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Abstract
With the adaptable paradigm of cloud computing and obtainable of data accumulated from largely high-powered scientific 
devices, workflows have turn into an occurring aim to execute considerable scientific advances at an enhanced speed. Occur-
ring Workflow as a Service (WaaS) frameworks provide scientists an effortless, simply accessible and cost-efficient manner 
of using their applications from anywhere and at anytime in the cloud. They are multitenant platforms and are developed to 
handle the execution of heterogeneous workflows continuous workload. To fulfill this, they utilize the compute, network and 
storage services provided by Infrastructure as a Service (IaaS) vendors. Therefore, at any considerable particular moment, a 
WaaS framework should be proficient of effectively schedule these continuous workload of workflows with various features 
and quality of service (QoS). Therefore, we propose a strategy of scheduling and resource provisioning planned particularly 
for WaaS platforms. The algorithm is dynamic and scalable to adjust to improve in the workload and platform. It supports 
containers to deal the inefficiency of resource utilization and targets to reduce the overall execution cost of infrastructure 
resources as fulfilling each single workflow deadline constraint. To our information, this approach that explicitly deals VM 
sharing in the subject of WaaS by devising the utilization of containers in the heuristics of scheduling and resource provi-
sioning. Our experimental results shows its responsiveness to the uncertainties of the environment, its potential to achieve 
deadlines, and its cost-effectiveness when compared to other recent algorithms.

Keywords  Cloud computing · Workflow as a service · Scheduling · Resource provisioning · Deadline and cost 
minimization

1  Introduction

A group of computational tasks with dependencies are 
described as workflows. Workflows are a familiar applica-
tion model is used in the field of computational science. 
They allow the examination of data in an organized and dis-
tributed way and have been used successfully to produce 
extraordinary scientific improvement in different specializa-
tion such as physics, biology, astronomy and medicine (Gil 
et al. 2007). Their significance is attracted in current big 
data span as they provide a productive way of execution and 

knowledge extraction from the data given by more powerful 
equipment’s such as gravitational wave detectors, telescopes 
and particle accelerators. Therefore, it is usual for workflows 
to be a wide-range data and resource intensive model that 
are used on distributed platforms with the aim of generate 
solutions within a valid amount of time.

The occurrence of cloud computing has carried with it 
various benefits for the usage of scientific workflows. Espe-
cially, cloud infrastructure as a service (IaaS) permit work-
flow handling approach (WHA) to approach an infinite pool 
of resources that can be obtained, modified, and used as 
demanded virtually and are billed on pay-as-you-go basis. 
IaaS vendors provide compute resources virtually called vir-
tual machines (VMs) for rent. They possess a pre-described 
CPU, storage, memory, and bandwidth capacity and the bun-
dles of heterogeneous resource (i.e., VM types) are acces-
sible at different cost. They can be able to elastically obtain 
and make free and are commonly charged per time unit. As 
VMs achieve the compute ability, IaaS also provide network 
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and storage services, offering the demanded infrastructure 
for the workflow applications execution.

Scheduling approaches customized for workflow appli-
cations are significant in considering use of the advantages 
provided by clouds and they have been extensively analyzed 
in late years. To succeed this, they involve not only to prior-
itize on the mapping of task and resource but also on plan-
ning the type and number of resources to utilize through-
out the workflow execution (i.e. provisioning of resource). 
Most existing strategies prioritize on making scheduling 
and resource provisioning decisions for a single workflow 
application. They believe resource models and application in 
which only one user presents a single instance of workflow 
for performance to a WHA. The WHA is then accountable 
for provisioning the demanded resources and scheduling the 
tasks to them hence that the execution of single workflow is 
done within the constraints of quality of service (QoS). As 
this is a reasonable design, as the support of cloud comput-
ing turns to be popular in the middle of scientific group, new 
applications types are developing.

Especially, workflow as a service (WaaS) is an aris-
ing notion in which workflows execution is provided as a 
service to scientific community. WaaS would divided as a 
presenting either at the software as a service or platform 
as a service model as vendors use compute, network, and 
storage resources provided by IaaS providers to satisfy the 
requirements addressed to a multitenant WHA. Workflows 
presented to that WHA associated with various users and are 
not certainly linked to each user; they would differ in size, 
structure, application, input data and the requirement of QoS 
in the middle of other characteristics. Therefore, schedulers 
need to be capable of execute a bundle of workflows with 
various structure that are arriving continuously for execution 
(in the absence of believing the type and number of work-
flows are studied in before). A sketch of a WaaS environment 
is shown in Fig. 1. Platforms knowing this service type are 
starting to come out in the publication. For instance, Fil-
gueira et al. (2016) suggest a data intensive workflow appli-
cation as a resource type that permits the simple composi-
tion and usage of stream based applications of workflow on 
cloud environment utilizing containers. Likewise, Skyport 
(Gerlach et al. 2014) is a processing environment having 
the ability of handling the multiple workflows execution in 
cloud by using containers to deal the deployment of software 
issues and inefficiency of resource utilization. Additional 
examples contain the middleware defined by Esteves and 
Veiga (2016) and the structure shown by Wang et al. (2014).

Workflows are usually formed of various types of tasks. 
In experimental expression, same type of tasks execute the 
same software procedure; that is, they do the same procedure 
of computation possibly on various sets of data. This rep-
resents that various types of tasks require various software 
procedures for their performance. Virtualization permits for 

the processing nature of these tasks to be simply tailored. 
For example, hardware level virtualization would utilized in 
the manner that the operating systems, directory structures 
and software packages, in the middle of others, able to be 
tailored for a particular task and saved as an image of VM. 
This image able to be simply utilized to use VMs having 
the ability of processing the tasks. This is the version exam-
ined by the most occurring workflow scheduling approaches 
for IaaS cloud. They prioritize on efficient way for renting 
and freeing VMs with the aim of satisfy a group of QoS 
requirements and in common reason that all VMs would 
utilized utilizing a single image of VM that includes all of 
the required software to run any task from any workflow. 
This expectation is realistic and valid when examining single 
workflow scheduling but not when multiple workflow (i.e., 
belong to different users) scheduling.

The important explanation for this is the incapable of cus-
tomizing a single image of VM to encourage the execution 
of various tasks from various workflows (e.g., examine the 
image capacity and the inability among software programs 
demanded by various tasks from various workflows). WaaS 
frameworks able to be adopt various approaches to over-
come this problem. An option is to provide dedicated VMs 
for each workflow (multiple workflows) for achieving each 
workflow QoS requirements such as deadline, but an oppor-
tunity is to run each independent workflow on its specific 
group of dedicated VMs or a group of associated workflows 
on their specific dedicated VMs would end in an inefficient 
utilization of resource and huge costs. Another opportunity 
that deal this problem is to integrate the utilization of con-
tainers and VMs, which are made of operating system virtu-
alization. Container permit applications to be deployed and 

Fig. 1   The system architecture of our proposed approach
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formed by offering a virtual nature that contain its particular 
network space, block I/O, memory and CPU. By permitting 
each workflow or task to have a relative container image, a 
VM would re-utilized to execute tasks corresponding to dif-
ferent workflows by deploying the relative container when 
a task is ready to execute on that VM. In this manner, maxi-
mize the resource utilization by minimize the idle time slots 
wastage on rented VMs.

Also using a well-planned VM sharing type, algorithms 
customized for WaaS frameworks would be adaptable 
because they have no information on the approaching work-
flows. They would also able to be changed in size and hav-
ing the ability of generating decisions efficiently as the total 
tasks that demand to be executed at any particular moment. 
Other significant characteristic that would be assumed into 
examination is the effective auto-scaling and VMs manage-
ment with the aim of improving their usage as a cost-effec-
tive technique as still can fulfill the QoS conditions of each 
individual workflow. This will possibly end in lesser cost for 
users and more profit for vendors. Lastly, algorithms would 
also deal usual challenges acquired from the resource type 
provided by cloud such as resource heterogeneity, resource 
abundance, unpredictability acquired from performance 
degradation, delays of VM provisioning and billing models.

In reply to these demands, we propose SRPSM, A Scal-
able Resource Provisioning and Scheduling algorithm for 
Multiple workflows developed for WaaS frameworks. It 
examines containers to deal inefficiency of resource utili-
zation and targets to reduce the complete cost of renting 
resources as satisfying the deadline constraint of each indi-
vidual workflow approaching continuously for execution. 
Even though there are several existing approaches developed 
for multiple workflow scheduling, they either implicitly or 
explicitly believe that each individual workflow in any situ-
ations (i.e., same workflow but differ in number of tasks) 
has its particular allocated resources. To our information, 
this approach that clearly deals VM sharing in the subject 
of WaaS by devising the utilization of containers in the heu-
ristics scheduling and resource provisioning. Moreover, the 
algorithm is scalable and adjustable and our experimental 
results show its reactions to environmental unpredictabil-
ity’s, its potential to achieve the deadlines and its cost-effec-
tiveness when compared to other algorithms.

2 � Related work

Most of the algorithms in the publications prioritize on 
optimizing the single workflow execution based on its spe-
cific QoS needs. Therefore, the resources are utilized spe-
cifically for the single workflow related to single user for 
execution. The majority of algorithms contains as targets 
reducing the overall execution cost as satisfying a deadline 

limitation. Examples contain (Abrishami et al. 2013; Cal-
heiros and Buyya 2013; Deldari et al. 2017; Liu et al. 2016) 
and approach proposed by Dziok et al. (2016). To succeed 
this, they possess strategies on the spot to elastically obtain 
and free resources and prioritize mainly on reutilizing the 
inactive time periods of provisioned VMs when achievable 
with the aim of maximize the utilization of resources and 
protect some cost. Anyway, the deadline limitation strategies 
and dependencies among tasks represent that unutilized time 
periods cannot be completely removed.

Several workflow applications are comprised of inter-
connected workflow groups called as ensembles (Deelman 
et al. 2008; Maechling et al. 2007; Vöckler et al. 2011). 
These workflows are linked together as their integrated per-
formance generates desired output (Malawski et al. 2015). 
There are some scheduling approaches developing for this 
model of applications in the publication (Bryk et al. 2016; 
Chai 2020; Chhabra et al. 2020; Gupta et al. 2020; Jiang 
et al. 2015; Pietri et al. 2013; Rajan 2020; Thennarasu et al. 
2020; Yin et al. 2020). They vary from the output given 
in this material in three aspects. Initially, the requirements 
of QoS are not described for each individual workflow, but 
instead for the whole ensemble. Therefore, the algorithms 
are usually examined and incline to have this in the schedul-
ing targets. Secondly, the instance of number of workflows is 
usually studied in before and the scheduling heuristics would 
utilize this when organizing the performance of workflow 
tasks. Lastly, the same workflows in an ensemble, repre-
senting they possess a same structure but vary in input data 
and size.

Yu and Shi (2008) examined an application type same to 
the one deals in this material and offered an algorithm for 
scheduling the applications of multiple workflows presented 
from various user at different periods. Anyway, their out-
put is customized for cluster infrastructure and it believes 
a static number of resources that are quickly accessible. In 
addition to, the algorithm’s goal is to reduce the makespan 
of every single workflow rather than satisfying the con-
straint of deadline. Although these variations, we examine 
their project related because the authors not only find the 
requirements for such type, even in cluster infrastructures, 
but also find some significant issues and features that need 
to be examined despite distributed environment such as the 
requirement for the algorithm to be adaptable and the sig-
nificance of examining the entire resource utilization from 
the perspective of resource management.

Some works examine multiple workflows scheduling in 
cloud. For example, the work done by Jiang et al. (2011), 
anyway, the application type they examine is varied to the 
one presented in this material because they believe the type 
and number of workflows are studied before and that whole 
workflows are presented for performance at the same period. 
In addition to, their approach does not examine deadlines 
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nor cost because its main target is to increase the resource 
utilization. Another approach is done by Stavrinides and 
Karatza (2015), it is formed on a list scheduling strategy 
and their application type is same to the one addressed in 
this material but varies in the information that they examine 
the standard of the data generated by every individual work-
flow as portion of the QoS needs. Likewise, Xu et al. (2009) 
present a heuristic with various objectives as they examine 
a budget limitation and as portion of the QoS requirements. 
Lastly, Chen et al. (2015) propose an algorithm that contains 
the similar application type and scheduling targets as our 
presented output. Anyway, their proposed output as well as 
earlier mentioned outputs, vary from our strategy in a key 
characteristic. They believe a limited group of heterogene-
ous VMs that is accessible all over the whole lifespan of 
the procedure and therefore do not examine the problem of 
resource provisioning within abundant and elastic resources.

On the opposite, Dyna (Zhou et al. 2015), is a scheduling 
approach developed for IaaS with auto-scaling characteris-
tics to dynamically assigned and unassigned VMs formed on 
the tasks’ current status. It assignments by choosing VM cat-
egories for every workflow task formed on a search of a star 
so that the overall cost is reduced. Anyway, it varies from 
our strategy because it provides guarantees of probabilistic 
deadline and examines VMs cost within two different types: 
static (e.g., on-demand instances of amazon) and dynamic 
VMs (e.g., spot instances of amazon). In addition to, even 
though the policy of VM sharing is not clearly defined in the 
material, it would be concluded that a type in which same 
types of workflows only shared the VMs. This formed on the 
system type examined by the authors and the consideration 
which is carried out with a workload made up of the same 
kind of workflow but with various total number of tasks.

SCS (Mao and Humphrey 2011) and WPPDS (Shi et al. 
2014) are also having the ability of scheduling multiple 
workflows in cloud with an auto-scaling feature. SCS first 
generates a resource provisioning scheme formed on a heu-
ristic of global optimization and then improves it at process-
ing time to react to unexpected delays that were disregarded 
for. Anyway, the improvement of the resource provisioning 
scheme is achieved by processing the global optimization 
procedure for the leftover tasks every time schedule a task. 
This makes a high overhead and limits its scalability in terms 
of the processing number of tasks. WPPDS on the next side 
examines a budget cost for each workflow deadlines and 
whole workload and its aim is to complete as multiple work-
flows as achievable with the considered budget.

Wang et al. (2014) presented a structure for a WaaS plat-
form beside with four scheduling algorithms based on heu-
ristic: static, scalable, greedy and adaptive. They vary from 
our approach because they only permit VMs to be shared 
among same workflow type of tasks but not among tasks 
belonging to various workflows. In addition to, the targets 

of their presented approaches are to reduce the cost and 
makespan and they do not examine data transfer times and 
VM provisioning delays. It is useful observing that out of 
the studied approaches, this is the only material that clearly 
describes the sharing policy of a VM. Remaining approaches 
either naively believe that any workflow task can be used 
on any of the accessible VMs or not succeed to adequately 
describe their type of application.

Asterism DIaas (Filgueira et al. 2016) and Skyport (Ger-
lach et al. 2014) are additional examples of WaaS platforms. 
They are related to this assignment because they find the 
advantages and requirement of utilizing containers but prior-
itize on how they would be utilized to bundle workflow tasks 
and the benefits of using them on VMs which are already 
provisioned so that these are having the ability of processing 
any tasks belong to any workflow. They do not prioritize on 
the problems of scheduling and resource provisioning deals 
in the material. Esteves and Veiga (2016) also describe a 
framework of prototypical middleware that represents the 
idea of a WaaS platform and deal problems such as descrip-
tion of workflow, WHA incorporation, resource allocation, 
and cost type. Their assignment prioritizes on workflows for 
incremental and continuous processing of data. Even though 
the authors highlight on the plan of a WaaS framework, their 
presented approach prioritize on a single workflow.

Finally, Rodriguez and Buyya (2017a, b) defined the bill-
ing price of cloud resource model. There are three types, first 
one is hourly billing (on demand static instance), second one 
is hourly billing (spot instance or dynamic instance) and 
final one is minute billing (on demand static instance). All 
of the surveyed approaches are used mostly hourly billing 
scheme for single and multiple workflow scheduling, except 
Zhou et al. (2015) used both static and dynamic instances. 
Any utilization of both instances used in partial is charged as 
whole period. For example, for rent 60 min, if a VM is used 
62 min, the user have to pay double period of 60 min, that is, 
120 min even if a VM is used only 25 min, the user will pay 
for 60 min. On the other hand, on demand instance of spot 
instance which is offered inconsistent cost during the billing 
period. For example, if rent a spot instance for 60 min, dur-
ing its lease time either which cost is lower or very higher 
compare to on demand static instance and eventually charges 
more cost than on demand static instance. In addition to, it 
can be terminated by the provider at any time.

There are two disadvantages in partial utilization, first 
one, a user paid full hour price if used an instance partially 
or fully. Next one, instance utilization rate is calculated 
based on hour on hourly billing, therefore that makes low 
instance utilization rate. So these both instances are not com-
pletely adaptable for cost reduction and instance utilization 
to users. In WaaS platform, workflows are continuously 
arriving for execution and our aim is tend to less cost for 
users with high utilization rate and more profit for providers. 



7625Scheduling multiple scientific workflows using containers on IaaS cloud﻿	

1 3

So, user utilize the suitable billing model to save the cost and 
increase the utilization rate. As a result, provider gain more 
profit. Therefore we define that with additional problem in 
the next section as well as based on the reason for the selec-
tion of suitable billing model for WaaS platform.

3 � Motivation

3.1 � Partial issue problem

Jin et al. (2014) findings, instances in pay per use pricing for 
the case of on demand VMs in Ec2, are suggested mostly 
for the applications with short workload, also that cannot be 
delayed (short jobs). These VMs are every time considered 
hourly, yet users with short jobs have to pay complete hour 
price even their jobs consumed small portion of resources. 
This is known as partial wastage problem. Hence, they eval-
uated the resource utilization instance time on one month 
Google instance traces of users that is depicted in Fig. 2. It 
demonstrates that the large number of Google users (42.40% 
users) utilized the instances only (< 20%), which made the 
crucial problem for the user. The reason of this problem 
has explained in previous section by the example of hourly 
VM charging cost. Also, this partial usage noticed in many 
research articles (Maechling et al. 2007; Malawski et al. 
2015; Mao and Humphrey 2011) in cloud and it is a non-
negligible one for cloud users. This partial issue in cloud 
resource is motivated to do a research carry out in this paper, 
and our aim is to overcome the issue of partial wastage to 
save the cost and increase the utilization for users.

Therefore, we consider the minute billing model for WaaS 
platform to reduce some amount of overall cost of infrastruc-
ture and increase the utilization than on demand static and 
dynamic instances. For example, the advantage of minute 

billing period is, if a VM is leased 60 min but used 85 min, 
user charged only for 85 min or if a VM is leased for 60 min 
but used 25 min, user charged only for 25 min. Hence, the 
minute billing scheme is more adaptable for jobs and reduce 
some amount of cost plus increased the utilization rate than 
hourly billing scheme of static and dynamic pricing. Moreo-
ver, it gives more profit for providers, because pay per min-
ute VM offers low cost to users to submit more workflows 
therefore it offers more profit for IaaS providers.

4 � Application and models of resource

This assignment is developed to schedule an uninterrupted 
bundle of multiple workflows presented by scientists to a 
WaaS vendor. The workflows probably contain various fea-
tures such as application model, total number of tasks, I/O 
data and deadline limit. The WaaS vendor rents resources 
from an IaaS provider to satisfy the users’ requirements and 
its aim is to reduce the overall cost of leasing resources as 
satisfying the deadline limitation of each individual work-
flow application submitted.

Scientific workflows are represented as directed acyclic 
graph (DAGs); that is, graphs in relation to guided edges and 
in relation to no cycle’s dependencies, for example a sample 
scientific workflow is depicted in Fig. 3. At any considerable 
particular moment, there is a group W = {W1, W2,…,Wn} of 
scientific workflows that demand to be scheduled. In terms 
of structure, a workflow w is comprised of a group of tasks 
T = {t1, t2,….,tn} and edges E. An edge eij = (ti, tj) presents 
if at is a dependency in the middle of tasks ti and tj, mean 
task ti is a parent of tj and task tj is a child of ti. Found on 
this, child tasks cannot start its process until its all parent 
tasks have completed their execution. Lastly, each individual 
workflow is connected with a deadline dlw, described as a 
time constraint for the workflow execution and a container 
cnw that includes all the software and libraries demanded to 
run any workflow tasks.

Fig. 2   Partial usage issue

Fig. 3   An example of single workflow and its dependency with the 
value of data transfer time in-between parent and child tasks and 
archs
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We examine a type in which workflow tasks run in con-
tainers which one after the other are used on VMs. A con-
tainer would be used on VM at whatever time with a time 
of provisioning delay provcn. This delay links to the span it 
needs to process of container image downloading from the 
general storage approach such as Amazon S3 and put it on 
the VM. We examine a type where just one container would 
be used on the VM at a considerable particular moment and 
therefore, we believe containers access the same bandwidth 
capacity and CPU belong to the VM. We believe the exe-
cution of tasks would be initiated by global schedulers by 
communicating standard signals towards containers by make 
use of the command Docker exec. Therefore, various tasks 
would be processed one after the other on one container in 
the absence of redeployment.

We accept a pay per minute model where VMs are 
charged per billing minute τ. We examine a single data 
center and a single cloud provider. In this manner, reduce the 
network delays and eliminate the cost of intermediate data 
transfer. Lastly, we force no constraint on the total number 
of VMs that would be rented from the vendor.

The IaaS vendor presents a group of VM categories 
VMT = {vmt1, vmt2,…,vmtn} with various configurations 
and prices. VMs categories are described in terms of their 
bandwidth capacity bvmt, CPU processing capacity Prvmt, 
and cost per unit time cvmt. A measure of average of their 
provisioning delay provvm is also contained as portion of 
their description. Execution time, ETVMT

t
 , of each task on 

each VM category is present to the scheduler. Various per-
formance estimation strategies would be applied to acquire 
this value, in our strategy we compute it by estimate of the 
task size and CPU processing capacity of the VM category 
with included the percentage of performance variation is 
put in Eq. (1). Moreover, this obtained value of task execu-
tion time by this estimation method is not 100% correct to 
succeed its targets.

Found on the description of the workflow tasks executed 
by Juve et al. (2013) and the VM categories presented by 
Amazon ec2 cloud, we believe that all VM categories con-
tain adequate memory to run any workflow tasks. Anyway, 
as a future assignment we will examine expanding the algo-
rithm to contain strategies that guarantee tasks are allocated 
to VMs with adequate memory to run them. Moreover, we 
believe VMs contain single core for scheduling objectives 
and therefore are just efficient of executing just one task at 
a time.

We describe the data sharing in the middle of tasks to 
happen via general storage approach such as Amazon s3. In 
this manner, the outputs of tasks’ store in the general storage 
and as similar to retrieve their inputs. We believe the general 

(1)ETVMT
t

= TSt∕Prvmt

storage (GS) with adequate capacity and writing and reading 
speed of GSw and GSr separately. The time it needs to move 
and write the output data d from the vmt type of VM into the 
general storage is put in Eq. (2).

Likewise, the time it needs to move and retrieve the input 
data d from the general storage into the VM type of vmt is 
put in Eq. (3).

We admit that features such as multitenancy, heteroge-
neity, non-virtualized hardware, and virtualization in IaaS 
cloud makes performance variability in resources (Juve et al. 
2010, 2013; Kouki and Ledoux 2013; Schad et al. 2010; 
Wang et al. 2013). Especially, (Schad et al. 2010) findings, 
performance degradation in cloud network resources when 
their maximal attainable performance being found on the 
bandwidth capacity described by the provider. Eventually, 
this end in a degradation in data transfer and guides to the 
execution time delay. Moreover, we do not believe there is 
a further performance degradation due to container deploy-
ment in this experiment (Tommaso et al. 2015; Felter et al. 
2015).

As put in Eq. (4), calculate the total processing time of 
task t TPTVMT

t
 on a VM of category vmt by the total of task 

execution time and the span it needs to write the essential 
nout output files to the storage and retrieve nin as similar from 
the storage. Regard that, there is no essential to read the file 
of input when it is previously accessible in the VM where 
the task will run. This happens whenever parent and child 
tasks execute on the same VM.

The using resource cost rvmt of category vmt for leaser 
units of time is described as

Lastly, we believe the data transfers in/out from/to gen-
eral storage approach are charged free, as is the instance 
for commodity like Amazon S3, Rackspace Block Storage 
and Google Cloud Storage. Because of the general stor-
age system, many cloud vendors charge by the found on 
the stored data amount. We do not add this cost in the total 
cost estimation of neither our implementation and nor the 
implementation of other approaches used in the experiment 
for comparison. The explanation for this having the ability to 
compare our strategy with others planned to transfer data’s 
in peer-to-peer fashion. Moreover, despite, the stored data 

(2)N
output

d,vmt
= (d∕bvmt) + (d∕GSw)

(3)N
input

d,vmt
= (d∕bvmt) + (d∕GSr)

(4)TPTvmt
t

= ETvmt
t

+

(
ninput∑

i=1

Nin
di,vmt

)
+

(
noutput∑

i=1

Nin
di,vmt

)

(5)Crvmt = ⌈(provvmt + leaser)∕τ⌉ × cvmt
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amount for a considered workflow is most probably similar 
in every situation that it does not makes in a variation in 
cost.

5 � The SRPSM algorithm

We present SRPSM, a dynamic algorithm based on heu-
ristic that generates scheduling and resource provisioning 
selection to fulfill each individual workflow deadline while 
reducing the price of renting VMs. Its clarity was an impor-
tant plan objective to improve its execution in real word 
WaaS platforms and to guarantee its scalability in terms of 
the number of tasks and workflows. Generally, the algo-
rithm handles a cache of resources which is scaled out/in 
found on the present requirements of tasks that are start for 
processing. Its important objective is to competently use 
these resources as a cost-effective manner without violate 
the deadlines of each individual workflow. An outline of 
SRPSM scheduling scenario is depicted in Fig. 4 and a com-
plete heuristic is as follows.

Once a workflow is presented to the workflow sched-
uler, it is pre-processed and portion of deadline is allo-
cated to each task. This portion of deadline will lead the 

selections made at processing time when planning each 
task on to either a new provisioned or an existing resource. 
The first stage is the strategy of deadline distribution is to 
estimate the earliest finish time for each task in a workflow 
described as eftt = maxp�t.parents{eftp} + TPTVMT

t
 , where 

vmt related to the category of VM with the high portion 
of CPU capacity. For clarity, from this moment, we will 
mention to this category of VM as the fastest category 
and to the category of VM with the less portion of CPU 
capacity as slowest category. In this manner, estimated the 
task processing time utilizing vmt guides to the highest 
value (slowest processing time) but possibly the lesser cost 
(believing the cost is proportional to the capacity of CPU).

Then, the workflow makespan (i.e. total execution 
time), is described as mw = maxtϵT{eftt}, is estimated. If 
this value run over the workflow’s limit of deadline, then 
recalculated the earliest finish time of tasks using the next 
fast processing category of VM until the makespan value 
is equal or less than the value of deadline. We believe the 
value of deadline is every time adequate and therefore do 
no examine instances in which the fast processing acces-
sible VM category still guides to a makespan that is exceed 
the workflow’s deadline. An opportunity for WaaS vendors 
in this situation should be to dismiss the workflow execu-
tion or renegotiate the requirements of QoS with users.

Fig. 4   The SRPSM resource 
provisioning and scheduling 
strategy
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task on that VM. When calculating the time required to run 
a task on an existing VM, not only consider the TPTVMT

t
 , but 

also consider the container provisioning delay provcn in situ-
ations in which the container need to run the task demands 
to be used on the VM.

The idle VM is initially searched for in the group VMin
idle

 
which is comprised of all presently idle VMs that include 
part or complete task’s input data. In this manner, parent and 
child tasks are regularly supported to execute on the same 
VM. The explanation for this are to minimize the utilization 
of the networks in data center because they are familiarly 
studied bottlenecks and origin of uncertainty, and therefore 
to minimize the total processing time of tasks because the 
input data does not demand to be transported from the gen-
eral storage approach and consequently to minimize cost by 
incurring in shorter billing slot. Moreover, by examining 
container provisioning delays when calculating the cost and 
processing time of tasks on rented VMs, an idle VM with 
the matching container used on it will regularly be recom-
mended if it does not guide to the deadline violation.

If no appropriate VM is discovered in VMin
idle

 , then the 
algorithm attempts to re-use VM from the group VMcn

idle
 

including all the idle VMs in which the container linked 
to the task’s workflow is deployed currently. In this man-
ner the provisioning delay of container provcn is removed. 
If the group does not include a VM that can complete the 
task within the time, then the algorithm focus for any exist-
ing VM remaining in idle that can fulfill the deadline with 
lesser cost.

After acquiring an appropriate makespan, the portion of 
spare time accessible described as the variation between the 
deadline and makespan (i.e. dlw − mw) is estimated. This 
time of spare is then allocated to each individual task in a 
manner that is proportional to their processing time, that 
is, tasks with higher processing time get allocated a higher 
amount of the spare time examine the performance to tasks 
with lesser processing time. Lastly, each task is allocated a 
deadline dlt = t ⋅ start time + TPTVMT

t
+ t ⋅ spare time.

When a workflow DAG is preprocessed, then scheduling 
of workflow task can start, this procedure is shown in Algo-
rithm 1. Its major aim is to refuse renting new VMs when 
achievable rather than re-use existing VMs. In this manner, 
the consequence of newly provisioning VM delays in respect 
of uncertainty and cost are minimized and the resources are 
utilized effectively. This extremely guides to less number of 
VMs utilized and consumed less billing slots.

Initially, all the arrival tasks (those that possess no par-
ent) in the workflow turn start for execution and are put 
in a queue for scheduling. As the progresses of workflow 
execution and tasks are finished, child tasks that are start 
to execute (those that possess parents and have completed 
their execution) are dispatched on to the queue. Therefore, 
at any considerable moment, this queue includes whole tasks 
from whole workflows are presented to the framework that 
are start to be scheduled.

Every scheduling interval, which happens every Schint, 
every task in the queue is executed in the subsequent man-
ner. The first stage is to identify a VM in idle that can com-
plete the task within the time with lesser cost and map the 
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If a suitable existing VM is discovered, then the task is 
quickly mapped on it. If not found, then as a final call on to 
re-use a rented VM, the task is wait longer to be mapped in 
a following scheduling interval, but only if does not guide to 
a violation of deadline. Therefore, the option to wait longer 
a task is made formed on the task’s processing time on the 
slowest category and the remaining amount of time to fin-
ish the task within the time. In particular, if mapping the 
task on a next scheduling interval on the slowest category 
of accessible VM still guides to the task completing the task 
by its deadline, then the task is wait longer so than it can be 
possibly mapped on an existing VM on a following interval.

If the task cannot be wait longer, then the category of 
VM that can complete the task on time with lesser cost is 
selected. If there is no such category of VM exist then the 
fastest category of VM that can complete the task is selected. 
When calculating the cost and processing time of tasks on 
various VM categories, our approach examines the task’s 
execution time, provisioning delay of VM and initialization 
delay of container. A VM of the chosen category is then 
offered, the matching container is deployed, and scheduled 
the task on it.

To well adapt to environmental unpredictability’s and 
unpredicted delays, all the time a task completes either later 
than usual or earlier, the deadline of the leftover tasks in 
workflow is improvised. In this manner, if a tasks completes 
its execution earlier, child tasks will possess extra time to 
execute and therefore they would either be allocated to a 
lesser cost VM or wait longer to be mapped in following 
intervals. If a task complete its execution later than pre-
dicted, modifying the deadline of the leftover tasks should 
avoid the deadline violation.

Considering the strategy of provisioning of resources, as 
stated before, new VMs are just provisioned if tasks cannot 
be wait longer any more. On the contrary of provisioning is 
deprovisioning, it is a non-negligible one for terminate the 
idle container (for required workflow container deployment) 
and idle VM (save some cost and increase the utilization) 
during the execution. As for the procedure of deprovision-
ing, monitored every leased VMs at every provint. Hence, 
first it checks the group of idle VMs in which it first looked 
the idle VMs for in the group of VMcn

idle
 , containing the VMs 

container idle and check any VMs’ container idle time is 
equal or exceed the fixed average idle time (it fixes depends 
on the workload of workflow) if found, container will be 
terminated in the VM. Then, that VM belong to the group of 
VMin

idle
 . So that VM can use if any workflow task required to 

execute with its corresponding container provisioning delay 
and prevent the newly VM provision to save cost, time, and 
increase the utilization.

Next it looked the idle VM for in the group of VMin
idle

 , 
including all the idle VMs and check any idle VM is reached 
either equal or above the fixed average time (it fixed depends 
on the workload of workflow), then that VM will be termi-
nated to save some cost, time and increase the utilization. 
This deprovisioning strategy is depicted in Algorithm 2. It is 
useful referring that both strategy of scheduling and provi-
sioning intervals (schint and provint) are customizable factors 
that can be given as input to the algorithm and their weights 
guide to the balance between performance with regard to 
makespan (overall execution time) and cost running time 
used on scheduling and provisioning procedures.
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6 � Evaluation of performance

Our proposal performance was evaluated using familiar 
workflows from five various scientific domains. The field 
of astronomy related application of Montage is used to 
make big output image of the sky found on a batch of input 
image. The majority of the tasks are distinguished by being 
I/O intensive as not demanding the processing capacity of 
CPU plentiful. The workflow of LIGO from the domain of 
astrophysics is applied to observe gravitational waves. It is 
comprised mainly of CPU-intensive tasks with huge mem-
ory needs. A SIPHT application is utilized in the field of 
bio-informatics to automate the look for encoding-genes of 
sRNA. The majority of the workflow tasks required to have 
much CPU and less I/O utilization. In addition to the domain 
of bioinformatics, the Epigenomics workflow application is 
CPU-intensive that automate the different genome-sequenc-
ing operation execution. Lastly, the CyberShake is utilized 
to distinguish the hazards of earthquake by making synthetic 

seismograms and can be distinguished as a data-intensive 
tasks with huge memory and CPU demands. These workflow 
structures are shown in Fig. 5 and their characterization and 
their full description is done by Juve et al. (2013).

The evaluation was done with different workload includ-
ing an integration of all the workflows aforementioned of 
four different sizes: large (1000 tasks), medium (100 tasks), 
small (50 tasks) and extra-small (30 tasks). The bundle of 
workload is comprised of a various number of workflows 
varying from 10 to 20 workflows and various arrival rate 
which were used by a Poisson distribution. For the observa-
tions given here, we used the processing time made for each 
task as the task size in millions of instructions (MI).

Each workload of workflow was allocated a deadline. To 
perform this, initially maximum and minimum makespan 
values were found for each integration of size and type of 
workflow. The makespan value of maximum was defined 
as the execution time occurring from processing all tasks 
sequentially on a slowest type of single VM. The makes-
pan value of minimum was calculated by each task execu-
tion time on a fastest type of single one. A deadline among 
these maximum and minimum values was selected randomly 
formed on a uniform distribution.

We used the CloudSim (Calheiros et al. 2011) to encour-
age the execution of containers and workflows. An Iaas 
vendor presenting a single data region and four categories 
of VMs was offered. The used VM category configurations 
are shown in Table 1. Their price and CPU capacity are a 

Fig. 5   Five different scientific workflows a Cybershake, b SIPHT, c Montage, d Epigenomics and e LIGO

Table 1   Categories of VMs used in the evaluation

Name Capacity of CPI (MIPS) Price per minute

Extra-large 16 $0.266
Large 8 $0.066
Medium 4 $0.033
Small 2 $0.016
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version of the optimized compute instance categories (c4) 
offered by EC2 Amazon and these VMs would be obtained 
from Google cloud provider as well. A billing period of VM 
was one minute was considered and for all VM categories. 
Based on the study of Mao and Humphrey (2012), the provi-
sioning delay of VM was fix to 100 s. Formed on an average 
600 MB container size of image, 500 Mbps bandwidth and 
0.4 s initialization and 10 s provisioning delay was done by 
the study of Piraghaj et al. (2017). Performance variation of 
CPU was modeled after the information findings by Schad 
et al. (2010) and some other studies (Iosup et al. 2011; Jack-
son et al. 2010; Maddikunta et al. 2020; Reddy et al. 2014; 
Priya et al. 2020; Rodriguez and Buyya 2017a, b; Ostermann 
et al. 2009). The VM performance was diminished by 24% 
formed on a normal distribution with mean and standard 
deviation of 10% and 12% respectively. Based on the latter 
mentioned work, the bandwidth accessible in data center for 
each transfer of data was degraded by 19% with mean 9.5% 
and standard deviation 5% based on a normal distribution.

6.1 � Performance of algorithm

We differentiate SRPSM with Dyna (Zhou et al. 2015), 
an approach designed for a same scenario of application. 
Both outputs vary anyway, in two characteristics. Dyna was 
designed to provide probabilistic deadline promises and 
to utilize not only VMs priced statically (e.g. on-demand 
instances of Amazon), but also utilize dynamically priced 
VMs (e.g. spot instances of Amazon). Having simple adjust-
ment, we used Dyna to examine non probabilistic deadlines 
and utilize static VMs specifically. Dyna executes an A star 
search to produce advance configuration scheme for each 
task connecting it to a VM category. At processing time, 
this configuration scheme, as well as instance reuse and 
consolidation heuristics are used to task schedule. The cor-
respondents of Dyna do not define a sharing policy of VM 
among workflows and create no make use of containers but 
instead map tasks on VMs directly. We executed the Dyna 
with two different versions, first in which any task from any 
workflow would use any VM without container (mentioned 
to as Dyna), and next in which only the VMs reused between 
same type of workflows (mentioned as Dyna-WS).

To show the advantages of sharing VMs and using con-
tainers, we executed one extra version of our approach, 
SRPSM-WCWS. SRPSM-WCWS without the use of con-
tainers but believes that VMs can be re-used between tasks 
associating to the same type of workflow (i.e. between a 
Montage workflow tasks with 50, and a Montage workflow 
with 1000 tasks), it is same to Dyna-WS. Lastly, the intervals 
of provisioning and scheduling for all SRPSM versions were 
fixed to 1 s and 10 s respectively.

The aim of this group of experiments is to estimate the 
algorithm performance in respect of cost and having the 

ability of meet deadlines. We evaluate SRPSM and Dyna 
also their variants within three different types of workloads 
made up of 10, 15 and 20 workflows are shown in Table 2. 
The three bundles of workload arrival rate was fixed to 5 
workflows per minute.

Figure 6a–c demonstrate the cost acquired for each of the 
workloads (small, medium and large) and algorithms respec-
tively. SRPSM acquires the lesser cost in all three work-
loads and it also demonstrates that extra cost of utilizing 
containers is very marginal. As predicted, the obtained cost 
by SRPSM-WCWS is larger than that acquired for SRPSM 
for the small, medium and large workloads. The explanation 
for this is that, by utilizing containers and having the ability 
to reuse any VMs for any workflow task, SRPSM is suitable 
to utilize the leased VMs efficiently. SRPSM-WCWS on the 
other side, even though it does not experience in extra costs 
occurring from utilizing containers, is limited to use tasks 
exclusively on those VMs only allocated to workflows of the 
similar type. This additionally demonstrate the advantage of 
utilizing containers to minimize cost in WaaS platforms. The 
similar explanation uses for Dyna and Dyna-WS.

When differentiated to Dyna, SRPSM succeeds signifi-
cantly lesser costs for all three workloads even in spite of 
the information that Dyna is not influenced by provisioning 
of container delays. This is because of SRPSM succeeding 
an efficient utilization of the leased VMs by minimizing the 
quota of idle time slots.

The workflows percentage that completed within their 
deadline for each workload and each algorithm are depicted 
in Fig. 7. All evaluated algorithms have a better performance 
in this field with all being over 80%. This one is the impor-
tant benefit of dynamic algorithms because they are hav-
ing the ability to recover from unpredicted delays due to 
environmental uncertainties or performance degradation. 
The little bit variation between the SRPSM and it variant 
in performance may be cause by two factors. The fact of the 
first one is that the sharing policy of VM has an effect on the 
number of leased VM, their categories and how they are re-
used. The second fact is the fluctuation of statistical outcome 
from the stochastic characteristic of the simulated process of 
performance variation. As for the variation in performance 
among different sort of workloads, this can be defined by 
the characteristics of the workflows (size, type and dead-
line) in the workloads in addition to their submission time. 
Overall, SRPSM, and SRPSM-WCWS outperforms Dyna 
and it variant.

To study the obtained makespan in those situations in 
which the deadline was violated. We marked the makespan 
average to ratio of deadline for each workflow execution 
samples in which the deadline was violated. The results 
are depicted in Fig. 8, where the value of ratio larger than 
one represents a makespan greater than the deadline. The 
violated deadlines connected to the workflow, SIPHT 
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and its values of ratio are below 1.025 in every situation. 
This represents that the variation between makespan and 
deadline was small. Moreover, after studying the work-
flow samples for which Dyna not succeeded to satisfy the 
constraint for the SIPHT and Epigenomics workflows the 
same number of times. This may represent that in those 
particular situations, the deadline might have been too 
tight for the algorithms that can be complete within the 
time. Another feature supporting to this is the information 
that SIPHT and Epigenomics are CPU-bound (Juve et al. 
2010) and therefore are further negatively affected by the 
performance degradation of VM CPU.

Also SRPSM was evaluated with workflows in various 
arrival rates. For this aim, we managed experiments with 
five various arrival rates and five workload of 20 work-
flows. The results are depicted in Fig. 9. The number of 
VMs and utilization considerably depend on the workload 
because they are impacted by the possibilities discovered 
by SRPSM to re-use already leased VMs and it increases 
the utilization consistently. This represents the algorithm 
identifies possibilities successfully to better utilize the 
quota of idle time periods. For the arrival rate of 5 work-
flows per minutes, anyway, there are large number of tasks 
at any considerable particular moment in the queue and 
considerably more number of VMs demand to be rented 
with the aim of execute them on time, guiding to a less uti-
lization rate and incur high cost. We consider the obtained 
results for Dyna as a purpose for comparison and in every 
situation SRPSM outperforms it.

6.2 � Sensitivity of provisioning delay

Because of the more number of tasks in the scheduling 
queue at any considerable particular moment, recurrent VM 

Table 2   Workloads used in the evaluation of the algorithm’s perfor-
mance

Workload name Number of workflows Number of tasks

Small 10 500
Medium 15 900
Large 20 5900

Fig. 6   The executing cost of a small (10), b medium (15) and c large (20) workloads



7633Scheduling multiple scientific workflows using containers on IaaS cloud﻿	

1 3

provisioning procedures may be executed with the aim of 
satisfy the requirements of deadline of tasks. Hence, it is sig-
nificant to evaluate the capability of SRPSM to complete the 
submitted workflows execution with a makespan no larger 
than the considered deadline within various provisioning 
delays of VM. Therefore, we evaluated SRPSM within five 
different provisioning delays of VM varying from 0 to 200 s 
and the workload belonging to 20 workflows and various 
rates of arrival. The obtained results for SRPSM and Dyna 
are shown in Fig. 10.

For SRPSM, frequently use the already leased VM to pre-
vent the new lease VMs when provisioning delay increases 
and maximize the VM utilization much larger. It is useful 
observing in addition to the utilization and total number of 
VMs are not the only characteristic to affect the cost but also 
they VMs type and how long they are utilized for.

The obtained results for Dyna were added as a reference 
one and in every situation, SRPSM do better than Dyna on 
every evaluation metric. Moreover, Dyna lease more VMs 
to incurred high cost than SRPSM.

Respecting the delays of container provisioning, we eval-
uated the SRPSM performance with values limiting from 0 
to 50 s. The costs are shown in Fig. 11. As predicted, the 
higher the provisioning delay, the larger the cost as a higher 
part of a VM’s rent time is used initializing containers. Any-
way, by admitting the delay of container provisioning when 
calculating processing time and choosing idle VMs to task 
schedule, SRPSM attempts to minimize such a cost increase.

6.3 � Sensitivity of performance degradation

Knowing variability of performance is significant for sched-
ulers so they can improve from unpredicted delays and sat-
isfy the requirements of QoS. The algorithm sensitivity to 
CPU degradation performance of VM was done by studying 

the deadlines met percentage, VMs utilization average and 
cost within different values of degradation. The degradation 
was used using a distribution of normal with variance of 1% 
and various maximum and average values. The average val-
ues were described as half part of the maximum degradation 
performance of CPU which limited from 0 to 50%.

The obtained results of 20 workflows for workload are 
shown in Fig. 12. For the workload and algorithms, the 
deadline met percentage decreases as the percentage of 
degradation increases, anyway, even with degradation per-
formance maximum of 50%, the deadlines percentage met 
stays over 80%. It is impossible to fully remove the nega-
tive effect of degradation of performance when scheduling 
the workflows despite if algorithms are adjustable, they still 
depend on task’s runtime estimation to choose decisions. 
In this manner, even only one task taking longer than usual 
time may make the deadline to turn inadequate either as 
its delay impacted its child task making a domino cause, 
or as the delay was notable sufficient, as it was the final 

Fig. 7   The deadline met per-
centage of small (10), medium 
(15) and large (20) workloads

Fig. 8   Average deadline ratio of workflow execution that finished 
after their deadline for large workload
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workflow task. Especially, we find two features of SRPSM 
that influence its adaptability. The first feature is the strategy 
of deadline distribution, which even though repeated all over 
the workflow execution, is formed on task’s run time estima-
tion. The second feature is determination to wait longer the 
tasks with the aim of support rented VMs, which permits 
the algorithm to effectively reduce the workflows cost but 
impacts its responsiveness to improve in the platform. These 
results shows anyway, that in spite of this, SRPSM is even 
now successful in reaching its goal of deadline in the vast 
majority situations.

7 � Conclusions and future work

Emerging WaaS platforms with the plan of offering scien-
tists with the potential to utilize their workflow applications 
for implementation in the cloud in an easy and cost efficient 
method. Moreover, it can be utilized by multiple users with 

less cost and also gain more profit to the provider side com-
pared than single workflow execution environment. They 
possess the ability to transform the manner in which work-
flows are executed by providing a utility based resource that 
can be approached on-demand basis from anywhere and by 
anyone. A significant characteristic, as is for multitenant 
cloud platform, is to competently handle the execution of 
multiple workflows associating to various users and with 
various requirements of QoS. This requires having a sched-
uling algorithm in scalable in order to efficiently making 
resource selection for huge number of tasks effectively in 
addition to a resource provisioning heuristic having the abil-
ity of managing the large number of elastic and heteroge-
neous cloud resources. Therefore, we proposed SRPSM, a 
dynamic approach developed to schedule various types of 
workflows in WaaS platforms. Its execution is studied in 
detail and examined with Dyna, shows not just that SRPSM 
is having the ability to making high-standard schedules but 
also the advantages of resource sharing between different 
workflows in respect of cost which can be done effectively 
by utilizing containers. Moreover, the arrival rate of 5 work-
flows per minute can be expandable up to 50 workflows per 
minute for heavy workloads, just in case need in future 
(i.e. 100, 500 and 1000 workflows) without modifying the 
SRPSM procedure.

This assignment is focus on scheduling multiple work-
flows using containers in WaaS frameworks. There are dif-
ferent features that can be examined to enhance SRPSM and 
are remain as future assignment. For instance, examining 
the situation in which images of container are stored on 
a VM’s local storage; this should minimize the use of the 
data transfers’ and possess a significant effect on makespan 
and cost. For this aim, the available storage amount would 
be contained as portion of the description of the policies 
and VM to determine the total number of stored images, 
their lifespan, and balance between saving I/O data’s versus 

Fig. 9   Cost of executing five workloads of 20 workflows with differ-
ent arrival rates

Fig. 10   The large workload (20 workflows) execution cost under dif-
ferent provisioning delay of VM

Fig. 11   The large workload (20 workflows) execution cost under dif-
ferent provisioning delay of container
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images would be examined. Another future assignment is to 
search the usage of multiple containers simultaneously on a 
single VM with the aim of run multiple tasks in concurrent. 
Analyzing the impact of resource sharing between different 
workflows and utilizing containers on the energy consump-
tion is also remain as future assignment. Lastly, it should be 
of regard for WaaS frameworks in usual to collect and use 
the execution of workflow data to improve the estimation of 
tasks’ runtimes, to deal privacy and security problems that 
emerge from their multitenant feature, to design fault toler-
ant heuristics at different levels of the platform.
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