
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2021) 12:7621–7636
https://doi.org/10.1007/s12652-020-02483-0

ORIGINAL RESEARCH

Scheduling multiple scientific workflows using containers on IaaS
cloud

P. Rajasekar1  · Yogesh Palanichamy1

Received: 4 May 2020 / Accepted: 14 August 2020 / Published online: 26 August 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
With the adaptable paradigm of cloud computing and obtainable of data accumulated from largely high-powered scientific
devices, workflows have turn into an occurring aim to execute considerable scientific advances at an enhanced speed. Occur-
ring Workflow as a Service (WaaS) frameworks provide scientists an effortless, simply accessible and cost-efficient manner
of using their applications from anywhere and at anytime in the cloud. They are multitenant platforms and are developed to
handle the execution of heterogeneous workflows continuous workload. To fulfill this, they utilize the compute, network and
storage services provided by Infrastructure as a Service (IaaS) vendors. Therefore, at any considerable particular moment, a
WaaS framework should be proficient of effectively schedule these continuous workload of workflows with various features
and quality of service (QoS). Therefore, we propose a strategy of scheduling and resource provisioning planned particularly
for WaaS platforms. The algorithm is dynamic and scalable to adjust to improve in the workload and platform. It supports
containers to deal the inefficiency of resource utilization and targets to reduce the overall execution cost of infrastructure
resources as fulfilling each single workflow deadline constraint. To our information, this approach that explicitly deals VM
sharing in the subject of WaaS by devising the utilization of containers in the heuristics of scheduling and resource provi-
sioning. Our experimental results shows its responsiveness to the uncertainties of the environment, its potential to achieve
deadlines, and its cost-effectiveness when compared to other recent algorithms.

Keywords  Cloud computing · Workflow as a service · Scheduling · Resource provisioning · Deadline and cost
minimization

1  Introduction

A group of computational tasks with dependencies are
described as workflows. Workflows are a familiar applica-
tion model is used in the field of computational science.
They allow the examination of data in an organized and dis-
tributed way and have been used successfully to produce
extraordinary scientific improvement in different specializa-
tion such as physics, biology, astronomy and medicine (Gil
et al. 2007). Their significance is attracted in current big
data span as they provide a productive way of execution and

knowledge extraction from the data given by more powerful
equipment’s such as gravitational wave detectors, telescopes
and particle accelerators. Therefore, it is usual for workflows
to be a wide-range data and resource intensive model that
are used on distributed platforms with the aim of generate
solutions within a valid amount of time.

The occurrence of cloud computing has carried with it
various benefits for the usage of scientific workflows. Espe-
cially, cloud infrastructure as a service (IaaS) permit work-
flow handling approach (WHA) to approach an infinite pool
of resources that can be obtained, modified, and used as
demanded virtually and are billed on pay-as-you-go basis.
IaaS vendors provide compute resources virtually called vir-
tual machines (VMs) for rent. They possess a pre-described
CPU, storage, memory, and bandwidth capacity and the bun-
dles of heterogeneous resource (i.e., VM types) are acces-
sible at different cost. They can be able to elastically obtain
and make free and are commonly charged per time unit. As
VMs achieve the compute ability, IaaS also provide network

 *	 P. Rajasekar
	 rajasekar@auist.net

	 Yogesh Palanichamy
	 yogesh@annauniv.edu

1	 Department of Information Science and Technology,
College of Engineering, Anna University, Guindy, Chennai,
Tamilnadu, India

http://orcid.org/0000-0002-0517-5315
http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-020-02483-0&domain=pdf

7622	 P. Rajasekar, Y. Palanichamy

1 3

and storage services, offering the demanded infrastructure
for the workflow applications execution.

Scheduling approaches customized for workflow appli-
cations are significant in considering use of the advantages
provided by clouds and they have been extensively analyzed
in late years. To succeed this, they involve not only to prior-
itize on the mapping of task and resource but also on plan-
ning the type and number of resources to utilize through-
out the workflow execution (i.e. provisioning of resource).
Most existing strategies prioritize on making scheduling
and resource provisioning decisions for a single workflow
application. They believe resource models and application in
which only one user presents a single instance of workflow
for performance to a WHA. The WHA is then accountable
for provisioning the demanded resources and scheduling the
tasks to them hence that the execution of single workflow is
done within the constraints of quality of service (QoS). As
this is a reasonable design, as the support of cloud comput-
ing turns to be popular in the middle of scientific group, new
applications types are developing.

Especially, workflow as a service (WaaS) is an aris-
ing notion in which workflows execution is provided as a
service to scientific community. WaaS would divided as a
presenting either at the software as a service or platform
as a service model as vendors use compute, network, and
storage resources provided by IaaS providers to satisfy the
requirements addressed to a multitenant WHA. Workflows
presented to that WHA associated with various users and are
not certainly linked to each user; they would differ in size,
structure, application, input data and the requirement of QoS
in the middle of other characteristics. Therefore, schedulers
need to be capable of execute a bundle of workflows with
various structure that are arriving continuously for execution
(in the absence of believing the type and number of work-
flows are studied in before). A sketch of a WaaS environment
is shown in Fig. 1. Platforms knowing this service type are
starting to come out in the publication. For instance, Fil-
gueira et al. (2016) suggest a data intensive workflow appli-
cation as a resource type that permits the simple composi-
tion and usage of stream based applications of workflow on
cloud environment utilizing containers. Likewise, Skyport
(Gerlach et al. 2014) is a processing environment having
the ability of handling the multiple workflows execution in
cloud by using containers to deal the deployment of software
issues and inefficiency of resource utilization. Additional
examples contain the middleware defined by Esteves and
Veiga (2016) and the structure shown by Wang et al. (2014).

Workflows are usually formed of various types of tasks.
In experimental expression, same type of tasks execute the
same software procedure; that is, they do the same procedure
of computation possibly on various sets of data. This rep-
resents that various types of tasks require various software
procedures for their performance. Virtualization permits for

the processing nature of these tasks to be simply tailored.
For example, hardware level virtualization would utilized in
the manner that the operating systems, directory structures
and software packages, in the middle of others, able to be
tailored for a particular task and saved as an image of VM.
This image able to be simply utilized to use VMs having
the ability of processing the tasks. This is the version exam-
ined by the most occurring workflow scheduling approaches
for IaaS cloud. They prioritize on efficient way for renting
and freeing VMs with the aim of satisfy a group of QoS
requirements and in common reason that all VMs would
utilized utilizing a single image of VM that includes all of
the required software to run any task from any workflow.
This expectation is realistic and valid when examining single
workflow scheduling but not when multiple workflow (i.e.,
belong to different users) scheduling.

The important explanation for this is the incapable of cus-
tomizing a single image of VM to encourage the execution
of various tasks from various workflows (e.g., examine the
image capacity and the inability among software programs
demanded by various tasks from various workflows). WaaS
frameworks able to be adopt various approaches to over-
come this problem. An option is to provide dedicated VMs
for each workflow (multiple workflows) for achieving each
workflow QoS requirements such as deadline, but an oppor-
tunity is to run each independent workflow on its specific
group of dedicated VMs or a group of associated workflows
on their specific dedicated VMs would end in an inefficient
utilization of resource and huge costs. Another opportunity
that deal this problem is to integrate the utilization of con-
tainers and VMs, which are made of operating system virtu-
alization. Container permit applications to be deployed and

Fig. 1   The system architecture of our proposed approach

7623Scheduling multiple scientific workflows using containers on IaaS cloud﻿	

1 3

formed by offering a virtual nature that contain its particular
network space, block I/O, memory and CPU. By permitting
each workflow or task to have a relative container image, a
VM would re-utilized to execute tasks corresponding to dif-
ferent workflows by deploying the relative container when
a task is ready to execute on that VM. In this manner, maxi-
mize the resource utilization by minimize the idle time slots
wastage on rented VMs.

Also using a well-planned VM sharing type, algorithms
customized for WaaS frameworks would be adaptable
because they have no information on the approaching work-
flows. They would also able to be changed in size and hav-
ing the ability of generating decisions efficiently as the total
tasks that demand to be executed at any particular moment.
Other significant characteristic that would be assumed into
examination is the effective auto-scaling and VMs manage-
ment with the aim of improving their usage as a cost-effec-
tive technique as still can fulfill the QoS conditions of each
individual workflow. This will possibly end in lesser cost for
users and more profit for vendors. Lastly, algorithms would
also deal usual challenges acquired from the resource type
provided by cloud such as resource heterogeneity, resource
abundance, unpredictability acquired from performance
degradation, delays of VM provisioning and billing models.

In reply to these demands, we propose SRPSM, A Scal-
able Resource Provisioning and Scheduling algorithm for
Multiple workflows developed for WaaS frameworks. It
examines containers to deal inefficiency of resource utili-
zation and targets to reduce the complete cost of renting
resources as satisfying the deadline constraint of each indi-
vidual workflow approaching continuously for execution.
Even though there are several existing approaches developed
for multiple workflow scheduling, they either implicitly or
explicitly believe that each individual workflow in any situ-
ations (i.e., same workflow but differ in number of tasks)
has its particular allocated resources. To our information,
this approach that clearly deals VM sharing in the subject
of WaaS by devising the utilization of containers in the heu-
ristics scheduling and resource provisioning. Moreover, the
algorithm is scalable and adjustable and our experimental
results show its reactions to environmental unpredictabil-
ity’s, its potential to achieve the deadlines and its cost-effec-
tiveness when compared to other algorithms.

2 � Related work

Most of the algorithms in the publications prioritize on
optimizing the single workflow execution based on its spe-
cific QoS needs. Therefore, the resources are utilized spe-
cifically for the single workflow related to single user for
execution. The majority of algorithms contains as targets
reducing the overall execution cost as satisfying a deadline

limitation. Examples contain (Abrishami et al. 2013; Cal-
heiros and Buyya 2013; Deldari et al. 2017; Liu et al. 2016)
and approach proposed by Dziok et al. (2016). To succeed
this, they possess strategies on the spot to elastically obtain
and free resources and prioritize mainly on reutilizing the
inactive time periods of provisioned VMs when achievable
with the aim of maximize the utilization of resources and
protect some cost. Anyway, the deadline limitation strategies
and dependencies among tasks represent that unutilized time
periods cannot be completely removed.

Several workflow applications are comprised of inter-
connected workflow groups called as ensembles (Deelman
et al. 2008; Maechling et al. 2007; Vöckler et al. 2011).
These workflows are linked together as their integrated per-
formance generates desired output (Malawski et al. 2015).
There are some scheduling approaches developing for this
model of applications in the publication (Bryk et al. 2016;
Chai 2020; Chhabra et al. 2020; Gupta et al. 2020; Jiang
et al. 2015; Pietri et al. 2013; Rajan 2020; Thennarasu et al.
2020; Yin et al. 2020). They vary from the output given
in this material in three aspects. Initially, the requirements
of QoS are not described for each individual workflow, but
instead for the whole ensemble. Therefore, the algorithms
are usually examined and incline to have this in the schedul-
ing targets. Secondly, the instance of number of workflows is
usually studied in before and the scheduling heuristics would
utilize this when organizing the performance of workflow
tasks. Lastly, the same workflows in an ensemble, repre-
senting they possess a same structure but vary in input data
and size.

Yu and Shi (2008) examined an application type same to
the one deals in this material and offered an algorithm for
scheduling the applications of multiple workflows presented
from various user at different periods. Anyway, their out-
put is customized for cluster infrastructure and it believes
a static number of resources that are quickly accessible. In
addition to, the algorithm’s goal is to reduce the makespan
of every single workflow rather than satisfying the con-
straint of deadline. Although these variations, we examine
their project related because the authors not only find the
requirements for such type, even in cluster infrastructures,
but also find some significant issues and features that need
to be examined despite distributed environment such as the
requirement for the algorithm to be adaptable and the sig-
nificance of examining the entire resource utilization from
the perspective of resource management.

Some works examine multiple workflows scheduling in
cloud. For example, the work done by Jiang et al. (2011),
anyway, the application type they examine is varied to the
one presented in this material because they believe the type
and number of workflows are studied before and that whole
workflows are presented for performance at the same period.
In addition to, their approach does not examine deadlines

7624	 P. Rajasekar, Y. Palanichamy

1 3

nor cost because its main target is to increase the resource
utilization. Another approach is done by Stavrinides and
Karatza (2015), it is formed on a list scheduling strategy
and their application type is same to the one addressed in
this material but varies in the information that they examine
the standard of the data generated by every individual work-
flow as portion of the QoS needs. Likewise, Xu et al. (2009)
present a heuristic with various objectives as they examine
a budget limitation and as portion of the QoS requirements.
Lastly, Chen et al. (2015) propose an algorithm that contains
the similar application type and scheduling targets as our
presented output. Anyway, their proposed output as well as
earlier mentioned outputs, vary from our strategy in a key
characteristic. They believe a limited group of heterogene-
ous VMs that is accessible all over the whole lifespan of
the procedure and therefore do not examine the problem of
resource provisioning within abundant and elastic resources.

On the opposite, Dyna (Zhou et al. 2015), is a scheduling
approach developed for IaaS with auto-scaling characteris-
tics to dynamically assigned and unassigned VMs formed on
the tasks’ current status. It assignments by choosing VM cat-
egories for every workflow task formed on a search of a star
so that the overall cost is reduced. Anyway, it varies from
our strategy because it provides guarantees of probabilistic
deadline and examines VMs cost within two different types:
static (e.g., on-demand instances of amazon) and dynamic
VMs (e.g., spot instances of amazon). In addition to, even
though the policy of VM sharing is not clearly defined in the
material, it would be concluded that a type in which same
types of workflows only shared the VMs. This formed on the
system type examined by the authors and the consideration
which is carried out with a workload made up of the same
kind of workflow but with various total number of tasks.

SCS (Mao and Humphrey 2011) and WPPDS (Shi et al.
2014) are also having the ability of scheduling multiple
workflows in cloud with an auto-scaling feature. SCS first
generates a resource provisioning scheme formed on a heu-
ristic of global optimization and then improves it at process-
ing time to react to unexpected delays that were disregarded
for. Anyway, the improvement of the resource provisioning
scheme is achieved by processing the global optimization
procedure for the leftover tasks every time schedule a task.
This makes a high overhead and limits its scalability in terms
of the processing number of tasks. WPPDS on the next side
examines a budget cost for each workflow deadlines and
whole workload and its aim is to complete as multiple work-
flows as achievable with the considered budget.

Wang et al. (2014) presented a structure for a WaaS plat-
form beside with four scheduling algorithms based on heu-
ristic: static, scalable, greedy and adaptive. They vary from
our approach because they only permit VMs to be shared
among same workflow type of tasks but not among tasks
belonging to various workflows. In addition to, the targets

of their presented approaches are to reduce the cost and
makespan and they do not examine data transfer times and
VM provisioning delays. It is useful observing that out of
the studied approaches, this is the only material that clearly
describes the sharing policy of a VM. Remaining approaches
either naively believe that any workflow task can be used
on any of the accessible VMs or not succeed to adequately
describe their type of application.

Asterism DIaas (Filgueira et al. 2016) and Skyport (Ger-
lach et al. 2014) are additional examples of WaaS platforms.
They are related to this assignment because they find the
advantages and requirement of utilizing containers but prior-
itize on how they would be utilized to bundle workflow tasks
and the benefits of using them on VMs which are already
provisioned so that these are having the ability of processing
any tasks belong to any workflow. They do not prioritize on
the problems of scheduling and resource provisioning deals
in the material. Esteves and Veiga (2016) also describe a
framework of prototypical middleware that represents the
idea of a WaaS platform and deal problems such as descrip-
tion of workflow, WHA incorporation, resource allocation,
and cost type. Their assignment prioritizes on workflows for
incremental and continuous processing of data. Even though
the authors highlight on the plan of a WaaS framework, their
presented approach prioritize on a single workflow.

Finally, Rodriguez and Buyya (2017a, b) defined the bill-
ing price of cloud resource model. There are three types, first
one is hourly billing (on demand static instance), second one
is hourly billing (spot instance or dynamic instance) and
final one is minute billing (on demand static instance). All
of the surveyed approaches are used mostly hourly billing
scheme for single and multiple workflow scheduling, except
Zhou et al. (2015) used both static and dynamic instances.
Any utilization of both instances used in partial is charged as
whole period. For example, for rent 60 min, if a VM is used
62 min, the user have to pay double period of 60 min, that is,
120 min even if a VM is used only 25 min, the user will pay
for 60 min. On the other hand, on demand instance of spot
instance which is offered inconsistent cost during the billing
period. For example, if rent a spot instance for 60 min, dur-
ing its lease time either which cost is lower or very higher
compare to on demand static instance and eventually charges
more cost than on demand static instance. In addition to, it
can be terminated by the provider at any time.

There are two disadvantages in partial utilization, first
one, a user paid full hour price if used an instance partially
or fully. Next one, instance utilization rate is calculated
based on hour on hourly billing, therefore that makes low
instance utilization rate. So these both instances are not com-
pletely adaptable for cost reduction and instance utilization
to users. In WaaS platform, workflows are continuously
arriving for execution and our aim is tend to less cost for
users with high utilization rate and more profit for providers.

7625Scheduling multiple scientific workflows using containers on IaaS cloud﻿	

1 3

So, user utilize the suitable billing model to save the cost and
increase the utilization rate. As a result, provider gain more
profit. Therefore we define that with additional problem in
the next section as well as based on the reason for the selec-
tion of suitable billing model for WaaS platform.

3 � Motivation

3.1 � Partial issue problem

Jin et al. (2014) findings, instances in pay per use pricing for
the case of on demand VMs in Ec2, are suggested mostly
for the applications with short workload, also that cannot be
delayed (short jobs). These VMs are every time considered
hourly, yet users with short jobs have to pay complete hour
price even their jobs consumed small portion of resources.
This is known as partial wastage problem. Hence, they eval-
uated the resource utilization instance time on one month
Google instance traces of users that is depicted in Fig. 2. It
demonstrates that the large number of Google users (42.40%
users) utilized the instances only (< 20%), which made the
crucial problem for the user. The reason of this problem
has explained in previous section by the example of hourly
VM charging cost. Also, this partial usage noticed in many
research articles (Maechling et al. 2007; Malawski et al.
2015; Mao and Humphrey 2011) in cloud and it is a non-
negligible one for cloud users. This partial issue in cloud
resource is motivated to do a research carry out in this paper,
and our aim is to overcome the issue of partial wastage to
save the cost and increase the utilization for users.

Therefore, we consider the minute billing model for WaaS
platform to reduce some amount of overall cost of infrastruc-
ture and increase the utilization than on demand static and
dynamic instances. For example, the advantage of minute

billing period is, if a VM is leased 60 min but used 85 min,
user charged only for 85 min or if a VM is leased for 60 min
but used 25 min, user charged only for 25 min. Hence, the
minute billing scheme is more adaptable for jobs and reduce
some amount of cost plus increased the utilization rate than
hourly billing scheme of static and dynamic pricing. Moreo-
ver, it gives more profit for providers, because pay per min-
ute VM offers low cost to users to submit more workflows
therefore it offers more profit for IaaS providers.

4 � Application and models of resource

This assignment is developed to schedule an uninterrupted
bundle of multiple workflows presented by scientists to a
WaaS vendor. The workflows probably contain various fea-
tures such as application model, total number of tasks, I/O
data and deadline limit. The WaaS vendor rents resources
from an IaaS provider to satisfy the users’ requirements and
its aim is to reduce the overall cost of leasing resources as
satisfying the deadline limitation of each individual work-
flow application submitted.

Scientific workflows are represented as directed acyclic
graph (DAGs); that is, graphs in relation to guided edges and
in relation to no cycle’s dependencies, for example a sample
scientific workflow is depicted in Fig. 3. At any considerable
particular moment, there is a group W = {W1, W2,…,Wn} of
scientific workflows that demand to be scheduled. In terms
of structure, a workflow w is comprised of a group of tasks
T = {t1, t2,….,tn} and edges E. An edge eij = (ti, tj) presents
if at is a dependency in the middle of tasks ti and tj, mean
task ti is a parent of tj and task tj is a child of ti. Found on
this, child tasks cannot start its process until its all parent
tasks have completed their execution. Lastly, each individual
workflow is connected with a deadline dlw, described as a
time constraint for the workflow execution and a container
cnw that includes all the software and libraries demanded to
run any workflow tasks.

Fig. 2   Partial usage issue

Fig. 3   An example of single workflow and its dependency with the
value of data transfer time in-between parent and child tasks and
archs

7626	 P. Rajasekar, Y. Palanichamy

1 3

We examine a type in which workflow tasks run in con-
tainers which one after the other are used on VMs. A con-
tainer would be used on VM at whatever time with a time
of provisioning delay provcn. This delay links to the span it
needs to process of container image downloading from the
general storage approach such as Amazon S3 and put it on
the VM. We examine a type where just one container would
be used on the VM at a considerable particular moment and
therefore, we believe containers access the same bandwidth
capacity and CPU belong to the VM. We believe the exe-
cution of tasks would be initiated by global schedulers by
communicating standard signals towards containers by make
use of the command Docker exec. Therefore, various tasks
would be processed one after the other on one container in
the absence of redeployment.

We accept a pay per minute model where VMs are
charged per billing minute τ. We examine a single data
center and a single cloud provider. In this manner, reduce the
network delays and eliminate the cost of intermediate data
transfer. Lastly, we force no constraint on the total number
of VMs that would be rented from the vendor.

The IaaS vendor presents a group of VM categories
VMT = {vmt1, vmt2,…,vmtn} with various configurations
and prices. VMs categories are described in terms of their
bandwidth capacity bvmt, CPU processing capacity Prvmt,
and cost per unit time cvmt. A measure of average of their
provisioning delay provvm is also contained as portion of
their description. Execution time, ETVMT

t
 , of each task on

each VM category is present to the scheduler. Various per-
formance estimation strategies would be applied to acquire
this value, in our strategy we compute it by estimate of the
task size and CPU processing capacity of the VM category
with included the percentage of performance variation is
put in Eq. (1). Moreover, this obtained value of task execu-
tion time by this estimation method is not 100% correct to
succeed its targets.

Found on the description of the workflow tasks executed
by Juve et al. (2013) and the VM categories presented by
Amazon ec2 cloud, we believe that all VM categories con-
tain adequate memory to run any workflow tasks. Anyway,
as a future assignment we will examine expanding the algo-
rithm to contain strategies that guarantee tasks are allocated
to VMs with adequate memory to run them. Moreover, we
believe VMs contain single core for scheduling objectives
and therefore are just efficient of executing just one task at
a time.

We describe the data sharing in the middle of tasks to
happen via general storage approach such as Amazon s3. In
this manner, the outputs of tasks’ store in the general storage
and as similar to retrieve their inputs. We believe the general

(1)ETVMT
t

= TSt∕Prvmt

storage (GS) with adequate capacity and writing and reading
speed of GSw and GSr separately. The time it needs to move
and write the output data d from the vmt type of VM into the
general storage is put in Eq. (2).

Likewise, the time it needs to move and retrieve the input
data d from the general storage into the VM type of vmt is
put in Eq. (3).

We admit that features such as multitenancy, heteroge-
neity, non-virtualized hardware, and virtualization in IaaS
cloud makes performance variability in resources (Juve et al.
2010, 2013; Kouki and Ledoux 2013; Schad et al. 2010;
Wang et al. 2013). Especially, (Schad et al. 2010) findings,
performance degradation in cloud network resources when
their maximal attainable performance being found on the
bandwidth capacity described by the provider. Eventually,
this end in a degradation in data transfer and guides to the
execution time delay. Moreover, we do not believe there is
a further performance degradation due to container deploy-
ment in this experiment (Tommaso et al. 2015; Felter et al.
2015).

As put in Eq. (4), calculate the total processing time of
task t TPTVMT

t
 on a VM of category vmt by the total of task

execution time and the span it needs to write the essential
nout output files to the storage and retrieve nin as similar from
the storage. Regard that, there is no essential to read the file
of input when it is previously accessible in the VM where
the task will run. This happens whenever parent and child
tasks execute on the same VM.

The using resource cost rvmt of category vmt for leaser
units of time is described as

Lastly, we believe the data transfers in/out from/to gen-
eral storage approach are charged free, as is the instance
for commodity like Amazon S3, Rackspace Block Storage
and Google Cloud Storage. Because of the general stor-
age system, many cloud vendors charge by the found on
the stored data amount. We do not add this cost in the total
cost estimation of neither our implementation and nor the
implementation of other approaches used in the experiment
for comparison. The explanation for this having the ability to
compare our strategy with others planned to transfer data’s
in peer-to-peer fashion. Moreover, despite, the stored data

(2)N
output

d,vmt
= (d∕bvmt) + (d∕GSw)

(3)N
input

d,vmt
= (d∕bvmt) + (d∕GSr)

(4)TPTvmt
t

= ETvmt
t

+

(
ninput∑

i=1

Nin
di,vmt

)
+

(
noutput∑

i=1

Nin
di,vmt

)

(5)Crvmt = ⌈(provvmt + leaser)∕τ⌉ × cvmt

7627Scheduling multiple scientific workflows using containers on IaaS cloud﻿	

1 3

amount for a considered workflow is most probably similar
in every situation that it does not makes in a variation in
cost.

5 � The SRPSM algorithm

We present SRPSM, a dynamic algorithm based on heu-
ristic that generates scheduling and resource provisioning
selection to fulfill each individual workflow deadline while
reducing the price of renting VMs. Its clarity was an impor-
tant plan objective to improve its execution in real word
WaaS platforms and to guarantee its scalability in terms of
the number of tasks and workflows. Generally, the algo-
rithm handles a cache of resources which is scaled out/in
found on the present requirements of tasks that are start for
processing. Its important objective is to competently use
these resources as a cost-effective manner without violate
the deadlines of each individual workflow. An outline of
SRPSM scheduling scenario is depicted in Fig. 4 and a com-
plete heuristic is as follows.

Once a workflow is presented to the workflow sched-
uler, it is pre-processed and portion of deadline is allo-
cated to each task. This portion of deadline will lead the

selections made at processing time when planning each
task on to either a new provisioned or an existing resource.
The first stage is the strategy of deadline distribution is to
estimate the earliest finish time for each task in a workflow
described as eftt = maxp�t.parents{eftp} + TPTVMT

t
 , where

vmt related to the category of VM with the high portion
of CPU capacity. For clarity, from this moment, we will
mention to this category of VM as the fastest category
and to the category of VM with the less portion of CPU
capacity as slowest category. In this manner, estimated the
task processing time utilizing vmt guides to the highest
value (slowest processing time) but possibly the lesser cost
(believing the cost is proportional to the capacity of CPU).

Then, the workflow makespan (i.e. total execution
time), is described as mw = maxtϵT{eftt}, is estimated. If
this value run over the workflow’s limit of deadline, then
recalculated the earliest finish time of tasks using the next
fast processing category of VM until the makespan value
is equal or less than the value of deadline. We believe the
value of deadline is every time adequate and therefore do
no examine instances in which the fast processing acces-
sible VM category still guides to a makespan that is exceed
the workflow’s deadline. An opportunity for WaaS vendors
in this situation should be to dismiss the workflow execu-
tion or renegotiate the requirements of QoS with users.

Fig. 4   The SRPSM resource
provisioning and scheduling
strategy

7628	 P. Rajasekar, Y. Palanichamy

1 3

task on that VM. When calculating the time required to run
a task on an existing VM, not only consider the TPTVMT

t
 , but

also consider the container provisioning delay provcn in situ-
ations in which the container need to run the task demands
to be used on the VM.

The idle VM is initially searched for in the group VMin
idle

which is comprised of all presently idle VMs that include
part or complete task’s input data. In this manner, parent and
child tasks are regularly supported to execute on the same
VM. The explanation for this are to minimize the utilization
of the networks in data center because they are familiarly
studied bottlenecks and origin of uncertainty, and therefore
to minimize the total processing time of tasks because the
input data does not demand to be transported from the gen-
eral storage approach and consequently to minimize cost by
incurring in shorter billing slot. Moreover, by examining
container provisioning delays when calculating the cost and
processing time of tasks on rented VMs, an idle VM with
the matching container used on it will regularly be recom-
mended if it does not guide to the deadline violation.

If no appropriate VM is discovered in VMin
idle

 , then the
algorithm attempts to re-use VM from the group VMcn

idle

including all the idle VMs in which the container linked
to the task’s workflow is deployed currently. In this man-
ner the provisioning delay of container provcn is removed.
If the group does not include a VM that can complete the
task within the time, then the algorithm focus for any exist-
ing VM remaining in idle that can fulfill the deadline with
lesser cost.

After acquiring an appropriate makespan, the portion of
spare time accessible described as the variation between the
deadline and makespan (i.e. dlw − mw) is estimated. This
time of spare is then allocated to each individual task in a
manner that is proportional to their processing time, that
is, tasks with higher processing time get allocated a higher
amount of the spare time examine the performance to tasks
with lesser processing time. Lastly, each task is allocated a
deadline dlt = t ⋅ start time + TPTVMT

t
+ t ⋅ spare time.

When a workflow DAG is preprocessed, then scheduling
of workflow task can start, this procedure is shown in Algo-
rithm 1. Its major aim is to refuse renting new VMs when
achievable rather than re-use existing VMs. In this manner,
the consequence of newly provisioning VM delays in respect
of uncertainty and cost are minimized and the resources are
utilized effectively. This extremely guides to less number of
VMs utilized and consumed less billing slots.

Initially, all the arrival tasks (those that possess no par-
ent) in the workflow turn start for execution and are put
in a queue for scheduling. As the progresses of workflow
execution and tasks are finished, child tasks that are start
to execute (those that possess parents and have completed
their execution) are dispatched on to the queue. Therefore,
at any considerable moment, this queue includes whole tasks
from whole workflows are presented to the framework that
are start to be scheduled.

Every scheduling interval, which happens every Schint,
every task in the queue is executed in the subsequent man-
ner. The first stage is to identify a VM in idle that can com-
plete the task within the time with lesser cost and map the

7629Scheduling multiple scientific workflows using containers on IaaS cloud﻿	

1 3

If a suitable existing VM is discovered, then the task is
quickly mapped on it. If not found, then as a final call on to
re-use a rented VM, the task is wait longer to be mapped in
a following scheduling interval, but only if does not guide to
a violation of deadline. Therefore, the option to wait longer
a task is made formed on the task’s processing time on the
slowest category and the remaining amount of time to fin-
ish the task within the time. In particular, if mapping the
task on a next scheduling interval on the slowest category
of accessible VM still guides to the task completing the task
by its deadline, then the task is wait longer so than it can be
possibly mapped on an existing VM on a following interval.

If the task cannot be wait longer, then the category of
VM that can complete the task on time with lesser cost is
selected. If there is no such category of VM exist then the
fastest category of VM that can complete the task is selected.
When calculating the cost and processing time of tasks on
various VM categories, our approach examines the task’s
execution time, provisioning delay of VM and initialization
delay of container. A VM of the chosen category is then
offered, the matching container is deployed, and scheduled
the task on it.

To well adapt to environmental unpredictability’s and
unpredicted delays, all the time a task completes either later
than usual or earlier, the deadline of the leftover tasks in
workflow is improvised. In this manner, if a tasks completes
its execution earlier, child tasks will possess extra time to
execute and therefore they would either be allocated to a
lesser cost VM or wait longer to be mapped in following
intervals. If a task complete its execution later than pre-
dicted, modifying the deadline of the leftover tasks should
avoid the deadline violation.

Considering the strategy of provisioning of resources, as
stated before, new VMs are just provisioned if tasks cannot
be wait longer any more. On the contrary of provisioning is
deprovisioning, it is a non-negligible one for terminate the
idle container (for required workflow container deployment)
and idle VM (save some cost and increase the utilization)
during the execution. As for the procedure of deprovision-
ing, monitored every leased VMs at every provint. Hence,
first it checks the group of idle VMs in which it first looked
the idle VMs for in the group of VMcn

idle
 , containing the VMs

container idle and check any VMs’ container idle time is
equal or exceed the fixed average idle time (it fixes depends
on the workload of workflow) if found, container will be
terminated in the VM. Then, that VM belong to the group of
VMin

idle
 . So that VM can use if any workflow task required to

execute with its corresponding container provisioning delay
and prevent the newly VM provision to save cost, time, and
increase the utilization.

Next it looked the idle VM for in the group of VMin
idle

 ,
including all the idle VMs and check any idle VM is reached
either equal or above the fixed average time (it fixed depends
on the workload of workflow), then that VM will be termi-
nated to save some cost, time and increase the utilization.
This deprovisioning strategy is depicted in Algorithm 2. It is
useful referring that both strategy of scheduling and provi-
sioning intervals (schint and provint) are customizable factors
that can be given as input to the algorithm and their weights
guide to the balance between performance with regard to
makespan (overall execution time) and cost running time
used on scheduling and provisioning procedures.

7630	 P. Rajasekar, Y. Palanichamy

1 3

6 � Evaluation of performance

Our proposal performance was evaluated using familiar
workflows from five various scientific domains. The field
of astronomy related application of Montage is used to
make big output image of the sky found on a batch of input
image. The majority of the tasks are distinguished by being
I/O intensive as not demanding the processing capacity of
CPU plentiful. The workflow of LIGO from the domain of
astrophysics is applied to observe gravitational waves. It is
comprised mainly of CPU-intensive tasks with huge mem-
ory needs. A SIPHT application is utilized in the field of
bio-informatics to automate the look for encoding-genes of
sRNA. The majority of the workflow tasks required to have
much CPU and less I/O utilization. In addition to the domain
of bioinformatics, the Epigenomics workflow application is
CPU-intensive that automate the different genome-sequenc-
ing operation execution. Lastly, the CyberShake is utilized
to distinguish the hazards of earthquake by making synthetic

seismograms and can be distinguished as a data-intensive
tasks with huge memory and CPU demands. These workflow
structures are shown in Fig. 5 and their characterization and
their full description is done by Juve et al. (2013).

The evaluation was done with different workload includ-
ing an integration of all the workflows aforementioned of
four different sizes: large (1000 tasks), medium (100 tasks),
small (50 tasks) and extra-small (30 tasks). The bundle of
workload is comprised of a various number of workflows
varying from 10 to 20 workflows and various arrival rate
which were used by a Poisson distribution. For the observa-
tions given here, we used the processing time made for each
task as the task size in millions of instructions (MI).

Each workload of workflow was allocated a deadline. To
perform this, initially maximum and minimum makespan
values were found for each integration of size and type of
workflow. The makespan value of maximum was defined
as the execution time occurring from processing all tasks
sequentially on a slowest type of single VM. The makes-
pan value of minimum was calculated by each task execu-
tion time on a fastest type of single one. A deadline among
these maximum and minimum values was selected randomly
formed on a uniform distribution.

We used the CloudSim (Calheiros et al. 2011) to encour-
age the execution of containers and workflows. An Iaas
vendor presenting a single data region and four categories
of VMs was offered. The used VM category configurations
are shown in Table 1. Their price and CPU capacity are a

Fig. 5   Five different scientific workflows a Cybershake, b SIPHT, c Montage, d Epigenomics and e LIGO

Table 1   Categories of VMs used in the evaluation

Name Capacity of CPI (MIPS) Price per minute

Extra-large 16 $0.266
Large 8 $0.066
Medium 4 $0.033
Small 2 $0.016

7631Scheduling multiple scientific workflows using containers on IaaS cloud﻿	

1 3

version of the optimized compute instance categories (c4)
offered by EC2 Amazon and these VMs would be obtained
from Google cloud provider as well. A billing period of VM
was one minute was considered and for all VM categories.
Based on the study of Mao and Humphrey (2012), the provi-
sioning delay of VM was fix to 100 s. Formed on an average
600 MB container size of image, 500 Mbps bandwidth and
0.4 s initialization and 10 s provisioning delay was done by
the study of Piraghaj et al. (2017). Performance variation of
CPU was modeled after the information findings by Schad
et al. (2010) and some other studies (Iosup et al. 2011; Jack-
son et al. 2010; Maddikunta et al. 2020; Reddy et al. 2014;
Priya et al. 2020; Rodriguez and Buyya 2017a, b; Ostermann
et al. 2009). The VM performance was diminished by 24%
formed on a normal distribution with mean and standard
deviation of 10% and 12% respectively. Based on the latter
mentioned work, the bandwidth accessible in data center for
each transfer of data was degraded by 19% with mean 9.5%
and standard deviation 5% based on a normal distribution.

6.1 � Performance of algorithm

We differentiate SRPSM with Dyna (Zhou et al. 2015),
an approach designed for a same scenario of application.
Both outputs vary anyway, in two characteristics. Dyna was
designed to provide probabilistic deadline promises and
to utilize not only VMs priced statically (e.g. on-demand
instances of Amazon), but also utilize dynamically priced
VMs (e.g. spot instances of Amazon). Having simple adjust-
ment, we used Dyna to examine non probabilistic deadlines
and utilize static VMs specifically. Dyna executes an A star
search to produce advance configuration scheme for each
task connecting it to a VM category. At processing time,
this configuration scheme, as well as instance reuse and
consolidation heuristics are used to task schedule. The cor-
respondents of Dyna do not define a sharing policy of VM
among workflows and create no make use of containers but
instead map tasks on VMs directly. We executed the Dyna
with two different versions, first in which any task from any
workflow would use any VM without container (mentioned
to as Dyna), and next in which only the VMs reused between
same type of workflows (mentioned as Dyna-WS).

To show the advantages of sharing VMs and using con-
tainers, we executed one extra version of our approach,
SRPSM-WCWS. SRPSM-WCWS without the use of con-
tainers but believes that VMs can be re-used between tasks
associating to the same type of workflow (i.e. between a
Montage workflow tasks with 50, and a Montage workflow
with 1000 tasks), it is same to Dyna-WS. Lastly, the intervals
of provisioning and scheduling for all SRPSM versions were
fixed to 1 s and 10 s respectively.

The aim of this group of experiments is to estimate the
algorithm performance in respect of cost and having the

ability of meet deadlines. We evaluate SRPSM and Dyna
also their variants within three different types of workloads
made up of 10, 15 and 20 workflows are shown in Table 2.
The three bundles of workload arrival rate was fixed to 5
workflows per minute.

Figure 6a–c demonstrate the cost acquired for each of the
workloads (small, medium and large) and algorithms respec-
tively. SRPSM acquires the lesser cost in all three work-
loads and it also demonstrates that extra cost of utilizing
containers is very marginal. As predicted, the obtained cost
by SRPSM-WCWS is larger than that acquired for SRPSM
for the small, medium and large workloads. The explanation
for this is that, by utilizing containers and having the ability
to reuse any VMs for any workflow task, SRPSM is suitable
to utilize the leased VMs efficiently. SRPSM-WCWS on the
other side, even though it does not experience in extra costs
occurring from utilizing containers, is limited to use tasks
exclusively on those VMs only allocated to workflows of the
similar type. This additionally demonstrate the advantage of
utilizing containers to minimize cost in WaaS platforms. The
similar explanation uses for Dyna and Dyna-WS.

When differentiated to Dyna, SRPSM succeeds signifi-
cantly lesser costs for all three workloads even in spite of
the information that Dyna is not influenced by provisioning
of container delays. This is because of SRPSM succeeding
an efficient utilization of the leased VMs by minimizing the
quota of idle time slots.

The workflows percentage that completed within their
deadline for each workload and each algorithm are depicted
in Fig. 7. All evaluated algorithms have a better performance
in this field with all being over 80%. This one is the impor-
tant benefit of dynamic algorithms because they are hav-
ing the ability to recover from unpredicted delays due to
environmental uncertainties or performance degradation.
The little bit variation between the SRPSM and it variant
in performance may be cause by two factors. The fact of the
first one is that the sharing policy of VM has an effect on the
number of leased VM, their categories and how they are re-
used. The second fact is the fluctuation of statistical outcome
from the stochastic characteristic of the simulated process of
performance variation. As for the variation in performance
among different sort of workloads, this can be defined by
the characteristics of the workflows (size, type and dead-
line) in the workloads in addition to their submission time.
Overall, SRPSM, and SRPSM-WCWS outperforms Dyna
and it variant.

To study the obtained makespan in those situations in
which the deadline was violated. We marked the makespan
average to ratio of deadline for each workflow execution
samples in which the deadline was violated. The results
are depicted in Fig. 8, where the value of ratio larger than
one represents a makespan greater than the deadline. The
violated deadlines connected to the workflow, SIPHT

7632	 P. Rajasekar, Y. Palanichamy

1 3

and its values of ratio are below 1.025 in every situation.
This represents that the variation between makespan and
deadline was small. Moreover, after studying the work-
flow samples for which Dyna not succeeded to satisfy the
constraint for the SIPHT and Epigenomics workflows the
same number of times. This may represent that in those
particular situations, the deadline might have been too
tight for the algorithms that can be complete within the
time. Another feature supporting to this is the information
that SIPHT and Epigenomics are CPU-bound (Juve et al.
2010) and therefore are further negatively affected by the
performance degradation of VM CPU.

Also SRPSM was evaluated with workflows in various
arrival rates. For this aim, we managed experiments with
five various arrival rates and five workload of 20 work-
flows. The results are depicted in Fig. 9. The number of
VMs and utilization considerably depend on the workload
because they are impacted by the possibilities discovered
by SRPSM to re-use already leased VMs and it increases
the utilization consistently. This represents the algorithm
identifies possibilities successfully to better utilize the
quota of idle time periods. For the arrival rate of 5 work-
flows per minutes, anyway, there are large number of tasks
at any considerable particular moment in the queue and
considerably more number of VMs demand to be rented
with the aim of execute them on time, guiding to a less uti-
lization rate and incur high cost. We consider the obtained
results for Dyna as a purpose for comparison and in every
situation SRPSM outperforms it.

6.2 � Sensitivity of provisioning delay

Because of the more number of tasks in the scheduling
queue at any considerable particular moment, recurrent VM

Table 2   Workloads used in the evaluation of the algorithm’s perfor-
mance

Workload name Number of workflows Number of tasks

Small 10 500
Medium 15 900
Large 20 5900

Fig. 6   The executing cost of a small (10), b medium (15) and c large (20) workloads

7633Scheduling multiple scientific workflows using containers on IaaS cloud﻿	

1 3

provisioning procedures may be executed with the aim of
satisfy the requirements of deadline of tasks. Hence, it is sig-
nificant to evaluate the capability of SRPSM to complete the
submitted workflows execution with a makespan no larger
than the considered deadline within various provisioning
delays of VM. Therefore, we evaluated SRPSM within five
different provisioning delays of VM varying from 0 to 200 s
and the workload belonging to 20 workflows and various
rates of arrival. The obtained results for SRPSM and Dyna
are shown in Fig. 10.

For SRPSM, frequently use the already leased VM to pre-
vent the new lease VMs when provisioning delay increases
and maximize the VM utilization much larger. It is useful
observing in addition to the utilization and total number of
VMs are not the only characteristic to affect the cost but also
they VMs type and how long they are utilized for.

The obtained results for Dyna were added as a reference
one and in every situation, SRPSM do better than Dyna on
every evaluation metric. Moreover, Dyna lease more VMs
to incurred high cost than SRPSM.

Respecting the delays of container provisioning, we eval-
uated the SRPSM performance with values limiting from 0
to 50 s. The costs are shown in Fig. 11. As predicted, the
higher the provisioning delay, the larger the cost as a higher
part of a VM’s rent time is used initializing containers. Any-
way, by admitting the delay of container provisioning when
calculating processing time and choosing idle VMs to task
schedule, SRPSM attempts to minimize such a cost increase.

6.3 � Sensitivity of performance degradation

Knowing variability of performance is significant for sched-
ulers so they can improve from unpredicted delays and sat-
isfy the requirements of QoS. The algorithm sensitivity to
CPU degradation performance of VM was done by studying

the deadlines met percentage, VMs utilization average and
cost within different values of degradation. The degradation
was used using a distribution of normal with variance of 1%
and various maximum and average values. The average val-
ues were described as half part of the maximum degradation
performance of CPU which limited from 0 to 50%.

The obtained results of 20 workflows for workload are
shown in Fig. 12. For the workload and algorithms, the
deadline met percentage decreases as the percentage of
degradation increases, anyway, even with degradation per-
formance maximum of 50%, the deadlines percentage met
stays over 80%. It is impossible to fully remove the nega-
tive effect of degradation of performance when scheduling
the workflows despite if algorithms are adjustable, they still
depend on task’s runtime estimation to choose decisions.
In this manner, even only one task taking longer than usual
time may make the deadline to turn inadequate either as
its delay impacted its child task making a domino cause,
or as the delay was notable sufficient, as it was the final

Fig. 7   The deadline met per-
centage of small (10), medium
(15) and large (20) workloads

Fig. 8   Average deadline ratio of workflow execution that finished
after their deadline for large workload

7634	 P. Rajasekar, Y. Palanichamy

1 3

workflow task. Especially, we find two features of SRPSM
that influence its adaptability. The first feature is the strategy
of deadline distribution, which even though repeated all over
the workflow execution, is formed on task’s run time estima-
tion. The second feature is determination to wait longer the
tasks with the aim of support rented VMs, which permits
the algorithm to effectively reduce the workflows cost but
impacts its responsiveness to improve in the platform. These
results shows anyway, that in spite of this, SRPSM is even
now successful in reaching its goal of deadline in the vast
majority situations.

7 � Conclusions and future work

Emerging WaaS platforms with the plan of offering scien-
tists with the potential to utilize their workflow applications
for implementation in the cloud in an easy and cost efficient
method. Moreover, it can be utilized by multiple users with

less cost and also gain more profit to the provider side com-
pared than single workflow execution environment. They
possess the ability to transform the manner in which work-
flows are executed by providing a utility based resource that
can be approached on-demand basis from anywhere and by
anyone. A significant characteristic, as is for multitenant
cloud platform, is to competently handle the execution of
multiple workflows associating to various users and with
various requirements of QoS. This requires having a sched-
uling algorithm in scalable in order to efficiently making
resource selection for huge number of tasks effectively in
addition to a resource provisioning heuristic having the abil-
ity of managing the large number of elastic and heteroge-
neous cloud resources. Therefore, we proposed SRPSM, a
dynamic approach developed to schedule various types of
workflows in WaaS platforms. Its execution is studied in
detail and examined with Dyna, shows not just that SRPSM
is having the ability to making high-standard schedules but
also the advantages of resource sharing between different
workflows in respect of cost which can be done effectively
by utilizing containers. Moreover, the arrival rate of 5 work-
flows per minute can be expandable up to 50 workflows per
minute for heavy workloads, just in case need in future
(i.e. 100, 500 and 1000 workflows) without modifying the
SRPSM procedure.

This assignment is focus on scheduling multiple work-
flows using containers in WaaS frameworks. There are dif-
ferent features that can be examined to enhance SRPSM and
are remain as future assignment. For instance, examining
the situation in which images of container are stored on
a VM’s local storage; this should minimize the use of the
data transfers’ and possess a significant effect on makespan
and cost. For this aim, the available storage amount would
be contained as portion of the description of the policies
and VM to determine the total number of stored images,
their lifespan, and balance between saving I/O data’s versus

Fig. 9   Cost of executing five workloads of 20 workflows with differ-
ent arrival rates

Fig. 10   The large workload (20 workflows) execution cost under dif-
ferent provisioning delay of VM

Fig. 11   The large workload (20 workflows) execution cost under dif-
ferent provisioning delay of container

7635Scheduling multiple scientific workflows using containers on IaaS cloud﻿	

1 3

images would be examined. Another future assignment is to
search the usage of multiple containers simultaneously on a
single VM with the aim of run multiple tasks in concurrent.
Analyzing the impact of resource sharing between different
workflows and utilizing containers on the energy consump-
tion is also remain as future assignment. Lastly, it should be
of regard for WaaS frameworks in usual to collect and use
the execution of workflow data to improve the estimation of
tasks’ runtimes, to deal privacy and security problems that
emerge from their multitenant feature, to design fault toler-
ant heuristics at different levels of the platform.

References

Abrishami S, Naghibzadeh M, Epema DH (2013) Deadline-constrained
workflow scheduling algorithms for infrastructure as a service
clouds. Future Gener Comput Syst 29(1):158–169

Bryk P, Malawski M, Juve G, Deelman E (2016) Storage-aware algo-
rithms for scheduling of workflow ensembles in clouds. J Grid
Comput 14(2):359–378

Calheiros RN, Ranjan R, Beloglazov A, De Rose CA, Buyya R (2011)
CloudSim: a toolkit for modeling and simulation of cloud comput-
ing environments and evaluation of resource provisioning algo-
rithms. Softw Pract Exp 41(1):23–50

Calheiros RN, Buyya R (2013) Meeting deadlines of scientific work-
flows in public clouds with tasks replication. IEEE Trans Parallel
Distrib Syst 25(7):1787–1796

Chai X (2020) Task scheduling based on swarm intelligence algorithms
in high performance computing environment. J Ambient Intell
Human Comput. https​://doi.org/10.1007/s1265​2-020-01994​-0

Chen W, Lee YC, Fekete A, Zomaya AY (2015) Adaptive multiple-
workflow scheduling with task rearrangement. J Supercomput
71(4):1297–1317

Chhabra A, Singh G, Kahlon KS (2020) Performance-aware energy-
efficient parallel job scheduling in HPC grid using nature-inspired
hybrid meta-heuristics. J Ambient Intell Human Comput. https​://
doi.org/10.1007/s1265​2-020-02255​-w

Deelman E, Singh G, Livny M, Berriman B, Good J, (2008) The cost
of doing science on the cloud: the montage example. In: SC’08:

proceedings of the 2008 ACM/IEEE conference on supercomput-
ing, IEEE, pp 1–12

Deldari A, Naghibzadeh M, Abrishami S (2017) CCA: a deadline-con-
strained workflow scheduling algorithm for multicore resources
on the cloud. J Supercomput 73(2):756–781

Di Tommaso P, Palumbo E, Chatzou M, Prieto P, Heuer ML,
Notredame C (2015) The impact of Docker containers on the
performance of genomic pipelines. PeerJ 3:e1273

Dziok T, Figiela K, Malawski M (2016) Adaptive multi-level workflow
scheduling with uncertain task estimates. Parallel processing and
applied mathematics. Springer, Cham, pp 90–100

Esteves S, Veiga L (2016) WaaS: workflow-as-a-service for the cloud
with scheduling of continuous and data-intensive workflows.
Comput J 59(3):371–383

Felter W, Ferreira A, Rajamony R, Rubio J (2015) An updated perfor-
mance comparison of virtual machines and linux containers. In:
2015 IEEE international symposium on performance analysis of
systems and software (ISPASS), IEEE, pp 171–172

Filgueira R, Da Silva RF, Krause A, Deelman E, Atkinson M (2016)
Asterism: Pegasus and dispel4py hybrid workflows for data-
intensive science. In: 2016 Seventh international workshop on
data-intensive computing in the clouds (DataCloud), IEEE, pp 1–8

Gerlach W, Tang W, Keegan K, Harrison T, Wilke A, Bischof J,
DSouza M, Devoid S, Murphy-Olson D, Desai N, Meyer F, (2014)
Skyport-container-based execution environment management for
multi-cloud scientific workflows. In: 2014 5th International work-
shop on data-intensive computing in the clouds, IEEE, pp 25–32

Gil Y, Deelman E, Ellisman M, Fahringer T, Fox G, Gannon D, Goble
C, Livny M, Moreau L, Myers J (2007) Examining the challenges
of scientific workflows. Computer 40(12):24–32

Gupta A, Bhadauria HS, Singh A (2020) Load balancing based hyper
heuristic algorithm for cloud task scheduling. J Ambient Intell
Human Comput. https​://doi.org/10.1007/s1265​2-020-02127​-3

Iosup A, Ostermann S, Yigitbasi MN, Prodan R, Fahringer T, Epema
D (2011) Performance analysis of cloud computing services for
many-tasks scientific computing. IEEE Trans Parallel Distrib Syst
22(6):931–945

Jackson KR, Ramakrishnan L, Muriki K, Canon S, Cholia S, Shalf J,
Wasserman HJ, Wright NJ (2010) Performance analysis of high
performance computing applications on the amazon web services
cloud. In: 2010 IEEE second international conference on cloud
computing technology and science, IEEE, pp 159–168

Jiang HJ, Huang KC, Chang HY, Gu DS, Shih PJ (2011) Scheduling
concurrent workflows in HPC cloud through exploiting schedule
gaps. In: International conference on algorithms and architectures
for parallel processing, Springer, Berlin, pp 282–293

Jiang Q, Lee YC, Zomaya AY (2015) Executing large scale scientific
workflow ensembles in public clouds. In: 2015 44th International
conference on parallel processing, IEEE, pp 520–529

Jin H, Wang X, Wu S, Di S, Shi X (2014) Towards optimized fine-
grained pricing of IaaS cloud platform. IEEE Trans Cloud Comput
3(4):436–448

Juve G, Deelman E, Vahi K, Mehta G, Berriman B, Berman BP,
Maechling P (2010) Data sharing options for scientific work-
flows on amazon ec2. In: SC’10: Proceedings of the 2010 ACM/
IEEE international conference for high performance computing,
networking, storage and analysis, IEEE, pp 1–9

Juve G, Chervenak A, Deelman E, Bharathi S, Mehta G, Vahi K
(2013) Characterizing and profiling scientific workflows. Future
Gener Comput Syst 29(3):682–692

Kouki Y, Ledoux T (2013) RightCapacity: SLA-driven cross-
layer cloud elasticity management. Int J Next Gener Comput
4(3):250–262

Liu S, Ren K, Deng K, Song J (2016) A task backfill based scientific
workflow scheduling strategy on cloud platform. In: 2016 Sixth

Fig. 12   Deadline met percentage for a workload of 20 workflows with
arrival rate and performance degradation of CPU

https://doi.org/10.1007/s12652-020-01994-0
https://doi.org/10.1007/s12652-020-02255-w
https://doi.org/10.1007/s12652-020-02255-w
https://doi.org/10.1007/s12652-020-02127-3

7636	 P. Rajasekar, Y. Palanichamy

1 3

international conference on information science and technology
(ICIST), IEEE, pp 105–110

Maddikunta PKR, Gadekallu TR, Kaluri R, Srivastava G, Parizi RM,
Khan MS (2020) Green communication in IoT networks using a
hybrid optimization algorithm. Comput Commun 159:97–107

Maechling P, Deelman E, Zhao L, Graves R, Mehta G, Gupta N,
Mehringer J, Kesselman C, Callaghan S, Okaya D, Francoeur H
(2007) SCEC CyberShake workflows—automating probabilistic
seismic hazard analysis calculations. Workflows for e-Science.
Springer, London, pp 143–163

Malawski M, Juve G, Deelman E, Nabrzyski J (2015) Algorithms
for cost-and deadline-constrained provisioning for scientific
workflow ensembles in IaaS clouds. Future Gener Comput Syst
48:1–18

Mao M, Humphrey M (2011) Auto-scaling to minimize cost and meet
application deadlines in cloud workflows. In: SC’11: proceedings
of 2011 international conference for high performance computing,
networking, storage and analysis, IEEE, pp 1–12

Mao M, Humphrey M (2012) A performance study on the vm startup
time in the cloud. In: 2012 IEEE fifth international conference on
cloud computing, IEEE, pp 423–430

Ostermann S, Iosup A, Yigitbasi N, Prodan R, Fahringer T, Epema D
(2009) A performance analysis of EC2 cloud computing services
for scientific computing. In: International conference on cloud
computing, Springer, Berlin, pp 115–131

Pietri I, Malawski M, Juve G, Deelman E, Nabrzyski J, Sakellariou R
(2013) Energy-constrained provisioning for scientific workflow
ensembles. In: 2013 International conference on cloud and green
computing, IEEE, pp 34–41

Piraghaj SF, Dastjerdi AV, Calheiros RN, Buyya R (2017) Container-
CloudSim: an environment for modeling and simulation of con-
tainers in cloud data centers. Softw Pract Exp 47(4):505–521

Priya RMS, Bhattacharya S, Maddikunta PKR, Somayaji SRK, Laksh-
manna K, Kaluri R, Hussien A, Gadekallu TR (2020) Load bal-
ancing of energy cloud using wind driven and firefly algorithms
in internet of everything. J Parallel Distrib Comput 142:16–26

Rajan CDS (2020) Design and implementation of fuzzy priority dead-
line job scheduling algorithm in heterogeneous grid computing.
J Ambient Intell Human Comput. https​://doi.org/10.1007/s1265​
2-020-02171​-z

Reddy GT, Sudheer K, Rajesh K, Lakshmanna K (2014) Employing
data mining on highly secured private clouds for implement-
ing a security-asa-service framework. J Theor Appl Inf Technol
59(2):317–326

Rodriguez MA, Buyya R (2017a) Budget-driven scheduling of scien-
tific workflows in IaaS clouds with fine-grained billing periods.
ACM Trans Auton Adapt Syst 12(2):1–22

Rodriguez MA, Buyya R (2017b) A taxonomy and survey on schedul-
ing algorithms for scientific workflows in IaaS cloud computing
environments. Concur Comput Pract Exp 29(8):e4041

Schad J, Dittrich J, Quiané-Ruiz JA (2010) Runtime measurements
in the cloud: observing, analyzing, and reducing variance. Proc
VLDB Endow 3(1–2):460–471

Shi J, Luo J, Dong F, Zhang J (2014) A budget and deadline aware sci-
entific workflow resource provisioning and scheduling mechanism
for cloud. In: Proceedings of the 2014 IEEE 18th international
conference on computer supported cooperative work in design
(CSCWD), IEEE, pp 672–677

Stavrinides GL, Karatza HD (2015) A cost-effective and qos-aware
approach to scheduling real-time workflow applications in paas
and saas clouds. In: 2015 3rd international conference on future
internet of things and cloud, IEEE, pp 231–239

Thennarasu SR, Selvam M, Srihari K (2020) A new whale optimizer
for workflow scheduling in cloud computing environment. J
Ambient Intell Human Comput. https​://doi.org/10.1007/s1265​
2-020-01678​-9

Vöckler JS, Juve G, Deelman E, Rynge M, Berriman B (2011) Experi-
ences using cloud computing for a scientific workflow application.
In: Proceedings of the 2nd international workshop on scientific
cloud computing, pp 15–24

Wang W, Niu D, Li B, Liang B (2013) Dynamic cloud resource res-
ervation via cloud brokerage. In: 2013 IEEE 33rd international
conference on distributed computing systems, IEEE, pp 400–409

Wang J, Korambath P, Altintas I, Davis J, Crawl D (2014) Workflow
as a service in the cloud: architecture and scheduling algorithms.
Procedia Comput Sci 29:546

Xu M, Cui L, Wang H, Bi Y (2009) A multiple QoS constrained sched-
uling strategy of multiple workflows for cloud computing. In:
2009 IEEE international symposium on parallel and distributed
processing with applications, IEEE, pp 629–634

Yin W, Mavaluru D, Ahmed M, Abbas M, Darvishan A (2020) Appli-
cation of new multi-objective optimization algorithm for EV
scheduling in smart grid through the uncertainties. J Ambient
Intell Human Comput 11(5):2071–2103

Yu Z, Shi W (2008) A planner-guided scheduling strategy for multiple
workflow applications. In: 2008 International conference on paral-
lel processing-workshops, IEEE, pp 1–8

Zhou AC, He B, Liu C (2015) Monetary cost optimizations for hosting
workflow-as-a-service in IaaS clouds. IEEE Trans Cloud Comput
4(1):34–48

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s12652-020-02171-z
https://doi.org/10.1007/s12652-020-02171-z
https://doi.org/10.1007/s12652-020-01678-9
https://doi.org/10.1007/s12652-020-01678-9

	Scheduling multiple scientific workflows using containers on IaaS cloud
	Abstract
	1 Introduction
	2 Related work
	3 Motivation
	3.1 Partial issue problem

	4 Application and models of resource
	5 The SRPSM algorithm
	6 Evaluation of performance
	6.1 Performance of algorithm
	6.2 Sensitivity of provisioning delay
	6.3 Sensitivity of performance degradation

	7 Conclusions and future work
	References

