of fitness values are recorded in . 
Table 8 provides clear evidence that the efficiency of the pro-
posed binary � HC algorithm is enhanced with a larger value 
of the parameter � . This is for the reason that higher values 
of � lead to a higher rate of exploration, and thus avoid from 
being stuck in local optima. Clearly, the performance of 
Sen10 outperforms the other four scenarios (Sen6–Sen9) as 
it achieves the finest outcomes on 10 datasets. Furthermore, 
Sen9 achieved the best results in 8 datasets, while Sen8, 
Sen7, and Sen6 get the best results on 4, 3, and 1 datasets 
respectively. Nonetheless, the performance of the proposed 
binary � HC algorithm using Sen10 is more robust than other 
scenarios based on the standard derivation outcomes listed 
in Table 8.

Table 9 illustrates the results when running Sen6 to Sen10 
in terms of the selected features by the proposed algorithm. 

Apparently, Sen8 outperform other scenarios, as it obtains 
the finest outcomes on 9 datasets. Furthermore, Sen7 and 
Sen9 obtained the finest outcomes on 5 datasets, while 
Sen10 achieved the finest outcomes on 2 datasets. Note that 
Sen6 did not obtain any best results for any of the datasets. 
This is because parameter � value is zero, and this makes 
the search process of the proposed algorithm to get suck in 
local optima.

Finally, the outcomes of the proposed binary � HC algo-
rithm efficiency when tunning the parameter � in terms of 
the elapsed CPU time are outlined in Table 10. According to 
the results in Table 10, it can be seen that Sen8 obtained the 
minimum CPU time on 8 datasets. While the other scenarios 
Sen6, Sen7, Sen9, and Sen10 achieved the minimum CPU 
time on 1, 4, 5, and 4 datasets respectively.

In a nutshell, the proposed binary � HC algorithm with �
=0.5 is superior than the other versions of the binary � HC 
algorithm in terms of the classification accuracy and the 
obtained fitness value. On the other hand, the efficiency of 
the proposed binary � HC algorithm with �=0.05 outper-
forms the other versions of the binary � HC algorithm in 
terms of the selected features and the elapsed CPU time. 
As a result, based on the classification accuracy results the 
value 0.5 is used to set the parameter � in the upcoming 
experiments.

Table 5   The selected features obtained by binary � HC algorithm with varies N  values

Dataset Sen1 ( N=0.005) Sen2 ( N=0.05) Sen3 ( N=0.1) Sen4 ( N=0.5) Sen5 ( N=0.9)

Avg Stdv Avg Stdv Avg Stdv Avg Stdv Avg Stdv

Tic-tac-toe 6.2 0.616 5.8 0.894 5.950 0.224 6.0 1.026 5.550 0.686
Breastcancer 5.1 0.718 4.550 0.999 5.1 1.252 4.8 0.696 4.650 1.089
HeartEW 5.150 1.309 7.5 1.433 7.5 2.090 5.850 1.309 6.350 2.254
Exactly2 6.050 2.605 7.250 1.482 5.850 2.084 8.550 0.999 6.950 2.438
Exactly 5.9 1.294 5.8 0.696 6.050 0.224 5.850 1.226 5.350 1.268
M-of-n 6.0 0 6.0 0 6.0 0 6.0 0 5.850 0.875
WineEW 6.550 0.887 6.650 1.565 6.5 1.638 5.550 1.276 6.250 1.482
CongressEW 4.550 1.605 4.650 1.268 5.8 1.281 5.150 2.346 3.450 2.328
Vote 4.950 1.356 4.5 1.638 4.4 1.314 4.550 1.276 4.7 2.473
Zoo 5.2 1.542 6.750 1.209 5.3 0.865 5.3 1.342 5.350 1.137
Lymphography 6.9 1.804 7.1 1.651 7.450 1.731 7.750 1.618 6.7 1.949
SpectEW 8.6 2.113 7.3 1.895 4.150 3.329 9.0 1.974 8.350 2.7
BreastEW 12.250 2.023 10.550 2.139 12.550 2.350 11.250 1.333 11.050 3.546
IonosphereEW 11.9 2.490 11.650 2.815 11.7 3.011 11.6 2.415 10.350 3.313
KrvskpEW 14.350 2.815 17.050 2.212 12.650 3.345 12.7 3.097 16.2 5.238
WaveformEW 21.1 2.845 20.150 2.961 20.750 2.936 20.4 2.542 19.9 3.144
SonarEW 24.1 3.024 22.550 2.685 23.2 3.622 25.250 2.807 25.3 3.840
clean1 68.050 5.216 69.050 6.992 68.6 5.642 70.7 4.390 71.850 7.043
semeion 123.550 8.185 122.250 10.492 120.450 7.749 125.750 9.695 123.4 8.075
PenglungEW 95.7 5.283 91.950 6.629 90.6 6.557 98.7 8.208 98.5 8.121
Colon 822.250 19.553 807.550 19.041 800.2 19.718 778.1 14.090 806.8 16.513
Leukemia 3220.050 48.621 3179.2 37.954 3194.950 39.349 3191.750 46.362 3191.550 49.618
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Table 6   The CPU time (in 
Seconds) obtained by binary 
� HC algorithm with varies N  
values

Dataset Sen1 ( N
=0.005)

Sen2 ( N=0.05) Sen3 ( N=0.1) Sen4 ( N=0.5) Sen5 ( N=0.9)

Avg Stdv Avg Stdv Avg Stdv Avg Stdv Avg Stdv

Tic-tac-toe 5.989 0.268 5.988 0.200 5.668 0.256 5.513 0.404 6.079 0.515
Breastcancer 5.276 0.104 4.970 0.102 5.036 0.142 4.987 0.118 4.905 0.103
HeartEW 4.101 0.142 4.230 0.128 4.420 0.137 4.164 0.133 4.094 0.244
Exactly2 6.422 0.669 7.028 0.603 6.574 0.682 7.131 0.384 6.401 0.435
Exactly 6.338 0.282 6.378 0.304 6.167 0.241 5.948 0.299 6.421 0.242
M-of-n 6.058 0.155 6.026 0.066 6.422 0.122 5.673 0.231 5.606 0.142
WineEW 4.236 0.109 4.135 0.048 4.129 0.053 4.076 0.075 4.157 0.048
CongressEW 4.714 0.096 4.471 0.158 4.582 0.213 4.753 0.088 4.308 0.138
Vote 4.401 0.042 4.366 0.092 4.275 0.059 4.175 0.116 4.230 0.162
Zoo 3.919 0.178 4.084 0.106 3.935 0.222 3.707 0.172 3.744 0.144
Lymphography 3.973 0.352 3.941 0.116 3.975 0.153 4.165 0.052 4.145 0.033
SpectEW 3.912 0.173 4.241 0.128 4.048 0.132 4.403 0.048 4.095 0.189
BreastEW 5.195 0.081 5.168 0.091 5.075 0.085 5.063 0.107 4.994 0.112
IonosphereEW 4.388 0.088 4.634 0.085 4.495 0.081 4.350 0.273 4.413 0.061
KrvskpEW 36.189 3.252 37.828 2.478 35.144 4.220 35.124 3.961 37.356 2.790
WaveformEW 94.514 9.550 93.414 8.396 92.964 10.179 93.403 8.502 92.013 7.604
SonarEW 4.246 0.036 4.245 0.037 4.285 0.070 4.240 0.039 4.201 0.066
clean1 6.652 0.160 6.684 0.262 6.629 0.176 6.701 0.164 6.720 0.238
semeion 51.893 3.184 52.008 5.155 51.012 2.599 53.120 4.209 51.890 3.519
PenglungEW 4.370 0.046 4.378 0.050 4.369 0.090 4.315 0.050 4.348 0.044
Colon 4.940 0.106 5.031 0.096 4.980 0.060 4.951 0.085 5.064 0.077
Leukemia 12.052 1.343 12.284 1.363 12.221 1.225 12.410 1.482 12.728 1.614

Table 7   The classification 
accuracy results obtained by 
binary � HC algorithm with 
varies � values

Dataset Sen6 ( �=0) Sen7 ( �=0.005) Sen8 ( �=0.05) Sen9 ( �=0.1) Sen10 ( �=0.5)

Avg Stdv Avg Stdv Avg Stdv Avg Stdv Avg Stdv

Tic-tac-toe 0.777 0.011 0.771 0.008 0.776 0.006 0.800 0 0.816 0
Breastcancer 0.961 0.006 0.969 0.007 0.967 0.003 0.962 0.002 0.974 0.001
HeartEW 0.813 0.017 0.803 0.021 0.821 0.012 0.819 0.012 0.836 0.011
Exactly2 0.741 0.028 0.731 0.019 0.707 0.011 0.728 0.011 0.750 0.006
Exactly 0.950 0.122 0.885 0.161 0.967 0.100 0.820 0.167 0.999 0.003
M-of-n 1.000 0.001 1.000 0 1.000 0 1.000 0 1.000 0
WineEW 0.960 0.021 0.974 0.009 0.976 0.015 0.987 0.010 0.996 0.005
CongressEW 0.952 0.006 0.964 0.007 0.964 0.006 0.963 0.005 0.974 0.004
Vote 0.949 0.011 0.978 0.007 0.948 0.006 0.959 0.004 0.957 0.004
Zoo 0.995 0.009 0.996 0.008 0.947 0.009 0.962 0.029 1.000 0
Lymphography 0.837 0.030 0.853 0.036 0.886 0.029 0.907 0.029 0.877 0.014
SpectEW 0.820 0.015 0.866 0.026 0.854 0.013 0.860 0.015 0.859 0.009
BreastEW 0.954 0.006 0.954 0.010 0.960 0.007 0.969 0.006 0.964 0.005
IonosphereEW 0.921 0.014 0.910 0.014 0.928 0.013 0.942 0.012 0.937 0.008
KrvskpEW 0.974 0.008 0.981 0.005 0.984 0.003 0.976 0.002 0.964 0.003
WaveformEW 0.748 0.015 0.756 0.010 0.772 0.008 0.767 0.007 0.748 0.006
SonarEW 0.928 0.021 0.912 0.021 0.928 0.017 0.949 0.019 0.894 0.011
clean1 0.881 0.008 0.886 0.017 0.919 0.014 0.941 0.013 0.880 0.007
semeion 0.969 0.005 0.973 0.005 0.986 0.003 0.987 0.003 0.976 0.002
PenglungEW 0.820 0.033 0.769 0.058 0.873 0.025 0.912 0.019 0.781 0.019
Colon 0.673 0.030 0.756 0.029 0.810 0.021 0.763 0.028 0.835 0.010
Leukemia 0.793 0.028 0.856 0.029 0.965 0.012 0.856 0.011 0.903 0.014
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Table 8   The fitness values 
obtained by binary � HC 
algorithm with varies � values

Dataset Sen6 ( �=0) Sen7 ( �=0.005) Sen8 ( �=0.05) Sen9 ( �=0.1) Sen10 ( �=0.5)

Avg Stdv Avg Stdv Avg Stdv Avg Stdv Avg Stdv

Tic-tac-toe 0.227 0.011 0.233 0.009 0.228 0.006 0.205 0 0.189 0
Breastcancer 0.045 0.006 0.037 0.007 0.038 0.003 0.043 0.002 0.030 0.001
HeartEW 0.191 0.017 0.201 0.021 0.182 0.013 0.184 0.012 0.167 0.010
Exactly2 0.260 0.030 0.270 0.021 0.295 0.011 0.274 0.010 0.249 0.007
Exactly 0.054 0.121 0.117 0.158 0.037 0.099 0.181 0.164 0.005 0.003
M-of-n 0.005 0.002 0.005 0 0.005 0 0.005 0 0.005 0
WineEW 0.045 0.021 0.032 0.008 0.028 0.015 0.018 0.010 0.009 0.004
CongressEW 0.050 0.007 0.039 0.007 0.038 0.006 0.040 0.006 0.029 0.005
Vote 0.054 0.011 0.024 0.008 0.054 0.006 0.044 0.004 0.046 0.004
Zoo 0.008 0.009 0.008 0.008 0.056 0.009 0.042 0.028 0.003 0
Lymphography 0.166 0.029 0.150 0.036 0.130 0.029 0.095 0.029 0.126 0.015
SpectEW 0.182 0.015 0.137 0.026 0.148 0.013 0.143 0.014 0.145 0.008
BreastEW 0.050 0.006 0.049 0.010 0.043 0.007 0.034 0.007 0.041 0.005
IonosphereEW 0.082 0.014 0.093 0.014 0.074 0.014 0.061 0.012 0.067 0.008
KrvskpEW 0.031 0.008 0.023 0.006 0.021 0.003 0.029 0.002 0.041 0.004
WaveformEW 0.255 0.015 0.246 0.011 0.230 0.008 0.236 0.007 0.255 0.006
SonarEW 0.075 0.021 0.092 0.021 0.075 0.017 0.055 0.018 0.110 0.011
clean1 0.122 0.008 0.116 0.016 0.085 0.014 0.063 0.013 0.123 0.006
semeion 0.035 0.005 0.031 0.005 0.019 0.004 0.018 0.002 0.029 0.002
PenglungEW 0.182 0.033 0.231 0.057 0.129 0.025 0.090 0.019 0.221 0.019
Colon 0.329 0.030 0.245 0.028 0.192 0.020 0.239 0.028 0.168 0.010
Leukemia 0.210 0.027 0.147 0.029 0.039 0.012 0.148 0.011 0.101 0.014

Table 9   The selected features obtained by binary � HC algorithm with varies � values

Dataset Sen6 ( �=0) Sen7 ( �=0.005) Sen8 ( �=0.05) Sen9 ( �=0.1) Sen10 ( �=0.5)

Avg Stdv Avg Stdv Avg Stdv Avg Stdv Avg Stdv

Tic-tac-toe 5.350 0.489 5.9 1.071 5.550 0.686 5.9 0.553 6.0 0.459
Breastcancer 5.3 1.129 5.150 0.587 4.650 1.089 4.6 1.231 4.050 0.394
HeartEW 7.350 1.631 6.6 1.635 6.350 2.254 6.6 1.903 6.550 1.932
Exactly2 4.5 3.220 5.350 3.360 6.950 2.438 5.6 2.583 1.550 2.438
Exactly 5.750 1.372 5.050 2.164 5.350 1.268 3.8 2.707 6.1 0.641
M-of-n 6.050 0.224 6.2 0.410 5.850 0.875 6.1 0.553 6.2 0.616
WineEW 6.8 1.196 7.350 1.565 6.250 1.482 7.0 1.892 6.8 2.285
CongressEW 4.150 2.110 6.0 2.596 3.450 2.328 4.850 3.133 4.8 2.142
Vote 6.350 1.843 4.7 2.408 4.7 2.473 3.7 2.557 4.7 1.129
Zoo 5.750 0.786 5.8 0.951 5.350 1.137 5.8 1.989 5.350 0.671
Lymphography 7.9 1.774 8.150 1.899 6.7 1.949 6.850 2.870 7.7 1.689
SpectEW 8.550 2.438 8.350 2.033 8.350 2.007 8.550 2.064 11.350 1.631
BreastEW 11.550 2.235 11.850 2.159 11.050 3.546 12.050 3.316 15.5 3.103
IonosphereEW 13.950 3.069 13.350 2.581 10.350 3.313 12.250 2.149 13.950 2.417
KrvskpEW 17.950 3.332 16.9 3.726 16.2 5.238 15.7 3.063 18.8 2.913
WaveformEW 20.550 3.379 21.1 3.538 19.9 3.144 19.350 2.681 22.050 3.034
SonarEW 24.550 3.546 23.750 3.508 25.3 3.840 22.9 3.878 28.9 2.989
clean1 71.4 6.969 60.350 7.365 71.850 7.043 77.050 5.763 78.250 7.973
semeion 123.350 7.876 109.650 7.686 123.4 8.075 128.850 7.184 128.450 9.423
PenglungEW 123.3 10.043 85.250 11.964 98.5 8.121 102.150 9.664 148.0 7.518
Colon 954.750 21.210 740.9 21.706 806.8 16.513 854.250 13.447 944.450 20.213
Leukemia 3522.150 42.794 3092.6 46.311 3191.550 49.618 3290.750 30.133 3473.8 38.030
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3.2.3 � Study the effect of the different transfer functions

The the proposed binary � HC algorithm performance when 
using various transfer functions is studied in this section. 
Eight experimental scenarios (i.e., Sen11–Sen18) are tai-
lored with different eight transfer functions (i.e., S1–S4 as 
a different versions of S-Shaped, and V1–V4 as a different 
versions of V-Shaped). These transfer functions are bor-
rowed from (Mafarja et al. 2018a). The value of the param-
eter N  is set to 0.9 and the parameter � is set to 0.5 based 
on the previous experiments conducted in sects. 3.2.1 and 
3.2.2. Tables 11, 12, 13, and 14 illustrate the mean and the 
standard deviation of the results by running Sen11 to Sen18 
in terms of the classification accuracy, the fitness value, the 
selected features, and the elapsed CPU time. The bold font 
is used to point up the best outcomes.

Table 11 shows the influence of using different transfer 
functions on the performance of the proposed binary � HC 
algorithm in terms of the classification accuracy. Table 11 
demonstrate that the performance of the proposed algorithm 
using Sen12 outperforms the seven other scenarios (Sen11, 
and Sen13–Sen18) as it obtained the finest outcomes on 7 
datasets. In addition, Sen11, Sen13, and Sen16 have the 
best results on 3 datasets. While Sen14, Sen15, and Sen17 
obtained the finest outcomes on 2 datasets. Finally, Sen18 
achieved better results than other scenarios in one dataset. 

Table 11 shows the robustness of Sen11 to Sen18 based on 
the standard derivations of the results. It is not clear which 
experimental scenario to pick, as all scenarios achieved 
almost similar results.

Similarly, Table 12 demonstrates the proposed binary 
� HC algorithm efficiency in terms of the fitness value by 
utilizing various transfer functions. Clearly, Sen12 outper-
forms other scenarios as it obtained the finest outcomes on 
6 datasets. In addition, Sen11, Sen13, and Sen16 achieved 
the best results on 3 datasets. While Sen15, Sen17, and 
Sen18 obtained the best results on 2 datasets. Finally, Sen14 
achieved the finest outcomes on one dataset. Based on the 
standard derivation results recorded in Table 12, it can be 
observed that Sen11 to Sen18 obtained almost similar stand-
ard derivations results. This reflects the robustness of the 
proposed binary � HC algorithm in all cases.

Table 13 summarizes the results of running the experi-
mental scenarios from Sen11 to Sen18 in terms of the 
selected features. Clearly, Sen11 to Sen14 which study dif-
ferent versions of the S-Shaped transfer function did not 
obtain any of the best results. On the other hand, Sen16 
achieved the best results in 7 datasets. While the scenarios 
Sen15, Sen17, and Sen18 get the best results in 5 datasets. 
In conclusion, the performance of the proposed binary 
� HC algorithm in terms of the selected features using the 

Table 10   The CPU time (in 
Seconds) obtained by binary 
� HC algorithm with varies � 
values

Dataset Sen6 ( �=0) Sen7 ( �=0.005) Sen8 ( �=0.05) Sen9 ( �=0.1) Sen10 ( �=0.5)

Avg Stdv Avg Stdv Avg Stdv Avg Stdv Avg Stdv

Tic-tac-toe 5.666 0.268 6.081 0.912 6.079 0.515 5.958 0.084 5.708 0.193
Breastcancer 5.318 0.178 4.951 0.093 4.905 0.103 4.907 0.197 4.934 0.075
HeartEW 4.345 0.087 4.202 0.232 4.094 0.244 4.295 0.080 4.304 0.061
Exactly2 6.358 1.134 6.218 0.834 6.401 0.435 6.349 0.701 5.752 0.392
Exactly 6.063 0.255 6.207 0.444 6.421 0.242 5.783 0.652 6.077 0.085
M-of-n 5.871 0.216 6.404 0.130 5.606 0.142 5.756 0.189 6.109 0.116
WineEW 4.065 0.153 4.255 0.103 4.157 0.048 3.947 0.300 4.126 0.052
CongressEW 4.671 0.116 4.646 0.291 4.308 0.138 4.444 0.221 4.311 0.300
Vote 4.323 0.057 4.341 0.069 4.230 0.162 3.962 0.204 3.919 0.312
Zoo 4.153 0.088 4.098 0.143 3.744 0.144 4.096 0.137 3.650 0.272
Lymphography 4.159 0.064 4.140 0.074 4.145 0.033 3.968 0.168 4.124 0.043
SpectEW 4.295 0.116 3.954 0.215 4.095 0.189 4.015 0.223 4.041 0.126
BreastEW 5.216 0.115 5.108 0.124 4.994 0.112 5.100 0.089 4.996 0.088
IonosphereEW 4.356 0.123 4.348 0.237 4.413 0.061 4.456 0.091 4.402 0.181
KrvskpEW 38.501 3.457 38.519 4.423 37.356 2.790 36.151 1.992 37.718 1.238
WaveformEW 92.639 12.676 96.081 9.831 92.013 7.604 91.124 5.148 93.915 3.411
SonarEW 4.235 0.067 4.258 0.075 4.201 0.066 4.263 0.074 4.261 0.061
clean1 6.774 0.228 6.402 0.220 6.720 0.238 6.678 0.226 6.959 0.144
semeion 52.388 3.390 49.365 2.466 51.890 3.519 52.972 2.795 53.574 1.450
PenglungEW 4.368 0.046 4.368 0.066 4.348 0.044 4.424 0.093 4.286 0.146
Colon 5.146 0.119 5.103 0.106 5.064 0.077 5.082 0.121 5.181 0.108
Leukemia 13.183 1.799 12.839 1.789 12.728 1.614 12.808 1.712 13.860 1.993
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V-Shaped transfer function achieved superior outcomes than 
the S-Shaped transfer function for all cases.

Finally, the results of running Sen11 to Se18 in terms 
of the elapsed CPU time are summarized in Table 14. 

Apparently, the performance of Sen16 outperforms the other 
scenarios as it obtained the minimum of the average CPU 
time on 9 datasets. Furthermore, Sen15 gets the minimum 
of the average CPU time on 5 datasets. While Sen12 and 

Table 11   The classification 
accuracy results obtained by 
binary � HC algorithm with 
varies transfer functions

Dataset Sen11 Sen12 Sen13 Sen14 Sen15 Sen16 Sen17 Sen18
S1 S2 S3 S4 V1 V2 V3 V4

Tic-tac-toe Avg 0.795 0.816 0.808 0.799 0.776 0.788 0.802 0.776
Stdv 0.005 0 0 0.002 0.010 0.007 0.003 0.012

Breastcancer Avg 0.985 0.974 0.973 0.977 0.979 0.970 0.966 0.975
Stdv 0.001 0.001 0.002 0.001 0.002 0.002 0 0.003

HeartEW Avg 0.860 0.836 0.827 0.870 0.859 0.843 0.844 0.838
Stdv 0.006 0.011 0.008 0.004 0.008 0.006 0.007 0.004

Exactly2 Avg 0.760 0.750 0.774 0.766 0.766 0.750 0.766 0.767
Stdv 0.005 0.006 0.001 0.007 0 0.005 0.003 0.002

Exactly Avg 0.817 0.999 0.902 0.818 0.731 0.735 0.757 0.847
Stdv 0.062 0.003 0.064 0.090 0.066 0.075 0.099 0.123

M-of-n Avg 0.965 1.000 0.967 0.957 0.914 0.902 0.940 0.969
Stdv 0.024 0 0.025 0.032 0.057 0.057 0.054 0.052

WineEW Avg 0.978 0.996 0.988 1.000 0.959 1.000 0.971 0.971
Stdv 0 0.003 0.005 0 0.005 0 0.009 0.008

CongressEW Avg 0.966 0.974 0.959 0.963 0.962 0.973 0.977 0.972
Stdv 0.005 0.004 0.004 0.005 0.004 0.004 0.002 0.001

Vote Avg 0.957 0.957 0.943 0.962 0.939 0.958 0.975 0.963
Stdv 0.005 0.004 0.008 0.004 0.003 0.004 0.003 0.005

Zoo Avg 0.886 1.000 0.989 0.786 0.909 0.844 0.971 0.929
Stdv 0.023 0.016 0.012 0.006 0.020 0.008 0.010 0.018

Lymphography Avg 0.836 0.877 0.913 0.878 0.868 0.849 0.905 0.870
Stdv 0.013 0.014 0.011 0.015 0.006 0.014 0.021 0.011

SpectEW Avg 0.851 0.859 0.869 0.835 0.841 0.868 0.846 0.852
Stdv 0.012 0.009 0.006 0.007 0.009 0.005 0.007 0.008

BreastEW Avg 0.979 0.964 0.946 0.962 0.953 0.969 0.959 0.964
Stdv 0.003 0.005 0.003 0.004 0.004 0.004 0.005 0.003

IonosphereEW Avg 0.861 0.937 0.895 0.895 0.918 0.901 0.902 0.907
Stdv 0.007 0.008 0.004 0.005 0.008 0.006 0.010 0.008

KrvskpEW Avg 0.957 0.964 0.954 0.961 0.950 0.947 0.956 0.953
Stdv 0.002 0.003 0.006 0.005 0.006 0.009 0.010 0.010

WaveformEW Avg 0.789 0.748 0.779 0.786 0.771 0.775 0.771 0.777
Stdv 0.003 0.006 0.006 0.006 0.008 0.008 0.008 0.009

SonarEW Avg 0.806 0.894 0.843 0.855 0.850 0.838 0.823 0.868
Stdv 0.012 0.011 0.012 0.012 0.011 0.012 0.016 0.015

clean1 Avg 0.880 0.880 0.882 0.875 0.879 0.895 0.881 0.868
Stdv 0.005 0.007 0.006 0.008 0.006 0.008 0.005 0.008

semeion Avg 0.971 0.976 0.965 0.977 0.978 0.975 0.975 0.968
Stdv 0.001 0.002 0.002 0.002 0.003 0.002 0.002 0.002

PenglungEW Avg 0.773 0.781 0.869 0.818 0.888 0.905 0.882 0.827
Stdv 0.014 0.019 0.010 0.012 0.018 0.019 0.013 0.014

Colon Avg 0.805 0.0.835 0.710 0.789 0.842 0.787 0.840 0.803
Stdv 0.007 0.010 0 0.016 0.014 0.016 0.016 0.010

Leukemia Avg 0.861 0.903 0.883 0.836 0.967 0.915 0.828 0.972
Stdv 0.009 0.014 0.011 0.009 0.011 0.006 0.011 0
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Sen17 achieved the minimum of the average CPU time on 
4 datasets. Also, Sen14 and Sen18 obtained the minimum 
CPU time on one dataset. Furthermore, Sen11 and Sen13 
did not obtain any of the best results in terms of CPU time.

Based on the above discussions, the performance of the 
proposed algorithm using the S-Shaped transfer function 
is better than the V-Shaped transfer function in terms of 
the classification accuracy and the fitness values. On the 

Table 12   The fitness values 
obtained by binary � HC 
algorithm with varies transfer 
functions

Dataset Sen11 Sen12 Sen13 Sen14 Sen15 Sen16 Sen17 Sen18
S1 S2 S3 S4 V1 V2 V3 V4

Tic-tac-toe Avg 0.209 0.189 0.200 0.209 0.227 0.216 0.202 0.229
Stdv 0.005 0 0 0.001 0.009 0.007 0.003 0.010

Breastcancer Avg 0.020 0.030 0.031 0.030 0.025 0.035 0.037 0.030
Stdv 0.002 0.001 0.002 0.001 0.001 0.002 0 0.003

HeartEW Avg 0.145 0.167 0.177 0.136 0.144 0.160 0.159 0.163
Stdv 0.006 0.010 0.008 0.004 0.008 0.006 0.006 0.003

Exactly2 Avg 0.245 0.249 0.225 0.234 0.232 0.249 0.233 0.232
Stdv 0.006 0.007 0.001 0.004 0 0.003 0.002 0.001

Exactly Avg 0.187 0.005 0.102 0.187 0.270 0.266 0.245 0.157
Stdv 0.062 0.003 0.064 0.090 0.064 0.073 0.097 0.121

M-of-n Avg 0.040 0.005 0.039 0.048 0.091 0.102 0.065 0.035
Stdv 0.024 0 0.025 0.033 0.056 0.057 0.053 0.051

WineEW Avg 0.029 0.009 0.017 0.005 0.044 0.003 0.033 0.033
Stdv 0.001 0.004 0.007 0.001 0.005 0.001 0.009 0.007

CongressEW Avg 0.040 0.029 0.044 0.042 0.039 0.029 0.025 0.029
Stdv 0.005 0.005 0.004 0.005 0.003 0.004 0.001 0.001

Vote Avg 0.050 0.046 0.060 0.042 0.062 0.044 0.027 0.040
Stdv 0.005 0.004 0.008 0.004 0.003 0.004 0.003 0.005

Zoo Avg 0.119 0.003 0.016 0.216 0.094 0.157 0.033 0.073
Stdv 0.022 0 0.012 0.006 0.020 0.008 0.009 0.018

Lymphography Avg 0.169 0.126 0.092 0.126 0.133 0.153 0.098 0.132
Stdv 0.012 0.015 0.011 0.014 0.005 0.013 0.021 0.011

SpectEW Avg 0.153 0.145 0.134 0.168 0.160 0.135 0.155 0.150
Stdv 0.013 0.008 0.006 0.007 0.009 0.005 0.007 0.008

BreastEW Avg 0.029 0.041 0.059 0.043 0.050 0.035 0.044 0.039
Stdv 0.002 0.005 0.003 0.004 0.003 0.003 0.004 0.003

IonosphereEW Avg 0.144 0.067 0.110 0.109 0.083 0.100 0.099 0.094
Stdv 0.007 0.008 0.004 0.005 0.008 0.006 0.010 0.008

KrvskpEW Avg 0.049 0.041 0.052 0.045 0.053 0.056 0.047 0.050
Stdv 0.002 0.004 0.005 0.005 0.005 0.009 0.010 0.009

WaveformEW Avg 0.217 0.255 0.224 0.218 0.230 0.227 0.231 0.224
Stdv 0.003 0.006 0.006 0.006 0.008 0.008 0.008 0.009

SonarEW Avg 0.199 0.110 0.161 0.148 0.151 0.163 0.178 0.133
Stdv 0.012 0.011 0.012 0.012 0.011 0.012 0.016 0.014

clean1 Avg 0.127 0.123 0.123 0.130 0.123 0.106 0.121 0.134
Stdv 0.005 0.006 0.006 0.007 0.006 0.008 0.005 0.008

semeion Avg 0.036 0.029 0.041 0.028 0.024 0.028 0.028 0.035
Stdv 0.001 0.002 0.002 0.002 0.003 0.002 0.002 0.002

PenglungEW Avg 0.231 0.221 0.135 0.186 0.114 0.096 0.119 0.174
Stdv 0.013 0.019 0.010 0.012 0.018 0.018 0.013 0.013

Colon Avg 0.200 0.168 0.293 0.214 0.159 0.213 0.161 0.197
Stdv 0.007 0.010 0 0.016 0.014 0.016 0.016 0.010

Leukemia Avg 0.145 0.101 0.121 0.167 0.036 0.086 0.173 0.030
Stdv 0.009 0.014 0.011 0.008 0.011 0.006 0.011 0
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other hand, the performance of the proposed algorithm 
using the V-Shaped transfer function is superior than 
the S-Shaped transfer function in terms of the selected 
attributes and the CPU time. However, it is hard to decide 

which transfer function is better for the feature selec-
tion problem. We decide to use the S-Shaped (S3) trans-
fer function in the subsequent experimentation, as the 

Table 13   The selected features 
obtained by binary � HC 
algorithm with varies transfer 
functions

Dataset Sen11 Sen12 Sen13 Sen14 Sen15 Sen16 Sen17 Sen18
S1 S2 S3 S4 V1 V2 V3 V4

Tic-tac-toe Avg 6.0 6.0 9.0 8.7 4.7 5.050 5.0 5.9
Stdv 0 0.459 0 0.733 1.174 0.510 0 1.210

Breastcancer Avg 4.7 4.050 3.9 5.950 4.2 5.1 3.0 5.3
Stdv 1.031 0.394 0.553 0.224 1.152 0.447 0 0.470

HeartEW Avg 8.1 6.550 7.650 9.6 5.6 6.2 4.9 3.8
Stdv 1.071 1.932 1.814 1.759 1.698 1.609 1.021 1.399

Exactly2 Avg 9.9 1.550 2.7 3.0 1.0 2.0 2.050 1.750
Stdv 1.832 2.438 1.081 3.449 0 2.052 1.669 1.860

Exactly Avg 7.8 6.1 7.2 7.9 4.3 4.150 5.5 5.950
Stdv 0.696 0.641 0.696 1.119 2.993 2.560 2.544 1.877

M-of-n Avg 7.350 6.2 7.450 7.450 6.850 6.5 7.1 6.0
Stdv 0.933 0.616 0.686 1.191 1.268 1.433 0.968 1.026

WineEW Avg 9.050 6.8 5.550 6.250 4.450 3.7 5.2 6.050
Stdv 1.099 2.285 0.945 1.118 1.504 1.261 0.894 0.999

CongressEW Avg 9.2 4.8 5.450 7.6 3.150 3.650 3.5 3.050
Stdv 0.834 2.142 1.638 1.875 2.254 0.933 0.827 0.394

Vote Avg 10.750 4.7 6.2 6.650 2.4 4.450 3.9 4.4
Stdv 1.164 1.129 1.881 1.872 0.681 1.761 0.718 1.353

Zoo Avg 10.750 5.350 8.3 6.550 5.2 4.2 6.3 5.4
Stdv 1.020 0.671 1.302 1.356 0.834 0.410 1.490 0.681

Lymphography Avg 12.1 7.7 9.550 9.350 4.250 6.8 6.3 6.650
Stdv 1.294 1.689 1.791 1.899 1.293 1.473 1.218 1.309

SpectEW Avg 12.7 11.350 9.950 9.7 6.4 7.450 6.2 7.2
Stdv 1.780 1.631 1.572 2.203 2.162 1.731 1.642 1.322

BreastEW Avg 22.8 15.5 16.2 15.850 10.6 11.0 9.850 10.5
Stdv 1.881 3.103 2.093 2.681 2.088 2.596 2.621 2.090

IonosphereEW Avg 21.6 13.950 17.550 15.250 6.350 6.150 6.1 5.150
Stdv 2.741 2.417 3.034 2.9 2.159 1.899 1.683 1.631

KrvskpEW Avg 24.7 18.8 21.850 21.550 12.850 11.6 12.350 14.0
Stdv 2.364 2.913 3.133 1.959 2.323 1.789 2.519 1.919

WaveformEW Avg 29.4 22.050 24.250 24.6 14.750 14.7 14.9 14.950
Stdv 2.393 3.034 2.954 1.818 2.291 2.515 2.713 2.605

SonarEW Avg 41.1 28.9 31.650 30.150 17.550 16.350 15.850 17.050
Stdv 3.401 2.989 3.407 4.043 2.946 2.477 3.150 2.665

clean1 Avg 121.650 78.250 90.8 93.550 45.550 45.4 42.5 44.5
Stdv 4.392 7.973 6.486 5.735 5.104 4.430 5.960 5.405

semeion Avg 194.750 128.450 146.450 142.650 75.550 72.4 73.8 74.5
Stdv 6.365 9.423 7.060 10.194 6.395 8.457 5.970 7.302

PenglungEW Avg 212.450 148.0 174.850 168.250 80.450 80.650 80.950 80.5
Stdv 24.479 7.518 7.250 7.759 9.064 8.324 7.126 6.613

Colon Avg 1443.0 944.450 1110.050 1061.250 513.250 503.3 523.650 529.550
Stdv 45.473 20.213 16.002 23.402 19.732 17.125 17.024 19.351

Leukemia Avg 5059.8 3473.8 3956.5 3600.3 1858.650 1843.2 1872.950 1833.8
Stdv 367.432 38.030 92.789 107.594 33.078 37.769 39.409 17.225
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performance of the proposed algorithm using S-Shaped 
(S3) is superior than others in terms of classification 
accuracy.

3.2.4 � Study the effect of the different classifiers

In this section, the influence of using three distinct clas-
sifiers (i.e., kNN, SVM, and decision tree (DT)) on the 

Table 14   The CPU time (in 
seconds) obtained by binary 
� HC algorithm with varies 
transfer functions

Dataset Sen11 Sen12 Sen13 Sen14 Sen15 Sen16 Sen17 Sen18
S1 S2 S3 S4 V1 V2 V3 V4

Tic-tac-toe Avg 7.375 5.708 6.308 6.125 4.890 5.164 5.138 5.556
Stdv 0.198 0.193 0.265 0.433 0.312 0.406 0.195 0.356

Breastcancer Avg 5.795 4.934 4.648 4.827 4.745 4.296 4.822 4.482
Stdv 0.223 0.075 0.166 0.304 0.306 0.277 0.188 0.157

HeartEW Avg 3.862 4.304 3.8 3.679 3.635 3.522 3.661 3.602
Stdv 0.22 0.061 0.149 0.074 0.11 0.06 0.267 0.122

Exactly2 Avg 8.19 5.752 6.882 6.949 5.526 5.248 5.159 5.935
Stdv 0.456 0.392 0.287 0.228 0.284 0.222 0.161 0.580

Exactly Avg 8.096 6.077 6.962 7.286 5.858 5.329 5.185 5.974
Stdv 0.298 0.085 0.226 0.461 0.569 0.19 0.266 0.448

M-of-n Avg 8.197 6.109 6.775 6.826 5.71 5.506 5.84 5.917
Stdv 0.433 0.116 0.121 0.316 0.209 0.156 0.178 0.305

WineEW Avg 3.749 4.126 3.768 3.485 3.736 3.636 3.914 3.698
Stdv 0.144 0.052 0.398 0.158 0.344 0.062 0.308 0.192

CongressEW Avg 4.525 4.311 4.547 4.573 4.185 4.156 4.016 4.564
Stdv 0.184 0.3 0.285 0.488 0.193 0.139 0.108 0.201

Vote Avg 3.962 3.919 4.273 3.969 3.701 3.792 3.899 3.858
Stdv 0.203 0.312 0.207 0.31 0.119 0.282 0.331 0.201

Zoo Avg 3.923 3.65 3.704 3.866 4.031 3.824 3.793 3.902
Stdv 0.156 0.272 0.082 0.245 0.506 0.171 0.196 0.178

Lymphography Avg 3.76 4.124 3.659 3.582 3.721 3.513 4.012 3.726
Stdv 0.316 0.043 0.322 0.098 0.26 0.073 0.304 0.092

SpectEW Avg 3.762 4.041 3.818 3.744 3.733 3.765 3.739 3.738
Stdv 0.127 0.126 0.145 0.234 0.085 0.198 0.174 0.112

BreastEW Avg 5.639 4.996 5.007 4.919 5.175 4.775 5.509 5.268
Stdv 0.366 0.088 0.208 0.208 0.222 0.18 0.244 0.394

IonosphereEW Avg 4.318 4.402 4.186 4.134 4.469 4.22 4.058 3.986
Stdv 0.233 0.181 0.226 0.266 0.352 0.225 0.158 0.081

KrvskpEW Avg 54.578 37.718 43.131 42.369 32.235 31.170 32.034 34.695
Stdv 1.344 1.238 0.817 0.759 1.087 1.071 1.165 1.179

WaveformEW Avg 139.126 93.915 109.977 106.688 83.706 82.663 85.529 87.815
Stdv 2.37 3.411 1.023 1.568 1.172 1.684 2.254 2.637

SonarEW Avg 4.116 4.261 3.974 4.177 4.116 3.714 3.564 3.766
Stdv 0.258 0.061 0.272 0.297 0.189 0.131 0.1 0.236

clean1 Avg 9.564 6.959 7.806 7.583 6.315 5.636 6.075 5.984
Stdv 0.559 0.144 0.376 0.289 0.186 0.105 0.307 0.305

semeion Avg 88.636 53.574 64.733 62.797 35.247 33.753 34.289 36.491
Stdv 1.485 1.45 0.815 0.772 0.86 0.694 0.884 1.696

PenglungEW Avg 5.143 4.286 5.204 5.343 6.238 5.172 5.119 5.067
Stdv 0.273 0.146 0.213 0.435 0.44 0.224 0.453 0.349

Colon Avg 13.162 5.181 12.026 11.998 16.503 11.325 8.486 8.457
Stdv 0.599 0.108 0.496 0.515 0.672 0.486 0.148 0.250

Leukemia Avg 38.952 13.86 36.163 34.945 51.453 32.187 22.233 22.727
Stdv 0.928 1.993 1.278 1.03 2.639 1.404 0.264 0.816
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Table 15   The classification 
accuracy results obtained by 
binary � HC algorithm with 
different classifiers

Dataset Sen19 (kNN) Sen20 (SVM) Sen21 (DT)

Avg Stdv Avg Stdv Avg Stdv

Tic-tac-toe 0.816 0 0.616 0.029 0.739 0
Breastcancer 0.974 0.001 0.961 0.003 0.971 0.002
HeartEW 0.836 0.011 0.809 0.02 0.829 0.02
Exactly2 0.75 0.006 0.74 0.058 0.701 0.057
Exactly 0.999 0.003 0.594 0.078 0.852 0.089
M-of-n 1.000 0 0.943 0.033 0.956 0.029
WineEW 0.996 0.003 0.967 0.014 0.881 0.014
CongressEW 0.974 0.004 0.916 0.011 0.938 0.015
Vote 0.957 0.004 0.93 0.011 0.902 0.018
Zoo 1.000 0.016 0.876 0.035 0.767 0.051
Lymphography 0.877 0.014 0.767 0.044 0.699 0.046
SpectEW 0.859 0.009 0.836 0.023 0.807 0.027
BreastEW 0.964 0.005 0.933 0.009 0.95 0.011
IonosphereEW 0.937 0.008 0.797 0.015 0.816 0.014
KrvskpEW 0.964 0.003 0.934 0.011 0.942 0.007
WaveformEW 0.748 0.006 0.777 0.006 0.769 0.011
SonarEW 0.894 0.011 0.73 0.026 0.726 0.024
clean1 0.88 0.007 0.801 0.025 0.832 0.02
semeion 0.976 0.002 0.953 0.005 0.958 0.004
PenglungEW 0.781 0.019 0.884 0.023 0.742 0.016
Colon 0.835 0.01 0.826 0.028 0.752 0.018
Leukemia 0.903 0.014 0.858 0.022 0.819 0.014

Table 16   The fitness values 
obtained by binary � HC 
algorithm with different 
classifiers

Dataset Sen19 (kNN) Sen20 (SVM) Sen21 (DT)

Avg Stdv Avg Stdv Avg Stdv

Tic-tac-toe 0.189 0 0.365 0 0.171 0
Breastcancer 0.03 0.001 0.03 0.001 0.027 0.001
HeartEW 0.167 0.01 0.165 0.004 0.162 0.005
Exactly2 0.249 0.007 0.225 0.001 0.24 0.003
Exactly 0.005 0.003 0.291 0.001 0.107 0.034
M-of-n 0.005 0 0.006 0.001 0.016 0.001
WineEW 0.009 0.004 0.006 0.001 0.031 0.005
CongressEW 0.029 0.005 0.054 0.002 0.036 0.001
Vote 0.046 0.004 0.049 0.003 0.039 0.001
Zoo 0.003 0 0.006 0.001 0.14 0.015
Lymphography 0.126 0.015 0.134 0.008 0.169 0.006
SpectEW 0.145 0.008 0.121 0.006 0.135 0.011
BreastEW 0.041 0.005 0.041 0.002 0.039 0.004
IonosphereEW 0.067 0.008 0.111 0.008 0.039 0
KrvskpEW 0.041 0.004 0.054 0.003 0.022 0.001
WaveformEW 0.255 0.006 0.169 0.002 0.247 0.003
SonarEW 0.11 0.011 0.168 0.008 0.194 0.022
clean1 0.123 0.006 0.155 0.008 0.178 0.01
semeion 0.029 0.002 0.027 0.002 0.052 0.003
PenglungEW 0.221 0.019 0.032 0 0.419 0.024
Colon 0.168 0.01 0.166 0 0.146 0.016
Leukemia 0.101 0.014 0.005 0 0.112 0.013
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Table 17   The selected 
attributes obtained by binary 
� HC algorithm with different 
classifiers

Dataset Sen19 (kNN) Sen20 (SVM) Sen21 (DT)

Avg Stdv Avg Stdv Avg Stdv

Tic-tac-toe 6 0 1.0 0 7 0
Breastcancer 4.05 0.394 4.4 0.598 3.850 0.366
HeartEW 6.55 1.932 9.5 1.504 5.950 0.826
Exactly2 1.550 2.438 2.1 0.788 3.25 1.713
Exactly 6.1 0.641 2.2 0.696 7.5 0.827
M-of-n 6.2 0 7.45 0.759 7.4 0.681
WineEW 6.8 2.285 7.3 0.865 5.9 1.165
CongressEW 4.80 2.142 8.85 1.268 6.4 0.821
Vote 4.7 1.129 9.95 1.504 8.9 0.968
Zoo 5.350 0.671 9.55 1.276 7.85 1.137
Lymphography 7.7 1.689 10.7 1.949 9.9 1.41
SpectEW 11.350 1.631 13.8 1.704 11.7 1.525
BreastEW 15.5 3.103 18.1 2.1 16.9 1.683
IonosphereEW 13.950 2.417 20.65 2.7 18.85 1.531
KrvskpEW 18.8 2.913 23.05 2.502 27.6 2.722
WaveformEW 22.050 3.034 28.3 2.43 26.3 2.319
SonarEW 28.9 2.989 35.8 3.381 34.65 4.716
clean1 78.250 7.973 109.55 5.735 98.9 5.884
semeion 128.450 9.423 165.1 9.952 166.05 6.074
PenglungEW 148 7.518 185.35 8.4 193.55 8.262
Colon 944.450 20.213 1211.55 57.746 1179.3 100.034
Leukemia 3473.8 38.03 3635.8 255.435 4397.3 213.633

Table 18   The CPU times (in 
Seconds) obtained by binary 
� HC algorithm with different 
classifiers

Dataset Sen19 (kNN) Sen20 (SVM) Sen21 (DT)

Avg Stdv Avg Stdv Avg Stdv

Tic-tac-toe 5.708 0 54.244 0.964 11.816 0
Breastcancer 4.934 0.075 60.109 2.003 13.048 0.549
HeartEW 4.304 0.061 30.271 0.692 9.96 0.255
Exactly2 5.752 0.392 52.767 0.789 11.466 0.532
Exactly 6.077 0.085 53.485 0.917 11.711 0.709
M-of-n 6.109 0 54.205 1.101 11.068 0.408
WineEW 4.126 0.052 43.886 0.836 9.872 0.363
CongressEW 4.311 0.3 36.289 1.114 10.115 0.466
Vote 3.919 0.312 31.526 0.632 9.997 0.516
Zoo 3.650 0.272 186.012 2.094 9.271 0.312
Lymphography 4.124 0.043 42.778 0.941 10.051 0.373
SpectEW 4.041 0.126 30.592 0.865 10.141 0.511
BreastEW 4.996 0.088 43.81 1.107 11.182 0.357
IonosphereEW 4.402 0.181 44.402 1.088 11.462 0.676
KrvskpEW 37.718 1.238 177.604 4.812 18.673 0.504
WaveformEW 93.915 3.411 1648.72 33.8 45.895 0.971
SonarEW 4.261 0.061 36.831 1.095 11.018 0.674
clean1 6.959 0.144 338.619 24.538 32.977 1.098
semeion 53.574 1.45 101.036 1.189 32.017 0.655
PenglungEW 4.286 0.146 192.841 2.804 11.433 0.354
Colon 5.181 0.108 30.472 0.947 20.535 0.584
Leukemia 13.860 1.993 56.946 2.552 52.397 3.414
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performance of the proposed binary � HC algorithm for FS 
problem is studied. Three experimental scenarios Sen19 to 
Sen21 are designed, where each scenario utilized to study 
one of the three classifiers. The average (Avg) and the stand-
ard derivation (Stdv) are summarized based on the classifi-
cation accuracy, the fitness value, the selected features, and 
the elapsed CPU time in Tables 15, 16, 17, and 18. The bold 
font is used to point out the finest outcomes.

Table  16 summarizes the experimental outcomes of 
investigating the effect of using three distinct classifiers on 
the performance of the proposed binary � HC algorithm in 
terms of the classification accuracy. The performance of 
the proposed algorithm using the kNN classifier (Sen19) 
outperforms the two other classifiers as it realized the finest 
outcomes on 20 out of 22 datasets. Furthermore, the pro-
posed algorithm using the SVM classifier achieved the best 
results on two datasets. While the proposed algorithm with 
decision tree classifier did not get any of the best results for 
any dataset. Furthermore, it can be seen that the proposed 
algorithm with the kNN classifier is more robust than the 
other versions of this algorithm as it achieves almost the 
same results over 20 times of run as the results of the stand-
ard derivation show.

The impact of using three different classifiers on the per-
formance of the proposed binary � HC algorithm in terms of 
the fitness values is summarized in Table 16. As the table 
shows, it is hard to decide which classifier is better to inte-
grate within the proposed algorithm for tackling the prob-
lem of feature selection. This is because the performance of 
the proposed algorithm with decision tree classifier outper-
forms the performance of the other two classifiers on eight 
datasets. While the proposed algorithm efficiency when 
compared with the two other classifiers is almost the same 
as both were able to realize the finest outcomes for seven 
datasets.

Table 16 shows the results for Sen19 to Sen21 in terms of 
the selected features. Table 16 demonstrates that the results 
produced by Sen19 outperform those produced by other 
scenarios (Sen20 and Sen21) as it obtained the minimum 
number of the selected features on 17 out of 22 datasets. Fur-
thermore, the experimental scenarios of Sen20 and Sen21 
get the minimum number of the features in 2 and 3 datasets, 
respectively. This proves that the integration of the proposed 
binary � HC algorithm and the kNN classifier is better than 
the other two classifiers for the problem of feature selection 
in terms of the number of the selected features.

Finally, the results of the elapsed CPU time are investi-
gated from Sen19 to Sen21, and it is recorded in Table 18. 
In this table, we can see that Sen19 obtained the minimum 
CPU time on 19 out of 22 datasets. While Sen21 achieved 
the minimum CPU time on 3 datasets. In addition, it can 
be seen that Sen20 is slower than the other scenarios (i.e., 

Sen19, and Sen21) as it could not obtain any minimum CPU 
time for any dataset.

To wrap-up, the kNN as a classifier is capable to obtain 
superior outcomes than the other two classifiers in almost 
all cases. As a result, the kNN classifier will be used in the 
following experiments.

3.2.5 � The effect of training/testing against k‑fold 
cross validation models

In this section, we investigate the effect of the used data 
splitting techniques (i.e., training/testing against k-fold 
cross-validation) on the convergence behaviour of the pro-
posed method. The evaluation is conducted using kNN with 
training/testing (binary �HC(kNN-TT)) and using kNN with 
k-fold (binary �HC(kNN-KF)) cross-validation. In k-fold we 
divide a set of features data into complementary subsets, 
performing the analysis on one subset (i.e., training set), and 
validating the outcomes using the other subset (i.e., valida-
tion set or testing set) Delen et al. (2005). This technique 
is used for feature selection methods by other researchers 
Shao et al. (2013); Zhang et al. (2014). Note that the value of 
k = 10 is used in the k-fold cross-validation method. Again, 
four main measurements are used in the comparison which 
are classification accuracy, fitness function value, number of 
informative features, and the CPU time. Each experiment is 
replicated using 10 runs and the average (Avg) and standard 
deviation (Stdv) are recorded. The best Avg is highlighted 
in bold (lowest is best).

As can be noticed from Table 19, the binary �HC(kNN-
TT) can outperform the binary �HC(kNN-KF) in 17 out of 
22 datasets in terms of classification accuracy, and 18 out of 
22 datasets in terms of the number of features reduced. How-
ever, �HC(kNN-KF) outperforms the binary �HC(kNN-TT) 
in 16 out of 22 datasets in terms of fitness function values. 
Furthermore, it excels in all datasets in terms of CPU time 
required.

In conclusion, binary �HC(kNN-TT) is a powerful algo-
rithm in terms of classification accuracy and the number of 
features reduced. Therefore, it is recommended to use binary 
�HC(kNN-TT) for feature selection problems.

3.3 � Comparison with local search method

In order to investigate the effectiveness of the proposed 
binary � HC algorithm for the feature selection problem,the 
algorithm is compared against other popular local search-
based algorithms in this section. The comparative methods 
are hill climbing (HC), simulated annealing (SA), and vari-
able neighborhood search (VNS). It should be noted that 
these algorithms are executed under the same conditions of 
the proposed algorithm in order to ensure fairness. Table 20 
shows the parameter settings of these algorithms.
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The comparison results of the proposed � HC algorithm 
against other local search-based algorithms are reported in 
Tables 21, 22, 23, and 24. These tables show the average 

(Avg) and the standard deviation (Stdv) achieved by each 
algorithm in terms of the classification accuracy, the fitness 
values, the selected features, and the elapsed CPU time, 

Table 19   The performance of 
binary �HC(kNN-TT) against 
binary �HC(kNN-KF)

Dataset Accuracy Fitness function No. features CPU time

Sen22 Sen23 Sen22 Sen23 Sen22 Sen23 Sen22 Sen23

�HC kNN-TT kNN-KF kNN-TT kNN-KF kNN-TT kNN-KF kNN-TT kNN-KF

Tic-tac-toe Avg 0.816 0.785 0.189 0.131 6 5.7 5.708 1.104
Stdv 0 0.021 0 0.011 0.459 0.733 0.193 0.065

Breastcancer Avg 0.974 0.967 0.030 0.020 4.050 4.5 4.934 1.254
Stdv 0.001 0.007 0.001 0.003 0.394 0.827 0.075 0.045

HeartEW Avg 0.836 0.709 0.167 0.215 6.550 7.55 4.304 0.913
Stdv 0.011 0.050 0.010 0.027 1.932 1.099 0.061 0.035

Exactly2 Avg 0.75 0.7 0.249 0.245 1.550 8.6 5.752 1.180
Stdv 0.006 0.045 0.007 0.019 2.438 1.635 0.392 0.084

Exactly Avg 0.999 0.850 0.005 0.042 6.1 8.6 6.077 1.174
Stdv 0.003 0.076 0.003 0.029 0.641 0.754 0.085 0.070

M-of-n Avg 1 0.971 0.005 0.028 6.2 8.6 6.109 1.167
Stdv 0 0.028 0 0.023 0.616 0.883 0.116 0.088

WineEW Avg 0.996 0.935 0.009 0.005 6.8 5.9 4.126 0.826
Stdv 0.003 0.046 0.004 0.001 2.285 1.021 0.052 0.052

CongressEW Avg 0.974 0.913 0.029 0.026 4.8 8.15 4.311 0.880
Stdv 0.004 0.020 0.005 0.014 2.142 1.309 0.3 0.082

Vote Avg 0.957 0.9 0.046 0.052 4.7 6.85 3.919 0.840
Stdv 0.004 0.047 0.004 0.017 1.129 1.814 0.312 0.067

Zoo Avg 1 0.989 0.003 0.003 5.350 4.85 3.650 0.784
Stdv 0.016 0.033 0 0.001 0.671 0.933 0.272 0.067

Lymphography Avg 0.877 0.818 0.126 0.088 7.7 12.2 4.124 0.791
Stdv 0.014 0.067 0.015 0.034 1.689 1.673 0.043 0.081

SpectEW Avg 0.859 0.790 0.145 0.184 11.350 10.35 4.041 0.801
Stdv 0.009 0.047 0.008 0.022 1.631 1.725 0.126 0.067

BreastEW Avg 0.964 0.929 0.041 0.050 15.5 16.2 4.996 1.046
Stdv 0.005 0.027 0.005 0.011 3.103 2.419 0.088 0.087

IonosphereEW Avg 0.937 0.831 0.067 0.038 13.950 18.65 4.402 0.856
Stdv 0.008 0.053 0.008 0.019 2.417 3.376 0.181 0.079

KrvskpEW Avg 0.964 0.968 0.041 0.039 18.8 22.85 37.718 3.922
Stdv 0.003 0.009 0.004 0.006 2.913 2.3 1.238 0.092

WaveformEW Avg 0.748 0.781 0.255 0.253 22.050 26.95 93.915 8.809
Stdv 0.006 0.021 0.006 0.010 3.034 3.052 3.411 0.153

SonarEW Avg 0.894 0.768 0.110 0.053 28.9 34.4 4.261 0.838
Stdv 0.011 0.047 0.011 0.011 2.989 3.872 0.061 0.086

clean1 Avg 0.88 0.869 0.123 0.065 78.250 100.4 6.959 1.265
Stdv 0.007 0.031 0.006 0.009 7.973 5.471 0.144 0.028

semeion Avg 0.976 0.972 0.029 0.012 128.450 157.35 53.574 6.453
Stdv 0.002 0.005 0.002 0.002 9.423 10.917 1.450 0.151

PenglungEW Avg 0.781 0.836 0.221 0.147 148 173.2 4.286 0.987
Stdv 0.019 0.052 0.019 0 7.518 15.316 0.146 0.025

Colon Avg 0.835 0.992 0.168 0.154 944.45 1070.8 5.181 1.831
Stdv 0.01 0.037 0.010 0.051 20.213 112.571 0.108 0.035

Leukemia Avg 0.903 1 0.101 0.005 3473.8 3666 13.860 5.446
Stdv 0.014 0 0.014 0 38.030 254.699 1.993 0.445
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respectively. The bold font is used to point out the finest 
outcomes.

Table 21 shows that the proposed binary � HC outper-
forms other comparative methods on 16 out of 22 datasets. 
On the other hand, the performance of the HC algorithm 
outperforms other comparative algorithms on 3 datasets. 
Also, the performance of the VNS algorithm is superior 
than other comparative algorithms on 3 datasets. While the 
SA algorithm did not achieve any best result for any dataset. 
Consequently, the average accuracy of the proposed binary 
� HC algorithm reached 100% on M-of-n and Zoo datasets 
and 99.9% for the Exactly dataset. This supports the claim 
that the proposed algorithm has successful trials to reach the 
proper stability between exploration and exploitation and 
thus avoid the local optimal problem.

Similarly, the experimental results obtained by the 
proposed binary � HC algorithm as well as the other 

comparative local search-based algorithms in terms of the 
fitness values are recorded in Table 22. This table shows that 
�HC, HC, and VNS algorithms are able to obtain the same 
average of the fitness values on the M-of-n dataset. Inter-
estingly, the proposed binary � HC outperforms the other 
comparative methods on 13 out of 22 datasets. The HC and 
VNS algorithms obtained the finest outcomes on 4 datasets, 
although the SA algorithm did not realize any best result for 
any dataset.

Table 23 demonstrates the average of the selected fea-
tures obtained by the proposed binary � HC algorithm and 
the other comparative local search-based algorithms. The 
SA algorithm obtains the finest outcomes on 13 datasets, 
although the VNS algorithm achieves the finest outcomes 
on 9 datasets. Furthermore, the proposed binary � HC and 
HC algorithms did not realize the finest outcomes for any 
dataset.

Finally, Table 24 demonstrates the average (Avg) and 
the standard deviation (Stdv) of the results produced by the 
proposed � HC algorithm as well as the other comparative 
local search-based algorithms in terms of the elapsed CPU 
time. The results summarized in Table 24 are in line with 
the results recorded in Table 23, where the SA algorithm 
achieved the finest outcomes on 13 datasets. Moreover, the 
VNS algorithm realize the finest outcomes on 9 datasets, 

Table 20   The parameter settings of the local search-based algorithms

Algorithm Parameter settings

�HC N=0.9, �=0.5
HC bw = ( N  in �HC) = 0.9
SA T

0
=100, and �=0.85 
(Corana et al. 1987)

Table 21   The classification 
accuracy results of the binary 
� HC compared to other local 
search-based method

Dataset �HC HC SA VNS

Avg Stdv Avg Stdv Avg Stdv Avg Stdv

Tic-tac-toe 0.816 0 0.779 0 0.686 0 0.765 0
Breastcancer 0.974 0.001 0.96 0.008 0.946 0.01 0.967 0.005
HeartEW 0.836 0.011 0.792 0.037 0.766 0.039 0.775 0.017
Exactly2 0.75 0.006 0.708 0.054 0.72 0.025 0.775 0.025
Exactly 0.999 0.003 0.856 0.147 0.619 0.039 0.899 0.111
M-of-n 1.000 0 0.984 0 0.744 0 0.99 0.018
WineEW 0.996 0.003 0.931 0.026 0.883 0.054 0.969 0.012
CongressEW 0.974 0.004 0.93 0.011 0.894 0.033 0.923 0.018
Vote 0.957 0.004 0.919 0.027 0.892 0.038 0.959 0.012
Zoo 1.000 0.016 0.837 0.041 0.879 0.065 0.831 0.055
Lymphography 0.877 0.014 0.753 0.056 0.691 0.066 0.801 0.029
SpectEW 0.859 0.009 0.789 0.036 0.799 0.03 0.821 0.02
BreastEW 0.964 0.005 0.925 0.012 0.927 0.009 0.945 0.006
IonosphereEW 0.937 0.008 0.868 0.02 0.81 0.017 0.856 0.021
KrvskpEW 0.964 0.003 0.971 0.011 0.773 0.084 0.965 0.007
WaveformEW 0.748 0.006 0.788 0.01 0.703 0.036 0.783 0.011
SonarEW 0.894 0.011 0.74 0.048 0.707 0.028 0.787 0.039
clean1 0.88 0.007 0.82 0.019 0.779 0.025 0.817 0.02
semeion 0.976 0.002 0.96 0.006 0.953 0.006 0.96 0.005
PenglungEW 0.781 0.019 0.796 0.032 0.786 0.026 0.611 0.031
Colon 0.835 0.01 0.581 0.036 0.634 0.035 0.731 0.026
Leukemia 0.903 0.014 0.879 0.021 0.886 0.022 0.95 0.021
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Table 22   The fitness values of 
the binary � HC compared to 
other local search-based method

Dataset �HC HC SA VNS

Avg Stdv Avg Stdv Avg Stdv Avg Stdv

Tic-tac-toe 0.189 0 0.206 0 0.339 0 0.226 0
Breastcancer 0.030 0.001 0.042 0.006 0.068 0.019 0.043 0.002
HeartEW 0.167 0.01 0.213 0.025 0.287 0.04 0.212 0.018
Exactly2 0.249 0.007 0.288 0.028 0.317 0.039 0.233 0.035
Exactly 0.005 0.003 0.137 0.151 0.435 0.047 0.059 0.115
M-of-n 0.005 0 0.005 0 0.309 0 0.005 0.002
WineEW 0.009 0.004 0.049 0.022 0.118 0.066 0.016 0.007
CongressEW 0.029 0.005 0.053 0.011 0.108 0.05 0.039 0.01
Vote 0.046 0.004 0.05 0.017 0.133 0.051 0.034 0.006
Zoo 0.003 0 0.059 0.015 0.121 0.092 0.039 0.007
Lymphography 0.126 0.015 0.177 0.027 0.322 0.082 0.149 0.018
SpectEW 0.145 0.008 0.187 0.023 0.276 0.044 0.158 0.008
BreastEW 0.041 0.005 0.06 0.007 0.087 0.016 0.044 0.004
IonosphereEW 0.067 0.008 0.07 0.016 0.169 0.024 0.081 0.011
KrvskpEW 0.041 0.004 0.029 0.007 0.24 0.08 0.031 0.007
WaveformEW 0.255 0.006 0.252 0.009 0.357 0.037 0.255 0.013
SonarEW 0.11 0.011 0.105 0.025 0.274 0.033 0.081 0.021
clean1 0.123 0.006 0.087 0.019 0.18 0.014 0.115 0.013
semeion 0.029 0.002 0.03 0.005 0.051 0.007 0.028 0.005
PenglungEW 0.221 0.019 0.099 0.02 0.171 0.025 0.21 0.036
Colon 0.168 0.01 0.282 0.028 0.423 0.052 0.271 0.028
Leukemia 0.101 0.014 0.152 0.03 0.177 0.031 0.155 0.023

Table 23   The selected features 
of the binary � HC compared to 
other local search-based method

Dataset �HC HC SA VNS

Avg Stdv Avg Stdv Avg Stdv Avg Stdv

Tic-tac-toe 5.708 0 5.993 0 1.354 0 1.452 0
Breastcancer 4.934 0.075 5.186 0.34 1.482 0.098 2.301 0.097
HeartEW 4.304 0.061 3.819 0.216 1.019 0.065 0.988 0.042
Exactly2 5.752 0.392 6.747 1.529 1.522 0.189 1.551 0.176
Exactly 6.077 0.085 6.101 0.912 1.432 0.147 1.545 0.145
M-of-n 6.109 0 5.544 0 1.539 0 1.455 0.185
WineEW 4.126 0.052 3.619 0.178 0.91 0.047 0.891 0.051
CongressEW 4.311 0.3 4.3 0.322 1.093 0.084 1.077 0.087
Vote 3.919 0.312 3.842 0.14 0.936 0.042 1.031 0.057
Zoo 3.65 0.272 3.818 0.179 0.95 0.072 0.916 0.064
Lymphography 4.124 0.043 3.386 0.082 0.894 0.084 0.978 0.046
SpectEW 4.041 0.126 3.641 0.137 0.955 0.062 0.950 0.089
BreastEW 4.996 0.088 4.961 0.343 1.323 0.102 1.502 0.17
IonosphereEW 4.402 0.181 4.019 0.155 1.061 0.087 0.950 0.034
KrvskpEW 37.718 1.238 43.358 4.145 8.753 0.927 9.377 0.886
WaveformEW 93.915 3.411 117.174 15.298 21.976 2.425 23.691 2.974
SonarEW 4.261 0.061 3.464 0.152 0.941 0.04 0.969 0.057
clean1 6.959 0.144 6.454 0.521 1.588 0.173 1.712 0.163
semeion 53.574 1.45 51.981 3.194 12.662 0.814 12.929 1.489
PenglungEW 4.286 0.146 3.755 0.187 1.019 0.065 0.975 0.056
Colon 5.181 0.108 4.607 0.162 1.119 0.035 1.191 0.08
Leukemia 13.86 1.993 15.023 0.518 2.755 0.299 2.682 0.292
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while the proposed � HC and HC algorithms did not get any 
of the best results.

3.4 � Comparison with other metaheuristics

The proposed binary � HC efficiency is verified by com-
paring it against ten other metaheuristics methods from 
the literature. These methods include: binary grasshopper 
optimization algorithm (BGOA) (Mafarja et al. 2018b), 
binary grey wolf optimizer (BGWO) (Mafarja et al. 2018b), 
binary gravitational search algorithm (BGSA) (Mafarja et al. 
2018b), binary bat algorithm (BBA) (Mafarja et al. 2018b), 
binary salp swarm algorithm (BSSA) (Aljarah et al. 2018), 
hybrid gravitational search algorithm (HGSA) (Taradeh 
et al. 2019), whale optimization algorithm (WOA) (Mafarja 
and Mirjalili 2018), binary dragonfly optimization (BDA) 
(Mafarja et al. 2018a), genetic algorithm (GA) (Kashef and 
Nezamabadi-pour 2015), and particle swarm optimization 
(PSO) (Kashef and Nezamabadi-pour 2015).

The average classification accuracy achieved by all 
comparative methods is summarized in Table 25. The fin-
est outcomes are highlighted in boldface. The results of 
the proposed binary � HC algorithm are collected from 
Table 3 and Table 7. The results in Table 25 demonstrates 
that the BDA algorithm achieves the best performance as 
it outperforms other comparative methods in 14 datasets. 

Remarkably, the binary � HC algorithm ranked second, as it 
outperforms other comparative methods in 7 datasets. On the 
other hand, six of the comparative methods did not obtain 
any best results for any dataset.

Table 26 illustrates the average ranking of the proposed 
binary � HC algorithm using Friedman statistical test when 
compared against the comparative methods. Note that the 
average ranking of the comparative methods is computed 
using the results in Table 25. The Significant level � is set 
to 0.05 as suggested in (García et al. 2010). Interestingly, 
the binary � HC algorithm outperforms other comparative 
methods by getting the first rank.

Thereafter, the Holm and Hochberg as a post-hoc sta-
tistical test are utilized to calculate the adjusted �-values 
between the first rank method (i.e., controlled method) 
identified by Friedman test and other methods. Again, the 
proposed binary � HC algorithm is ranked first as demon-
strated in Table 26. Table 27 reveals that the performance of 
the binary � HC algorithm is statistically superior than 7 of 
the other comparative methods (i.e., BSSA, WOA, BGWO, 
BGSA, PSO, GA, and BBA) using the significant level �/
Order. Also, the statistical test expose that there is no signifi-
cant difference between the binary � HC algorithm and three 
of the comparative methods (BDA, BGOA, and HGSA).

Table 24   The CPU time (in 
Seconds) of the binary � HC 
compared to other local search-
based method

Dataset �HC HC SA VNS

Avg Stdv Avg Stdv Avg Stdv Avg Stdv

Tic-tac-toe 5.708 0 5.993 0 1.354 0 1.452 0
Breastcancer 4.934 0.075 5.186 0.34 1.482 0.098 2.301 0.097
HeartEW 4.304 0.061 3.819 0.216 1.019 0.065 0.988 0.042
Exactly2 5.752 0.392 6.747 1.529 1.522 0.189 1.551 0.176
Exactly 6.077 0.085 6.101 0.912 1.432 0.147 1.545 0.145
M-of-n 6.109 0 5.544 0 1.539 0 1.455 0.185
WineEW 4.126 0.052 3.619 0.178 0.91 0.047 0.891 0.051
CongressEW 4.311 0.3 4.3 0.322 1.093 0.084 1.077 0.087
Vote 3.919 0.312 3.842 0.14 0.936 0.042 1.031 0.057
Zoo 3.65 0.272 3.818 0.179 0.95 0.072 0.916 0.064
Lymphography 4.124 0.043 3.386 0.082 0.894 0.084 0.978 0.046
SpectEW 4.041 0.126 3.641 0.137 0.955 0.062 0.95 0.089
BreastEW 4.996 0.088 4.961 0.343 1.323 0.102 1.502 0.17
IonosphereEW 4.402 0.181 4.019 0.155 1.061 0.087 0.95 0.034
KrvskpEW 37.718 1.238 43.358 4.145 8.753 0.927 9.377 0.886
WaveformEW 93.915 3.411 117.174 15.298 21.976 2.425 23.691 2.974
SonarEW 4.261 0.061 3.464 0.152 0.941 0.04 0.969 0.057
clean1 6.959 0.144 6.454 0.521 1.588 0.173 1.712 0.163
semeion 53.574 1.45 51.981 3.194 12.662 0.814 12.929 1.489
PenglungEW 4.286 0.146 3.755 0.187 1.019 0.065 0.975 0.056
Colon 5.181 0.108 4.607 0.162 1.119 0.035 1.191 0.08
Leukemia 13.86 1.993 15.023 0.518 2.755 0.299 2.682 0.292
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3.5 � Comparison with filter‑based techniques

For further validations, the proposed binary � HC algorithm 
efficiency is compared against relevant filter-based tech-
niques in terms of the average classification accuracy. The 
comparative outcomes are recorded in Table 28. Note that 
the filter-based techniques outcomes are taken from Mafarja 
et al. (2018b) which uses similar configurations as the pro-
posed method. The best outcomes are point out using bold 
font. To elaborate, the results of the binary � HC algorithm 
are extracted from Tables 3 and 7. While the comparative fil-
ter-based techniques are: correlation-based feature selection 

from Hall and Smith (1999), fast correlation-based filter 
(FCBF) from Yu and Liu (2003), fisher score (F-score) from 
Duda et al. (2012), IG from Cover and Thomas (2012), and 
wavelet power spectrum (WPS) from Zhao and Liu (2007). 
Table 28 demonstrates that the binary � HC algorithm out-
performs the other techniques in 20 out of 22 datasets. This 
proves that the binary � HC algorithm is capable to examine 
the search space efficiently and obtain good results when 
compared to other comparative methods.

Table 25   The classification 
accuracy results of the binary 
� HC compared to other 
metaheuristics

Dataset �HC BGOA BGWO BGSA BBA BSSA HGSA WOA BDA GA PSO

Tic-tac-toe 0.816 0.808 0.754 0.753 0.665 0.797 0.788 0.785 0.847 0.764 0.750
Breastcancer 0.974 0.980 0.968 0.957 0.937 – 0.974 0.968 0.993 0.957 0.949
HeartEW 0.859 0.833 0.792 0.777 0.754 0.833 0.856 0.807 0.876 0.732 0.745
Exactly2 0.750 0.780 0.743 0.706 0.628 0.767 0.770 0.742 0.773 0.677 0.666
Exactly 1.000 0.999 0.809 0.697 0.610 0.997 1.000 1.000 1.000 0.822 0.973
M-of-n 1.000 1.000 0.894 0.835 0.722 0.999 1.000 0.991 1.000 0.916 0.996
WineEW 0.996 0.989 0.960 0.951 0.919 0.998 0.989 0.959 1.000 0.947 0.937
CongressEW 0.975 0.964 0.948 0.951 0.872 0.970 0.966 0.956 0.987 0.898 0.937
Vote 0.978 0.966 0.944 0.931 0.851 0.955 0.973 0.939 0.989 0.808 0.888
Zoo 1.000 0.993 0.975 0.939 0.874 0.993 0.932 0.980 1.000 0.946 0.963
Lymphography 0.907 0.868 0.813 0.781 0.701 0.844 0.892 0.852 0.992 0.758 0.759
SpectEW 0.866 0.826 0.810 0.783 0.800 0.833 0.919 0.866 0.852 0.756 0.738
BreastEW 0.969 0.947 0.954 0.942 0.931 – 0.971 0.971 0.979 0.923 0.933
IonosphereEW 0.949 0.899 0.885 0.881 0.877 0.938 0.934 0.926 0.991 0.863 0.876
KrvskpEW 0.985 0.968 0.934 0.908 0.816 0.969 0.978 0.972 0.979 0.940 0.949
WaveformEW 0.772 0.737 0.723 0.695 0.669 0.736 0.815 0.753 0.758 0.712 0.732
SonarEW 0.953 0.912 0.836 0.888 0.844 0.948 0.958 0.919 0.984 0.833 0.804
clean1 0.941 0.863 0.908 0.898 0.826 – – – – 0.862 0.845
semeion 0.989 0.976 0.972 0.971 0.962 – – – – 0.963 0.967
PenglungEW 0.912 0.927 0.850 0.919 0.795 0.907 0.956 0.792 1.000 0.672 0.879
Colon 0.868 0.870 0.661 0.766 0.682 – – – – 0.682 0.624
Leukemia 0.971 0.931 0.884 0.844 0.877 – – – – 0.705 0.862

Table 26   Average rankings of 
the algorithms calculated using 
Friedman test

Order Algorithm Ranking

1 �HC 2.386
2 BDA 3.028
3 BGOA 3.909
4 HGSA 4.432
5 BSSA 6.000
6 WOA 6.136
7 BGWO 6.568
8 BGSA 7.432
9 PSO 8.182
10 GA 8.636
11 BBA 9.295

Table 27   Holm/Hochberg results between the binary � HC algorithm 
and other methods

Order Algorithm Adjusted �
-value

Holm/Hoch-
berg

Null hypotheses

1 BDA 5.245E-01 0.0500 Not Rejected
2 BGOA 1.278E-01 0.0250 Not Rejected
3 HGSA 4.081E-02 0.0167 Not Rejected
4 BSSA 3.019E-04 0.0125 Rejected
5 WOA 1.768E-04 0.0100 Rejected
6 BGWO 2.892E-05 0.0083 Rejected
7 BGSA 4.524E-07 0.0071 Rejected
8 PSO 6.814E-09 0.0063 Rejected
9 GA 4.105E-10 0.0056 Rejected
10 BBA 4.878E-12 0.0050 Rejected
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Table 29 shows the average ranking of the proposed 
binary � HC algorithm and the five filter-based techniques 
using the Friedman test. These ranking are computed using 
the outcomes presented in Table 28. Again, the significant 
level of � is 0.05. Remarkably, the binary � HC algorithm 

is ranked first, while the F-score technique shows that it 
is ranked second. In addition, the FCBF, CFS, WPS, and 
IG techniques reserved the third position until the last one 
respectively. Eventually, the Holm and Hochberg statistical 
test is utilized to calculate the �-values between the con-
trolled algorithm (i.e., binary � HC algorithm) and the other 
comparative techniques. Interestingly, there are significant 
differences between the binary � HC algorithm and the five 
filter-based techniques as demonstrated in Table 30.

After heavy experiments conducted to prove the viabil-
ity of the proposed method, we can conclude that the pro-
posed method very efficient algorithm for feature selection 
problems. The proposed method is able is work well when 
the value of parameters N  is large and � is small. This is 
because the N  parameter determines to what extend the pro-
posed method can be make use of accumulative search while 
the � parameter is like mutation rate which determines the 
size of randomization in the search.

Apparently, the proposed method competes very well 
against other local search-based methods and with other 
advanced metaheuristic techniques. This is can be borne 
out by the results obtained. Although, the proposed method 
belongs to the local search-based algorithm which is nor-
mally simple and easy-to-use, it outperforms other methods 
in 7 out of 22 datasets of various sizes and complexities. 
This is because that the proposed method is able to achieve 
the right balance between exploration through N  operator 

Table 28   The accuracy results 
of the binary � HC compared to 
all filter-based methods

Dataset �HC CFS FCBF F-Score IG WPS

Tic-tac-toe 0.816 0.000 0.000 0.010 0.010 0.167
Breastcancer 0.974 0.957 0.986 0.979 0.957 0.957
HeartEW 0.859 0.648 0.648 0.759 0.759 0.796
Exactly2 0.750 0.705 0.545 0.680 0.620 0.660
Exactly 1.000 0.670 0.440 0.600 0.615 0.575
M-of-n 1.000 0.785 0.815 0.815 0.815 0.580
WineEW 0.996 0.778 0.889 0.861 0.889 0.889
CongressEW 0.975 0.793 0.793 0.908 0.828 0.828
Vote 0.978 0.950 0.950 0.933 0.967 0.850
Zoo 1.000 0.800 0.900 0.650 0.850 0.600
Lymphography 0.907 0.500 0.567 0.667 0.667 0.767
SpectEW 0.866 0.736 0.774 0.793 0.793 0.736
BreastEW 0.969 0.825 0.798 0.930 0.930 0.772
IonosphereEW 0.949 0.857 0.857 0.729 0.800 0.829
KrvskpEW 0.985 0.768 0.934 0.959 0.934 0.377
WaveformEW 0.772 0.620 0.710 0.662 0.662 0.292
SonarEW 0.953 0.310 0.214 0.048 0.191 0.048
clean1 0.941 0.716 0.642 0.632 0.547 0.611
semeion 0.989 0.875 0.875 0.875 0.868 0.875
PenglungEW 0.912 0.600 0.667 0.800 0.667 0.400
Colon 0.868 0.750 0.667 0.667 0.667 0.500
Leukemia 0.971 0.929 0.857  0.980 0.980 0.357

Table 29   Average rankings of 
the algorithms calculated using 
Friedman test

Order Algorithm Ranking

1 binary �HC 1.364
2 F-Score 3.432
3 FCBF 3.818
4 CFS 4.068
5 WPS 4.727
6 IG 3.591

Table 30   Holm/Hochberg results between the binary � HC algorithm 
and filter-based techniques

Order Algorithm Adjusted �
-value

Holm/Hoch-
berg

Null hypotheses

1 F-Score 2.46E-04 0.0500 Rejected
2 IG 7.86E-05 0.0250 Rejected
3 FCBF 1.35E-05 0.0167 Rejected
4 CFS 1.63E-06 0.0125 Rejected
5 WPS 2.48E-09 0.0100 Rejected
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and exploitation through � operator. Interestingly, the com-
putational time required to achieve the final results for the 
proposed method is very small. It is conventionally known 
that the time required for local search-based algorithm 
required less computational time than other population-
based algorithms.

4 � Conclusion and future works

In this paper, �-hill climbing which is a new version of a 
local search-based algorithm is proposed to solve the feature 
selection problem. The proposed algorithm is called binary 
�-hill climbing optimizer. A new operator called T -opera-
tor is added to the �-hill climbing algorithm operators ( N
-operator, �-operator, and S-operator) to transfer the con-
tinuous values of the produced feature solution into binary 
using the S-shape strategy.

To evaluate the proposed binary �-hill climbing opti-
mizer, Four measurements are used: fitness function, clas-
sification accuracy, number of relevant features, and elapsed 
CPU time consumption. In order to evaluate the proposed 
algorithm, a commonly used 22 problem instances are 
picked from the UCI datasets with various sizes and com-
plexities. Different evaluation experiments are conducted 
which include: parameter configurations, transfer functions 
effect, the used classifier effect, and comparative evaluations 
against other local search-based methods as well as other 
population-based algorithms using the same UCI datasets.

The influence of the main parameters (i.e., � and N  ) of 
binary �-hill climbing optimizer on the algorithm conver-
gence behavior is studied. In conclusion, for � operator, the 
higher value can achieve superior results. This means that 
the exploration is much beneficial for feature selection prob-
lem search space. Also, larger N  parameter value obtains 
better results in most cases. Furthermore, eight different 
transfer functions are experimented with which include 
S-shaped and V-Shaped transfer functions. In summary, 
the outcomes produced by the proposed binary � HC with 
S-shape can almost excel all other results produced by other 
transfer functions. Furthermore, three classifiers are utilized 
to find the classification accuracy (i.e., kNN, SVM, and 
decision tree (DT)). The kNN is adapted for the proposed 
method since it has the best performance. However, the main 
limitation of the proposed method is the parameter configu-
rations and the trajectory-based search which might result in 
being stuck in local minima very quickly. Furthermore, the 
convergence behavior of the proposed method might be var-
ied from feature selection problem to another due to the No-
Free-Lunch theorem in optimization (Wolpert et al. 1997).

The proposed binary �-hill climbing is compared against 
13 other comparative methods (3 local-search-based algo-
rithms and 10 metaheuristics algorithms) using the same 

dataset. The proposed binary �-hill climbing optimizer can 
excel other comparative local search-based approaches in 16 
out of 22 datasets. This means that the proposed method is 
very competitive when compared to other local search-based 
approaches. On the other hand, the binary �-hill climbing 
can outperform other comparative metaheuristic approaches 
in 7 out of 22 datasets. These results prove the effective-
ness of the proposed binary �-hill climbing optimizer as an 
important addition to the body of knowledge in the machine 
learning and classifications domain.

The Friedman statistical test at a significant level � set 
to 0.05 shows that the binary � HC algorithm outperforms 
other comparative metaheuristic methods by getting the first 
rank. In addition, by applying Holm and Hochberg as a post-
hoc statistical test the performance of the binary � HC algo-
rithm is statistically better than 7 of the other comparative 
metaheuristic methods (i.e., BSSA, WOA, BGWO, BGSA, 
PSO, GA, and BBA) using the significant level �/Order.

As the proposed binary �-hill climbing is shown to be 
very successful when used to solve the feature selection 
problem, we plan to address the following issues in the 
future:

Feature selection applications: other feature selection 
applications such as gene selection which might be more 
complex can be tackled using the proposed binary �-hill 
climbing optimizer.
adaptive�-HC: the adaptive version of � hill climbing 
optimizer can be utilized for feature selection applications 
to simplify the adaptations.
Hybridization with population-based algorithm: 
hybridize binary � hill climbing optimizer with other 
swarm-based algorithms to empower the exploration 
capabilities of the algorithm.
Using other evaluating measurements in the experi-
ments: The performance of the proposed method can be 
also evaluated using other evaluating measurements such 
as sensitivity, specificity, area under the curve (AUC), 
and others.
Experimenting using large-scaled datasets: Large-
scaled datasets can be experimented with to evaluate the 
efficiency and scalability of the proposed method.
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