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Abstract
The IPv6 routing protocol (RPL) for low power and lossy Networks (LLNs) was accepted as the standard routing protocol 
for the IoT by IETF in March 2012. Since then, it has been used for different IoT applications. Although the RPL deals 
considerably with IoT network requirements, there are still some open-ended problems to solve, for it was not initially 
designed for IoT applications. This paper addresses the RPL problems including load imbalance, which causes congestion 
in some nodes, significantly reduces the network performance, and decreases node energy and network lifetime. This paper 
proposes the automata-ant colony based multiple recursive RPL (AMRRPL), which is a modified version of the RPL for IoT 
networks, and uses a balancing model to avoid congestion. As a result, it will reduce network energy consumption, prolong 
the network lifetime, and reduce packet loss. The AMRRPL is evaluated in three steps. First, a multi-hop return objective 
function is presented based on the ant colony and computes the rank according to node context. The second step develops a 
new parent selection mechanism dynamically selected by stochastic automata and dynamic metrics for an optimal parent. 
General evaluation results show that this algorithm can make better decisions with regard to the optimal parent instead of 
making decisions simply based on the parent’s rank. The third step resolve bottlenecks and swarm problems by managing 
the moving nodes through the heuristic flabellum algorithm inspired by physical and biological behaviour of flabella in the 
sea. Finally, the proposed algorithm performance is evaluated through the Cooja simulator. The proposed algorithm shows 
significant improvements in packet delivery and network lifetime, energy and convergence.
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Abbreviations
IoT  Internet of things
AI Algorithm  Artificial intelligence algorithm
RPL  Routing protocol for LLNs
LLN  Low-power and lossy networks
DAG  Directed acyclic graph
DODAG  Destination oriented directed acyclic 

graph

1 Introduction

In recent years, the Internet of things (IoT) has become 
growingly popular with researchers worldwide. It has made 
its way into different scopes such as transportation, agricul-
ture, industry, and healthcare due to specific features such 
as working in an IP-based network and being able to hold 
thousands or millions of nodes (Atzori et al. 2010; Kim 
2014). These nodes are able to communicate and cooper-
ate with each other to achieve a goal. Regarding the inher-
ent attributes of IoT such as being IP-based, large-scale, 
and universally addressable, the Internet Engineering Task 
Force (IETF) has made some standardization efforts for the 
IoT (Kushalnagar et al. 2007). A pertinent IETF working 
group is the Routing Over Low power and Lossy networks 
(ROLL). As the name suggests, the main objective of this 
group is to focus on the routing of low power and lossy net-
works (LLNs) such as the IoT. In an LLN, there are some 
power-constrained nodes and typically one border router. 
In some cases, there are a couple of border routers (Kim 

 * Hamid Mirvaziri 
 hamidmirvaziri@yahoo.com

1 Department of Computer Engineering, Kerman Branch, 
Islamic Azad University, Kerman, Iran

2 Department of Computer Engineering, Shahid Bahonar 
University, Kerman, Iran

3 Department of Computer Engineering, Bardsir Branch, 
Islamic Azad University, Bardsir, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-020-02382-4&domain=pdf


2450 Z. Royaee et al.

1 3

2015). The border router is also known as the gateway. If 
a node is unable to communicate directly with the border 
router, it uses other nodes as intermediate nodes towards the 
border router. This process is handled by routing protocols in 
the network. Therefore, routing protocols play critical roles 
in delivering data from a node to the border router of the 
IoT (Yang 2017). In this regard, the IETF has standardized a 
routing protocol for the IoT, known as the RPL (Winter et al. 
2012). The RPL enables users to define routing strategies 
according to their preferences about network requirements 
and metrics (Mayzaud et al. 2017). This facility is provided 
by the objective function (OF) concept, which is also one of 
the focus points in this paper. The OF defines how to decide 
on the suitability of a node in other to use it as a mean of 
achieving the network goal (Hassan 2016).

This paper aimed to analyse the problems with the RPL, 
one of the most important of which is lack of load balancing. 
As a result, some nodes suffer from congestion, something 
which severely reduces the node energy as well as the net-
work performance and lifetime.

Energy is one of the limited resources in sensor networks. 
Therefore, it is one of the most critical issues in the IoT. In 
applications such as data gathering, environmental monitor-
ing, and tracking, using a fixed power source and/or recharg-
ing a battery manually may not be both economically and 
technically feasible. To solve this problem, it is necessary 
to manage energy in IoT devices. Energy management can 
help prolong lifetime in these devices (Mittal et al. 2019).

This paper proposes the automata-ant colony based mul-
tiple recursive RPL (AMRRPL), which is the modified ver-
sion of the RPL for IoT networks using a balancing model 
and avoiding congestion. As a result, it reduces network 
energy consumption and the packet loss rate consequently 
and prolongs the network lifetime.

Bottleneck, congestion, the effect of upstream parents, 
and ineffective parameters are the setbacks that prevent load 
balancing. Therefore, solutions have been proposed to solve 
these problems and perform load balancing in the RPL. Fig-
ure 1 shows the structure of the proposed method.

The AMRRPL was developed in three steps. First, a 
multi-hop return objective function is developed based on 
the ACO to compute the rank according to node context. 
The second step provides a new parent selection mecha-
nism, dynamically selected by stochastic automata and 
dynamic metrics for the optimal parent. General evaluation 
results show that this algorithm makes better decisions with 
regard to the optimal parent instead of making decisions 
simply based on the parent’s rank. The third step resolve 
bottlenecks and swarm problems by managing the moving 
nodes through the heuristic flabellum algorithm inspired by 
physical and biological behaviour of flabella in the sea.

This paper consists of the following sections. Section 2 
addresses the RPL briefly, and Sect. 3 reviews the research 
literature on the RPL and its objective function. Section 4 
addresses the problem that is going to be solved. Contribu-
tions are then made to solve the problems stated in Problem 

Fig. 1  Proposed methodology



2451Designing a context-aware model for RPL load balancing of low power and lossy networks in the…

1 3

Statement. Section 5 shows the experimental evaluation of 
the proposed protocol in different scenarios, whereas Sect. 6 
draws a conclusion.

2  RPL: IPV6 Routing protocol for low‑power 
and lossy networks

This section briefly introduces the RPL features and compo-
nents. These definitions have been extracted from the IETF 
drafts.

Low-power and lossy networks face specific limitations 
on computation, communication, and available energy 
resources. The IETF formed the ROLL working group to 
determine the most suitable routing protocol for such net-
works. The ROLL group designed and standardized the 
RPL, based on the IPv6. This protocol uses an objective 
function to determine the line quality provided by each node 
to the gateway.

2.1  DODAG (destination oriented directed acyclic 
graph)

The DODAG is a set of vertices connected to a few edges 
with no distance. The RPL uses the DODAG concept to con-
struct paths in the network. The RPL constructs a circular 
unidirectional graph forming certain paths from each leaf to 
the root (boundary router) (Winter et al. 2012).

2.2  Various RPL messages

There are three types of control messages in the RPL:
1. DODAG Object Information (DIO): this message is 

issued by the root and contains information about the DAG 
sample, including configuration parameters. It is similar to 
the one which the IPv6 uses for route advertisement (Dohler 
et al. 2009).

2. DODAG Information (DIS): this message is issued by 
a node for the DIO request and is useful for investigating 
neighbouring nodes.

3. Object Advertisement Destination (DAO): this mes-
sage is used for sending the route information from nodes 
to the root. This message is sent universally to the selected 
parent (save mode) or the DODAG root (no-save mode). 
Reaching the root generates a complete route.

In the RPL, the gateway or the border router first begins 
issuing DIO messages by using the network. According to 
the objective function, the receiving node decides whether to 
select the gateway or not. Any node that selects the gateway 
as a parent starts to distribute the DIO message by using 
the network. This process is repeated until all nodes in the 
network are connected to the tree. After the tree is formed, 
leaf nodes issue and move the DAO message towards the 

root through parents to determine the route of the traffic 
sent from the root to nodes and to generate a routing table 
(Dohler et al. 2009).

The objective function (OF) is a core concept in the RPL. 
The OF defines how differently metrics should be combined 
and translated into a rank so that the protocol will be able 
to use ranking to construct efficient routes. There are many 
routing metrics such as delay, packet loss, energy consump-
tion, and link quality. The IETF has issued some drafts in 
this regard (Gnawali and Levis 2010; Thubert 2012). Cur-
rently, there are two standard OFs for the RPL. The first one 
is OF0 (Thubert 2012). OF0 works based on the hop count 
metric. In this OF, a rank is calculated by adding a value to 
the rank of the preferred parent. It does not consider link 
layer metrics, i.e. ETX (Expected Transmission Count) is 
the expected number of transmissions for a successful deliv-
ery of packets to the destination), and its main goal is to 
bring connectivity to the network. The second standard OF 
is the MRHOF (Minimum Rank with Hysteresis objective 
function) (Gnawali and Levis 2012). The MRHOF uses such 
metrics as ETX or latency as the rank computation basis. It 
also avoids the instability caused by small metric changes.

3  Related works

In the RPL design process, load balancing and congestion 
avoidance are not considered. The traffic passing through 
parent nodes and the size of their sub-trees are not consid-
ered in the parent selection process. This causes an unbal-
anced tree. There have been extensive studies of RPL load 
balancing, some of which are reviewed in the following 
section.

Imbalanced Tree Algorithm: Tripathi proposed a greedy 
algorithm in order to solve load balancing problem. He cal-
culated the load imbalance factor for each routing level. In 
this way, the nodes that are prone to congestion are iden-
tified. This method aims to balance the routing tree and 
minimize the load imbalance factor. The algorithm selects 
a parent of a node from three nominated parents by itself. 
The root node executes the algorithm and tends to select 
the parents which minimize the load imbalance factor. This 
is performed periodically to keep the tree as balanced as 
possible during the network lifetime. This greedy algorithm 
aims to keep the load among same-level balanced nodes. 
The simulation results show that this algorithm significantly 
increases the average packet delivery ratio and network life-
time. This algorithm needs only a partial knowledge of the 
network which is the main algorithm characteristic (Tripathi 
et al. 2013). The algorithm proposed by Tripathi is only 
efficient for networks in which nodes generate the same 
amount of traffic. This method is completely centralized and 
is implemented by the root node. In addition, each period has 
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significant delays. The difficulty of the balanced problem is 
an NP type (Nabaei et al. 2018; Parsaei et al. 2016; Gao et al. 
2017) and the time complexity of the proposed algorithm is 
O(N2). This algorithm involves large computational com-
plexity; therefore, resources and time are highly consumed. 
The balanced tree construction is a complex mathematical 
problem. It needs a significant number of control messages. 
According to the specific conditions of low-power and lossy 
networks, especially poor communication links, the topol-
ogy of these networks is completely dynamic and changes 
constantly. Balancing such topologies needs a great deal of 
effort to be repeated frequently.

TREEB Algorithm: Kulkarni proposed a method for 
load balancing. In this method, the DODAG root knows 
the number of nodes in each sub-tree. Each node that wants 
to join the DODAG becomes aware of the DODAG’s node 
count and joins a DODAG with the lowest number of nodes 
(Kulkarni et al. 2012). In this method, nodes that want to join 
a DODAG can be aware of the DODAG size. This method 
has no effects on load balancing of each tree individually 
and just tries to keep the same size of trees. For instance, 
this method can generate completely unbalanced trees of 
the same size. When there is only one root, this algorithm is 
completely ineffective, only increases overhead, and slows 
down the tree generation process.

In the RPL, the topology construction and route selec-
tion are performed according to the objective functions (OF) 
and the routing factor. The objective function defines how 
to compute a node’s rank and how to combine various fac-
tors in the rank calculation process. There is no guarantee 
in the RPL standard to use a specific objective function or 
a collection of criteria (Atzori et al. 2010). Therefore, it is 
possible to modify the RPL’s OF and parameters by default. 
Some other RPL implementations have used other param-
eters such as hop count, ETC, or a combination of both. For 
instance, TinyRPL is a version of RPL and TinyOS, which 
combines OF0 with hop counts. The Contiki system, known 
as ContikiRPL in the RPL execution, uses the MRHOF as 
its default objective function, although it also includes the 
OF0 implementation. Its designer selects parameters and 
configures them in an OF; hence, the suitable definition of 
OF is still an interesting and open-ended topic in the RPL 
domain according to network requirements and preferences.

While using a hop count as a primary routing metric, the 
RPL significantly reduces the number of routers involved in 
the route, resulting in energy conservation. Considering the 
hop count per se disregards the energy-exhausted nodes and 
necessary retransmissions. Naturally, the hop- count-based 
RPL tends to select routes from the nodes that prematurely 
deplete battery’s energy. However, the battery’s energy of 
other nodes remains under-utilized (Karkazis 2013; Zhang 
and Li 2014). The authors in (Mamdouh et al. 2016) pro-
posed Minimum Degree RPL (MD-RPL), which would build 

a minimum degree spanning tree to enable load balancing 
in the RPL. The MD-RPL modifies the original tree formed 
by the RPL to decrease its degree. The MD-RPL improved 
the maximum consumed power, implying an improvement 
in the network lifetime.

An energy efficient routing technique is proposed in (Bar-
bato et al. 2013) to address the importance of the energy 
efficient RPL in the IoT environment. This dynamic RPL 
decision considers the remaining energy of nodes and the 
required energy to route data traffic. Regarding the RPL, the 
node which is closer to the DODAG root node is involved 
in high traffic and completely exhausts its energy. Instead 
of router selection based on the traffic class, a restrictive 
approach is proposed to allow only the restricted nodes to 
forward the traffic. The paper reviewed by (Yang et al. 2014) 
analyses the RPL instability and estimates the control traf-
fic for the RPL. This scheme mandates that the wireless 
links have to be bidirectional and symmetric. However, this 
assumption is unrealistic.

The author proposed a greedy approach in (Iova et al. 
2013) to select the parent and make the network more stable 
through network dynamics. However, this approach needs 
frequent parent changes that leads to a great deal of network 
overhead.

A routing metric based on transmission delay and remain-
ing energy was proposed in (Mohamed and Feham 2015). 
referred to as the QoS RPL (Quality of Service RPL). This 
algorithm benefits from the ant colony optimization (ACO) 
seeking to better fulfil the requirements of energy efficiency 
and QoS in LLNs. In the routing protocol functioning, the 
information about energy and delay is piggybacked on the 
control messages. This information is computed and updated 
by each node that receives a packet. This approach also uses 
the pheromone as a metric in the route selection process. 
The pheromone information is updated whenever a route is 
employed to forward a data packet, realizing the path rein-
forcement process. Thus, the most widely-used paths tend to 
be better evaluated by the proposed approach. However, the 
authors also implemented negative reinforcement to prevent 
the use of suboptimal routes and allow the adoption of other 
possibly better paths. The QoS RPL shows the ability to 
reduce delay and consume energy. Nonetheless, the packet 
delivery ratio shows a slight reduction compared with the 
RPL through the ETX metric.

A novel approach was proposed in (Iova et al. 2015) to 
improve network energy balancing and to maximize the life-
time of nodes. It is an RPL-based approach, and the authors 
focused on the generation of a routing solution considering 
an estimation of energy consumption. Using a mechanism 
to measure the expected lifetime (ELT) of nodes and explor-
ing multipath, this approach tries to avoid using bottlenecks 
(nodes with less energy) and equalizes the power consump-
tion. Each node should compute its ELT based on the traffic 
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expectation generated by itself and its children, the possi-
ble necessary retransmissions, transmissions time, and the 
transmission power of its radio. The authors also proposed 
a mechanism to limit the parental exchange. Thus, the quan-
tity of a control message was reduced, contributing to fewer 
transmissions and energy depletion.

In (Capone et al. 2014), the authors proposed an additive 
composite metric called the lifetime and latency aggregat-
able metric (L2AM). The L2AM aims to provide balanced 
energy consumption, considering the reliability of data 
transmission along the path. For this purpose, the proposed 
routing metric merges a link reliability metric (i.e. ETX) 
with a new energy consumption metric referred to as the 
fully simplified exponential lifetime cost (FSELC). The 
FSELC represents the power cost that each node needs to 
pay for sending a message. During the RPL functioning, the 
nodes use DIO messages both for transporting information 
about the metrics and for informing the L2AM value com-
puted for each neighbour. The L2AM value must be summed 
along the path to obtain the overall route cost. When a node 
needs to send a packet to the root, it should select the path of 
the lowest summation of L2AM. Thus, the proposed metric 
allows the node to use routes that are reliable and energy 
efficient.

Gozuacik in (2015) proposed the parent-aware objective 
function (PAOF). This is an objective function that aims 
to offer network load balancing for LLNs. The PAOF ben-
efits from both ETX and parent count to perform the rank 
computing and preferred parent selection. The parent count 
metric represents the number of potentially preferred par-
ents of the node. These two metrics are combined lexically. 
Comparing two candidate nodes, the PAOF first verifies the 
ETX modular difference between them. Whether it is smaller 
than the Min–Hop–Rank-Increase or not, the node should 
select the best parent to be the candidate with the lowest 
parent count. The Min-Hop-Rank-Increase is a default vari-
able value of RPL that defines the minimum value increased 
in the ranking for each parent of the node. Thus, although 
PAOF considers two routing metrics, the primary decision 
is based on the ETX while the second metric being used 
just in case of a significant difference between ETX values 
of candidate nodes.

In a study on an energy efficient objective function tar-
geted towards smart metering and industrial applications 
(Shakya et  al. 2017), the authors used residual energy 
and expected energy consumption in the objective func-
tion named the smart energy efficient objective function 
(SEEOF). The results show 22–27% improvement in the 
network lifetime while compared with nodes by using the 
MRHOF as the objective function. The authors in (Sebas-
tian and Sivagurunathan 2018) proposed load balancing 
optimization for the RPL-based emergency response by 
Q-learning (LBO-QL). This method faces the limitation of 

communication among multiple DODAGs. As of now, the 
BR cannot communicate with another BR. A virtual frame-
work needs to be generated to establish connections among 
the BRs. Therefore, there is a challenge to load balancing 
at multiple DODAG levels. Mobility plays an important 
role in the emergency response scenario. However, suf-
ficient research on mobility model is desired. When there 
are mobile nodes, Q-learning computation will increase the 
control traffic overhead, and energy, as the reconstruction 
of DODAG, is frequent. Hence, the method is efficient for 
the single BR. The emergency scenario will have many BRs 
which interact with other IPV6-based networks. New opti-
mization techniques for interoperability and load balancing 
in such environments in RPL need to be researched. The net-
work requirement for emergency response is heterogeneous; 
thus, load balancing optimization for heterogeneous envi-
ronment is a challenge. In (Kamgueu et al. 2013), residual 
energy is used as the only metric in the objective function. 
The results show that it improved the distribution of energy 
consumption and prolonged the network lifetime; however, 
it did not consider other important metrics such as packet 
loss, latency, or throughput.

In (Khan et al. 2016), control messages of the RPL are 
utilized to adjust the sub-network size relative to other sink 
nodes. Simulation results show an improvement in both 
throughput and energy distribution of the network nodes, 
leading to an improved lifetime. In a study of energy balanc-
ing, the authors proposed an RDC-based method of energy 
consumption estimation (Banh et  al. 2016). They used 
this estimation as a metric for routing and achieved better 
distribution of energy as well as higher PDRs. However, 
improvement in energy consumption is marginal compared 
to the MRHOF used as the objective function. In addition, 
this provides no additional advantages other than marginal 
energy saving.

Other studies related to minimizing energy consump-
tion have employed different approaches such as improving 
failure detection to improve energy efficiency in the RPL 
(Khelifi et al. 2015). This approach uses a suffering index 
that reflects the cost network failures and aims to improve 
energy consumption by pro-actively detecting failures. Some 
studies have proposed energy harvesting techniques for the 
efficient transmission of data. A routing and aggregation 
for minimum energy (RAME) technique (Riker et al. 2017) 
uses the information of the node with the lowest energy to 
regulate traffic. This approach limits throughput but is very 
effective in critical energy applications.

This paper focuses on load balancing and congestion 
problems as well as the DAG method under traffic and 
dynamic loads.
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4  Proposed method

The RPL is unable to operate efficiently when network traffic 
is heavy and the network encounters numerous problems, 
including high loss rate, high energy consumption and load 
imbalance. In this section, RPL problems will be first cat-
egorized under heavy and dynamic loads then solutions for 
solving these problems are presented. Finally, the proposed 
method will be explained in details.

4.1  Problem statement

4.1.1  Problem 1: inattention to effective parameters 
in the RPL

According to the network dynamics to select the best param-
eters in previous researches, the following results were 
obtained:

The ETX is used at lower rates; however, it is unusable 
at high transmission rates. At the same time, link quality is 
used for higher reliability rather than the number of steps. 
The number of steps has no effect on packet loss.

By defining the IEEE 802.15.4 protocol, it is clear 
that link quality instruction (LQI) is employed to demon-
strate power and quality of receiving packets. Moreover, 
the signal-to-noise ratio (SNR) is usually used instead of 
noise power in wireless networks, for it is a more accurate 
parameter showing the difference between signal and noise. 
As a result, the proposed model will use LQI-SNR met-
rics instead of hop and ETX to affect load balancing.

4.1.2  Problem 2: Effect of upstream parents

Any node may appear to meet the conditions to become a 
parent; however, the parent node may suffer from buffering 
or energy shortage. This is caused by selecting an incompat-
ible parent in a heavy traffic network that leads node conges-
tion because a good parent does not always yield optimal 
results, and the results of upstream parents are also impor-
tant. Therefore, the multi-hop return chain was employed in 
proposed method.

4.1.3  Problem 3: congestion

The best of the two parents are selected by the low stream 
nodes as the parent. This selection ignores the parent being 
selected by multiple nodes. Thus, the best parent becomes 
the cross point for a great deal of traffic, which will signifi-
cantly reduce its efficiency due to limitations (bandwidth, 
buffer size and remaining energy). Accordingly, the parent 
buffer and parent remaining energy are considered in the 

proposed method dynamically while using stochastic autom-
ata in an effort to solve this problem.

4.1.4  Problem 4: load balancing

In the RPL design, no attempt has been made to balance the 
load and prevent congestion. The process of parent selec-
tion also does not consider the burden of the parent and 
its sub-tree size, resulting in the formation of a completely 
unbalanced tree.

The RPL also uses the OF to calculate the node rank 
and select parent; however, this causes the congestion to be 
transmitted from one node to another node because of being 
static at the execution time.

The load balancing issue requires a completely dynamic 
approach, one which is aware of the network load distribu-
tion and makes dynamic and knowledge-based decisions for 
load distribution and balancing.

Considering the fact that a node buffer is an appropriate 
approach to load balancing, although it may seem that buffer 
size can be involved to make the rank indicating the node’s 
load, this approach will not be useful due to shifting conges-
tion from the fully loaded node to a completely unloaded one 
from the previous period. This method only shifts congestion 
from one node to another in each period.

Since the aforementioned problems and the objective 
function are unable to solve the unbalancing issue alone and 
only change the congestion’s location in each period, the 
mechanism for selecting the suitable parent for load balanc-
ing and reducing energy consumption is presented in the 
third phase. Training can be involved in this approach as 
follows: The node dynamically learns which parent provides 
the best route according to load balancing and remaining 
energy and node buffer.

4.2  Solutions to stated problems

This paper aims to present a modified version of RPL for the 
IoT networks, which uses a balancing model and prevents 
congestion to save network energy and increase lifetime.

Therefore, in the first step, parameters are prioritized, 
using test methods and available algorithms and the best 
ones are presented to the objective function. Dynamic and 
variable factors are investigated and tested during the routing 
phase and the best ones are selected for the training algo-
rithm in parent selection mechanism.

The link quality indicator (LQI), signal-to-noise ratio, 
buffer size and remaining energy are the most effective fac-
tors extracted which are related to the node, link and channel 
used for balancing.

The OF is then applied by using the ACO and the three 
hop chain according to the resultant factors. With the 
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execution of the ACO algorithm, parent nodes are evaluated 
to introduce the five best parents for each node.

The final parent of each node is selected according to 
the stochastic automata learning algorithm and by using 
dynamic routing factors including buffer size and remain-
ing node energy.

Finally, resolve bottlenecks and swarm problems by 
managing the moving nodes through the heuristic flabellum 
algorithm inspired by physical and biological behaviour of 
flabella in the sea.

The proposed method is evaluated through universal sim-
ulation in the Cooja simulator, and results are then compared 
with those of the previous algorithms.

4.3  Explaining the proposed method

The fully distributed nature of such networks, similar to the 
issues related to inter-node transfers, is caused by perfor-
mance issues (route calculations). With regards to packet 
routing efficiency, ACO yields better results in most cases. 
This paper proposed an ACO based protocol for calculating 
dynamic routes, as well as a cooperation mechanism which 
provides better quality of service management in LLNs. The 
idea is designing an algorithm according to the decentralized 
actions of ants, which use their instinctive ability to find the 
shortest path from the origin to the destination. The focus 
has been on implementing an objective function which is 
specifically optimized for IoT networks. We have presented 
an approach that allows for using the link quality indicator 
(LQI) and the signal-to-noise ratio (SNR) as node routing 
factors in the optimal parent selection process for the RPL 
and for constructing a DODAG structure.

4.3.1  Objective function

After receiving a DOI from a neighbour, each non-root node 
computes the cost of the route through this neighbourhood. 
The proposed objective function to find a route from the 
source to the destination is used through the parent that has 
a high transfer (cross) probability. The transition probability 
from Source i to Destination d through Parent j of Node i is 
computed as follows:

where � , β and δ are pheromone indicating parameters, link 
quality index and the signal-to-noise ratio (SNR) respec-
tively and all of them are greater than or equal to zero ( ≥ 0).

(A) τijd is the relative weight of the pheromone trail.
(B) LQIijd is the heuristic value related to LQI.
(C) SNRijd is the heuristic value related to SNR.

(1)Pijd =
[�ijd]

�[LQIijd]
�[SNRijd]

�

∑
i∈Ni[�ild]

� [LQIijd]
� [SNRijd]

�

Also, Ni is a collection of i parents and l is a parent of i , 
which provides a route to the d destination. The DIO mes-
sage gathers the transfer quality of each link and the SNR 
of each node while moving on the network. The content 
updates its factors (by computing its path to the parent) and 
starts to send its own DIOs after a node computes the route’s 
cost for all its neighbours and selects the best parent with 
regards to the related ranking for the selected factor.

Finally, the child node orders its list for the available par-
ents through the highest degree of probability and connects 
to the root node through the highest Pijd value.

4.3.2  Computing relative criteria

The link quality indicator (LQI) and the signal-to-noise 
ratio (SNR) are considered for calculating relative factors 
(criteria). The link quality indicator is the multi-hop aver-
age (path link quality is equal to the average link quality 
in all hops), whereas the signal-to-noise ratio is a concave 
function (the signal-to-noise ratio for one route is limited by 
the link that has access to the highest signal-to-noise ratio). 
While increasing factors should be minimized for the short-
est paths, the convex function is used for maximizing the 
signal-to-noise ratio. In order to increase network lifetime, 
it is better to avoid selecting a node with low signal-to-noise 
ratio; since selecting the unsuitable link and a high noise 
rate in the link will increase network packet loss rate and 
waste resources (energy and time). Reciprocal values were 
not used for computing the aforementioned parameters, since 
they had the same ratios.

4.3.2.1 Link Quality indicator The link quality indicator 
(LQI) is the current parents’ average LQI for the DIO mes-
sage from the source to the destination through parents and 
while constructing the DODAG structure.

The three-hop LQI chain:

The best θ value was 0.20.
LQI was computed using the following formula, which 

is modelled based on the CC2430 microchip’s real world 
hardware specifications.

4.3.2.2 Signal‑to‑noise ratio The model proposed by (Hal-
der and Kim 2012; Aljarrah 2017) is used for approximat-
ing the signal-to-noise ratio. This model is based on simple 

(2)

LQ(n) = Max

{
LQ(n)+

( (LQ(n − 1) + LQ(n − 2) + LQ(n − 3))

3
∗ �

)}

(3)LQI = (CORR − a) ⋅ b
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calculations on low memory to match the sensor node while 
maintaining the original model’s accuracy. The model was 
implemented according to the following approximations. 
Maximum signal-to-noise ratio between the origin and the 
destination (Yang et al. 2018) is as follows:

where Routej(i, d) is the route from i to d through j.
The three-hop SNR chain:

The best θ value was 0.20.

4.3.2.3 pheromone indicator First, pheromone was applied 
to the (i, j) link as τj = 0.0 when there was no parent relation 
between i child and j parent node. When j was detected by 
using the DIO message as an i parent, an initial pheromone 
will be saved as τij = 0.1.

4.3.2.4 route strengthening When the data transfer begins, 
routes that have been strengthened will certainly be more 
suitable for future selections. The proposed objective func-
tion is incomplete without the pheromone trail evaporation 
process. In fact, it is necessary for the system to "forget” 
bad solutions in order to prevent suboptimal solutions. In 
addition, this is a negative reinforcement for the pheromone, 
the link quality indicator (LQI), and the signal-to-noise ratio 
(SNR). In other words, keeping bad solutions has a nega-
tive impact on reinforcement. In this paper the updated rules 
proposed in (Zhi and Hui 2015) are used and explained in 
details.

4.3.2.5 Pheromone updating The updated pheromone 
amount is obtained as follows:

when node i loses its connection to the j parent, the phero-
mone on the i to j link will be set to zero. Pheromones, use 
the ρ parameter to control the link quality indicator (LQI) 
and the signal-to-noise ratio (SNR) at each cycle. ( 1 − ρ ) is 
the pheromone evaporation factor, the link quality indicator 
(LQI) and the signal-to-noise ratio (SNR) on routes.

(4)SNRijd = max

{
Signal

Noise (l)

}

∀ l ∈ routej(i, d)

(5)SNR(n) = Max

{
SNR(n) +

(
(SNR(n − 1) + SNR(n − 2) + SNR(n − 3))

3
∗ �

)}

(6)τij =

⎧⎪⎨⎪⎩

(1 − ρ)τij, if (1 − ρ)τij > 0.1,

0, if (1 − ρ)τij ≥ 1,

0.1 otherwise

4.3.2.6 Link quality indicator (lqi) update The network 
link quality indicator will be subject to change continu-
ously according to the quality of intermediary links between 
nodes. The link quality update rate is obtained as follows:

Table 1  ACO Parameter Setting Parameters Values

α 1.0
β 1.0
� 1.0
ρ 0.05

4.3.2.7 Updating the signal‑to‑noise ratio (SNR) The SNR 
is updated as follows:

4.4  Rank calculation

A node’s rank is a number that shows its status in a DODAG 
version and has defining factors. As a feature of the objec-
tive function, rank calculation is taken into account. These 
calculations depend on several factors such as all parents, 
link measurements, and node configurations.

Ranking is strictly (monotonically) increasing and can be 
used for evaluating the progress from the root. It can also be 
used for detecting and preventing routing loops. Rank cal-
culation supports features which will be presented next. The 
rank value decreases in the upward direction (toward root 
node) and increases in the opposite direction. In addition, 
ranks presented by one node are required to have a higher 
value than destinations related to all its parents. In this case, 
there is no diameter to create a loop. A network can create 
a loop with nodes that have the same rank values when it 
selects a route node with the same rank value as itself. As 
soon as the i node (non-root) selects its j parent (highest), 
the node computes its rank according to the selected parent’s 
rank as follows:

(7)LQijd =

{
ρ

LQI(l)
+ (1 − ρ).LQijd, if l� routej(i, d),

(1 − ρ).LQijd otherwise.

(8)
{

�.SNR(l) + (1 − �).SNRijd, if l�routej(i, d),

(1 − �).SNRijd otherwise.
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where Pij is the highest probability and i has selected the j 
parent.

The simulation’s ACO parameter settings are defined in 
Table 1, which were obtained experimentally by the authors 
of (Zhi and Hui 2015; Tong et al. 2015) in the optimal state. 
Figure 2 is a Diagram of The Proposed objective function.

4.4.1  Queue management and congestion control using 
learning automata

The approach in the second phase of the proposed method is 
focused on queuing problems in routing, which was imple-
mented in the RPL in the IoT network. The IoT routing com-
monly takes place in hops where each protocol has designed 
an objective function based on its application. This specific 
objective function is in command of each node’s policy and 
behaviour as regards to its application, as well as its neigh-
bours. Each objective function is derived from a number 
of metrics affecting routing in the IoT networks. The man-
ner and type of packet transfer can pose a challenge to the 
network, including routing metrics, which are commonly 

(9)Rank (i) = Rank(j) +
1

Rank(j) + Pij

known as the network control packets. The main issue is that 
transferring the control messages is necessary for generating, 
maintaining and variable topology, whereas increasing con-
trol requires a higher number of transfer packets, which is a 
trade-off. Some RPL-based protocols use the drop scheduler 
to better manage control messages. This paper proposes a 
load balancing method with a predictive approach to manag-
ing RPL network exchanges. This method is a latency-based 
approach that tries to prevent queue buffer overflow and 
implement a preventative mechanism for managing future 
network traffic.

Each parent (non-leaf) node in the RPL mechanism has 
two important roles: First, transferring its own packets to the 
root and transferring packets received from other children 
leading to itself, known as the sink. The important point 
with regard to wireless networks, however, is that there is no 
guarantee to have access to wireless media in the network. 
In order to exchange information to the parent, the network 
nodes have to spend time obtaining the media and perform 
the transfer. Each node may receive a number of packets in 
the stated waiting time, while not being able to transfer them 
to its parent.

Some network queuing rules such as FIFO belong to this 
group. Setting policies for filling and emptying the queue 

Fig. 2  Diagram of the proposed objective function
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in each node is one of this research main goals as well as 
an indicator for evaluating the packet acceptance or packet 
transfer rate. This metric often prevents network queue over-
flow. Figure 3 shows a representation of the proposed meth-
od’s structural graph and the reason for congestion occurring 
in the network.

In the proposed method, for each node, each gener-
ated or forwarded packet is queued and will be transmit-
ted according the first-in-first-out (FIFO) policy. For each 
node, whenever a data packet is queued for transmission, 
the time is recorded by using the node local clock. When 
the same packet is de-queued, the time is also recorded. The 
difference between the de-queued and queued instants is the 
packet queueing delay.

The average value of the queuing delay is calculated over 
the last ten packets (ten packets is a value obtained through 
heuristics showing that smaller values generate oscillations 
and that bigger values prevent nodes from accurately updat-
ing its delay). It is called the node delay (d). If the node 
has not de-queued ten packets yet, d is the average value 
of already de-queued packets. To make the queueing delay 
average more representative of the recent traffic conditions, 
a weighing factor of 2 is used for the 5 most recently de-
queued packets. The formula of node delay calculation is 
presented in Eq. (10):

In this equation, the queueing delay (i) is the difference 
between de-queuing instant and queueing instant of packet 
(i). Once a node has already de-queued ten packets, it uses 
a sliding interval where the oldest queueing delay is deleted 
and the new one is inserted. This helps to ensure that each 
node always records the time of the most recent ten de-
queued packets. Node delay (d) is employed to calculate 
the path delay (D). For each node, D is the average time in 

(10)
NodeDelay =

∑5

i=1
queueingdelay(i) +

∑10

i=6
2 × queueingdelay(i)

15

which packets are estimated to pass through this node to the 
sink. Sink 1-hop neighbours have the same value of node 
and path delays.

The results of the deduction above that are higher than 
0.7 indicate node congestion. In this case, the node queue’s 
entry to exit rate should be evaluated to prevent congestion.

4.4.2  Parent change mechanism through learning 
automata

The routing metric publishes and selects the next hop 
according to energy rate and node queue. Each node will 
also issue a beacon message to notify its neighbours of 
reaching the congestion threshold. Therefore, neighbours 
connected to the congested node will not select it as the 
next hop until the next routing schedule. After congestion, 
a beacon is sent to neighbours to bring the node’s chances 
of taking part in routing to the state before congestion. This 
method compares queues according to entry and exit rates 
per second.

The congestion probability is low in Condition 1 and 
high in Condition 2. In Condition 2, the difference between 
the queue input and output rate will be the factor used for 
comparison. If the �Δt − �Δt difference is smaller than the 
value of slots remaining in the queue, the node will not send 
any beacons. If, however, the difference is bigger than the 
slots remaining in the queue, the node will send a beacon 
to attract half the traffic. If they encounter a queue buffer 
overflow again, a beacon will be sent to neighbours and they 
will be asked to reduce their traffic by half. The total reduc-
tion rate will usually be 75%. After the network congestion 
problem is resolved, the node changes its reception rate to 
the previous value and sends beacons to its available chil-
dren to notify them of the situation.

4.4.2.1 Learning automata A learning automaton can 
be considered a single object that has a finite number of 
actions. The learning automata work by selecting and apply-
ing an action from the collection to the environment. The 
action is evaluated through a stochastic environment, and 
the automata use the environment’s response to select its 
next action. The automata learn to select the optimal action 
through this process. Using the environment’s response to 
the action selected by the automata for selecting the next 
action is specified using automata’s learning algorithm. A 
learning automata consists of two main parts:

Condition One:

(
�Δt

�Δt

)
≤ 1

Condition Two:

(
𝜆Δt

𝜇Δt

)
> 1

Fig. 3  The structural graph of the proposed ant colony method



2459Designing a context-aware model for RPL load balancing of low power and lossy networks in the…

1 3

1. A stochastic automaton with a limited number of 
actions and a stochastic environment which the automata 
is connected to.
2. The learning algorithm, which the automata use to 
learn the optimal action.

Stochastic automata A stochastic automata is defined 
as the SA ≡ {�, �,F,G,�} quintuplet, including the 
� ≡

{
�1, �2, ..., �r

}
 collection ( r number) of automata 

actions, the � ≡
{
�1, �2, ..., �m

}
 automata input collection, 

the F ≡ � × � → � new condition generation function, the 
G ≡ � → � output function which writes the current condi-
tion to the next output and the �(n) ≡

{
�1,�2, ...,�k

}
 col-

lection of internal automata states in n moment.
The F and G functions write the current input condition 

to the automata’s next output (action). The automata is a 
stochastic one if F and G’s writings are random.

This collection, along with the learning algorithm, is 
known as the stochastic learning automata. The stochas-
tic learning automata can therefore be shown with the 
LA ≡ {�, �, p,T} quadruplet, where � ≡

{
�1, �2, ..., �r

}
 

is the collection of automata actions ( r is the number of 
automata actions), � ≡

{
�1, �2, ..., �r

}
 is the automata input 

collection, p ≡
{
p1, p2, ..., pr

}
 is the automata action prob-

ability vector and T ≡ p(n + 1) = T[�(n), �(n), p(n)] is the 
learning algorithm.

After making the parent collection accessible to each 
child, the node selects the highest ranking from its list, 
which is the node with the maximum pheromone and starts 
to send. Each node compares the amount of energy ratio and 
their new queue, which is the value for the D

n
 node, with D

o
 

as its previous rate value after the t time period. According 
to the automata formula, if change is higher than the thresh-
old; it indicates the possibility of an increase, stability, or 
reduction. Automata will be entered if the condition is met. 
One action is selected randomly from the collection.

The return node’s multi-hop remaining energy (Ɛ (n)) is 
proposed to approximate remaining energy, which investi-
gates the connection between the receiver of the DIO mes-
sage and the route energy of the DODAG’s three return par-
ent nodes.

Where n is the current node,  Einit (n) is the initial energy 
level and Ecur (n) is the current energy level for the n node. 
E init(n) – Ecur(n) /Einit(n) indicates the remaining energy 
for the node n. Ɛ (n) is the condition of the node chain’s 
remaining energy in the route. In other words, the remaining 

�(n) =

(11)

{
E init(n)− Ecur(n)

Einit(n)
, n = root

Max((
�n−1+�n−2+�n−3

3
) ∗ �),

E init(n)− Ecur(n)

Einit(n)
n ≠ root

energy of nodes is considered in return, while the effect of 
the parent’s remaining energy is reduced as its route goes 
lower. ϴ was assumed to be 0.20.

In our computation method, the significant factor for the 
proposed method is Ɛ (n), which distinguishes our ranking 
method from others. This factor gives the multi-hop return 
information to the ranking calculation equation. If the pro-
tocol doesn’t consider the previous parent’s conditions, it 
may select a parent that has congestion problems on its route 
to root, even if the selected parent is in good condition in 
terms of remaining power and buffer. This paper has used 
multi-hop parent information to shift the focus from just 
one parent condition to the parent’s multi-hop chain condi-
tion leading to a general view of the node’s conditions for 
conversion to a parent.

The next important metric for selecting the efficient par-
ent is the buffer proposed as follows. The buffer size is eval-
uated through the following formula.

The same node’s buffer size, as well as the one for its 
three previous parents, is obtained (through the DIO mes-
sage). Then, the average of the three previous parents will 
be multiplied by ϴ to reduce the upstream parent’s impact. 
Then, the maximum value between that and the node’s buffer 
is obtained. ϴ is 0.20 actions in the automata: 1-decreasing 
probability, 2-increasing probability and 3-fixed probability.

The automaton randomly selects an action from the col-
lection and applies it to the environment. According to the 
reaction received, that action will be rewarded, while the 
other two will be penalized.

4.4.3  Load balancing and solving the bottlenecking 
problems through a moving node

According to the random structure of the position of nodes 
in the proposed RPL, network congestion is undeniable since 
differing number of nodes request from other network nodes. 
In other words, each parent node may receive an unpredict-
able number of requests from its children. This will lead to 

(12)

Q(n) =

{
Q(n), n = root

Max
((

Q(n)−1+Q(n)−2+Q(n)−3

3

)
∗ �

)
,Q(n)n ≠ root

(13)

A) Optimal answer form the envirnment{
pi(n + 1) = pi(n) + a[1 − pi(n)]

pj(n + 1) = (1 − a)pj(n) ∀j,j ≠ i

(14)

B) Suboptimal answer form the envirnment{
pi(n + 1) = (1 − b)pi(n)]

pj(n + 1) =
b

r−1
+ (1 − b)pj(n) ∀j,j ≠ i
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increased traffic and as a result, generate congestion in the 
network’s nodes. In this regard, an approach for using mov-
ing nodes has been proposed in another section of this study, 
in which a number of nodes will be GW or gate nodes. These 
nodes have a higher radio range and energy than other nodes 
in the network and will use a moving unit in the network. 
These nodes enter the network through the working nodes 
process and if necessary, assume the role of parent nodes for 
high congestion children.

In order for moving and normal nodes to cooperate in 
the network, changes should occur in the network’s graph 
structure, which will be explained.

4.4.3.1 Prioritizing and managing the moving nodes using 
the flabellum algorithm Being inspired by a phenomenon 
and exploiting special knowledge provided by the problem, 
heuristic algorithms explore the complicated optimization 
problem space and offer a sufficiently good (optimum) 
solution. In the present research, given the biological and 
physical behaviour of flabellum’s movement in an artificial 
system, optimization algorithm in continuous space is pre-
sented. The physics of movement, group subset behaviour 
and flabella’s death indicate that these organisms are intel-
ligent and attempt to hunt for a prey and survive while inter-
acting with each other. Intelligence enables them to effi-
ciently use the water flow and wind flaw to reach their target 
(formation of group subset behaviour). In our proposed 
optimization algorithm, the ocean surface is considered as 
the problem space and sensing tentacles as the information 
exchange tool. According to the organism’s behavioural 
approach in biology, wind power, water flow and swimming 
are three factors affecting the searching process in the prob-
lem space.

Typically, flabellum optimization algorithm is imple-
mented in two general steps:

• Forming an artificial system with continuous time in the 
problem space; initial positioning of agents; determining 
the fit of toxins; and specifying the strategy of moving 
with wind power and water flow.

• Updating the movement and parameters during algorithm 
implementation phases

4.4.3.2 Forming the system At the beginning of any heu-
ristic optimization algorithm, the problem space is defined. 
The problem space is a multidimensional coordinate system 
in which searching for an optimum solution occurs. In fla-
bellum optimization algorithm, the ocean surface is consid-
ered as the problem space on which search agents (a group 
of flabella) are placed. Each agent in the problem space has 
the following features:

• The position of each flabellum with the sensing radius
• Movement with wind flaw and water flow
• Flabella’s amount of toxins (the rate of fit)

The position of each agent in the search space indicates 
a solution of the optimization problem. All positions in the 
problem space have the neighborhood sensing radius com-
munication medium. The competency of each agent depends 
on its location on the target function.

Global optimization strategy in the problem space is such 
that the best location found by the search agent on the target 
function is regarded as the global optimum. The purpose of 
this strategy is to describe the ocean shore so as to direct the 
search agents towards that path by the wind power.

While search agents are directed towards the global optimum 
in all states, the agents’ movement during the occurrence of 
three states to form a group behavior is considered as the local 
optimum controlled by water flow and the organism’s swim.

If we consider the system as a group of flabella, in which 
a position is indicative of a point in the optimization problem 
space, then d denotes the position of the dimension and xd

i
 

the agents.

Once the position of each agent (x(t)) is randomly deter-
mined on the problem space, the agents’ rate of fit (the con-
centration of toxins) fiti(t) is evaluated based on their loca-
tion on the problem space. In order for an agent to change its 
current location to a new one x(t + 1) , it requires a velocity 
vector. The velocity vector of an agent changes from the 
position V(t) to the next position V(t + 1) by wind and water 
powers.

where V is wind power whose constant value is 2 (v = 2) and 
α is the effective coefficient of the agent i by wind power, 
which can be adjusted in the range [0.1 < 𝛼 < 0.9] propor-
tional to the amount of water power V but is always con-
sidered constant. Rand is a random number with uniform 
distribution in the range [0,1]. Gbest is the best location found 
by an agent.

In response to the three occurrences, the local optimum, 
combined with the global optimum, completes the move-
ment strategy of the next step. In this state of the system, the 
water power is imposed on the agent i as �⃗F(wind)d

i
(t) at time 

t to the dimension d towards the local optimum (formation 
of subset behavior) in three states.

4.4.3.3 The first state If there is a neighborhood in the 
sensing radius, whose fit is the best compared to the current 
agent i, it moves one step towards that neighborhood and 
this power is calculated as follows.

(15)Xi = (xl
i
,… xd

i
, ..., xn

i
)

(16)F(t + 1)d
i
= �i(t) × V(t) × rand(Gbest − Xi(t))
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where U is water power with constant value 2 ( U = 2 ) 
and β is the effective coefficient of the agent i by the water 
power, which can be adjusted in the range [0.1 < β < 0.9] 
proportional to the amount of water power U but is always 
considered constant. Rand is a random number with uniform 
distribution in range [0,1]. Lnigberhoodbesti is the best agent in 
terms of competence in the agent’s neighborhood.

4.4.3.4 The second state If there is no better neighbour-
hood for the agent i in the sensing radius, the agent moves 
one step towards its own personal memory, whose value in 
this state is calculated as follows

4.4.3.5 The third state If the agent i has no personal mem-
ory for the second state, then it randomly moves one step, 
whose value is calculated as follows.

The agent x(t) with a sensing radius has evaluated the 
competency of its surrounding agents. If no agent in the 
neighborhood of agent x(t) has better competency, or if the 
neighborhood of agent x(t) is vacant and agent x(t) has no 
personal memory on the other hand, then agent x(t) randomly 
moves one step. The next step of agent x(t) is towards the 
agent Gbest. The power that is generally imposed on the agent 
i is the result of wind and water powers expressed as follows.

According to Eq. 16, wind power is generated in all three 
states of occurrence (wind power directs one step towards 
the shore at each stage). In contrast to each three states of 
occurrence, agents show resistance against wind power in 
order to form a group subset behavior.

The best neighborhood in the three states of occurrence 
(local optimum) is selected as the best according to the com-
petency of the neighborhood. Competency can be changed 
depending on the type of the optimization problem (mini-
mization, maximization) for the best neighborhood. The 
best competency for the global optimum in this algorithm 
is considered as the highest competency among the com-
munity members. In other words, the agent with more com-
petency, in the community distributed in the problem space, 

(17)
F(t + 1)d

i
= �i(t) × U(t) × Sin (rand)

(
Lnigberhoodbesti

− Xi(t)
)

(18)
Fd
i
(t + 1) = �i(t) × U(t) × Sin (rand) (Lnigberhoodbestmem i

− Xi(t))

Lnigberhoodbestmem
is the best personal memory of the agent i.

(19)Fd
i
(t + 1) = βi(t) × U(t) × rand()

(20)
Fd
i
(t) = �i(t) × V(t) × rand(G_best) + �i(t)

× U(t) × rand(Lbest,Mbest, rand)

is selected as the global optimum. The global optimization 
strategy of this algorithm is to direct the agent towards the 
shore and its death. Therefore, an agent with the highest 
competency is a global optimum directed towards the shore.

4.4.3.6 Updating As the system forms, all flabella are ran-
domly spread over the problem space. The fitness of their 
location is evaluated every moment and for each flabellum 
displacement, Eqs. 16 to 19 are calculated, then it is placed 
in the next location.

Flabellum algorithm parameters include the competency of 
each agent’s toxin, cross-sectional coefficient of sail (α) and the 
impact factor of water power (β). It should be noted that the 
wind power is a constant value; hence, increasing it affects the 
movement velocity of the agent. Of course, how it is influenced 
can be controlled by α. The lesser the amount of α is, the more 
the movement velocity of the agent with the wind power is 
reduced. If we consider a higher value for water power impact 
factor β, it increases the movement velocity of the agent since 
the water flow rate is constant. The lesser the amount of β is, 
the more the movement velocity of the agent is reduced. Wind 
power reinforces the algorithm exploration strength, while 
water power guarantees the algorithm efficiency.

Algorithm 1: Pseudocode of the proposed optimization 
algorithm.
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First, changes will be made to the RPL network’s CC 
message structure, for designing a new a message could 
generate extra control overhead on the network. For this 
purpose, each network node will send the CC message to 
everyone in case of congestion in their queues or an increase 
in the energy depletion rate, which will lead to the node’s 
early death. Normal network nodes can use this message to 
reduce the send rate to the node; however, its main goal is to 
inform the existing moving nodes of the node’s radio range 
for cooperation. In other words, the network’s congested 
nodes request for help from the moving nodes available in 
their proximity and send periodic messages to inform them. 
The network’s moving nodes lack GPS and are moved ran-
domly in the network.

Each of the network’s moving nodes move randomly 
after receiving the CC message from the sender and detect 
whether it is getting close or moving away. This process 
will be rewarded if the signal strength is increased by mov-
ing from point x1 to point x2 and it will get closer to another 
hop. A DAO message is sent to it after it is placed in the 
node’s full radio range and the list of current children will 
be received from the node in the DAP-Ack response. After 
message reception is verified by the congested node, the 
moving node will assume the role of the congested parent 
node and receive messages from the other node’s children 
and the node itself and then transfer their messages to the 
node’s parents.

5  Simulating and evaluating methods

Table 2 shows the proposed network simulation conditions. 
According to Table 2, there are 180 sensor nodes distributed 
randomly in the simulation environment and evaluated in 
these tests, and the extent to which the proposed and the 
similar base method are successful in energy efficiency per 
successful send in the network, which leads to dynamic rout-
ing, will be evaluated.

This paper proposes the automata-ant-colony multiple 
recursive RPL, abbreviated to AMRRPL, which is a modi-
fied version of RPL for the IoT networks providing a balanc-
ing model through the automata and ant colony algorithm 
as well as the multi-step recursive model. It prevents con-
gestion by managing the moving nodes. As a result of load 
balancing and congestion prevention, it will reduce network 
energy consumption, prolong network lifetime, and reduce 
packet loss.

HECRPL (Zhaoa et al. 2017) is a distributed, reliable and 
energy-efficient routing protocol. In HECRPL, both wireless 
links lossy rates and energy consumption are taken into con-
sideration to estimate the routing cost. In HECRPL, the rout-
ing decision is made with the purpose of minimizing energy 
consumption. HECRPL selects the optimal cluster-parent-set 

(CPS) through a top-down approach in conjunction with 
transmission power-level selection.

HECRPL incorporates the following five major features 
to effectively prolong the lifetime of the network, while 
achieving a high reliability and fairness for the network: (1) 
a top-down approach for optimal cluster-parent-set (CPS) 
selection to minimize the energy depletion of the network 
and leverage path diversity, while achieving the global 
goal, (2) an overhearing-based coordination among nodes 
in a CPS to avoid duplicate transmissions, (3) the priority 
in a CPS is based on a hybrid of residual energy and the 
lossy conditions of wireless channels, (4) an efficient loss 
recovery scheme for the detection and retransmission of the 
lost data packets and (5) the transmission power is refined 
to increase the network capacity (increase spatial reuse) 
and further reserve energy. Simulation results demonstrate 
that HECRPL can significantly prolong the lifetime of the 
network and provide much more robust network connectiv-
ity than the benchmark. However, the spatial reuse feature 
cannot be exploited because of the timer-based priority 
scheduling for CPS coordination. In addition, congestion 
occurs easily in a resource- constrained network. An efficient 
load sharing scheme is necessary to alleviate the congestion 
issues.

E-RPL (Preeth et al. 2019), another paper that compared 
with the proposed method, has presented an energy efficient 
routing in the IoT by using the ACO. The proposed E-RPL 
considers multiple routing factors and selects an efficient 
parent node to build an optimal DODAG structure. The 
E-RPL consists of the ACO based multi-factor optimiza-
tion for parent selection and coverage-based dynamic trickle 
algorithm for energy efficient DODAG construction without 
compromising network coverage and reliable data routing. 
The ACO considers the expected transmission count (ETX) 
and rank value as pheromone factors, whereas the residual 
energy and children count as heuristic factors. The E-RPL 
exploits the parent–child relationship factor as a phero-
mone evaporation factor to balance the conflicting factors 
of ETX, rank, delay, and energy consumption. Moreover, 
the weight-based algorithm is utilized to combine phero-
mone, heuristic, and pheromone evaporation factors towards 

Table 2  Simulation conditions

Value Parameter

180 node Number of nodes
240 m*240 m Network environment
30 to 50 streams per minute Network traffic rates
30 m Node radio board
5 J Primary energy of the node
CBR Traffic type
200 s Simulation time
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a single-objective function. To develop an optimal DODAG 
structure with a reduced routing overhead, the E-RPL intro-
duces concentric corona- based network partition and deter-
mines the value of broadcast count dynamically concern-
ing the node density and coverage. The use of ETX as well 
as rank value effectively balances the routing performance 
and energy consumption. Moreover, the consideration of 
connected children and the remaining energy in the parent 
selection reduces the collision impact and ensures the reli-
able packet delivery; however, it needs to be evaluated under 
various network size to show the routing scalability.

5.1  Probability of reaching I
max

The ultimate goal of generating the drop scheduler for the 
RPL is to reach maximum network stability. This test inves-
tigates the probability of achieving this goal in simulation 
time. One of the most important reasons for resetting the 
drop scheduler is the network graph’s instability and bottle-
necks or un-parented nodes in the network. In terms of deliv-
ery rate, such un-parented or unstable nodes periodically 
send a DIS message to find a better parent. These parent 
change requests will reduce the node’s probability of reach-
ing I

max
 in the network and will repeatedly reset network 

nodes. Effective parameters were considered in the proposed 
AMRRPL method for forming the intended link in order to 
prevent this problem. Since the proposed network considered 
the LQI and SNR metrics the main factors for forming the 
link, the results of this test present significant improvements 
compared to other methods, according to Fig. 4. Avoiding 
greedy parent node selection and considering a combina-
tion of desired parents in multiple hops are among other 
features that reduce network bottleneck and increase graph 
node stability.

In the proposed model’s scenario, the network was con-
sidered to have an average range (number of nodes, radio 
range and scheduler). Simulation results show that the multi-
hop link management learning system and congestion man-
agement, the proposed ant colony method for the network 
graph dynamics was able to achieve a higher probability of 
network stability, or a better convergence time, than other 
methods (Fig. 4). The effect of selecting suitable children in 
the AMRRPL method should not be ignored either, which 
had better performance compared to the HECRPL and ERPL 
methods and sped up network stability.

5.2  Network lifetime test

The network lifetime test is performed to evaluate the net-
work’s effectiveness in saving energy for active nodes. Many 
studies have considered the time of death for the first and the 
middle nodes of the network as the main factor for network 
assessment. The more unbalanced the network’s energy 

consumption, the faster this event will occur. Energy effi-
ciency was the goal of the network proposed in this study 
and an attempt was made to consider link quality and the 
parent’s condition to prevent the premature death of the net-
work’s nodes as much as possible and delay the death of the 
network’s first node. Figure 5 shows the test results for two 
traffic criteria, 30 and 50 packets in unit of time for the base 
and proposed methods.

Generating a high quality link, knowledge-based parent 
selection and taking node energy parameters into account in 
the decision system’s computations have reduced the prob-
ability of selecting a low energy node in the network in the 
proposed method; which delays the death of the network’s 
first node. With the traffic flow of 30 packets, the rate of lost 
nodes in the proposed network is approximately halved after 
100 s, while increasing to 75% in the base method. After 
200 s, due to loss of connection between the network’s root 
and farther away leaf node, the energy consumption rate is 
only for sending the DIS message. Increasing the network’s 
packet production traffic rate to 50 units in the proposed 
method increases the number of packets lost in the network 
to 100. Increasing the network traffic rate or reducing the 
link’s success probability in the network during experiments 
will sharply reduce the number of live nodes in the network. 
At the same time, energy efficient routing and queue man-
agement will reduce the node’s energy cost. According to 
the results, the proposed method has outperformed the base 
method by approximately 9.34 percent in the 30 traffic and 
11.16% in the 50 traffic.

5.3  Testing energy consumption rate for variable 
traffic

The average network energy consumption test was pro-
posed for measuring the routing pattern’s impact on network 
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energy consumption. Figure 6 shows the results of this test, 
in which the proposed AMRRPL algorithm was able to 
outperform the HECRPL and ERPL base methods due to 
considering the ant colony algorithm for generating the opti-
mal route and involving node energy and queue parameters 
causing processing, queuing, and publishing delays as well 
as the upstream parent’s accessibility.

Figure 6 has taken the average node energy consumption 
in the network’s traffic ranges into consideration, which indi-
cates the proposed AMRRPL method’s awareness of network 
energy and condition. Overtime, simulating this process will 
reduce the proposed network’s energy consumption. The 
average network energy consumption improvement com-
pared to the base method is approximately 15 percent for 20 
traffic and 20% for 30 traffic. The difference was somewhat 
reduced in 40 traffic, reaching 12%, whereas it increased 
once again to 15% for 50 traffic. Finally, both graphs of the 
proposed and base methods had a minimum 8% difference in 
this test with 60 traffic. The average improvement obtained 
was 14 percent. The proposed network’s improvement in 
variable traffic is often the result of the dynamic radio range 
of network nodes preventing the generation of lossy links 
and fixing or completely disconnecting links whose energy 
consumption rates are higher than the obtained value. The 
simulation results show that the decision does not hinder the 
network’s data transactions and could provide more optimal 

distribution. In other words, generating safe and stable links 
reduces noise and crosstalk and prevents packet losses in 
the network. Finally, the aforementioned points increase the 
RPL network’s energy efficiency.

5.4  Control overhead rate test

Since the major part of the working time of RPL-based 
protocols is devoted to exchanging controlling messages 
including DODAG Information Object (DIO), Destina-
tion Advertisement Object (DAO), DODAG Information 
Solicitation (DIS), DAO-Ack, Beacon, Clear Channel 
Assessment (CCA) and CC, the more these exchanges are 
decreased while maintaining the network stability, the higher 
the network efficiency and network working time will be. 
In the proposed method, the exchange rate of controlling 
messages is decreased due to the formation of stable and 
multi-path graphs. Moreover, by decreasing the swarm rate 
and the overflow of network node queues, the number of 
beacons sent to reduce and adjust the packet delivery rate 
from child to parent is reduced. In this method, by taking 
into account the rate of network end-to-end delay, nodes 
encounter lesser bottlenecks compared to the basic method 
and are able to know the traffic rate and continuous flow in 
the network. Also, optimum use of moving nodes’ mecha-
nism contributes in generating load balance in the network 
and the results are improved by 20% in this test compared 
to other methods. Figure 7 has taken the Control overhead 
rate into consideration,
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5.5  Delivery rate test with various movement 
patterns

However, the main challenge of delivery rate in the RPL is 
in heavy traffics which can cause bottlenecks in the network 
and disturb its delivery rate. In this test, three movement 
models are selected for moving nodes in the network. In the 
first model, moving nodes move in the network based on a 
random pattern and according to the CC message received 
from nodes involved in the swarm, they try to help them. In 
the second model, the movement pattern of moving nodes in 
the network is determined by using Tabu search algorithm, 
and the final pattern is to use the flabellum algorithm. The 
results indicate that the proposed flabellum method could 
yield a higher, acceptable delivery rate compared to the 
other two methods.

Figure 8 has taken the results of packet delivery rate test 
with various movement patterns into consideration.

5.6  Scheduler reset probability test 
in heterogeneous network

This parameter was included in order to study the feasibility 
of the proposed method to retain the current drop scheduler. 
The lesser the event occurs in network nodes, the lesser DIO 
messages are sent in the network and the more the network 
efficiency is increased. The use of moving nodes in stabiliz-
ing network graph and generating load balance can reduce 
unwanted resets in drop scheduler in the network. Accord-
ing to the test results, the flabellum movement management 
method has outperformed random movement and Tabu 
search methods. Figure 9 has taken the test results of drop 

scheduler reset rate with various movement patterns into 
consideration. At the end Figs. 10 and 11 have taken The 
test results of packet delivery rate and The test results of the 
total energy consumption of the network in different stages 
of the proposed algorithm (3 phases: ant colony based OF, 
automata based parent selection, flabellum based moving 
node management) into consideration.

6  Conclusion

This paper evaluated the RPL problems under heavy and 
dynamic load by focusing on packet loss and network life-
time. It is discovered that the RPL standard cannot effec-
tively manage and balance heavy loads and dynamic loads.

This paper proposed the automata-ant colony multiple 
recursive RPL, abbreviated to AMRRPL, which is a modi-
fied version of the RPL for the IoT networks to develop a 
balancing model by using the automata and ant colony algo-
rithm as well as the multi-step recursive model. It prevents 
congestion by managing the moving nodes. As a result of 
load balancing and congestion prevention, it will reduce net-
work energy consumption, prolong the network lifetime, and 
reduce packet loss.

This protocol was presented in three steps. The first step 
was to evaluate the condition of a multi-hop parent chain 
before selecting the last one as the node’s selected parent. 
Therefore, there was an attempt to balance the network’s 
load and to improve the network lifetime and energy impor-
tant factors, including LQI, SNR, and buffer as well as 
remaining energy level taken into consideration. The ant 
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colony algorithm was used for rank calculation. The second 
step proposed an algorithm to select the parent dynamically 
and with awareness of node conditions by using stochastic 
automata.

The comprehensive evaluation showed that this algo-
rithm made better decisions on the proper parent selection 
in a network with high traffic dynamism rather than mak-
ing decisions merely based on the parent’s rank. The third 
step resolve bottlenecks and swarm problems by managing 
the moving nodes through the heuristic flabellum algorithm 
inspired by physical and biological behaviour of flabella in 
the sea.

The proposed method was evaluated under different sce-
narios in Cooja, proving that the AMRRPL outperformed 
existing algorithms with regard to packet delivery, energy 
consumption rates, and network lifetime and stability 
through the load balancing model and congestion prevention.
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