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Abstract
Deep learning has been utilized in many intelligent systems, including computer vision techniques. Human pose estimation is 
one of the popular tasks in computer vision that has benefited from modern feature learning strategies. In this regard, recent 
advances propose part-based approaches since pose estimation based on parts can produce more accurate results than when 
the human shape is considered holistically as one unbreakable, but deformable object. However, in real-word scenarios, 
problems like occlusion and cluttered background make difficulties in part-based methods. In this paper, we propose to unite 
the two attitudes of the part-based and the holistic pose predictions to make more accurate and more robust estimations. 
These two schemes are modeled using convolutional neural networks as regression and classification tasks in order, and 
are combined in three frameworks: multitasking, series, and parallel. Each of these settings has its own advantages, and the 
experimental results on the LSP test set demonstrate that it is essential to observe subjects, both based on parts and holisti-
cally in order to achieve more accurate and more robust estimation of human pose in challenging scenarios.

Keywords Human pose estimation · Holistic prediction · Part-based prediction · Deep learning · Convolutional neural 
network

1 Introduction

In the computer vision community, human pose estima-
tion is the art of automatically recovering the skeletal pose 
of a person from visual data. This can be very helpful in 
various industrial applications, such as surveillance, image 
retrieval, virtual or augmented reality, driving systems, etc. 
Real-world images introduce some main challenges for this 
goal, which are occlusion, cluttered background, high vari-
ability of human appearance, and high degree of articulation 
of a human pose.

In most of the recent work, human is considered based 
on the individual parts of the body and the visual data is 

processed in various regressor models to infer the pose 
(Belagiannis et al. 2015; Carreira et al. 2016; Li et al. 2015; 
Lifshitz et al. 2016; Sun et al. 2017; Zhou et al. 2016). In 
other words, the outputs of the model are real values, which 
represent body part locations or heatmaps, which show the 
probability of body parts existence. These approaches usu-
ally predict part locations with a suitable accuracy; however, 
they may get into trouble when the background is intensely 
cluttered or when a body part is severely occluded and not 
visible.

On the other hand, it is also possible to consider the 
human body as a whole (holistic) object, which can be 
deformed. This means that the parts of the human body are 
not taken into account individually. In this approach, how-
ever, the precise mapping from the space of RGB images to a 
high-DOF pose space is not straightforward. Namely, image 
description and handling the pose variance is highly critical 
in this method. This issue gains importance when there is 
no specific predefined limit in the image capturing process 
and in the pose configuration.

Therefore, both types of part-based and holistic predic-
tions, have their own advantages and disadvantages, and they 
can complement each other. More precisely:
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• The learning criteria in the holistic methods, unlike the 
part-based attitudes, is not directly a function of the dis-
placements between individual body parts and their cor-
responding ground truth locations. Accordingly, the out-
put of the holistic models would be a coarse estimation 
of the human pose, whereas the part-based frameworks 
try to approach to the precise individual joint locations.

• Part-based designs cannot predict a severely occluded 
joint since the visual information of the joint is lost. On 
the other hand, the holistic method is capable of predict-
ing a probable location of an occluded part due to learn-
ing the overall holistic pose.

• When the background is highly cluttered or when there 
are similar objects in the background, false detection 
increase in the part-based frameworks. The holistic meth-
ods, on the contrary, do not focus on individual objects 
in the scene.

• In images with highly articulated poses, the part-based 
techniques may estimate a pose that is not anthropometri-
cally valid for a human being. However, the problem of 
invalid pose prediction can be alleviated in the holistic 
methods as it is possible to define the whole human poses 
based on the real valid human poses.

Thus, by fusing the two attitudes of holistic and part-based 
estimations, we can obtain both more accurate and more 
robust pose prediction. Viewing from the perspective of 
our own experiences and observations, it is easy to notice 
that we do not recognize and observe human beings by only 
focusing on their individual body parts. In fact, our brain 
performs a type of attention to the whole body visual data 
of a person.

Based on these motivations, this work proposes the fusion 
of the two approaches of holistic and part-based, as clas-
sification and regression tasks in order, and this is our main 

contribution. The forms of fusion are threefold: multitask-
ing, series, and parallel. An overview of our final method 
is depicted in Fig. 1, which uses multitasking and parallel 
fusion together (which are explained in Sect. 3). Unlike other 
part-based methods, the proposed uniting framework does 
not require feedback, cascading or repetition design, or other 
supplementary information, such as action label.

It should be noted that the input data to our system is 
one single frame. This type of data is the most challenging 
scheme in comparison to the multi-view or video sequence 
scenarios since it provides the least cues from the scene; no 
depth perception as in multi-view (Yan et al. 2020a) and no 
temporal information as in a video sequence is available. 
Yet, estimating the human pose based on one single frame 
is the most applicable case in many real-world applications, 
where there are specific device standards, particularly in the 
embedded systems, in terms of processing time, memory, 
and input resources. Enhancing pose estimation from still 
images can improve other cases as well (Yan et al. 2020b).

The rest of the paper is organized as follows: in Sect. 2, 
a summary of previous work on human pose estimation is 
presented. The proposed approaches are explained in detail 
in Sect. 3. In Sect. 4, the implementation details and experi-
mental results are discussed. Finally, the paper concludes 
in Sect. 5.

2  Related work

There is an affluent research behind human pose esti-
mation. Initially, the traditional approaches exploited 
handcrafted features like, HOG (Dalal and Triggs 2005), 
LBP (Ojala et al. 1994), etc. These features are fed into a 
model to search for a human pose by minimizing a match-
ing function. The most prominent traditional models are 

Fig. 1  An overview of our 
proposed approach: uniting the 
holistic and the part-based atti-
tudes for human pose estimation
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Deformable Part-based Models (DPMs) (Felzenszwalb 
et al. 2008, 2010b), which were suggested based on Pic-
torial Structures (Felzenszwalb and Huttenlocher 2005). 
These types of designs demonstrated state-of-the-art 
results prior to deep learning-based approaches.

While DPMs were formulated based on the individual 
body parts, other methods used a direct holistic map-
ping framework to estimate the human pose (Agarwal 
and Triggs 2006; Gavrila 2007; Mori and Malik 2002; 
Rogez et al. 2008; Shakhnarovich et al. 2003). However, 
these holistic perspectives were not considered for further 
research since, (1) they needed much stronger functions for 
mapping the image to the high variable human pose space, 
(2) they could only be used for heavily constrained condi-
tions in laboratories, (3) there were a lack of data samples 
to get access to the desired variations, (4) there had to be a 
high resemblance between the training and the testing data 
in order to attain acceptable results, and (5) the method 
was not able to generalize to new unseen poses. Therefore, 
many researchers focused on part-based methods and pro-
posed different variations of DPMs (Felzenszwalb et al. 
2010a; Kokkinos 2012; Yang and Ramanan 2013).

After the rise of deep learning in computer vision appli-
cations, human pose estimation also took advantage of this 
modern promising technique. Some work like (Chen and 
Yuille 2014; Jain et al. 2014) only made use of learned fea-
tures instead of handcrafted ones. Others, like (Tompson 
et al. 2014; Yang et al. 2016), trained the network in a way 
that it learns the pairwise relations between body parts as 
well. Recent methods take paradigms like feedbacking, 
cascading, repetition or larger receptive fields to achieve 
better recognition accuracies (Carreira et al. 2016; Wei 
et al. 2016). They all establish superiority with a large 
margin over the traditional approaches in human pose esti-
mation in real-world images.

The aforementioned advances have one main idea in 
common, i.e. recovering human pose based on individual 
body parts. Actually, most of the design types have been 
put forward to overcome the problems of part-based atti-
tude, which are occlusion, self-occlusion, false detection 
in cluttered backgrounds, double counting, and yielding 
anthropometrically invalid human poses.

Unlike these techniques, in Shamsafar and Ebrahim-
nezhad (2018), it is proposed to get a holistic predic-
tion of human pose based on a classifier convolutional 
neural network. The method demonstrates competitive 
coarse pose estimation in comparison to the part-based 
schemes. The holistic pose prediction yields a coarse, but 
anthropometrically valid pose and it shows robustness in 
challenges like occlusion and cluttered backgrounds. The 
holistic pose estimation can be used in applications that 
demand a fast valid understating of the human pose, such 

as content-based image retrieval and scene understand-
ing. Still, the accuracy of holistic prediction needs to be 
improved.

Note that human pose estimation can be coarsely esti-
mated using other sources of information like radio tomo-
graphic imaging (RTI). Authors in Liu et al. (2014) have 
proposed to recognize fall detection using body pose. Depth 
information can also be utilized in coarse human pose esti-
mation. For example, in Zavala-Mondragon et al. (2019), 
training a convolutional neural network is proposed to 
extract the actigraphy-related body pose information from 
depth images. The method is mainly toward clinical applica-
tions of estimating the human pose.

Based on what is discussed above, the two attitudes of 
holistic and part-based pose estimations have their own pros 
and cons. In this paper, we propose to use both of the atti-
tudes to improve the performance of human pose estima-
tion in monocular RGB images using convolutional neural 
networks.

3  Proposed approach

In this section, we first describe the holistic and the part-
based pipelines, which are a classifier and a regressor con-
volutional neural network, respectively. Then, we propose 
to unite the two methods in three frameworks: multitask-
ing, series, and parallel. Our final model, which is shown in 
Fig. 1, fuses the parallel and the multitasking frameworks. In 
the last Sect. 3.6 a strategy to assist the network for human 
pose estimation is suggested.

3.1  Holistic estimation

To this end, a classifier network is used similar to (Sham-
safar and Ebrahimnezhad 2018). The fundamental concept 
in classification is the categorization of the input data into 
a predefined set of human pose classes. In Fig. 2, some 
pose classes are displayed, which are computed using the 
k-means++ algorithm on human pose data of the training 

Fig. 2  Sample pose classes for pose classification in the holistic 
approach
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image samples. The loss function of the classification (holis-
tic) network is a multinomial logistic loss function. This 
method is considered as a holistic approach because the 
loss function penalizes the errors of misclassifying the pose 
classes, and not the individual joint displacements as in the 
part-based methods. Hence, any joint-based computations 
during training and testing is ignored and the human pose 
is considered as an entire shape that is capable of being 
deformed. For inference, the final pose is computed from 
the weighted mean of the t top pose classes. The weights are 
the class scores computed by the network. Additionally, a 
rescaling is required to fit the computed pose to the image. In 
our experiments, we have considered t = 5 and rescaling is 
performed using the height and the width of the input image. 
We refer the reader to Shamsafar and Ebrahimnezhad (2018) 
for more details.

3.2  Part‑based estimation

While classifying human pose can be useful in providing a 
coarse and valid pose in challenging images, it cannot get 
closer to each individual joint location. Thus, in order to 
make the prediction of joint locations finer, a regression 
network is essential. After a network is modified in the last 
fully-connected layers to obtain a 1 × 2n vector, the loss 
function for each sample is the mean of joint displacements 
using the Euclidean function:

where n is the number of joints, and (xpr
i
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the predicted and the ground truth locations for the i-th joint 
in order. In this method, unlike the described holistic estima-
tion, all joint information play a direct role in minimizing 
the error function.

3.3  Multitasking fusion

A deep network can be trained for several tasks with various 
loss functions. This strategy is a replacement for training 
multiple individual networks. Here, we suggest using a net-
work for both holistic and part-based pose predications. Spe-
cifically, the network performs both tasks of classification 
and regression. Two loss functions are defined for one net-
work and other parameters are hard-shared during training. 
That means most of the layer weights are shared between 
these two tasks. Hard parameter sharing is advantageous in 
preventing the network from overfitting and it can be used 
in tasks that are semantically related. The architecture of 
the general hard parameter sharing and of our multitasking 
approach are illustrated in Figs. 3 and 4 in order.
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3.4  Series fusion

In the series technique, we suggest to initially estimate the 
probable locations of human body parts using the holistic 
method. Then, we use these predictions concatenated with 
the input image in the part-based network. The block dia-
gram of the series method is displayed in Fig. 5. To this 
end, we first train a network as a human pose classifier. 
Then, the network is tested on unseen samples to compute 
the pose classes for them. One mask image is generated 
for each of the predicted joints as follows: After holistic 
pose computation, the mutual distances of all the predicted 
joints are computed. With a size as half of the maximum 
distance, a square mask centered on each joint location 
is built. Since we have defined the skeletal pose similar 
to the LSP dataset standard with 14 joints (Johnson and 
Everingham 2010), there is a total of 14 mask images, 
each showing a square-like neighborhood of the predicted 
joint. Next, these 14 joint masks with the 3 RGB channels 
of the input image are fed into a regressor network that 
directly predicts the 2D joint locations. As a result, the 
dimension of the input data to the regressor network would 
be h × w × 17 , where h and w are the spatial dimensions 
of the image.

The motivation behind this fusion is to provide a type 
of attention about the neighborhood of the joints to the 

Fig. 3  Hard parameter sharing in multitask learning

Fig. 4  The framework for the multitasking network. k and n indicate 
the number of pose classes and the number of joints in order
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model. In other words, not only the network searches the 
whole input image for a specific joint, but it concentrates 
more on the areas around that joint. Therefore, because 
of focusing on specific areas, we expect that the series 
method performs with robustness where the direct part-
based human pose estimation fails and brings in false 
detection of the joints or invalid pose estimation, like in 
heavy occlusion of a joint, cluttered scenes, and in images 
with low quality or resolution.

3.5  Parallel fusion

In this technique, the holistic and the part-based networks 
are trained and tested independently. In other words, each 
network makes a prediction for the human pose and then, 
the two poses are combined with a combination formula. 
The block diagram of the parallel fusion is illustrated in 

Fig. 6. We propose two types for pose combination as 
follows:

• Weighted mean: To this end, the weighted mean of the 
corresponding joints is computed: 

 where P1 and P2 are the computed poses using the 
holistic and the part-based networks, respectively, and 
� represents a factor of combination. That is, the final 
location for i-th joint is: 

 where (x1
i
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i
) and (x2

i
, y2

i
) are the predicted 2D locations 

of the i-th joint using the holistic and the part-based 
methods, respectively. Since we expect the part-based 
method gets closer to the joint locations, the coefficient 
for the part-based method should be higher.

• Modified weighted mean: In this case, the correspond-
ing joint distances between P1 (holistic pose) and P2 
(part-based pose) are computed. Then, the holistic pose 
is shifted in a way that the joint with the least distance is 
placed in the same joint location of the part-based pose. 
After shifting, once again, the corresponding joint dis-
tances between the part-based pose and the shifted holis-
tic pose are computed. The distances are normalized w.r.t 
the torso diagonal computed from the part-based method 
( P2 ). If the normalized distance for a joint is less than a 
threshold, the weighted mean of P1 and P2 is considered 
for that joint, and if the distance is more than a threshold, 
only the result of P2 is considered for the joint location. 
The reason for combining the two estimated poses with 
P2 as the hub is that P2 is expected to estimate finer joint 
locations (unlike the approximate and coarse joint detec-
tions of P1).
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Fig. 5  The pipeline for the proposed series combination of the holistic and the part-based methods. h and w are the spatial dimensions of the 
input data and n indicates the number of joints

Fig. 6  The block diagram of the parallel combination of the holistic 
and the part-based pose estimations
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3.6  Assisting the network

Here, we explain how it is possible to assist the feature 
learning in a deep neural network by directly incorporat-
ing a lower-level feature in the learning process. To this 
end, we add an extra channel along with the RGB image 
as the input to the network. Therefore, the input to the 
network would be of size h × w × 4 . This supplemented 
image is considered to be an edge map and the motiva-
tion behind this supplementation is to make the network 
focus on the information that are useful for estimating the 
human pose, and ignore image data that can be deceptive 
for the goal. Accordingly, the edge probabilities of the 
human shape contour is a effective feature for human pose 
estimation, while color, texture, and small variations in 
the background can mislead the performance (see Fig. 7). 
Thus, by using a lower-level image feature, we encourage 
the network to learn the useful information for human 
pose prediction. As far as we know, this is the first time 
that a lower-level image feature is used directly as an 
input in the learning process of a deep network in order to 
gain focus towards the defined goal. The method of Dol-
láar and Zitnick (2015) is used for edge map extraction.

4  Results and discussion

In this section, the implementation details are explained 
and the suggested three fusion techniques are evaluated. 
Based on the obtained results, we then utilize both the 
parallel and the multitasking techniques together as our 
final approach for estimating the human pose (Fig. 1).

4.1  Implementation details

For implementation, we have used 19,882, 1000, and 3686 
number of images from the training sets of MPII (Andriluka 
et al. 2014), LSP, and LSPextended (Johnson and Evering-
ham 2011), respectively. The reason for choosing a lower 
number than the available ones in the MPII and the LSPex-
tended is that for the holistic network, we need samples in 
which all the 14 joints, as in the LSP dataset, have been 
annotated. For augmentation, the images and their anno-
tations are horizontally flipped, reaching to a number of 
49,136 ones. Furthermore, we rotate these sample from −40◦ 
to 40◦ with step size of 10◦ . Consequently, the augmented 
dataset would have a total number of 442,224 samples.

We randomly divide the dataset into two subsets, S1 and 
S2. The reason for this division is twofold: (1) in the series 
scheme, we train the holistic and the part-based network 
separately. Therefore, two non-overlapping training sets are 
considered for each case (explained later), (2) we trained 
different scenarios with the first half of the dataset to analyze 
their overall performance and then, the best case is trained 
with all the training set (441 K samples). Note that a number 
of 1000 samples are selected randomly from S1 to act as a 
validation set. So, the number of training samples in S1 is 
220,112. Finally, the test set in all the experiments are 1000 
test samples of the LSP dataset.

We have used the network of ResNet-50 (He et al. 2016), 
pre-trained on the ImageNet dataset (Russakovsky et al. 
2015), for our proposed frameworks. In our implementa-
tions, the network is trained with the stochastic gradient 
descent (SGD) optimization with momentum and with the 
learning rate of 10−3 for 30 epochs with batch size of 32. We 
have used MatConvNet (Vedaldi and Lenc 2015) and a sys-
tem with two NVIDIA GeForce GTX 1050 for simulations.

Fig. 7  Edge maps of some sample images. This type of lower-level feature can provide helpful cues for human pose estimation and discard the 
misleading image feature, like color, texture, etc., in the model learning process
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Fig. 8  Qualitative compari-
son between the holistic and 
the part-based approaches. 
In each pair, the left and the 
right images show the results 
of the holistic and the part-
based methods in order. Note 
the robustness of the holistic 
method in the challenging joints

Table 1  PCK-0.2 (%) accuracy 
on the LSP test set using the 
holistic (“H”) and the part-
based (“P”) methods

The additional “E” states that the input image is supplemented with the edge map
Bold value shows the maximum value in each column

Head Sho. Elb. Wri. Hip Knee Ank. Mean

H 58.95 59.90 47.50 34.25 64.80 43.85 33.00 48.89
H–E 58.95 59.86 47.05 34.20 64.65 43.57 33.85 48.87
P 94.90 91.35 83.50 76.35 90.80 88.90 85.40 87.31
P–E 95.05 91.10 83.85 77.40 90.00 89.95 87.00 87.76
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In the classification (holistic) method, the procedure of 
assigning a ground truth pose class label to each sample 
is based on the least mean Euclidean distance to the rep-
resentative of the pose class (Shamsafar and Ebrahimn-
ezhad 2018). The number of pose classes is assumed to be 
1000. This choice is not an optimum one; but the number 

of classes should be chosen such that the network can 
learn the similarity of images within one class.

The results of the holistic classification and the part-
based regression are reported in Table 1. The mean PCK 
(Chen and Yuille 2014) for the holistic method is 48.89%, 
which is much lower than the one in the part-based 

Fig. 9  Qualitative compari-
son between the part-based 
approach with and without 
using the edge map along with 
the input image. In each pair, 
the left and the right images 
show the results of the input 
data as RGB and RGB-E (RGB 
+ edge map) in order. Incorpo-
rating the lower-level edge fea-
ture improves the performance 
of the network
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method (87.31%). This difference was expected since the 
holistic method predicts a coarse pose in a classification 
manner, while the part-based method performs a regres-
sion task with numerous parameters in the mapping func-
tion. In other words, the holistic method pays attention to 
the overall similarity of the pose, whereas the part-based 
loss function penalizes the false estimation for individ-
ual joints. The best and the least recognition rates in the 
holistic design belong to the hip joints and ankles, respec-
tively. Although these holistic estimations cannot catch 
up with the accuracy of the part-based method in terms 
of the PCK metric, the holistic method surpasses the 
part-based one in image samples with severe difficulties, 
which make the part-based method get stuck in undesired 
data. Figure 8 illustrates some of these samples. In this 
figure, we can see how the holistic method shows robust-
ness in occlusion/self-occlusion (e.g. the image in row7/
column1), low quality (e.g. the image in row6/column3), 
cluttered background/false detection (e.g. the image in 
row7/column3) and double counting (e.g. the image in 
row3/column3). The holistic model (“H” in Table 1) and 
the part-based approach (“P” in Table 1) are considered 
as the baselines of each type in our experiments.

Additionally, we investigate the effect of adding an 
edge map to the input data in order to assist the network in 
focusing on helpful image cues. In the holistic approach, 
adding the edge map does not make a difference on the 
mean PCK, see Table 1. This is caused by the intrinsic 
characteristic of the holistic approach, which does not 
pay attention to the details in the image. However, in the 
part-based approach, there are improvements in joints of 
the head, elbows, wrists, knees, ankles, and consequently, 
on the mean of all joints. The qualitative improvement by 
adding the edge map to the input data is shown in Fig. 9. 
Note how the direct addition of the lower-level edge fea-
ture, improves the prediction, especially in images with 
high articulation (e.g. the images in row1/column3, row3/
column3, row6/column1 and row5/column3).

4.2  Multitasking fusion

In the multitasking framework, whose results are reported in 
Table 2, it is observed that the mean PCK for the part-based 
output of the network has decreased in comparison to the 
part-based baseline, whereas the same for the holistic pose 
has grown. This is due to the nature of the methods; the part-
based method tries to predict the exact joint locations and 
it is more accurate than the holistic one and therefore, it is 
expected that by the joint training procedure, the performance 
of the part-based and the holistic approaches warp toward 
each other. In other words, while the holistic prediction 
enhances, the part-based strategy deteriorates. The average 
gain of accuracy in the holistic output of the multitasking net-
work in comparison to the holistic baseline is 4.82%, with the 
highest gain in the ankles (8.93%). Thus, multitasking can be 
beneficial in tasks that require only a valid coarse understand-
ing of the human pose (e.g. in content-based image retrieval, 
advanced driving assistance systems, patient monitoring), or 
in cases where there is memory shortage hindering us from 
using two types of holistic and part-based networks. In our 
final model, we will make use of the holistic output of the 
multitasking framework (“Multi-H” in Table 2).

4.3  Series fusion

In the series method, as stated previously, the holistic and 
the part-based methods are trained separately. The holistic 
network is fine-tuned on samples of the S1 set. After train-
ing the holistic network in a classification scheme, samples 
of the S2 set are fed as test samples. Now, the images of 
S2 along with the generated mask images from the holistic 
network are exploited for the part-based network. The pre-
trained ResNet-50 maps the concatenated input data to a 
vector of size 1 × 28.

The result of the series approach is tabulated in Table 2. 
The mean PCK accuracy in the series fusion (87.20%) is 
lower than the part-based baseline (87.31%). This can be 

Table 2  PCK-0.2 (%) accuracy 
on the LSP test set using 
different combinations of the 
holistic and the part-based 
methods

“Multi-H” indicates the holistic output of the multitasking framework and “Multi-P” shows the part-based 
output. “Parallel-M” is the parallel combination with the modified weighted mean
Bold values show the maximum value in each column
a Holistic baseline, bPart-based baseline

Head Sho. Elb. Wri. Hip Knee Ank. Mean

Ha 58.95 59.90 47.50 34.25 64.80 43.85 33.00 48.89
Pb 94.90 91.35 83.50 76.35 90.80 88.90 85.40 87.31
Multi-H 61.65 62.95 50.50 35.05 63.55 46.70 35.95 50.90
Multi-P 94.60 90.65 82.10 75.00 89.20 87.15 84.40 86.15
Series 94.75 91.22 83.45 76.20 90.76 88.72 85.35 87.20
Parallel 95.10 91.15 83.91 77.40 90.31 89.90 87.12 87.84
Parallel-M 95.20 91.35 83.95 77.45 90.50 90.00 86.85 87.90
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originated from the fact that in the holistic prediction, some 
estimated joint locations are not close enough to the cor-
rect joint locations and accordingly, the corresponding joint 
mask images do not contain the correct joint. The series 
scenario has also been conducted using the Gaussian masks 
(instead of the square binary masks) and using two smaller 
and larger square sizes, both of which decreased the accu-
racy of estimation.

Although the series fusion of the holistic and the 
part-based methods has reduced the mean PCK a bit, it 
enhances the prediction in some samples, as shown in 

Fig. 10. In each pair, the left/top sample shows the poses 
estimated by the part-based baseline, and the right/bot-
tom one shows prediction using the series pipeline. The 
part-based approach has confused the right/left body parts 
in some of these challenging images (e.g. the image in 
row4/column2). In some other images, predictions of the 
part-based method yield some erroneous joints, e.g. in the 
sample in row3/column1. These inaccuracies, even in the 
joints that are severely occluded (e.g. the image in row1/
column3), have been solved to some extent by utilizing the 
series combination.

Fig. 10  Qualitative comparison 
between the part-based baseline 
and the series approach. In each 
pair, the left/top and right/bot-
tom images show the results of 
the part-based and the series 
methods in order
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Hence, one can observe that in all these problematic 
images, the series scheme is capable of predicting much 
closer locations to the ground truth joints by considering 
the neighborhood of the joints. While this strategy shows 
more robustness than the part-based baseline in the challeng-
ing real-world images, yet, its estimations cannot pass the 
threshold for being considered as a correct prediction. Note 
that in the PCK metric, the accuracy is decided based on a 
threshold. This means that maybe a prediction is much closer 
to the ground truth joint, but it still cannot pass the threshold 
in this type of strict binary decision, and cannot go from 
the false detection zone to the true detection region. This 
is another reason why we have not obtained a higher PCK 
value. It seems the PCK metric has not enough flexibility to 
truly evaluate how much improvement has been made by an 
algorithm in estimating the human pose.

4.4  Parallel fusion

The results of the parallel combination using the weighted 
mean and the modified weighted mean are shown in Table 2. 
Note that we have used part-based method along with the 

edge map input, i.e. “P–E”, for this fusion since this sup-
plementation improves the part-based estimation.

Both types of the parallel combination have increased the 
mean PCK accuracy. This implies that the holistic prediction 
can improve the results of part-based method independently. 
Having a closer evaluation of the results, we found that the 
parallel fusion can relocate one or two joint predictions per 
sample, such that they can pass the threshold of the PCK 
metric and this leads to more correct detection amount.

When comparing the weighted mean combination with 
the modified one, the latter performs better. This shows 
that the computed coarse holistic pose can get closer to 
the correct pose by an amount of translation. The modified 
weighted mean case works better in joints of head, shoul-
ders, hips and knees.

4.5  Training with all the dataset

Here, we train the network that demonstrates the best accu-
racy from the previous section, i.e. the part-based method 
with the edge map input (“P–E”), with all the dataset. In pre-
vious experiments, only half of the augmented dataset (S1) 
was used for training the network. The computed accuracy 
rates are listed in Table 2. The mean PCK has risen from 
87.7 to 89.05%. Figure 11 shows the mean PCK for differ-
ent joints using the part-based approach with the edge map 
trained on about 440 K images. According to this figure, 
the best accuracy belongs to the head joints while the wrists 
show the least recognition rate. Wrist joints are the most dif-
ficult joints to detect because of the high variability of their 
location and their small-size and low-resolution appearance.

As a final approach in our experiments, we have paral-
lel-combined the methods of the part-based with the edge 
map (“P–E”) together with the holistic pose computed from 
the multitasking network (“Multi-H”) using the modified 
weighted mean function. The related block diagram is the 
one shown previously in Fig. 1. By this type of combina-
tion, we can reach to a higher mean recognition accuracy, 
90.01% (Table 3).

Figure 12 shows the results of our final framework on 
some samples from the LSP test set. We can see that in 
various cases of challenges of pose estimation, namely 
high articulation, high appearance variability (color and 
texture of clothes, body shape, skin color) and low quality, 

Fig. 11  PCK (%) for different joints on the LSP test set, with respect 
to varying amounts of threshold. The approach is part-based with the 
edge map (“P–E”) and trained on about 440 K training samples

Table 3  PCK-0.2 (%) on the LSP test set: “P–E” indicates the part-based method that is assisted by the edge map information

The network is trained with all the augmented dataset. “Parallel-M” is the parallel combination of “P–E” and the holistic pose obtained from the 
multitasking framework in Sect. 4.2

Head Sho. Elb. Wri. Hip Knee Ank. Mean

P–E 95.85 92.10 85.85 79.30 91.55 90.85 87.85 89.05
Parallel-M 97.14 93.73 86.97 79.30 93.08 91.99 87.89 90.01
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Fig. 12  The result of our pro-
posed final model in challeng-
ing images. Note how the model 
has performed robust in high 
articulation, low quality, light 
variation, heavy occlusion and 
cluttered background
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the method achieves robust and accurate predictions. In 
addition, it does not get stuck in false part detections when 
similar body parts exist in the cluttered background. Body 
part occlusion/self-occlusion is another major problem 
of human pose estimation in the wild, particularly in 2D 

images when the amount of available cues is limited. Our 
method is able to correctly predict the occluded body parts 
even in totally occluded ones. As illustrated in Fig. 12, the 
performance also demonstrate robustness when the viewing 
angle is different.

Table 4  Comparisons of the 
PCK-0.2 (%) on the LSP test set

Bold values show the maximum value in each column

Head Sho. Elb. Wri. Hip Knee Ank. Mean

Wang and Li (2013) 84.7 57.1 43.7 36.7 56.7 52.4 50.8 54.6
Pishchulin et al. (2013b) 87.2 56.7 46.7 38.0 61.0 57.5 52.7 57.1
Tompson et al. (2014) 90.6 79.2 67.9 63.4 69.5 71.0 64.2 72.3
Fan et al. (2015) 92.4 75.2 65.3 64.0 75.7 68.3 70.4 73.0
Carreira et al. (2016) 90.5 81.8 65.8 59.8 81.6 70.6 62.0 73.1
Yang et al. (2016) 90.6 78.1 73.8 68.8 74.8 69.9 58.9 73.6
Ukita and Uematsu (2018) 93.6 85.1 76.3 71.0 85.2 80.6 77.8 81.4
Rafi et al. (2016) 95.8 86.2 79.3 75.0 86.6 83.8 79.8 83.8
Yu et al. (2016) 87.2 88.2 82.4 76.3 91.4 85.8 78.7 84.3
Belagiannis and Zisserman (2017) 95.2 88.7 81.7 76.8 83.8 86.7 82.5 85.1
Lifshitz et al. (2016) 96.8 89.0 82.7 79.1 90.9 86.0 82.5 86.7
Pishchulin et al. (2016) 97.0 91.0 83.8 78.1 91.0 86.7 82.0 87.1
Our model 97.1 93.7 86.9 79.3 93.0 91.9 87.8 90.0

Table 5  Comparisons of the 
PCP-0.5 (%) on the LSP test set

The prefixes “U-” and “L-” indicate the upper and the lower parts in order (e.g. U-arms is the upper arms)
Bold values show the maximum value in each column

U-arms L-arms U-legs L-legs Head Torso Mean

Fan et al. (2015) 56.0 38.0 77.0 71.0 – – –
Wang and Li (2013) 43.1 32.1 56.0 55.8 79.1 87.5 54.1
Pishchulin et al. (2013b) 46.0 35.2 63.6 58.4 85.1 88.7 58.0
Kiefel and Gehler (2014) 54.1 28.3 74.5 67.6 78.3 85.8 61.2
Yang and Ramanan (2013) 56.0 39.8 70.3 67.0 79.3 88.7 62.8
Pishchulin et al. (2013a) 54.2 33.9 75.7 68.0 78.1 87.5 62.9
Eichner and Ferrari (2012) 56.5 37.4 74.3 69.3 80.1 86.2 64.3
Tompson et al. (2014) 63.0 51.2 70.4 61.1 83.7 90.3 66.6
Ramakrishna et al. (2014) 62.8 39.5 79.0 73.6 80.4 88.1 67.8
Ouyang et al. (2014) 63.3 46.6 76.5 72.2 83.1 84.3 68.6
Hernández-Vela et al. (2016) 57.6 42.0 77.3 72.9 84.2 88.4 67.2
Belagiannis et al. (2015) 61.3 40.3 79.9 74.3 83.2 92.7 68.8
Pishchulin et al. (2012) 61.8 45.0 78.9 73.2 85.1 82.9 69.2
Fan et al. (2015) 62.8 49.1 77.7 69.8 86.6 95.4 70.1
Carreira et al. (2016) 66.7 51.0 81.8 73.3 84.4 95.3 72.5
Chen and Yuille (2014) 69.7 58.1 77.2 72.2 85.6 96.0 73.6
Chu et al. (2016) 76.0 64.3 87.6 83.5 89.4 95.4 80.8
Yang et al. (2016) 66.7 78.8 88.7 81.7 83.1 96.5 81.1
Rafi et al. (2016) 76.8 66.2 87.3 80.2 93.3 97.6 81.2
Belagiannis and Zisserman (2017) 79.4 69.4 86.7 82.2 89.4 96.0 82.1
Lifshitz et al. (2016) 80.4 71.4 88.9 84.5 94.7 97.3 84.2
Pishchulin et al. (2016) 82.4 71.8 88.8 82.0 95.8 97.0 84.3
Yu et al. (2016) 82.9 72.6 93.1 88.1 83.0 98.0 85.4
Our model 85.6 73.2 94.0 91.4 92.1 95.3 87.6
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We compare our final proposed approach with some 
works based on the PCK-0.2 and the PCP-0.5 (Eichner and 
Ferrari 2009; Felzenszwalb and Huttenlocher 2005) metrics 
in Tables 4 and 5 in order. Our proposed method obtains 
higher recognition rate in terms of both PCK-0.2 and PCP-
0.5 values (except in torso). The suggested paradigm for 
human pose estimation has a feed-forward procedure and 
unlike other work, it does not need feedback or repetition.

As discussed earlier, popular types of evaluation metrics 
for pose estimation, e.g. PCK-0.2 and PCP-0.5, strictly decide 
based on one threshold, and they can not convey fairly how one 
method performs better in comparison to the other one. Also, 
there is room to measure the robustness of the performance by 
a metric. This issue is gaining much importance since the com-
puter vision and the deep learning communities are moving 
towards applying the algorithms in the wild, where there is no 
constraint. In our future work, we aim to introduce an evalua-
tion metric, which can act softer and also assess the robustness 
of an algorithm in addition to its accuracy.

5  Conclusion

In this paper, we proposed to estimate the human pose 
simultaneously based on two viewpoints: holistic and 
part-based predictions. The holistic framework executes 
a pose classification task in a deep network, whereas the 
part-based prediction requires a regression mapping. The 
motivation behind this fusion is as follows: the part-based 
method predicts more accurate results, but gets stuck in 
challenges of human pose estimation; on the other hand, 
the holistic mode promotes robustness in severe chal-
lenges, while it does not get close enough to joint loca-
tions. These two frameworks were combined to compen-
sate the weakness of each method.

In practice, the multitasking network boosts the accuracy 
of the holistic approach; the series network enhances the 
robustness of pose estimation in challenges that cause false 
detections when using the part-based method, and lastly, in 
the parallel scheme, the mean recognition rate is improved 
directly. Based on the outcomes obtained from the conducted 
experiments, we fused the parallel and multitasking schemes 
as our final proposed model. The results demonstrate that for 
more accurate and for more robust human pose estimation, 
the visual information of human beings should be processed 
both holistically and based on individual parts.
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