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Abstract
Unsupervised domain adaptation, which aims to classify a target domain correctly only using a labeled source domain, has 
achieved promising performance yet remains a challenging problem. Most traditional methods focus on exploiting either 
geometric or statistical characteristics to reduce domain shifts. To take advantage of both sides, in this paper, we propose 
a unified framework incorporating both the geometric and statistical characteristics by adopting the non-convex Schatten 
p-norm and graph Laplacian constraints to preserve global and local structure information and constructing marginal and 
conditional distribution minimization terms to reduce the distribution shifts. Moreover, a classification error term on the 
source domain is embedded into the objective function to increase the discriminability. The proposed method has been 
evaluated on six datasets and the experimental results demonstrate the superiority of the proposed method over several 
state-of-the-art methods. The MATLAB code of our method will be publicly available at https ://githu b.com/Heyou Chang /
unsup ervis ed-domai n-adapt ation .

Keywords Unsupervised domain adaptation · Image classification · Distribution shift · Geometric structure · Statistical 
characteristic

1 Introduction

As an important research field of computer vision, image 
classification has been widely studied in the past few years, 
and many methods have been proposed (Lan et al. 2019; 
Wright et al. 2009; Yang et al. 2013). In these methods, it is 

common to assume that samples from the training set and 
testing set have a similar distribution. However, it is difficult 
to assure that both the two sets follow the same distribution 
in many practical applications due to various factors (i.e. 
resolution, viewpoint and illumination). A model obtained 
from a training set usually fails in the testing set if their dis-
tributions are different. To contend with the scenario, trans-
fer learning attracts lots of attention, which aims to effec-
tively apply the knowledge learned from a training (source) 
domain to a testing (target) domain. Recently, numerous 
works on transfer learning have been proposed and have 
achieved exciting performance in many applications, such 
as image classification (Kobylarz et al. 2020; Singh et al. 
2019; Wang et al. 2017), motion segmentation (Wang et al. 
2018b) and image retrieval (Xu et al. 2019).

As a special case of transfer learning, domain adaptation 
(DA) attracts lots of attention in recent years. In DA, it is a 
popular strategy to take the information from both domains 
into consideration to extract new domain-invariant features 
for the two domains. According to the availability of the 
target labels in the training process, DA can be divided into 
two categories: semi-supervised DA and unsupervised DA. 
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This paper focuses on the unsupervised DA, which is more 
difficult and challenging.

Finding a common latent subspace to reduce the distri-
bution shift problem between the two domains is critical in 
unsupervised DA (Si et al. 2010; Singh and Nigam 2019). 
For example, Si et al. (2010) constructed a regularization to 
minimize the Bregman divergence between the two domains 
in a selected subspace. Gong et al. (2012) utilized geodesic 
flow kernel (GFK) to find a geodesic from the source domain 
to the target domain. Long et al. (2013b) proposed to project 
data of both domains into a new subspace by jointly embed-
ding both marginal distribution and conditional distribution 
into a principled dimensionality reduction procedure. Ghi-
fary et al. (2017) proposed scatter component analysis (SCA) 
for DA and domain generalization, in which data scatter is 
used as a geometrical measure to evaluate the separability of 
classes, the mismatch between domains and the separability 
of data. To reduce the distribution divergence and evaluate 
the importance of the marginal and conditional distributions, 
Wang et al. (2018a) proposed to learn a domain-invariant 
classifier in a Grassmann manifold with structural risk mini-
mization. Although good performance has been reported, 
these methods seldom exploit the structural information of 
the data.

Many studies (Xu et al. 2016; Shao et al. 2014) have veri-
fied that importing structure constraints (such as low-rank 
constraint and sparse constraint) into the transfer learning 
process could effectively improve the DA performance. 
For instance, Shao et al. (2014) proposed low-rank transfer 
subspace learning (LTSL) for face recognition and object 
recognition, where each sample from target domain is recon-
structed by the samples from source domain in a general-
ized subspace with a low-rank constraint. Xiao et al. (2019) 
proposed structure preservation and distribution alignment 
(SPDA) for unsupervised DA. However, these works ignore 
the statistical characteristics of the data. Moreover, all these 
methods use the convex nuclear norm to approximate the 
non-convex rank function, which may make the solution 
deviate considerably from the original solution (Nie et al. 
2012).

To better approximate the original low rank, mitigate the 
distribution shift problem and further exploit the structure 
properties, we propose a unified framework that incorporates 
structure information and statistical distribution for unsuper-
vised DA of image classification, as shown in Fig. 1. Specifi-
cally, the proposed framework retains both global and local 
structural information by constructing a graph-structure 
constraint and Schatten p-norm; and reduces the distribu-
tion shifts by aligning both marginal and conditional distri-
butions between the source and target domains. Moreover, 
the label information of the source domain is also exploited 
effectively by �-dragging technique. An effective optimiza-
tion procedure is proposed. Experiments on six datasets have 

been done and the results demonstrate the superiorities of 
the proposed approach.

The contributions of this work are summarized as fol-
lows. (1) A unified framework consists of global and local 
structure constraints, marginal and conditional distributions 
and classification error is proposed for unsupervised DA and 
the Schatten p-norm ( 0 < p < 1 ) is introduced to capture 
the data structure more accurately. (2) Better performance 
has been achieved on six benchmark datasets than several 
representative unsupervised DA methods.

The rest of this paper is structured as follows: Sect. 2 
introduces the notation used in this paper. Section 3 briefly 
reviews some related works. Section 4 shows the description 
and optimization procedure about the proposed method in 
detail. Section 5 discusses the experiments and results on the 
six datasets, and the last section concludes the paper.

2  Preliminaries

In this work, we denote Xs ∈ Rd×ns , Xt ∈ Rd×nt , Z ∈ Rns×nt , 
P ∈ Rd×m and E ∈ Rm×nt as the source data, target data, 
reconstruction matrix of Xt , projection matrix and noise 
matrix, respectively, where d is the dimensionality of each 
sample, ns and nt are the number of samples in Xs and Xt , 
respectively. Matrices (vectors) are denoted by boldface 
uppercase (lowercase) letters. Ai,j is the i, jth entry of A , 
and Ai represents the ith column of A.

Fig. 1  Illustration of our method. Blue: source samples. Pink: target 
samples. Circles, squares, and triangles indicate three different cat-
egories. By considering structural information, marginal and condi-
tional distribution shifts, as well as label information of the source 
domain, the hyper-plane learned from the two domains can perfectly 
classify the target samples
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The Schatten p-norm ( 0 < p <∝ ) of a matrix A ∈ Rm×n is 
defined as ��A��sp = (

∑min{m,n}

i=1
�
p

i
)
1∕p

= (tr(AT
A)p∕2)1∕p , 

where tr(⋅) represents the trace operator. When p = 1 , the 
Schatten p-norm becomes the nuclear norm ( || ⋅ ||∗ ). 
Although the Schatten p-norm is only a quasi-norm when 
p < 1 , for convenience, we still call it the Schatten p-norm.

3  Related work

3.1  Domain adaptation

DA aims at addressing the problem where the task of train-
ing and testing domains are the same while their data distri-
butions are different. In DA, it is a popular strategy to learn 
a common feature subspace where the distributions of both 
domains are well aligned. Following this, some subspace 
learning methods have been proposed. In Si et al. (2010), 
the authors reduced the distribution shift by minimizing the 
Bregman divergence. Long et al. (2013b) made use of the 
pseudo-labels of the target domain to calculate conditional 
distribution shift and proposed joint distribution analysis 
(JDA). By adaptively weighting the marginal and condi-
tional distributions, Wang et al. (2017) proposed balanced 
distribution adaptation (BDA) to improve the performance. 
The methods mentioned above mainly concentrate on mini-
mizing the domain distribution shifts and overlook the geo-
metric information among data.

To preserve specific properties (such as, low-rank and 
sparsity) in DA, various kinds of regularizers are exploited. 
For example, Xu et al. (2016) introduced both low-rank 
and sparse constraints on the coefficient matrix to preserve 
the structural information of data. Different from (Xu et al. 
2016), Shao et al. (2014) constructed a generalized subspace 
term to preserve the local structure. These methods aim to 
exploit the geometric characteristics among samples while 
seldom leverage the statistical characteristics.

To take full advantage of the structure information and 
the statistical distribution, we incorporate global and local 
structure preservation, marginal and conditional distribu-
tions and classification error into a unified framework. 
Different from (Xiao et al. 2019), the proposed method 
(1) utilizes the non-convex Schatten p-norm to capture 
the global structure in the data more precisely, and (2) 
considers that the marginal distribution and conditional 
distribution have different importance to further minimize 
the domain shifts.

3.2  Low‑rank representation

Given a data matrix X ∈ Rd×m with m samples and a diction-
ary D ∈ Rd×k with k atoms, low-rank representation (LRR) 

concentrates on seeking a representation matrix Z ∈ Rk×m , 
which not only has the lowest rank but also can reconstruct 
the samples with the dictionary atoms through linear com-
bination. LRR can be formulated as follows:

where E represents noise matrix and ‖ ⋅ ‖1 is the sparsity 
constraint. Since the rank minimization problem is NP-hard, 
it is popular to use nuclear norm to approximate the rank 
function (Shao et al. 2014; Liu et al. 2013; Zhu et al. 2018; 
Yang et al. 2018).

However, the nuclear norm relaxation may deviate the 
outcome away from the real solution. The nuclear norm of 
a matrix is equal to the L1 norm of the matrix’s singular 
vector. According to the definition of the Schatten p-norm, 
when p = 1 , it is equal to the nuclear norm. When p → 0 , 
the Schatten p-norm becomes rank function under 00 = 0 . 
We can see that the Schatten p-norm is more approximate 
to the rank function than the nuclear norm when 0 < p < 1 . 
Therefore, we adopt the Schatten p-norm ( 0 < p < 1 ) to 
obtain a closer solution of problem (1).

4  The proposed method

4.1  Problem formulation

Based on the assumption that there is a common subspace 
shared by the samples from both source and target domains 
and the samples from the target domain can be linearly rep-
resented by the samples from the source domain in the com-
mon subspace, we can construct a general formulation for 
unsupervised DA:

where f (P,Xs,Ys) is a function for learning a discriminative 
projection matrix P , and Ys is the binary label matrix of Xs.

Although the convex nuclear norm has been widely used 
to approximate rank(Z) , the relaxation may deviate the out-
come from the real solution (Nie et al. 2012). Recently, some 
approaches (Chang et al. 2016, 2019; Wang et al. 2019) have 
verified that the non-convex Schatten p-norm minimization 
performs better than the nuclear norm minimization in image 
denoising when p is close to 0. To obtain a closer solution 
of problem (2), we adopt ‖ ⋅ ‖psp ( 0 < p < 1 ) to approximate 
rank(Z) by:

(1)minZ,E rank(Z) + �||E||1, s.t. X = DZ + E

(2)
minP,Z,Erank(Z) + �||Z||1 + �||E||1 + f (P,Xs,Ys)

s.t.PT
Xt = P

T
XsZ + E

(3)
minP,Z,E‖Z‖pSp + ���Z��1 + ���E��1 + f (P,Xs,Ys)

s.t.PT
Xt = P

T
XsZ + E
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To leverage the local geometric structure information in the 
original feature space, we construct a graph-constraint term 
as

w h e r e  X = [Xs,Xt],  n = ns + nt  .  Wi,j = 1  ,  i f 
Xi ∈ kNN(Xj) ∨ Xj ∈ kNN(Xi) and Wi,j = 0 , otherwise. 
L = D −W is the normalized graph Laplacian matrix, and 
D is a diagonal matrix with diagonal entries Di,i =

∑n

j=1
Wi,j.

In addition to exploiting the structural information, 
reducing the distribution distance between the two domains 
is also significant for unsupervised DA. Therefore, the max-
imum mean discrepancy (MMD) is adopted to measure the 
marginal distribution difference between the two domains 
by

where B is the marginal distribution MMD matrix, and Bi,j 
is computed as

Since the labels of target samples are not available, the con-
ditional distribution difference between the two domains 
cannot be directly calculated. As in Wang et al. (2017), 
Long et al. (2013a), we calculate pseudo-labels of the target 
samples by applying some base classifiers (e.g., NN, SVM), 
where the classifiers are trained on the labeled source data. 
Then, the conditional distribution distance can be formu-
lated as

where C is the class number, Ac is the conditional distribu-
tion matrix of cth class. Ac is calculated as

where Xc
s
 ( Xc

t
 ) represents the set of samples belonging to 

c-th class in the source (target) domain, which includes nc
s
 

( nc
t
 ) samples.

(4)
n∑

i,j=1

(PT
Xi − P

T
Xj)

2Wi,j = tr(PT
XLX

T
P)

(5)||1∕ns
ns∑
i=1

P
T
Xi − 1∕nt

nt∑
j=1

P
T
Xj||2F = tr(PT

XBX
T
P)

Bi,j =

⎧
⎪⎨⎪⎩

1∕n2
s
, Xi,Xj ∈ Xs

1∕n2
t
, Xi,Xj ∈ Xt

−1∕(nsnt), otherwise

(6)

C∑
c=1

||1∕nc
s

nc
s∑

i=1

P
T
Xi − 1∕nc

t

nc
t∑

j=1

P
T
Xj||2F

= tr(PT
X

C∑
c=1

AcX
T
P)

(Ac)i,j =

⎧⎪⎨⎪⎩

1∕nc
s
2, Xi,Xj ∈ X

c
s

1∕nc
t
2, Xi,Xj ∈ X

c
t

−1∕
�
nc
s
nc
t

�
, (Xi ∈ X

c
s
,Xj ∈ X

c
t
) ∨ (Xj ∈ X

c
s
,Xi ∈ X

c
t
)

0, otherwise

To maximize the class separation distance and improve 
classification accuracy, the label information Ys of the source 
samples should be considered. Following Xu et al. (2016), 
we design a non-negative label relaxation matrix M to 
increase inter-class separation in the source domain as much 
as possible and perform the label regularization as follows:

where Bi,j = 1 , if Ys(i, j) = 1 and Bi,j = −1 , otherwise. ⊙ is 
the hadamard product operator.

By jointly taking geometric regularization, statistical 
regularization, and label regularization into consideration, 
the final objective function is formulated as follows

where �, �, � , � and � are the trade-off parameters, and 
p ∈ (0, 1) . In the experiment, p is set to 1/2 for convenience. 
Compared with ||Z||∗ , ||Z||1∕2s1∕2

 is much closer to rank(�).

4.2  Optimization

To effectively solve problem (8), two auxiliary variables J 
and R are first introduced to make the problem separable. 
Then, (8) can be rewritten as:

Then, augmented Lagrangian multiplier (ALM) is applied to 
solve (9). The augmented Lagrangian function H of (9) is:

(7)|||
|||P

T
Xs −

(
Ys + B⊙M

)|||
|||
2

F

(8)

minP,Z,E,M||Z||psp + 𝛼||Z||1 + 𝛽||E||1
+ ||PT

Xs − (Ys + B⊙M)||2
F

+ tr(PT
X(𝛾L + 𝜂B + 𝜈

C∑
c=1

Ac)X
T
P)

s.t. PT
Xt = P

T
XsZ + E

(9)

min
P,Z,E,

M, J,R

||J||1∕2
s1∕2

+ 𝛼||R||1 + 𝛽||E||1

+ ||PT
Xs − (Ys + B⊙M)||2

F

+ tr(PT
X(𝛾L + 𝜂B + 𝜈

C∑
c=1

Ac)X
T
P)

s.t. PT
Xt = P

T
XsZ + E,Z = J,Z = R

(10)

H(P,Z,E,M, J,R,Y1,Y2,Y3,𝜇) = ||J||1∕2
s1∕2

q + 𝛼||R||1 + 𝛽||E||1 + ||PT
Xs − (Ys + B⊙M)||2

F

+ tr(PT
X(𝛾L + 𝜂B + 𝜈

C∑
c=1

Ac)X
T
P)

+ < Y1,P
T
Xt − P

T
Xs − E > + < Y2,Z − J > + < Y3,Z − R >

+ 𝜇∕2(||PT
Xt − P

T
XsZ − E||2

F
+ ||Z − J||2

F
+ ||Z − R||2

F
)
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where < A,B >= trace(AT
B) , Y1,Y2 and Y3 are Lagrange 

multipliers and 𝜇 > 0 is a penalty parameter. At each itera-
tion step, only one variable is updated while fixing the other 
variables. The updating process is as follows.

Step 1. Optimizing J
Keeping other variables constant, the problem in Eq. (10) 

can be simplified as follows:

Equation (11) can be solved according (Chang et al. 2016), 
which gives details for the solution.

Step 2. Optimizing P
Keeping other variables constant, Eq. (10) can be rewrit-

ten as

P can be updated by taking the stationary point of (12) as

where K1 = �L + �B + �
∑C

c=1
Ac , K2 = Xt − XsZ , I is an 

identity matrix, and � is a small positive constant.
Step 3. Optimizing Z
Keeping other variables constant, Z can be updated by 

solving

Z can be calculated by

(11)argminJ1∕�||J||1∕2s1∕2
+ 1∕2||J − (Z + Y2∕�)||2F

(12)

argminPtr
(
P
T
X(𝛾L + 𝜂B + 𝜈

C∑
c=1

Ac)X
T
P

)

+ ||PT
Xs − (Ys + B⊙M)||2

F

+ 𝜇∕2||PT
Xt − P

T
XsZ − E + Y1∕𝜇||2F

(13)

P
∗ =(XsX

T
s
+ XK1X

T + 𝜇K2K
T
2
+ 𝜆I)−1(Xs(Ys + B⊙M)T

+ 𝜇K2(E − Y1∕𝜇)
T )

(14)
argminZ||PT

Xt − P
T
XsZ − E + Y1∕�||2F

+ ||Z − J + Y2∕�||2F + ||Z − R + Y3∕�||2F

Step 4. Optimizing R
Keeping other variables constant, R can be solved as

where Φw[⋅] is the soft thresholding (shrinkage) operator, 
and Φw[x] = signmax(|x| − w, 0)

Step 5. Optimizing E
Keeping other variables constant, E is updated by

Step 6. Optimizing M
Keeping other variables constant, M can be solved by

M can be calculated by

The whole optimization of Eq. (8) is summarized in Algo-
rithm 1. A projective matrix � is output by the Algorithm 1. 
When classification, all samples of both domains are first 
transferred to a new subspace by multiplying PT . Then the 
label of one target sample is the label of its nearest source 
sample in the subspace by carrying out a one-nearest-neigh-
bor algorithm.

(15)
Z
∗ =(XT

s
PP

T
Xs + 2I)−1(XT

s
P(PT

Xt − E

+ Y1∕�)
T + J − Y2∕� + R − Y3∕�)

(16)
R
∗ = argminR�∕�||R||1 + 1∕2||||Z− R + Y3∕�

||||2F
= Φ�∕�[Z+Y3∕�]

(17)

E
∗ = argminR�∕�||E||1

+ 1∕2
|||
|||P

T
Xt − P

T
XsZ − E+ Y1∕�

|||
|||
2

F

= Φ�[P
T
Xt − P

T
XsZ+ Y1∕�]

(18)M
∗ = argminM

|||
|||P

T
Xs −

(
Ys + B⊙M

)|||
|||
2

F

(19)M = max((PT
Xs − Ys)⊙ B, 0)
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Algorithm 1 Solving algorithm of the proposed method
1: Input: source dataXs, target dataXt, source data label Ys,B, α, β, γ, η

and ν
2: Initialization: M = I,Z = J = R = 0,E = 0,Y1 = Y2 = Y3 =

0, P ,L,B and Ai, i= 1,. . .C
3: While not converged do
4: Update J by Eq.(11) with fixing others
5: Update P by Eq.(13) with fixing others
6: Update Z by Eq.(15) with fixing others
7: Update R by Eq.(16) with fixing others
8: Update E by Eq.(17) with fixing others
9: Update M by Eq.(19) with fixing others

10: Update Y1,Y2,Y3 and µ
11: Check the convergence conditions:∣∣∣∣P TXt − P TXsZ −E

∣∣∣∣
∝ < ε, ||Z − J ||∝ < ε, ||Z −R||∝ < ε

12: End While
13: Output: P

Fig. 2  The objective function value versus the iteration number on different datasets. a COIL1→COIL2, b MNIST→USPS, c Caltech256→Ama-
zon, d PIE1→PIE2
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4.3  Complexity and convergence analysis

In Algorithm 1, the great mass of run time is consumed in 
optimizing J , P and Z , which require matrix inversion and 
singular value decomposition (SVD). The complexities of 
optimizing J , P and Z are O(nsn2t )(we assume that nt ≤ ns ), 
O(d3 + 2d2(ns + nt)) and O(dnsm + n3

s
) , respectively. Then, 

the total time complexity of the proposed algorithm is 
O(N(nsn

2
t
+ d3 + 2d2(ns + nt) + dnsm + n3

s
)) , where N is the 

maximum iteration. In our experiments, N is set 15.
Since problem (8) is not smooth (the Schatten 1/2 norm 

is non-convex) and there are more than two blocks in the 
proposed algorithm, it is difficult to give a convergent proof 
of Algorithm 1 in theory. Figure 2 shows the the value of 
(8) with respect to the number of iterations on four datasets. 
From Fig. 2, we can see that the objective function value 
decreases as the number of iterations increases.

5  Experiments

The proposed method is evaluated on six datasets which 
are widely used for unsupervised transfer learning: COIL20, 
Office, Caltech-256, USPS, MNIST, and CMU PIE. The first 
three datasets are used for object classification, the middle 
two datasets are used for digit classification and the last data-
set is used for face classification. The proposed method is 
compared with the latest ten unsupervised transfer learning 
methods, i.e., SDA (Sun and Saenko 2015), TSL (Si et al. 
2010), GFK (Gong et al. 2012), JDA (Long et al. 2013b), 
BDA (Wang et al. 2017), SCA (Ghifary et al. 2017), LTSL 
(Shao et al. 2014), LRSR (Xu et al. 2016), LRDRM (Raz-
zaghi et al. 2019) and SPDA (Xiao et al. 2019). Two other 
standard machine learning methods (i.e.,NN and PCA) are 
also include. The results of all the competing methods are 
either referenced from the original papers or from widely 
published results to ensure a fair comparison.

Fig. 3  a Samples of the COIL20 dataset. b Some examples of the MNIST dataset (left) and USPS dataset (right)

Fig. 4  Classification accuracies 
(%) on the COIL20 dataset
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5.1  COIL20 dataset

This dataset consists of 20 objects with 1440 32 × 32 gray 
images. The images were taken every 5◦ as the objects were 
rotated on a motorized turntable against a black background. 
In the experiment, the dataset is divided into two subsets 
according to the rotation angle. COIL1 contains the images 
of all objects taken at angles of [ 0◦ , 85◦ ] and [ 180◦ , 265◦ ]; 
and COIL2 contains the images of all objects taken in the 
directions of [ 90◦ , 175◦ ] and [ 270◦ , 355◦ ]. Each subset con-
tains 720 images. Some samples are shown in Fig. 3a. The 

images in COIL1 and COIL2 follow different distributions. 
In the experiments, one subset is selected as the source set 
and the other subset as the target set. Then, two pairs of 
domain adaption are constructed.

Figure 4 shows that the proposed method is superior to 
other competing methods. In particular, the proposed method 
achieves the highest accuracies of 99.31% and 99.03% on 
COIL1→COIL2 and COIL2→COIL1, respectively. Com-
pared with standard learning methods, the proposed method 
achieves improvements of approximately 14.0% on both 
experiments. Compared with other DA methods, there are 

Fig. 5  Some images from the Office and Caltech-256 datasets

Table 1  Classification accuracies (%) on the Office and Caltech256 datasets (The number in bold indicates the highest accuracy and the number 
in underline represents the second-highest accuracy)

Standard learning Domain adaptation

NN PCA SDA TSL GFK JDA BDA SCA LTSL LRSR LRDRM SPDA Ours

C→A 23.70 36.95 49.69 44.47 41.02 44.78 44.89 43.74 50.57 51.25 53.91 52.82 54.59
C→W 25.76 32.54 38.98 34.24 40.68 41.69 38.64 33.56 47.15 38.64 40.00 40.68 48.14
C→D 25.48 38.22 40.13 43.31 38.85 45.22 47.77 39.49 48.40 47.13 49.68 51.59 53.50
A→C 26.00 34.73 39.54 37.58 40.25 39.36 40.78 38.29 37.65 43.37 44.07 43.37 44.88
A→W 29.83 35.59 30.85 33.90 38.98 37.97 39.32 33.90 39.03 36.61 37.28 43.39 39.66
A→D 25.48 27.39 33.76 26.11 36.31 39.49 43.31 34.21 38.89 38.85 42.03 46.50 45.86
W→C 19.86 26.36 34.73 29.83 30.72 31.17 28.94 30.63 35.45 29.83 35.12 31.97 32.17
W→A 22.96 31.00 39.25 30.27 29.75 32.78 32.99 30.48 45.17 34.13 35.07 37.97 37.68
W→D 59.24 77.07 75.80 87.26 80.89 89.17 91.72 92.36 72.61 82.80 84.71 89.81 89.12
D→C 26.27 29.65 35.89 28.50 30.28 31.52 32.50 32.32 35.08 31.61 36.42 33.84 34.02
D→A 28.50 32.05 38.73 27.56 32.05 33.09 33.09 33.72 38.00 33.19 35.07 38.20 38.31
D→W 63.39 75.93 76.95 85.42 75.59 89.49 91.86 88.81 73.75 77.29 76.94 82.37 84.07
Average 31.37 39.79 44.52 42.37 42.95 46.31 47.15 44.29 46.83 45.39 47.45 49.32 50.17
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at least 1.39% and 0.14% improvement in the two experi-
ments, respectively, which demonstrate the effectiveness of 
the proposed unified framework incorporating non-convex 
Schatten p-norm, graph-structure constraint, statistical dis-
tributions, and classification error.

5.2  Office and Caltech‑256 datasets

The Office dataset consists of 4652 images in 32 categories. 
These images are divided into three image groups: Amazon, 
Webcam and DSLR (denoted by A, W and D, respectively). 
The images in the three groups are obtained from the online 
merchant, a web camera with low-resolution, and a digital 
SLR camera with high-resolution, respectively. Different 
from the Office dataset, which is a standard DA benchmark, 
the Caltech-256 dataset (denoted by C) is a benchmark for 
image classification, which consists of more than 30,000 
images of 256 categories. The two datasets share 10 classes, 
namely, backpack, bike, calculator, headphones, keyboard, 
laptop computer, monitor, mouse, mug and projector, as 
shown in Fig. 5. It can be seen that the variances of the 
images in the datasets are quite large. In the experiments, 
two different parts are randomly selected from the four parts 

(i.e., A, W, D, and C) as the source and target domains, and 
in all 12 DA experiments are constructed, i.e., C → A, C → W, 
… , D →W.

Table 1 lists the performance of all competing methods. 
The proposed method achieves the highest average accu-
racy over the 12 cross-domain experiments and has at least 
10.38% (0.85%) improvement over the standard learning 
methods (DA methods). In the 12 cross-domain experiments, 
the proposed method achieves four best performances and 
three second-best performances.

5.3  USPS and MNIST datasets

The USPS dataset consists of 9298 images with a size of 
16 × 16 images in all, where 7291 images are for training and 
2007 images for testing. The MNIST dataset includes 70,000 
images with a size of 28 × 28 , where 60,000 images are for 
training and 10,000 images for testing. The two datasets 
share 10 classes of digits but follow very different distribu-
tions. Some examples are shown in Fig. 3b. Following the 
settings of (Long et al. 2013b), two subsets are formed by 
randomly selecting 1800 and 2000 images from the USPS 
and MNIST, respectively. By selecting one subset as the 

Fig. 6  Classification accuracies 
(%) on the USPS and MNIST 
datasets

Fig. 7  Some examples of the CMU PIE dataset. a Left pose, b upward pose, c downward pose, d front pose, e right pose
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source set and the other subset as the target set, two DA 
experiments are constructed: USPS→MNIST and MNIST→
USPS.

Figure 6 lists the classification accuracies of all meth-
ods. The proposed method achieves the best performance, 
with improvements of at least 0.27% and 0.89% on the two 
experiments. It should be noted that LTSL (Shao et al. 2014) 
and LRSR (Xu et al. 2016) perform better than most of the 
other DA methods, except BDA (Wang et al. 2017) and JDA 
(Long et al. 2013b). The main reason is that the background 
and structure of the digit image are simple. In this case, the 
materiality of the geometric structure is greater than that of 
the distribution difference. By taking both structure infor-
mation and distribution shifts into consideration, SPDA and 
the proposed method achieve better performance than other 
competing methods. Compared with SPDA, the proposed 
method utilizes the Schatten p-norm to exploit the geometric 
structure more precisely and weigh the marginal distribution 
and conditional distribution differently to further minimize 
the domain shifts, which results in better performance.

5.4  CMU PIE dataset

There are 41,368 face images with a size of 32 × 32 in the 
CMU PIE dataset. The images are taken from 68 people 
under different illumination conditions, poses and expres-
sions. In this experiment, five subsets of PIE are used to test 
different methods. Each subset corresponds to a distinct pose 

with illumination and expression variations: PIE1 (C05, left 
pose, 3332 images, 49 images for each person), PIE2 (C07, 
upward pose, 1632 images, 24 images for each person), PIE3 
(C09, downward pose, 1632 images, 24 images for each per-
son), PIE4 (C27, front pose, 3332 images, 49 images for 
each person), and PIE5 (C29, right pose, 1632 images, 24 
images for each person), as seen as in Fig. 7. Following 
the experimental settings in Xu et al. (2016)), two different 
subsets are randomly chosen to be the source set and target 
set, which results in 20 different pairs of DA experiments, 
i.e., 1 → 2, 1 → 3,… , 5 → 4.

Table 2 shows the classification accuracies of different 
methods. The proposed method outperforms other compet-
ing methods in all 20 cross-domain datasets and achieves 
��.��% improvement on the average accuracy. The main rea-
son is that the proposed method uses both statistical distribu-
tion and geometric structure information, which reduces the 
distribution shifts between the source domain and the target 
domain further than other methods.

5.5  Discussion of parameters

There are five parameters in the objective function (8): � 
and � are l1 regularization on the representation and noise 
matrix, respectively. � , � and � are used to balance the graph 
regularization, marginal distribution and conditional distri-
bution, respectively. To verify the impacts of the param-
eters, we calculate the results of the proposed method with 

Table 2  Classification 
accuracies (%) on the CMU PIE 
dataset

GFK TSL TCA LTSL JDA LRSR LRDRM Ours

1→2 26.15 44.08 26.70 22.96 58.81 65.87 62.67 70.04
1→3 27.27 47.49 27.08 20.65 54.23 64.09 67.21 70.10
1→4 31.15 62.78 31.06 31.81 84.50 82.03 83.08 95.97
1→5 17.59 36.15 18.08 12.07 49.75 54.90 58.39 61.83
2→1 25.24 46.28 26.14 18.25 57.62 45.04 55.61 72.12
2→3 47.37 57.60 47.98 16.05 62.93 53.49 55.88 68.32
2→4 54.25 71.43 54.73 45.15 75.82 71.43 77.56 87.50
2→5 27.08 35.66 28.06 17.52 39.89 47.97 47.67 58.27
3→1 21.82 36.94 21.91 22.36 50.96 52.49 60.05 78.15
3→2 43.16 47.02 43.65 20.26 57.95 55.56 46.83 75.51
3→4 46.41 59.45 47.67 57.34 68.45 77.50 76.60 91.83
3→5 26.78 36.34 27.57 24.57 39.95 54.11 56.86 65.99
4→1 34.24 63.66 33.82 51.20 80.58 81.54 85.47 93.75
4→2 62.92 72.68 64.52 70.10 82.63 85.39 84.89 93.31
4→3 73.35 83.52 74.08 72.00 87.25 82.23 84.00 92.40
4→5 37.38 44.79 38.91 48.28 54.66 72.61 73.77 77.57
5→1 20.35 33.28 20.35 13.06 46.46 52.19 59.63 60.08
5→2 24.62 34.13 24.98 21.61 42.05 49.41 52.73 66.30
5→3 28.49 36.58 28.86 17.03 53.31 58.45 53.79 66.97
5→4 31.33 38.75 31.36 29.59 57.01 64.31 71.76 77.98
Average 35.35 49.43 35.88 31.59 60.24 63.53 65.72 76.20
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different combinations of values. The values of each parame-
ter are selected from a small set. Specifically, the parameters 
� and � are searched in {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1} , 

and the search ranges for the parameters � , � and � are 
{0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000}.

Fig. 8  Classification accuracies (%) of the proposed method with dif-
ferent parameters on different datasets. a � and � for COIL1→COIL2, 
b � , � and � for COIL1→COIL2, c � and � for Caltech256→Amazon, 

d � , � and � for Caltech256→Amazon, e � and � for MNIST→USPS, f 
� , � and � for MNIST→USPS, g � and � for CMU PIE1→CMU PIE2, 
h � , � and � for CMU PIE1→CMU PIE2



5148 H. Chang et al.

1 3

The results for COIL1→COIL2, Caltech256→Amazon, 
USPS→MNIST, PIE1→PIE2 with different parameters are 
shown in Fig. 8. From Fig. 8, we can see that the classifi-
cation accuracies are roughly consistent. Specifically, the 
method is insensitive to � and � for all of the datasets. The 
accuracy range is within 1.0% . The values of � , � and � are 
different since the roles of their corresponding regulariza-
tions are diverse for different datasets.

5.6  Discussion with deep learning methods

Deep learning is a popular technology and has been applied 
in various applications (Yu et al. 2019; Lu et al. 2018, 2019). 
In Ding and Fu (2018), developed a deep transfer low-rank 
coding (DTLC) for cross-domain learning. Benefitting from 
the convolution neural networks, DTLC could capture more 
representative and discriminative image features. In Long 
et al. (2017), proposed joint adaptation networks to learn a 
transfer network by introducing the joint maximum mean 
discrepancy criterion and adversarial training strategy.

The image features play an essential role in the classifi-
cation task. Intuitively, the proposed method will perform 
better if deep features are used, because deep features have 
a greater advantage in representation and discrimination 
than the handcrafted features. In the experiments, simply 
handcrafted features are used (SURF feature for the Office 
and Caltech256 datasets, grayscale pixel values for the other 
datasets). For practical applications, the deep features of 
images can be first extracted through trained deep neural 
networks, then used for unsupervised DA via (8).

6  Conclusions

This paper presented a novel unsupervised DA method for 
image classification. The method exploits both geometric 
and statistical characteristics of the samples by (1) construct-
ing graph-structure constraint and the Schatten p-norm on 
the reconstruction matrix, (2) minimizing both marginal 
and conditional distributions, to reduce the distribution shift 
problem between the source and target domain. By project-
ing the samples of both domains into a common separable 
subspace, the samples from the target domain can be cor-
rectly classified. An iterative algorithm is proposed for effec-
tively solving the proposed method. Extensive experiments 
on six datasets are done and the results verify the advantages 
of the proposed method.
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